

ALWAYS LEARNING PEARSON

Learn more at www.myprogramminglab.com

MyProgrammingLab™

Through the power of practice and immediate personalized

feedback, MyProgrammingLab improves your performance.

get with the programming

www.myprogramminglab.com

This page intentionally left blank

INTRODUCTION TO

JAVA
TM

PROGRAMMING
COMPREHENSIVE VERSION

Ninth Edition

Y. Daniel Liang
Armstrong Atlantic State University

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton
Editor in Chief: Michael Hirsch
Executive Editor: Tracy Dunkelberger
Associate Editor: Carole Snyder
Director of Marketing: Patrice Jones
Marketing Manager: Yez Alayan
Marketing Coordinator: Kathryn Ferranti
Marketing Assistant: Emma Snider
Director of Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Production Project Manager: Kayla Smith-Tarbox
Operations Supervisor: Alan Fischer
Manufacturing Buyer: Lisa McDowell

Art Director: Anthony Gemmellaro
Cover Designer: Anthony Gemmellaro
Manager, Visual Research: Karen Sanatar
Manager, Rights and Permissions: Mike Joyce
Text Permission Coordinator: Danielle Simon

and Jenn Kennett
Cover Illustration: Jason Consalvo
Lead Media Project Manager: Daniel Sandin
Project Management: Gillian Hall
Composition and Art: Laserwords
Printer/Binder: Edwards Brothers
Cover Printer: Lehigh-Phoenix Color/Hagerstown
Text Font: Times 10/12

10 9 8 7 6 5 4 3 2 1

ISBN 13: 978-0-13-293652-1
ISBN 10: 0-13-293652-6

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on the appropriate page within text and as follows: Table 3.2 and 10.1: Data from IRS. Figures 8.1, 8.12,
12.3, 12.5, 12.7, 12.9, 12.10, 12.12–12.21, 12.26–12.30, 13.1, 13.4, 13.9, 13.11, 13.15, 13.17, 13.19, 13.21, 13.23,
13.25–13.35, 14.10, 14.14,15.9–15.11, 16.1, 16.2, 16.8, 16.11, 16.14, 16.17, 16.19–16.35, 17.1, 17.3, 17.6, 17.9,
17.12, 17.13, 17.15, 17.17–17.32, 18.6–18.8, 18.10, 18.15–18.35, 19.19, 19.20, 19.22, 20.1, 20.9, 20.12–20.14,
20.16–20.20, 22.8, 22.17–22.21, 24.4, 24.6, 24.8, 24.11–24.17, 25.18–25.20, 27.17, 27.23-–27.25, 30.10, 30.14,
30.22, 30.23, 30.25, 31.24–31.26, 32.6, 32.7, 32.31–32.34, 33.5, 33.9–33.11, 33.16–33.22, 34.23, 34.27–34.30:
Screenshots © 2011 by Oracle Corporation. Reprinted with permission.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other coun-
tries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored
or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2013, 2011, 2009, 2007, 2004 by Pearson Education, Inc., publishing as Prentice Hall. All rights
reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permis-
sion should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain
permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to
201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data available upon request.

This book is dedicated to Professor Myers Foreman. Myers
used this book in CS1, CS2, and CS3 at Lamar University

and provided invaluable suggestions for improving the book.
Sadly, Myers passed away after he completed the review

of this edition.

To Samantha, Michael, and Michelle

This page intentionally left blank

PREFACE
Dear Reader,

Many of you have provided feedback on earlier editions of this book, and your comments and
suggestions have greatly improved the book. This edition has been substantially enhanced in
presentation, organization, examples, exercises, and supplements. We have:

■ Reorganized sections and chapters to present the subjects in a more logical order

■ Included many new interesting examples and exercises to stimulate interests

■ Updated to Java 7

■ Created animations for algorithms and data structures to visually demonstrate the
concepts

■ Redesigned the support Website to make it easier to navigate

This book teaches programming in a problem-driven way that focuses on problem solving
rather than syntax. We make introductory programming interesting by using thought-provoking
problems in a broad context. The central thread of early chapters is on problem solving.
Appropriate syntax and library are introduced to enable readers to write programs for solving the
problems. To support the teaching of programming in a problem-driven way, the book provides
a wide variety of problems at various levels of difficulty to motivate students. To appeal to stu-
dents in all majors, the problems cover many application areas, including math, science, business,
financial, gaming, animation, and multimedia.

The book focuses on fundamentals first by introducing basic programming concepts and
techniques before designing custom classes. The fundamental concepts and techniques of loops,
methods, and arrays are the foundation for programming. Building this strong foundation
prepares students to learn object-oriented programming and advanced Java programming.

This comprehensive version covers fundamentals of programming, object-oriented program-
ming, GUI programming, algorithms and data structures, concurrency, networking, internation-
alization, advanced GUI, database, and Web programming. It is designed to prepare students to
become proficient Java programmers. A brief version (Introduction to Java Programming, Brief
Version, Ninth Edition) is available for a first course on programming, commonly known as
CS1. The brief version contains the first 20 chapters of the comprehensive version.

The best way to teach programming is by example, and the only way to learn programming
is by doing. Basic concepts are explained by example, and a large number of exercises with
various levels of difficulty are provided for students to practice. For our programming courses,
we assign programming exercises after each lecture.

Our goal is to produce a text that teaches problem solving and programming in a broad
context using a wide variety of interesting examples. If you have any comments on and
suggestions for improving the book, please email me.

Sincerely,

Y. Daniel Liang
y.daniel.liang@gmail.com
www.cs.armstrong.edu/liang
www.pearsonhighered.com/liang

vii

brief version

comprehensive version

fundamentals-first

problem-driven

what is new?

examples and exercises

www.cs.armstrong.edu/liang
www.pearsonhighered.com/liang

viii Preface

What’s New in This Edition?
This edition substantially improves Introduction to Java Programming, Eighth Edition. The
major improvements are as follows:

■ This edition is completely revised in every detail to enhance clarity, presentation, content,
examples, and exercises.

■ New examples and exercises are provided to motivate and stimulate student interest in
programming.

■ Each section starts with a Key Point that highlights the important concepts covered in the
section.

■ Check Points provide review questions to help students track their progress and evaluate
their learning after a major concept or example is covered.

■ Each chapter provides test questions online. They are grouped by sections for students to
do self-test. The questions are graded online.

■ New VideoNotes provide short video tutorials designed to reinforce code.

■ The Java GUI API is an excellent example of how the object-oriented principle is applied.
Students learn better with concrete and visual examples. So basic GUI/Graphics is moved
before introducing abstract classes and interfaces. You can however still choose to cover
abstract classes and interfaces before GUI or skip GUI.

■ The numeric wrapper classes, BigInteger, and BigDecimal are now introduced in
Chapter 10 to enable students to write code using these classes early.

■ Exception handling is covered before abstract classes and interfaces so that students
can build robust programs early. The instructor can still choose to cover exception
handling later. Text I/O is now combined with exception handling to form a new
chapter.

■ Simple use of generics is introduced along with ArrayList in Chapter 11 and with
Comparable in Chapter 15 while the complex detail on generics is still kept in
Chapter 21.

■ Chapter 22 is split into two chapters (Chapter 22 and Chapter 23) to make room for incor-
porating three new case studies to demonstrate effective use of data structures.

■ Chapter 24 is expanded to introduce algorithmic techniques: dynamic programming,
divide-and-conquer, backtracking, and greedy algorithm with new examples to design
efficient algorithms.

■ Visual animations are created to show how data structures and algorithms work.

■ A common problem with a data structures course is lack of good examples and exercises.
This edition added many new interesting examples and exercises.

■ Parallel programming techniques are introduced in Chapter 32, Multithreading and
Parallel Programming.

■ Chapter 44 is completely new to introduce the latest standard on JSF.

■ Chapter 50 is completely new to introduce testing using JUnit.

Please visit www.cs.armstrong.edu/liang/intro9e/newfeatures.html for a complete list of new
features as well as correlations to the previous edition.

new JUnit chapter

new JSF chapter

parallel programming

new data structures materials

data structures and algorithm
animation

developing efficient
algorithms

splitting Chapter 22

simple generics early

exception handling earlier

numeric classes covered early

basic GUI and graphics early

test questions

check point

key point

new problems

complete revision

VideoNotes

www.cs.armstrong.edu/liang/intro9e/newfeatures.html

Preface ix

Pedagogical Features
The book uses the following elements to help students get the most from the material:

■ The Objectives at the beginning of each chapter list what students should learn from the
chapter. This will help them determine whether they have met the objectives after com-
pleting the chapter.

■ The Introduction opens the discussion with representative problems to give the reader an
overview of what to expect from the chapter.

■ Key Points highlight the important concepts covered in each section.

■ Check Points provide review questions to help students track their progress as they read
through the chapter and evaluate their learning.

■ Problems and Case Studies, carefully chosen and presented in an easy-to-follow style,
teach problem solving and programming concepts. The book uses many small, simple,
and stimulating examples to demonstrate important ideas.

■ The Chapter Summary reviews the important subjects that students should understand
and remember. It helps them reinforce the key concepts they have learned in the chapter.

■ Test Questions are accessible online, grouped by sections, for students to do self-test on
programming concepts and techniques.

■ Programming Exercises are grouped by sections to provide students with opportunities to
apply the new skills they have learned on their own. The level of difficulty is rated as easy (no
asterisk), moderate (*), hard (**), or challenging (***). The trick of learning programming
is practice, practice, and practice. To that end, the book provides a great many exercises.

■ Notes, Tips, Cautions, and Design Guides are inserted throughout the text to offer valu-
able advice and insight on important aspects of program development.

Note
Provides additional information on the subject and reinforces important concepts.

Tip
Teaches good programming style and practice.

Caution
Helps students steer away from the pitfalls of programming errors.

Design Guide
Provides guidelines for designing programs.

Flexible Chapter Orderings
The book is designed to provide flexible chapter orderings to enable GUI, exception handling,
recursion, generics, and the Java Collections Framework to be covered earlier or later. The
diagram on the next page shows the chapter dependencies.

Organization of the Book
The chapters can be grouped into five parts that, taken together, form a comprehensive intro-
duction to Java programming, data structures and algorithms, and database and Web pro-
gramming. Because knowledge is cumulative, the early chapters provide the conceptual basis

Chapter 45 Web Services

Chapter 44 Java Server Faces

Chapter 46 Remote Method
 Invocation

Chapter 27 Binary Search Trees

Chapter 28 Hashing

Chapter 29 AVL Trees

Chapter 31 Weighted Graphs and
 Applications

Chapter 30 Graphs and
 Applications

Chapter 23 Sets and Maps

Chapter 24 Developping
 Efficient Algorithms

Chapter 1 Introduction to
 Computers, Programs, and
 Java

Chapter 2 Elementary
 Programming

Chapter 4 Loops

Chapter 5 Methods

Chapter 7 Multidimensional
 Arrays

Part I: Fundamentals of
 Programming

Chapter 3 Selections

Chapter 8 Objects and Classes

Chapter 19 Binary I/O

Note: Chapters 1–20 are in the
brief version of this book.

Note: Chapters 1–34 are in the
comprehensive version.

Note: Chapters 35–50 are bonus
chapters available from the
Companion Website.

Chapter 9 Strings

Chapter 10 Thinking in Objects

Chapter 11 Inheritance and
 Polymorphism

Chapter 14 Exception
 Handling and Text I/O

Chapter 15 Abstract Classes
 and Interfaces

Chapter 6 Single-Dimensional
 Arrays

Part II: Object-Oriented
 Programming

Chapter 32 Multithreading and
 Parallel Programming

Chapter 42 Servlets

Chapter 33 Networking

Chapter 34 Java Database
 Programming

Chapter 35 Internationalization

Chapter 41 Advanced
 Database Programming

Chapter 43 Java Server Pages

Part V: Advanced Java
 Programming

Chapter 12 GUI Basics

Chapter 13 Graphics

Chapter 16 Event-Driven
 Programming

Chapter 22 Lists, Stacks, Queues,
 and Priority Queues

Chapter 17 GUI Components

Chapter 18 Applets and
 Multimedia

Chapter 36 JavaBeans and Bean
 Events

Chapter 37 Containers, Layout
 Managers, and Borders

Chapter 38 Menus, Toolbars,
 and Dialogs

Chapter 39 MVC and Swing
 Models

Chapter 40 JTable and JTree

Chapter 49 Java 2D

Chapter 50 Testing Using JUnit

Part III: GUI Programming

Chapter 20 RecursionCh 6

Chapter 21 Generics

Chapter 26 Implementing Lists,
 Stacks, Queues, and Priority
 Queues

Part IV: Data Structures and
 Algorithms

Ch 8

Ch 15

Ch 18

Chapter 47 2-4 Trees and B-
 Trees

Chapter 48 Red-Black Trees

Chapter 25 Sorting

x
Preface

for understanding programming and guide students through simple examples and exercises;
subsequent chapters progressively present Java programming in detail, culminating with the
development of comprehensive Java applications. The appendixes contain a mixed bag of top-
ics, including an introduction to number systems and bitwise operations.

Part I: Fundamentals of Programming (Chapters 1–7)

The first part of the book is a stepping stone, preparing you to embark on the journey of
learning Java. You will begin to learn about Java (Chapter 1) and fundamental programming
techniques with primitive data types, variables, constants, assignments, expressions, and
operators (Chapter 2), control statements (Chapters 3–4), methods (Chapter 5), and arrays
(Chapters 6–7). After Chapter 6, you can jump to Chapter 20 to learn how to write recursive
methods for solving inherently recursive problems.

Part II: Object-Oriented Programming (Chapters 8–11, 14–15, and 19)

This part introduces object-oriented programming. Java is an object-oriented programming
language that uses abstraction, encapsulation, inheritance, and polymorphism to provide great
flexibility, modularity, and reusability in developing software. You will learn programming
with objects and classes (Chapters 8–10), class inheritance (Chapter 11), polymorphism
(Chapter 11), exception handling and text I/O (Chapter 14), abstract classes (Chapter 15), and
interfaces (Chapter 15). Processing strings is introduced in Chapter 9, and binary I/O is dis-
cussed in Chapter 19.

Part III: GUI Programming (Chapters 12–13, 16–18, and Bonus Chapters 36–40 and 49)

This part introduces elementary Java GUI programming in Chapters 12–13 and 16–18 and
advanced Java GUI programming in Chapters 36–40 and 49. Major topics include GUI basics
(Chapter 12), drawing shapes (Chapter 13), event-driven programming (Chapter 16), using GUI
components (Chapter 17), and writing applets (Chapter 18). You will learn the architecture of
Java GUI programming and use the GUI components to develop applications and applets from
these elementary GUI chapters. The advanced GUI chapters discuss Java GUI programming in
more depth and breadth. You will delve into JavaBeans and learn how to develop custom events
and source components in Chapter 36, review and explore new containers, layout managers,
and borders in Chapter 37, learn how to create GUI with menus, popup menus, toolbars,
dialogs, and internal frames in Chapter 38, develop components using the MVC approach and
explore the advanced Swing components JSpinner, JList, and JComboBox in Chapter 39,
and JTable and JTree in Chapter 40. Chapter 49 introduces Java 2D.

Part IV: Data Structures and Algorithms (Chapters 20–31 and Bonus Chapters 47–48)

This part covers the main subjects in a typical data structures course. Chapter 20 introduces
recursion to write methods for solving inherently recursive problems. Chapter 21 presents
how generics can improve software reliability. Chapters 22 and 23 introduce the Java
Collection Framework, which defines a set of useful API for data structures. Chapter 24 dis-
cusses measuring algorithm efficiency in order to choose an appropriate algorithm for appli-
cations. Chapter 25 describes classic sorting algorithms. You will learn how to implement
several classic data structures lists, queues, and priority queues in Chapter 26. Chapters 27
and 29 introduce binary search trees and AVL trees. Chapter 28 presents hashing and imple-
menting maps and sets using hashing. Chapters 30 and 31 introduce graph applications. The
2-4 trees, B-trees, and red-black trees are covered in Chapters 47–48.

Part V: Advanced Java Programming (Chapters 32–33 and Bonus Chapters 35, 41–46,
and 50)

This part of the book is devoted to advanced Java programming. Chapter 32 treats the use
of multithreading to make programs more responsive and interactive and introduces par-
allel programming. Chapter 33 discusses how to write programs that talk with each other

Preface xi

over the Internet. Chapter 34 introduces the use of Java to develop database projects, and
Chapter 35 covers the use of internationalization support to develop projects for interna-
tional audiences. Chapter 41 delves into advanced Java database programming. Bonus
Chapters 42, 43 and 44 introduce how to use Java servlets, JavaServer Pages, and
JavaServer Faces to generate dynamic content from Web servers. Chapter 45 discusses
Web services, and Chapter 46 introduces remote method invocation. Chapter 50 introduces
testing Java programs using JUnit.

Appendixes

This part of the book covers a mixed bag of topics. Appendix A lists Java keywords.
Appendix B gives tables of ASCII characters and their associated codes in decimal and in
hex. Appendix C shows the operator precedence. Appendix D summarizes Java modifiers and
their usage. Appendix E discusses special floating-point values. Appendix F introduces num-
ber systems and conversions among binary, decimal, and hex numbers. Finally, Appendix G
introduces bitwise operations.

Java Development Tools
You can use a text editor, such as the Windows Notepad or WordPad, to create Java programs
and to compile and run the programs from the command window. You can also use a Java
development tool, such as TextPad, NetBeans, or Eclipse. These tools support an integrated
development environment (IDE) for developing Java programs quickly. Editing, compiling,
building, executing, and debugging programs are integrated in one graphical user interface.
Using these tools effectively can greatly increase your programming productivity. TextPad is
a primitive IDE tool. NetBeans and Eclipse are more sophisticated, but they are easy to use if
you follow the tutorials. Tutorials on TextPad, NetBeans, and Eclipse can be found in the sup-
plements on the Companion Website www.cs.armstrong.edu/liang/intro9e.

Online Practice and Assessment with
MyProgrammingLab
MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of program-
ming. Through practice exercises and immediate, personalized feedback, MyProgrammingLab
improves the programming competence of beginning students who often struggle with the
basic concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds
of small practice problems organized around the structure of this textbook. For students, the
system automatically detects errors in the logic and syntax of their code submissions and
offers targeted hints that enable students to figure out what went wrong—and why. For
instructors, a comprehensive gradebook tracks correct and incorrect answers and stores the
code inputted by students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the
makers of the CodeLab interactive programming exercise system. For a full demonstration, to
see feedback from instructors and students, or to get started using MyProgrammingLab in
your course, visit www.myprogramminglab.com.

VideoNotes
We are excited about the new VideoNotes feature that is found in this new edition. These videos
provide additional help by presenting examples of key topics and showing how to solve problems
completely, from design through coding. VideoNotes are free to first time users and can be
accessed by redeeming the access code in the front of this book at www.pearsonhighered.com/liang.

IDE tutorials

xii Preface

VideoNote

www.cs.armstrong.edu/liang/intro9e
www.myprogramminglab.com
www.pearsonhighered.com/liang

LiveLab
This book is accompanied by a complementary Web-based course assessment and manage-
ment system for instructors. The system has four main components:

■ The Automatic Grading System can automatically grade programs.

■ The Quiz Creation/Submission/Grading System enables instructors to create and
modify quizzes that students can take and be graded upon automatically.

■ The Peer Evaluation System enables peer evaluations.

■ Tracking grades, attendance, etc., lets students track their grades, and enables instruc-
tors to view the grades of all students and to track students’ attendance.

The main features of the Automatic Grading System include:

■ Students can run and submit exercises. (The system checks whether their program runs
correctly—students can continue to run and resubmit the program before the due date.)

■ Instructors can review submissions, run programs with instructor test cases, correct them,
provide feedback to students, and check plagiarism.

■ Instructors can create/modify their own exercises, create public and secret test cases,
assign exercises, and set due dates for the whole class or for individuals.

■ Instructors can assign all the exercises in the text to students. Additionally, LiveLab
provides extra exercises that are not printed in the text.

■ Instructors can sort and filter all exercises and check grades (by time frame, student,
and/or exercise).

■ Instructors can delete students from the system.

■ Students and instructors can track grades on exercises.

The main features of the Quiz System are:

■ Instructors can create/modify quizzes from the test bank or a text file or create completely
new tests online.

■ Instructors can assign the quizzes to students and set a due date and test time limit for the
whole class or for individuals.

■ Students and instructors can review submitted quizzes.

■ Instructors can analyze quizzes and identify students’ weaknesses.

■ Students and instructors can track grades on quizzes.

The main features of the Peer Evaluation System include:

■ Instructors can assign peer evaluation for programming exercises.

■ Instructors can view peer evaluation reports.

Student Resource Website
The Student Resource Website (www.cs.armstrong.edu/liang/intro9e) contains the following
resources:

■ Access to VideoNotes (www.pearsonhighered.com/liang).

■ Answers to check point questions

Preface xiii

www.cs.armstrong.edu/liang/intro9e
www.pearsonhighered.com/liang

■ Solutions to even-numbered programming exercises

■ Source code for the examples in the book

■ Interactive self-testing (organized by sections for each chapter)

■ Data structures and algorithm animations

■ Errata

Instructor Resource Website
The Instructor Resource Website, accessible from www.cs.armstrong.edu/liang/intro9e, contains
the following resources:

■ Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-highlighted
source code and to run programs without leaving the slides.

■ Solutions to all programming exercises. Students will have access to the solutions of even-
numbered programming exercises.

■ Web-based quiz generator. (Instructors can choose chapters to generate quizzes from a
large database of more than two thousand questions.)

■ Sample exams. Most exams have four parts:

■ Multiple-choice questions or short-answer questions

■ Correct programming errors

■ Trace programs

■ Write programs

■ Projects. In general, each project gives a description and asks students to analyze, design,
and implement the project.

Some readers have requested the materials from the Instructor Resource Website. Please
understand that these are for instructors only. Such requests will not be answered.

Algorithm Animations
We have provided numerous animations for algorithms. These are valuable pedagogical tools
to demonstrate how algorithms work. Algorithm animations can be accessed from the
Companion Website.

Acknowledgments
I would like to thank Armstrong Atlantic State University for enabling me to teach what I
write and for supporting me in writing what I teach. Teaching is the source of inspiration for
continuing to improve the book. I am grateful to the instructors and students who have offered
comments, suggestions, bug reports, and praise.

This book has been greatly enhanced thanks to outstanding reviews for this and previous edi-
tions. The reviewers are: Elizabeth Adams (James Madison University), Syed Ahmed (North
Georgia College and State University), Omar Aldawud (Illinois Institute of Technology), Yang
Ang (University of Wollongong, Australia), Kevin Bierre (Rochester Institute of Technology),
David Champion (DeVry Institute), James Chegwidden (Tarrant County College), Anup Dargar
(University of North Dakota), Charles Dierbach (Towson University), Frank Ducrest
(University of Louisiana at Lafayette), Erica Eddy (University of Wisconsin at Parkside), Deena

xiv Preface

www.cs.armstrong.edu/liang/intro9e

Engel (New York University), Henry A. Etlinger (Rochester Institute of Technology), James
Ten Eyck (Marist College), Myers Foreman (Lamar University), Olac Fuentes (University of
Texas at El Paso), Edward F. Gehringer (North Carolina State University), Harold Grossman
(Clemson University), Barbara Guillot (Louisiana State University), Stuart Hansen (University
of Wisconsin, Parkside), Dan Harvey (Southern Oregon University), Ron Hofman (Red River
College, Canada), Stephen Hughes (Roanoke College), Vladan Jovanovic (Georgia Southern
University), Edwin Kay (Lehigh University), Larry King (University of Texas at Dallas), Nana
Kofi (Langara College, Canada), George Koutsogiannakis (Illinois Institute of Technology),
Roger Kraft (Purdue University at Calumet), Norman Krumpe (Miami University), Hong Lin
(DeVry Institute), Dan Lipsa (Armstrong Atlantic State University), James Madison
(Rensselaer Polytechnic Institute), Frank Malinowski (Darton College), Tim Margush
(University of Akron), Debbie Masada (Sun Microsystems), Blayne Mayfield (Oklahoma
State University), John McGrath (J.P. McGrath Consulting), Hugh McGuire (Grand Valley
State), Shyamal Mitra (University of Texas at Austin), Michel Mitri (James Madison
University), Kenrick Mock (University of Alaska Anchorage), Frank Murgolo (California State
University, Long Beach), Jun Ni (University of Iowa), Benjamin Nystuen (University of
Colorado at Colorado Springs), Maureen Opkins (CA State University, Long Beach), Gavin
Osborne (University of Saskatchewan), Kevin Parker (Idaho State University), Dale Parson
(Kutztown University), Mark Pendergast (Florida Gulf Coast University), Richard Povinelli
(Marquette University), Roger Priebe (University of Texas at Austin), Mary Ann Pumphrey (De
Anza Junior College), Pat Roth (Southern Polytechnic State University), Amr Sabry (Indiana
University), Carolyn Schauble (Colorado State University), David Scuse (University of
Manitoba), Ashraf Shirani (San Jose State University), Daniel Spiegel (Kutztown University),
Joslyn A. Smith (Florida Atlantic University) , Lixin Tao (Pace University), Ronald F. Taylor
(Wright State University), Russ Tront (Simon Fraser University), Deborah Trytten (University
of Oklahoma), Kent Vidrine (George Washington University), and Bahram Zartoshty
(California State University at Northridge).

It is a great pleasure, honor, and privilege to work with Pearson. I would like to thank
Tracy Dunkelberger and her colleagues Marcia Horton, Michael Hirsch, Matt Goldstein,
Carole Snyder, Tim Huddleston, Yez Alayan, Jeff Holcomb, Kayla Smith-Tarbox, Gillian
Hall, Rebecca Greenberg, and their colleagues for organizing, producing, and promoting this
project.

As always, I am indebted to my wife, Samantha, for her love, support, and encouragement.

Preface xv

BRIEF CONTENTS
1 Introduction to Computers, Programs,

and Java 1

2 Elementary Programming 33

3 Selections 81

4 Loops 133

5 Methods 177

6 Single-Dimensional Arrays 223

7 Multidimensional Arrays 263

8 Objects and Classes 295

9 Strings 335

10 Thinking in Objects 369

11 Inheritance and Polymorphism 407

12 GUI Basics 445

13 Graphics 479

14 Exception Handling and Text I/O 517

15 Abstract Classes and Interfaces 559

16 Event-Driven Programming 599

17 GUI Components 639

18 Applets and Multimedia 671

19 Binary I/O 709

20 Recursion 737

21 Generics 769

22 Lists, Stacks, Queues, and Priority
Queues 793

23 Sets and Maps 829

24 Developing Efficient Algorithms 853

25 Sorting 893

26 Implementing Lists, Stacks, Queues,
and Priority Queues 927

27 Binary Search Trees 961

28 Hashing 997

29 AVL Trees 1027

30 Graphs and Applications 1047

31 Weighted Graphs and Applications 1093

32 Multithreading and Parallel
Programming 1129

33 Networking 1175

34 Java Database Programming 1211

Chapters 35–50 are bonus Web chapters

35 Internationalization 35-1
36 JavaBeans 36-1

37 Containers, Layout Managers,
and Borders 37-1

38 Menus, Toolbars, and Dialogs 38-1

39 MVC and Swing Models 39-1

40 JTable and JTree 40-1

41 Advanced Database Programming 41-1

42 Servlets 42-1

43 JavaServer Pages 43-1

44 JavaServer Faces 44-1

45 Web Services 45-1

46 Remote Method Invocation 46-1

47 2-4 Trees and B-Trees 47-1

48 Red-Black Trees 48-1

49 Java 2D 49-1

50 Testing Using JUnit 50-1

APPENDIXES

A Java Keywords 1251

B The ASCII Character Set 1254

C Operator Precedence Chart 1256

D Java Modifiers 1258

E Special Floating-Point Values 1260

F Number Systems 1261

G Bitwise Operatoirns 1265

INDEX 1267

xvi

CONTENTS

Chapter 1 Introduction to Computers, Programs,
and Java 1

1.1 Introduction 2

1.2 What Is a Computer? 2

1.3 Programming Languages 9

1.4 Operating Systems 12

1.5 Java, the World Wide Web, and Beyond 13

1.6 The Java Language Specification, API, JDK, and IDE 16

1.7 A Simple Java Program 16

1.8 Creating, Compiling, and Executing a Java Program 19

1.9 Displaying Text in a Message Dialog Box 22

1.10 Programming Style and Documentation 24

1.11 Programming Errors 26

Chapter 2 Elementary Programming 33

2.1 Introduction 34

2.2 Writing a Simple Program 34

2.3 Reading Input from the Console 37

2.4 Identifiers 40

2.5 Variables 40

2.6 Assignment Statements and Assignment Expressions 42

2.7 Named Constants 43

2.8 Naming Conventions 44

2.9 Numeric Data Types and Operations 44

2.10 Numeric Literals 48

2.11 Evaluating Expressions and Operator Precedence 50

2.12 Case Study: Displaying the Current Time 51

2.13 Augmented Assignment Operators 53

2.14 Increment and Decrement Operators 54

2.15 Numeric Type Conversions 56

2.16 Software Development Process 58

2.17 Character Data Type and Operations 62

2.18 The String Type 68

2.19 Getting Input from Input Dialogs 70

Chapter 3 Selections 81

3.1 Introduction 82

3.2 boolean Data Type 82
xvii

3.3 if Statements 84

3.4 Case Study: Guessing Birthdays 86

3.5 Two-Way if-else Statements 89

3.6 Nested if and Multi-Way if-else Statements 91

3.7 Common Errors in Selection Statements 93

3.8 Generating Random Numbers 96

3.9 Case Study: Computing Body Mass Index 97

3.10 Case Study: Computing Taxes 99

3.11 Logical Operators 101

3.12 Case Study: Determining Leap Year 105

3.13 Case Study: Lottery 106

3.14 switch Statements 108

3.15 Conditional Expressions 111

3.16 Formatting Console Output 112

3.17 Operator Precedence and Associativity 115

3.18 Confirmation Dialogs 117

3.19 Debugging 119

Chapter 4 Loops 133

4.1 Introduction 134

4.2 The while Loop 134

4.3 The do-while Loop 144

4.4 The for Loop 146

4.5 Which Loop to Use? 150

4.6 Nested Loops 152

4.7 Minimizing Numeric Errors 154

4.8 Case Studies 155

4.9 Keywords break and continue 159

4.10 Case Study: Displaying Prime Numbers 162

4.11 Controlling a Loop with a Confirmation Dialog 164

Chapter 5 Methods 177

5.1 Introduction 178

5.2 Defining a Method 178

5.3 Calling a Method 180

5.4 void Method Example 183

5.5 Passing Parameters by Values 186

5.6 Modularizing Code 189

5.7 Case Study: Converting Decimals to Hexadecimals 191

5.8 Overloading Methods 193

5.9 The Scope of Variables 196

5.10 The Math Class 197

xviii Contents

5.11 Case Study: Generating Random Characters 201

5.12 Method Abstraction and Stepwise Refinement 203

Chapter 6 Single-Dimensional Arrays 223

6.1 Introduction 224

6.2 Array Basics 224

6.3 Case Study: Lotto Numbers 231

6.4 Case Study: Deck of Cards 234

6.5 Copying Arrays 236

6.6 Passing Arrays to Methods 237

6.7 Returning an Array from a Method 240

6.8 Case Study: Counting the Occurrences of Each Letter 241

6.9 Variable-Length Argument Lists 244

6.10 Searching Arrays 245

6.11 Sorting Arrays 248

6.12 The Arrays Class 252

Chapter 7 Multidimensional Arrays 263

7.1 Introduction 264

7.2 Two-Dimensional Array Basics 264

7.3 Processing Two-Dimensional Arrays 267

7.4 Passing Two-Dimensional Arrays to Methods 269

7.5 Case Study: Grading a Multiple-Choice Test 270

7.6 Case Study: Finding the Closest Pair 272

7.7 Case Study: Sudoku 274

7.8 Multidimensional Arrays 277

Chapter 8 Objects and Classes 295

8.1 Introduction 296

8.2 Defining Classes for Objects 296

8.3 Example: Defining Classes and Creating Objects 298

8.4 Constructing Objects Using Constructors 303

8.5 Accessing Objects via Reference Variables 304

8.6 Using Classes from the Java Library 308

8.7 Static Variables, Constants, and Methods 312

8.8 Visibility Modifiers 317

8.9 Data Field Encapsulation 319

8.10 Passing Objects to Methods 322

8.11 Array of Objects 326

Chapter 9 Strings 335

9.1 Introduction 336

9.2 The String Class 336

Contents xix

9.3 Case Study: Checking Palindromes 347

9.4 Case Study: Converting Hexadecimals to Decimals 348

9.5 The Character Class 350

9.6 The StringBuilder and StringBuffer 353

9.7 Command-Line Arguments 358

Chapter 10 Thinking in Objects 369

10.1 Introduction 370

10.2 Immutable Objects and Classes 370

10.3 The Scope of Variables 371

10.4 The this Reference 373

10.5 Class Abstraction and Encapsulation 375

10.6 Object-Oriented Thinking 379

10.7 Object Composition 382

10.8 Case Study: Designing the Course Class 384

10.9 Case Study: Designing a Class for Stacks 386

10.10 Case Study: Designing the GuessDate Class 388

10.11 Class Design Guidelines 391

10.12 Processing Primitive Data Type Values as Objects 393

10.13 Automatic Conversion between Primitive Types
and Wrapper Class Types 396

10.14 The BigInteger and BigDecimal 397

Chapter 11 Inheritance and Polymorphism 407

11.1 Introduction 408

11.2 Superclasses and Subclasses 408

11.3 Using the super Keyword 414

11.4 Overriding Methods 418

11.5 Overriding vs. Overloading 418

11.6 The Object Class and Its toString() 420

11.7 Polymorphism 421

11.8 Dynamic Binding 422

11.9 Casting Objects and the instanceof Operator 425

11.10 The Object’s equals method 429

11.11 The ArrayList Class 430

11.12 Case Study: A Custom Stack Class 436

11.13 The protected Data and Methods 437

11.14 Preventing Extending and Overriding 439

Chapter 12 GUI Basics 445

12.1 Introduction 446

12.2 Swing vs. AWT 446

xx Contents

12.3 The Java GUI API 446

12.4 Frames 449

12.5 Layout Managers 451

12.6 Using Panels as Subcontainers 458

12.7 The Color Class 460

12.8 The Font Class 461

12.9 Common Features of Swing GUI Components 462

12.10 Image Icons 465

12.11 JButton 467

12.12 JCheckBox 471

12.13 JRadioButton 472

12.14 Labels 473

12.15 Text Fields 474

Chapter 13 Graphics 479

13.1 Introduction 480

13.2 The Graphics Class 480

13.3 Drawing Strings, Lines, Rectangles, and Ovals 483

13.4 Case Study: The FigurePanel Class 485

13.5 Drawing Arcs 488

13.6 Drawing Polygons and Polylines 490

13.7 Centering a String Using the FontMetrics Class 493

13.8 Case Study: The MessagePanel Class 495

13.9 Case Study: The StillClock Class 500

13.10 Displaying Images 504

13.11 Case Study: The ImageViewer Class 506

Chapter 14 Exception Handling and Text I/O 517

14.1 Introduction 518

14.2 Exception-Handling Overview 518

14.3 Exception Types 523

14.4 More on Exception Handling 526

14.5 The finally Clause 534

14.6 When to Use Exceptions 535

14.7 Rethrowing Exceptions 536

14.8 Chained Exceptions 537

14.9 Defining Custom Exception Classes 538

14.10 The File Class 541

14.11 File Input and Output 544

14.12 File Dialogs 549

14.13 Reading Data from the Web 551

Contents xxi

Chapter 15 Abstract Classes and Interfaces 559

15.1 Introduction 560

15.2 Abstract Classes 560

15.3 Case Study: the Abstract Number Class 565

15.4 Case Study: Calendar and GregorianCalendar 567

15.5 Interfaces 570

15.6 The Comparable Interface 573

15.7 The Cloneable Interface 577

15.8 Interfaces vs. Abstract Classes 581

15.9 Case Study: The Rational Class 584

Chapter 16 Event-Driven Programming 599

16.1 Introduction 600

16.2 Events and Event Sources 602

16.3 Listeners, Registrations, and Handling Events 603

16.4 Inner Classes 608

16.5 Anonymous Class Listeners 609

16.6 Alternative Ways of Defining Listener Classes 612

16.7 Case Study: Loan Calculator 615

16.8 Mouse Events 617

16.9 Listener Interface Adapters 620

16.10 Key Events 621

16.11 Animation Using the Timer Class 625

Chapter 17 GUI Components 639

17.1 Introduction 640

17.2 Events for JCheckBox, JRadioButton and JTextField 640

17.3 Text Areas 644

17.4 Combo Boxes 647

17.5 Lists 650

17.6 Scroll Bars 654

17.7 Sliders 657

17.8 Creating Multiple Windows 660

Chapter 18 Applets and Multimedia 671

18.1 Introduction 672

18.2 Developing Applets 672

18.3 The HTML File and the <applet>Tag 673

18.4 Applet Security Restrictions 675

xxii Contents

18.5 Enabling Applets to Run as Applications 676

18.6 Applet Life-Cycle Methods 677

18.7 Passing Strings to Applets 679

18.8 Case Study: Bouncing Ball 683

18.9 Case Study: Developing a Tic-Tac-Toe Game 686

18.10 Locating Resources Using the URL Class 691

18.11 Playing Audio in Any Java Program 693

18.12 Case Study: National Flags and Anthems 695

Chapter 19 Binary I/O 709

19.1 Introduction 710

19.2 How Is Text I/O Handled in Java? 710

19.3 Text I/O vs. Binary I/O 711

19.4 Binary I/O Classes 712

19.5 Case Study: Copying Files 722

19.6 Object I/O 724

19.7 Random-Access Files 729

Chapter 20 Recursion 737

20.1 Introduction 738

20.2 Case Study: Computing Factorials 738

20.3 Case Study: Computing Fibonacci Numbers 741

20.4 Problem Solving Using Recursion 744

20.5 Recursive Helper Methods 746

20.6 Case Study: Finding the Directory Size 749

20.7 Case Study: Towers of Hanoi 750

20.8 Case Study: Fractals 754

20.9 Recursion vs. Iteration 757

20.10 Tail Recursion 758

Chapter 21 Generics 769

21.1 Introduction 770

21.2 Motivations and Benefits 770

21.3 Defining Generic Classes and Interfaces 772

21.4 Generic Methods 774

21.5 Case Study: Sorting an Array of Objects 776

21.6 Raw Types and Backward Compatibility 778

21.7 Wildcard Generic Types 779

21.8 Erasure and Restrictions on Generics 782

21.9 Case Study: Generic Matrix Class 784

Contents xxiii

Chapter 22 Lists, Stacks, Queues, and
Priority Queues 793

22.1 Introduction 794

22.2 Collections 794

22.3 Iterators 798

22.4 Lists 799

22.5 The Comparator Interface 803

22.6 Static Methods for Lists and Collections 805

22.7 Case Study: Bouncing Balls 809

22.8 The Vector and Stack Classes 813

22.9 Queues and Priority Queues 814

22.10 Case Study: Evaluating Expressions 817

Chapter 23 Sets and Maps 829

23.1 Introduction 830

23.2 Sets 830

23.3 Comparing the Performance of Sets and Lists 838

23.4 Case Study: Counting Keywords 841

23.5 Maps 842

23.6 Case Study: Occurrences of Words 847

23.7 Singleton and Unmodifiable Collections and Maps 848

Chapter 24 Developing Efficient Algorithms 853

24.1 Introduction 854

24.2 Measuring Algorithm Efficiency Using Big O Notation 854

24.3 Examples: Determining Big O 856

24.4 Analyzing Algorithm Time Complexity 859

24.5 Finding Fibonacci Numbers Using Dynamic Programming 862

24.6 Finding Greatest Common Divisors Using Euclid’s Algorithm 864

24.7 Efficient Algorithms for Finding Prime Numbers 869

24.8 Finding the Closest Pair of Points Using Divide-and-Conquer 875

24.9 Solving the Eight Queens Problem Using Backtracking 877

24.10 Computational Geometry: Finding a Convex Hull 880

Chapter 25 Sorting 893

25.1 Introduction 894

25.2 Bubble Sort 894

25.3 Merge Sort 896

25.4 Quick Sort 900

25.5 Heap Sort 904

25.6 Bucket Sort and Radix Sort 911

25.7 External Sort 913

xxiv Contents

Chapter 26 Implementing Lists, Stacks, Queues,
and Priority Queues 927

26.1 Introduction 928

26.2 Common Features for Lists 928

26.3 Array Lists 932

26.4 Linked Lists 938

26.5 Stacks and Queues 952

26.6 Priority Queues 955

Chapter 27 Binary Search Trees 961

27.1 Introduction 962

27.2 Binary Search Trees 962

27.3 Deleting Elements from a BST 975

27.4 Tree Visualization 981

27.5 Iterators 984

27.6 Case Study: Data Compression 986

Chapter 28 Hashing 997

28.1 Introduction 998

28.2 What Is Hashing? 998

28.3 Hash Functions and Hash Codes 999

28.4 Handling Collisions Using Open Addressing 1001

28.5 Handling Collisions Using Separate Chaining 1005

28.6 Load Factor and Rehashing 1005

28.7 Implementing a Map Using Hashing 1007

28.8 Implementing Set Using Hashing 1016

Chapter 29 AVL Trees 1027

29.1 Introduction 1028

29.2 Rebalancing Trees 1028

29.3 Designing Classes for AVL Trees 1031

29.4 Overriding the insert Method 1032

29.5 Implementing Rotations 1033

29.6 Implementing the delete Method 1034

29.7 The AVLTree Class 1034

29.8 Testing the AVLTree Class 1040

29.9 AVL Tree Time Complexity Analysis 1043

Chapter 30 Graphs and Applications 1047

30.1 Introduction 1048

30.2 Basic Graph Terminologies 1049

Contents xxv

xxvi Contents

30.3 Representing Graphs 1051

30.4 Modeling Graphs 1056

30.5 Graph Visualization 1066

30.6 Graph Traversals 1069

30.7 Depth-First Search (DFS) 1070

30.8 Case Study: The Connected Circles Problem 1074

30.9 Breadth-First Search (BFS) 1077

30.10 Case Study: The Nine Tails Problem 1080

Chapter 31 Weighted Graphs and Applications 1093

31.1 Introduction 1094

31.2 Representing Weighted Graphs 1095

31.3 The WeightedGraph Class 1097

31.4 Minimum Spanning Trees 1105

31.5 Finding Shortest Paths 1111

31.6 Case Study: The Weighted Nine Tails Problem 1119

Chapter 32 Multithreading and Parallel
Programming 1129

32.1 Introduction 1130

32.2 Thread Concepts 1130

32.3 Creating Tasks and Threads 1130

32.4 The Thread Class 1134

32.5 Case Study: Flashing Text 1137

32.6 GUI Event Dispatch Thread 1138

32.7 Case Study: Clock with Audio 1139

32.8 Thread Pools 1142

32.9 Thread Synchronization 1144

32.10 Synchronization Using Locks 1148

32.11 Cooperation among Threads 1150

32.12 Case Study: Producer/Consumer 1155

32.13 Blocking Queues 1158

32.14 Semaphores 1160

32.15 Avoiding Deadlocks 1162

32.16 Thread States 1163

32.17 Synchronized Collections 1163

32.18 Parallel Programming 1165

Chapter 33 Networking 1175

33.1 Introduction 1176

33.2 Client/Server Computing 1176

Contents xxvii

33.3 The InetAddress Class 1183

33.4 Serving Multiple Clients 1184

33.5 Applet Clients 1187

33.6 Sending and Receiving Objects 1190

33.7 Case Study: Distributed Tic-Tac-Toe Games 1195

Chapter 34 Java Database Programming 1211

34.1 Introduction 1212

34.2 Relational Database Systems 1212

34.3 SQL 1216

34.4 JDBC 1227

34.5 PreparedStatement 1235

34.6 CallableStatement 1238

34.7 Retrieving Metadata 1241

Bonus Chapters 35–50 are available from the companion Website at
www.pearsonhighered.com/liang:

Chapter 35 Internationalization 35-1

Chapter 36 JavaBeans 36-1

Chapter 37 Containers, Layout Managers,
and Borders 37-1

Chapter 38 Menus, Toolbars, and Dialogs 38-1

Chapter 39 MVC and Swing Models 39-1

Chapter 40 JTable and JTree 40-1

Chapter 41 Advanced Database Programming 41-1

Chapter 42 Servlets 42-1

Chapter 43 JavaServer Pages 43-1

Chapter 44 JavaServer Faces 44-1

Chapter 45 Web Services 45-1

Chapter 46 Remote Method Invocation 46-1

www.pearsonhighered.com/liang

xxviii Contents

Chapter 47 2-4 Trees and B-Trees 47-1

Chapter 48 Red-Black Trees 48-1

Chapter 49 Java 2D 49-1

Chapter 50 Testing Using JUnit 50-1

APPENDIXES

Appendix A Java Keywords 1251

Appendix B The ASCII Character Set 1254

Appendix C Operator Precedence Chart 1256

Appendix D Java Modifiers 1258

Appendix E Special Floating-Point Values 1260

Appendix F Number Systems 1261

Appendix G Bitwise Operations 1265

INDEX 1267

VideoNotes
Locations of VideoNotes
http://www.pearsonhighered.com/liang

Chapter 1 Introduction to Computers, Programs, and Java
Your first Java program 17
Eclipse brief tutorial 19
NetBeans brief tutorial 19
Compile and run a Java program 21

Chapter 2 Elementary Programming
Obtain input 37
Use operators / and % 51
Software development process 58
Compute loan payments 59
Compute BMI 77

Chapter 3 Selections
Program addition quiz 83
Program subtraction quiz 96
Use multi-way if-else statements 99
Sort three integers 123
Check point location 125

Chapter 4 Loops
Guess a number 137
Multiple subtraction quiz 139
Minimize numeric errors 154
Display loan schedule 170
Sum a series 170

Chapter 5 Methods
Define/invoke max method 180
Use void method 183
Modularize code 189
Stepwise refinement 203
Reverse an integer 212
Estimate 215

Chapter 6 Single-Dimensional Arrays
Random shuffling 228
Lotto numbers 231
Selection sort 249
Coupon collector’s problem 260
Consecutive four 261

Chapter 7 Multidimensional Arrays
Find the row with the largest sum 268
Grade multiple-choice test 270
Sudoku 274
Multiply two matrices 282
Even number of 1s 289

Chapter 8 Objects and Classes
Define classes and objects 296
Use classes 311
Static vs. instance 312
Data field encapsulation 319
The Fan class 331

p

VideoNote

xxix

http://www.pearsonhighered.com/liang

xxx VideoNotes

Chapter 9 Strings
Check palindrome 347
Command-line argument 359
Number conversion 364
Check ISBN-10 367

Chapter 10 Thinking in Objects
Immutable objects and this keyword 370
The Loan class 376
The BMI class 380
The StackOfIntegers class 386
Process large numbers 397
The MyPoint class 400

Chapter 11 Inheritance and Polymorphism
Geometric class hierarchy 408
Polymorphism and dynamic binding demo 423
The ArrayList class 430
The MyStack class 436
New Account class 443

Chapter 12 GUI Basics
Use FlowLayout 452
Use panels as subcontainers 458
Use Swing common properties 462
Display a checkerboard 477
Display a random matrix 478

Chapter 13 Graphics
The FigurePanel class 485
The MessagePanel class 495
The StillClock class 500
Plot a function 511
Plot a bar chart 512

Chapter 14 Exception Handling and Text I/O
Exception-handling advantages 518
Create custom exception classes 538
Write and read data 544
HexFormatException 555

Chapter 15 Abstract Classes and Interfaces
Abstract GeometricObject class 560
Calendar and GregorianCalendar classes 567
The concept of interface 570
Redesign the Rectangle class 593

Chapter 16 Event-Driven Programming
Listener and its registration 607
Anonymous listener 610
Move message using the mouse 618
Animate a clock 628
Animate a rising flag 632
Check mouse point location 632

Chapter 17 GUI Components
Use text areas 668

Chapter 18 Applets and Multimedia
First applet 672
Run applets standalone 676
TicTacToe 686

VideoNotes xxxi

Audio and image 695
Control a group of clocks 701

Chapter 19 Binary I/O
Copy file 722
Object I/O 724
Split a large file 734

Chapter 20 Recursion
Binary search 748
Directory size 749
Fractal (Sierpinski triangle) 754
Search a string in a directory 764

This page intentionally left blank

INTRODUCTION
TO COMPUTERS,
PROGRAMS,
AND JAVA

Objectives
■ To understand computer basics, programs, and operating systems

(§§1.2–1.4).

■ To describe the relationship between Java and the World Wide Web
(§1.5).

■ To understand the meaning of Java language specification, API, JDK,
and IDE (§1.6).

■ To write a simple Java program (§1.7).

■ To display output on the console (§1.7).

■ To explain the basic syntax of a Java program (§1.7).

■ To create, compile, and run Java programs (§1.8).

■ To display output using the JOptionPane message dialog boxes (§1.9).

■ To become familiar with Java programming style and documenta-
tion (§1.10).

■ To explain the differences between syntax errors, runtime errors, and
logic errors (§1.11).

CHAPTER

1

2 Chapter 1 Introduction to Computers, Programs, and Java

1.1 Introduction
The central theme of this book is to learn how to solve problems by writing a program.

This book is about programming. So, what is programming? The term programming means to
create (or develop) software, which is also called a program. In basic terms, software contains
the instructions that tell a computer—or a computerized device—what to do.

Software is all around you, even in devices that you might not think would need it. Of
course, you expect to find and use software on a personal computer, but software also plays a
role in running airplanes, cars, cell phones, and even toasters. On a personal computer, you
use word processors to write documents, Web browsers to explore the Internet, and e-mail
programs to send messages. These programs are all examples of software. Software develop-
ers create software with the help of powerful tools called programming languages.

This book teaches you how to create programs by using the Java programming language.
There are many programming languages, some of which are decades old. Each language was
invented for a specific purpose—to build on the strengths of a previous language, for exam-
ple, or to give the programmer a new and unique set of tools. Knowing that there are so many
programming languages available, it would be natural for you to wonder which one is best.
But, in truth, there is no “best” language. Each one has its own strengths and weaknesses.
Experienced programmers know that one language might work well in some situations, whereas
a different language may be more appropriate in other situations. For this reason, seasoned
programmers try to master as many different programming languages as they can, giving
them access to a vast arsenal of software-development tools.

If you learn to program using one language, you should find it easy to pick up other lan-
guages. The key is to learn how to solve problems using a programming approach. That is the
main theme of this book.

You are about to begin an exciting journey: learning how to program. At the outset, it is
helpful to review computer basics, programs, and operating systems. If you are already famil-
iar with such terms as CPU, memory, disks, operating systems, and programming languages,
you may skip the review in Sections 1.2–1.4.

1.2 What Is a Computer?
A computer is an electronic device that stores and processes data.

A computer includes both hardware and software. In general, hardware comprises the visible,
physical elements of the computer, and software provides the invisible instructions that con-
trol the hardware and make it perform specific tasks. Knowing computer hardware isn’t
essential to learning a programming language, but it can help you better understand the effects
that a program’s instructions have on the computer and its components. This section intro-
duces computer hardware components and their functions.

A computer consists of the following major hardware components (Figure 1.1):

■ A central processing unit (CPU)

■ Memory (main memory)

■ Storage devices (such as disks and CDs)

■ Input devices (such as the mouse and keyboard)

■ Output devices (such as monitors and printers)

■ Communication devices (such as modems and network interface cards)

A computer’s components are interconnected by a subsystem called a bus. You can think
of a bus as a sort of system of roads running among the computer’s components; data and

what is programming?

programming
program

hardware
software

bus

Key
Point

Key
Point

1.2 What Is a Computer? 3

CPU

Bus

Memory

Storage
Devices

Input
Devices

Output
Devices

Communication
Devices

FIGURE 1.1 A computer consists of a CPU, memory, storage devices, input devices, output
devices, and communication devices.

motherboard
power travel along the bus from one part of the computer to another. In personal computers,
the bus is built into the computer’s motherboard, which is a circuit case that connects all of
the parts of a computer together, as shown in Figure 1.2.

1.2.1 Central Processing Unit
The central processing unit (CPU) is the computer’s brain. It retrieves instructions from
memory and executes them. The CPU usually has two components: a control unit and an
arithmetic/logic unit. The control unit controls and coordinates the actions of the other com-
ponents. The arithmetic/logic unit performs numeric operations (addition, subtraction, multi-
plication, division) and logical operations (comparisons).

Today’s CPUs are built on small silicon semiconductor chips that contain millions of tiny
electric switches, called transistors, for processing information.

Every computer has an internal clock, which emits electronic pulses at a constant rate.
These pulses are used to control and synchronize the pace of operations. A higher clock speed
enables more instructions to be executed in a given period of time. The unit of measurement of
clock speed is the hertz (Hz), with 1 hertz equaling 1 pulse per second. In the 1990s computers
measured clocked speed in megahertz (MHz), but CPU speed has been improving continuously,

CPU

speed

hertz
megahertz

4 Chapter 1 Introduction to Computers, Programs, and Java

and the clock speed of a computer is now usually stated in gigahertz (GHz). Intel’s newest
processors run at about 3 GHz.

CPUs were originally developed with only one core. The core is the part of the processor
that performs the reading and executing of instructions. In order to increase CPU processing
power, chip manufacturers are now producing CPUs that contain multiple cores. A multicore
CPU is a single component with two or more independent processors. Today’s consumer
computers typically have two, three, and even four separate cores. Soon, CPUs with dozens or
even hundreds of cores will be affordable.

1.2.2 Bits and Bytes
Before we discuss memory, let’s look at how information (data and programs) are stored in
a computer.

A computer is really nothing more than a series of switches. Each switch exists in two
states: on or off. Storing information in a computer is simply a matter of setting a sequence
of switches on or off. If the switch is on, its value is 1. If the switch is off, its value is 0.
These 0s and 1s are interpreted as digits in the binary number system and are called bits
(binary digits).

The minimum storage unit in a computer is a byte. A byte is composed of eight bits. A
small number such as 3 can be stored as a single byte. To store a number that cannot fit into a
single byte, the computer uses several bytes.

Data of various kinds, such as numbers and characters, are encoded as a series of bytes. As
a programmer, you don’t need to worry about the encoding and decoding of data, which the
computer system performs automatically, based on the encoding scheme. An encoding
scheme is a set of rules that govern how a computer translates characters, numbers, and sym-
bols into data the computer can actually work with. Most schemes translate each character
into a predetermined string of numbers. In the popular ASCII encoding scheme, for example,
the character C is represented as 01000011 in one byte.

bits

byte

encoding scheme

CPU is placed
under the fan

Memory

Motherboard

FIGURE 1.2 The motherboard connects all parts of a computer together.

gigahertz

core

1.2 What Is a Computer? 5

01000011
01110010
01100101
01110111
00000011

Encoding for character ‘C’
Encoding for character ‘r’
Encoding for character ‘e’
Encoding for character ‘w’
Encoding for number 3

2000
2001
2002
2003
2004

Memory address Memory content

FIGURE 1.3 Memory stores data and program instructions in uniquely addressed memory
locations. Each memory location can store one byte of data.

A computer’s storage capacity is measured in bytes and multiples of the byte, as follows:

■ A kilobyte (KB) is about 1,000 bytes.

■ A megabyte (MB) is about 1 million bytes.

■ A gigabyte (GB) is about 1 billion bytes.

■ A terabyte (TB) is about 1 trillion bytes.

A typical one-page word document might take 20 KB. Therefore, 1 MB can store 50 pages of
documents and 1 GB can store 50,000 pages of documents. A typical two-hour high-resolution
movie might take 8 GB, so it would require 160 GB to store 20 movies.

1.2.3 Memory
A computer’s memory consists of an ordered sequence of bytes for storing programs as well
as data that the program is working with. You can think of memory as the computer’s work
area for executing a program. A program and its data must be moved into the computer’s
memory before they can be executed by the CPU.

Every byte in the memory has a unique address, as shown in Figure 1.3. The address is
used to locate the byte for storing and retrieving the data. Since the bytes in the memory can
be accessed in any order, the memory is also referred to as random-access memory (RAM).

Today’s personal computers usually have at least 1 gigabyte of RAM, but they more com-
monly have 2 to 4 GB installed. Generally speaking, the more RAM a computer has, the faster
it can operate, but there are limits to this simple rule of thumb.

A memory byte is never empty, but its initial content may be meaningless to your program.
The current content of a memory byte is lost whenever new information is placed in it.

Like the CPU, memory is built on silicon semiconductor chips that have millions of tran-
sistors embedded on their surface. Compared to CPU chips, memory chips are less compli-
cated, slower, and less expensive.

1.2.4 Storage Devices
A computer’s memory (RAM) is a volatile form of data storage: any information that has been
stored in memory (that is, saved) is lost when the system’s power is turned off. Programs and data
are permanently stored on storage devices and are moved, when the computer actually uses them,
to memory, which operates at much faster speeds than permanent storage devices can.

kilobyte (KB)

megabyte (MB)

gigabyte (GB)

terabyte (TB)

memory

unique address

RAM

storage devices

6 Chapter 1 Introduction to Computers, Programs, and Java

FIGURE 1.4 A hard disk is a device for permanently storing programs and data.

There are three main types of storage devices:

■ Magnetic disk drives

■ Optical disc drives (CD and DVD)

■ USB flash drives

Drives are devices for operating a medium, such as disks and CDs. A storage medium
physically stores data and program instructions. The drive reads data from the medium and
writes data onto the medium.

Disks
A computer usually has at least one hard disk drive (Figure 1.4). Hard disks are used for per-
manently storing data and programs. Newer computers have hard disks that can store from
200 to 800 gigabytes of data. Hard disk drives are usually encased inside the computer, but
removable hard disks are also available.

CDs and DVDs
CD stands for compact disc. There are two types of CD drives: CD-R and CD-RW. A CD-R is
for read-only permanent storage; the user cannot modify its contents once they are recorded.
A CD-RW can be used like a hard disk; that is, you can write data onto the disc, and then over-
write that data with new data. A single CD can hold up to 700 MB. Most new PCs are
equipped with a CD-RW drive that can work with both CD-R and CD-RW discs.

DVD stands for digital versatile disc or digital video disc. DVDs and CDs look alike, and
you can use either to store data. A DVD can hold more information than a CD; a standard
DVD’s storage capacity is 4.7 GB. Like CDs, there are two types of DVDs: DVD-R (read-
only) and DVD-RW (rewritable).

drive

hard disk

CD-R

CD-RW

DVD

1.2 What Is a Computer? 7

FIGURE 1.5 USB flash drives are very portable and can store a lot of data.

Function

Modifier

Numeric Keypad

Page Up

Insert

Delete

Page Down

Arrows

FIGURE 1.6 A computer keyboard consists of the keys for sending input to a computer.

USB Flash Drives
Universal serial bus (USB) connectors allow the user to attach many kinds of peripheral
devices to the computer. You can use a USB to connect a printer, digital camera, mouse, exter-
nal hard disk drive, and other devices to the computer.

A USB flash drive is a device for storing and transporting data. A flash drive is small—
about the size of a pack of gum, as shown in Figure 1.5. It acts like a portable hard drive that
can be plugged into your computer’s USB port. USB flash drives are currently available with
up to 256 GB storage capacity.

1.2.5 Input and Output Devices
Input and output devices let the user communicate with the computer. The most common input
devices are keyboards and mice. The most common output devices are monitors and printers.

The Keyboard
A keyboard is a device for entering input. Figure 1.6 shows a typical keyboard. Compact key-
boards are available without a numeric keypad.

Function keys are located across the top of the keyboard and are prefaced with the letter F.
Their functions depend on the software currently being used.

function key

8 Chapter 1 Introduction to Computers, Programs, and Java

A modifier key is a special key (such as the Shift, Alt, and Ctrl keys) that modifies the nor-
mal action of another key when the two are pressed simultaneously.

The numeric keypad, located on the right side of most keyboards, is a separate set of keys
styled like a calculator to use for entering numbers quickly.

Arrow keys, located between the main keypad and the numeric keypad, are used to move
the mouse pointer up, down, left, and right on the screen in many kinds of programs.

The Insert, Delete, Page Up, and Page Down keys are used in word processing and other
programs for inserting text and objects, deleting text and objects, and moving up or down
through a document one screen at a time.

The Mouse
A mouse is a pointing device. It is used to move a graphical pointer (usually in the shape of an
arrow) called a cursor around the screen or to click on-screen objects (such as a button) to
trigger them to perform an action.

The Monitor
The monitor displays information (text and graphics). The screen resolution and dot pitch
determine the quality of the display.

The screen resolution specifies the number of pixels in horizontal and vertical dimensions
of the display device. Pixels (short for “picture elements”) are tiny dots that form an image on
the screen. A common resolution for a 17-inch screen, for example, is 1,024 pixels wide and
768 pixels high. The resolution can be set manually. The higher the resolution, the sharper and
clearer the image is.

The dot pitch is the amount of space between pixels, measured in millimeters. The smaller
the dot pitch, the sharper the display.

1.2.6 Communication Devices
Computers can be networked through communication devices, such as a dial-up modem
(modulator/demodulator), a DSL or cable modem, a wired network interface card, or a wire-
less adapter.

■ A dial-up modem uses a phone line and can transfer data at a speed up to 56,000 bps
(bits per second).

■ A digital subscriber line (DSL) connection also uses a standard phone line, but it can
transfer data 20 times faster than a standard dial-up modem.

■ A cable modem uses the cable TV line maintained by the cable company and is gen-
erally faster than DSL.

■ A network interface card (NIC) is a device that connects a computer to a local area
network (LAN), as shown in Figure 1.7. LANs are commonly used in universities,
businesses, and government agencies. A high-speed NIC called 1000BaseT can
transfer data at 1,000 million bits per second (mbps).

■ Wireless networking is now extremely popular in homes, businesses, and schools.
Every laptop computer sold today is equipped with a wireless adapter that enables
the computer to connect to a local area network and the Internet.

Note
Answers to checkpoint questions are on the Companion Website.

1.1 What are hardware and software?

1.2 List five major hardware components of a computer.

1.3 What does the acronym “CPU” stand for?

modifier key

numeric keypad

arrow keys

Insert key

Delete key
Page Up key
Page Down key

screen resolution

pixels

dot pitch

modem

digital subscriber line (DSL)

cable modem

network interface card (NIC)

local area network (LAN)

million bits per second
(mbps)

✓Point✓Check

1.3 Programming Languages 9

Network Interface Card

LAN

FIGURE 1.7 A local area network connects computers in close proximity to each other.

1.4 What unit is used to measure CPU speed?

1.5 What is a bit? What is a byte?

1.6 What is memory for? What does RAM stand for? Why is memory called RAM?

1.7 What unit is used to measure memory size?

1.8 What unit is used to measure disk size?

1.9 What is the primary difference between memory and a storage device?

1.3 Programming Languages
Computer programs, known as software, are instructions that tell a computer what to do.

Computers do not understand human languages, so programs must be written in a language a
computer can use. There are hundreds of programming languages, and they were developed to
make the programming process easier for people. However, all programs must be converted
into a language the computer can understand.

1.3.1 Machine Language
A computer’s native language, which differs among different types of computers, is its
machine language—a set of built-in primitive instructions. These instructions are in the form
of binary code, so if you want to give a computer an instruction in its native language, you

Key
Point

machine language

10 Chapter 1 Introduction to Computers, Programs, and Java

Assembly Source File

...
add 2, 3, result

...

Machine-Code File

...
1101101010011010

...

Assembler

FIGURE 1.8 An assembler translates assembly-language instructions into machine code.

have to enter the instruction as binary code. For example, to add two numbers, you might have
to write an instruction in binary code, like this:

1101101010011010

1.3.2 Assembly Language
Programming in machine language is a tedious process. Moreover, programs written in
machine language are very difficult to read and modify. For this reason, assembly language
was created in the early days of computing as an alternative to machine languages. Assembly
language uses a short descriptive word, known as a mnemonic, to represent each of the
machine-language instructions. For example, the mnemonic add typically means to add num-
bers and sub means to subtract numbers. To add the numbers 2 and 3 and get the result, you
might write an instruction in assembly code like this:

add 2, 3, result

Assembly languages were developed to make programming easier. However, because the
computer cannot understand assembly language, another program—called an assembler—is
used to translate assembly-language programs into machine code, as shown in Figure 1.8.

Writing code in assembly language is easier than in machine language. However, it is still
tedious to write code in assembly language. An instruction in assembly language essentially
corresponds to an instruction in machine code. Writing in assembly requires that you know
how the CPU works. Assembly language is referred to as a low-level language, because
assembly language is close in nature to machine language and is machine dependent.

1.3.3 High-Level Language
In the 1950s, a new generation of programming languages known as high-level languages
emerged. They are platform-independent, which means that you can write a program in a high-
level language and run it in different types of machines. High-level languages are English-like
and easy to learn and use. The instructions in a high-level programming language are called
statements. Here, for example, is a high-level language statement that computes the area of a
circle with a radius of 5:

area = 5 * 5 * 3.1415

There are many high-level programming languages, and each was designed for a specific
purpose. Table 1.1 lists some popular ones.

A program written in a high-level language is called a source program or source code.
Because a computer cannot understand a source program, a source program must be trans-
lated into machine code for execution. The translation can be done using another program-
ming tool called an interpreter or a compiler.

■ An interpreter reads one statement from the source code, translates it to the machine
code or virtual machine code, and then executes it right away, as shown in Figure 1.9a.

assembly language

assembler

low-level language

high-level language

statement

source program

source code

interpreter

compiler

1.3 Programming Languages 11

TABLE 1.1 Popular High-Level Programming Languages

Language Description

Ada Named for Ada Lovelace, who worked on mechanical general-purpose computers. The Ada language was devel-
oped for the Department of Defense and is used mainly in defense projects.

BASIC Beginner’s All-purpose Symbolic Instruction Code. It was designed to be learned and used easily by beginners.

C Developed at Bell Laboratories. C combines the power of an assembly language with the ease of use and portabil-
ity of a high-level language.

C++ C++ is an object-oriented language, based on C.

C# Pronounced “C Sharp.” It is a hybrid of Java and C++ and was developed by Microsoft.

COBOL COmmon Business Oriented Language. Used for business applications.

FORTRAN FORmula TRANslation. Popular for scientific and mathematical applications.

Java Developed by Sun Microsystems, now part of Oracle. It is widely used for developing platform-independent Inter-
net applications.

Pascal Named for Blaise Pascal, who pioneered calculating machines in the seventeenth century. It is a simple, structured,
general-purpose language primarily for teaching programming.

Python A simple general-purpose scripting language good for writing short programs.

Visual Basic Visual Basic was developed by Microsoft and it enables the programmers to rapidly develop graphical user
interfaces.

Machine-Code File

...
0101100011011100
1111100011000100

...

High-Level Source File

...
area = 5 * 5 * 3.1415;

...

(b)

Compiler Executor

High-Level Source File

...
 area = 5 * 5 * 3.1415;

...

(a)

Interpreter
Output

Output

FIGURE 1.9 (a) An interpreter translates and executes a program one statement at a time. (b) A compiler translates the
entire source program into a machine-language file for execution.

Note that a statement from the source code may be translated into several machine
instructions.

■ A compiler translates the entire source code into a machine-code file, and the
machine-code file is then executed, as shown in Figure 1.9b.

1.10 What language does the CPU understand?

1.11 What is an assembly language? ✓Point✓Check

12 Chapter 1 Introduction to Computers, Programs, and Java

User

Application Programs

Operating System

Hardware

FIGURE 1.10 Users and applications access the computer’s hardware via the operating system.

1.12 What is an assembler?

1.13 What is a high-level programming language?

1.14 What is a source program?

1.15 What is an interpreter?

1.16 What is a compiler?

1.17 What is the difference between an interpreted language and a compiled language?

1.4 Operating Systems
The operating system (OS) is the most important program that runs on a computer.
The OS manages and controls a computer’s activities.

The popular operating systems for general-purpose computers are Microsoft Windows, Mac
OS, and Linux. Application programs, such as a Web browser or a word processor, cannot run
unless an operating system is installed and running on the computer. Figure 1.10 shows the
interrelationship of hardware, operating system, application software, and the user.

operating system (OS)

The major tasks of an operating system are:

■ Controlling and monitoring system activities

■ Allocating and assigning system resources

■ Scheduling operations

1.4.1 Controlling and Monitoring System Activities
Operating systems perform basic tasks, such as recognizing input from the keyboard, sending
output to the monitor, keeping track of files and folders on storage devices, and controlling
peripheral devices, such as disk drives and printers. An operating system must also ensure that
different programs and users working at the same time do not interfere with each other. In
addition, the OS is responsible for security, ensuring that unauthorized users and programs do
not access the system.

1.4.2 Allocating and Assigning System Resources
The operating system is responsible for determining what computer resources a program
needs (such as CPU time, memory space, disks, input and output devices) and for allocating
and assigning them to run the program.

Key
Point

Key
Point

1.5 Java, the World Wide Web, and Beyond 13

1.4.3 Scheduling Operations
The OS is responsible for scheduling programs’ activities to make efficient use of system
resources. Many of today’s operating systems support such techniques as multiprogramming,
multithreading, and multiprocessing to increase system performance.

Multiprogramming allows multiple programs to run simultaneously by sharing the same
CPU. The CPU is much faster than the computer’s other components. As a result, it is idle
most of the time—for example, while waiting for data to be transferred from a disk or waiting
for other system resources to respond. A multiprogramming OS takes advantage of this situa-
tion by allowing multiple programs to use the CPU when it would otherwise be idle. For
example, multiprogramming enables you to use a word processor to edit a file at the same
time as your Web browser is downloading a file.

Multithreading allows a single program to execute multiple tasks at the same time. For
instance, a word-processing program allows users to simultaneously edit text and save it to a
disk. In this example, editing and saving are two tasks within the same application. These two
tasks may run concurrently.

Multiprocessing, or parallel processing, uses two or more processors together to per-
form subtasks concurrently and then combine solutions of the subtasks to obtain a solution
for the entire task. It is like a surgical operation where several doctors work together on one
patient.

1.18 What is an operating system? List some popular operating systems.

1.19 What are the major responsibilities of an operating system?

1.20 What are multiprogramming, multithreading, and multiprocessing?

1.5 Java, the World Wide Web, and Beyond
Java is a powerful and versatile programming language for developing software
running on mobile devices, desktop computers, and servers.

This book introduces Java programming. Java was developed by a team led by James Gosling
at Sun Microsystems. Sun Microsystems was purchased by Oracle in 2010. Originally called
Oak, Java was designed in 1991 for use in embedded chips in consumer electronic appliances.
In 1995, renamed Java, it was redesigned for developing Web applications. For the history of
Java, see www.java.com/en/javahistory/index.jsp.

Java has become enormously popular. Its rapid rise and wide acceptance can be traced to
its design characteristics, particularly its promise that you can write a program once and run
it anywhere. As stated by its designer, Java is simple, object oriented, distributed,
interpreted, robust, secure, architecture neutral, portable, high performance, multithreaded,
and dynamic. For the anatomy of Java characteristics, see www.cs.armstrong.edu/liang/
JavaCharacteristics.pdf.

Java is a full-featured, general-purpose programming language that can be used to develop
robust mission-critical applications. Today, it is employed not only for Web programming, but
also for developing standalone applications across platforms on servers, desktop computers,
and mobile devices. It was used to develop the code to communicate with and control the
robotic rover on Mars. Many companies that once considered Java to be more hype than sub-
stance are now using it to create distributed applications accessed by customers and partners
across the Internet. For every new project being developed today, companies are asking how
they can use Java to make their work easier.

The World Wide Web is an electronic information repository that can be accessed on the
Internet from anywhere in the world. The Internet, the Web’s infrastructure, has been around
for more than forty years. The colorful World Wide Web and sophisticated Web browsers are
the major reason for the Internet’s popularity.

multiprogramming

multithreading

multiprocessing

Key
Point

✓Point✓Check

www.java.com/en/javahistory/index.jsp
www.cs.armstrong.edu/liang/JavaCharacteristics.pdf
www.cs.armstrong.edu/liang/JavaCharacteristics.pdf

14 Chapter 1 Introduction to Computers, Programs, and Java

Enter this URL from a Web browser

FIGURE 1.11 A Java applet for playing tic-tac-toe runs from a Web browser.

Java initially became attractive because Java programs can be run from a Web browser.
Such programs are called applets. Applets employ a modern graphical interface with buttons,
text fields, text areas, radio buttons, and so on, to interact with users on the Web and process
their requests. Applets make the Web responsive, interactive, and fun to use. Applets are
embedded in an HTML file. HTML (Hypertext Markup Language) is a simple scripting lan-
guage for laying out documents, linking documents on the Internet, and bringing images,
sound, and video alive on the Web. Figure 1.11 shows an applet running from a Web browser
for playing a tic-tac-toe game.

Tip
For a demonstration of Java applets, visit java.sun.com/applets. This site provides a rich
Java resource as well as links to other cool applet demo sites.

Java is now very popular for developing applications on Web servers. These applications
process data, perform computations, and generate dynamic Web pages. The LiveLab auto-
matic grading system, shown in Figure 1.12 and which you can use with this book, was devel-
oped using Java.

Java is a versatile programming language: You can use it to develop applications for
desktop computers, servers, and small hand-held devices. The software for Android cell
phones is developed using Java. Figure 1.13 shows an emulator for developing Android
phone applications.

1.21 Who invented Java? Which company owns Java now?

1.22 What is a Java applet?

1.23 What programming language does Android use?

HTML

✓Point✓Check

applet

1.5 Java, the World Wide Web, and Beyond 15

FIGURE 1.12 Java was used to develop LiveLab, the automatic grading system that accompanies this book.

FIGURE 1.13 Java is used in Android phones.

16 Chapter 1 Introduction to Computers, Programs, and Java

Java language specification

API

library

Java SE, EE, and ME

Java Development Toolkit
(JDK)

JDK 1.7 = JDK 7

Integrated development
environment

what is a console?

console input
console output

Key
Point

1.6 The Java Language Specification, API, JDK, and IDE
Java syntax is defined in the Java language specification, and the Java library is
defined in the Java API. The JDK is the software for developing and running Java
programs. An IDE is an integrated development environment for rapidly developing
programs.

Computer languages have strict rules of usage. If you do not follow the rules when writing a
program, the computer will not be able to understand it. The Java language specification and
the Java API define the Java standards.

The Java language specification is a technical definition of the Java programming lan-
guage’s syntax and semantics. You can find the complete Java language specification at
java.sun.com/docs/books/jls.

The application program interface (API), also known as library, contains predefined
classes and interfaces for developing Java programs. The API is still expanding. You can view
and download the latest version of the Java API at www.oracle.com/technetwork/java/index.html.

Java is a full-fledged and powerful language that can be used in many ways. It comes in
three editions:

■ Java Standard Edition (Java SE) to develop client-side standalone applications
or applets.

■ Java Enterprise Edition (Java EE) to develop server-side applications, such as Java
servlets, JavaServer Pages (JSP), and JavaServer Faces (JSF).

■ Java Micro Edition (Java ME) to develop applications for mobile devices, such as
cell phones.

This book uses Java SE to introduce Java programming. Java SE is the foundation upon
which all other Java technology is based. There are many versions of Java SE. The latest,
Java SE 7, is used in this book. Oracle releases each version with a Java Development Toolkit
(JDK). For Java SE 7, the Java Development Toolkit is called JDK 1.7 (also known as Java 7
or JDK 7).

The JDK consists of a set of separate programs, each invoked from a command line,
for developing and testing Java programs. Instead of using the JDK, you can use a Java devel-
opment tool (e.g., NetBeans, Eclipse, and TextPad)—software that provides an integrated
development environment (IDE) for developing Java programs quickly. Editing, compiling,
building, debugging, and online help are integrated in one graphical user interface. You simply
enter source code in one window or open an existing file in a window, and then click a button
or menu item or press a function key to compile and run the program.

1.24 What is the Java language specification?

1.25 What does JDK stand for?

1.26 What does IDE stand for?

1.27 Are tools like NetBeans and Eclipse different languages from Java, or are they
dialects or extensions of Java?

1.7 A Simple Java Program
A Java program is executed from the main method in the class.

Let’s begin with a simple Java program that displays the message Welcome to Java! on the
console. (The word console is an old computer term that refers to the text entry and display
device of a computer. Console input means to receive input from the keyboard, and console
output means to display output on the monitor.) The program is shown in Listing 1.1.

Key
Point

✓Point✓Check

www.oracle.com/technetwork/java/index.html

1.7 A Simple Java Program 17

Your first Java program

class
main method
display message

line numbers

class name

main method

string

statement terminator
reserved word

keyword

comment

line comment

block

LISTING 1.1 Welcome.java
1 public class Welcome {
2 public static void main(String[] args) {
3 // Display message Welcome to Java! on the console
4 System.out.println("Welcome to Java!");
5 }
6 }

Welcome to Java!

Note that the line numbers are for reference purposes only; they are not part of the pro-
gram. So, don’t type line numbers in your program.

Line 1 defines a class. Every Java program must have at least one class. Each class has a
name. By convention, class names start with an uppercase letter. In this example, the class
name is Welcome.

Line 2 defines the main method. The program is executed from the main method. A
class may contain several methods. The main method is the entry point where the program
begins execution.

A method is a construct that contains statements. The main method in this program con-
tains the System.out.println statement. This statement displays the string Welcome to
Java! on the console (line 4). String is a programming term meaning a sequence of charac-
ters. A string must be enclosed in double quotation marks. Every statement in Java ends with
a semicolon (;), known as the statement terminator.

Reserved words, or keywords, have a specific meaning to the compiler and cannot be used
for other purposes in the program. For example, when the compiler sees the word class, it
understands that the word after class is the name for the class. Other reserved words in this
program are public, static, and void.

Line 3 is a comment that documents what the program is and how it is constructed. Com-
ments help programmers to communicate and understand the program. They are not pro-
gramming statements and thus are ignored by the compiler. In Java, comments are preceded
by two slashes (//) on a line, called a line comment, or enclosed between /* and */ on one or
several lines, called a block comment or paragraph comment. When the compiler sees //, it
ignores all text after // on the same line. When it sees /*, it scans for the next */ and ignores
any text between /* and */. Here are examples of comments:

// This application program displays Welcome to Java!
/* This application program displays Welcome to Java! */
/* This application program

displays Welcome to Java! */

A pair of curly braces in a program forms a block that groups the program’s components.
In Java, each block begins with an opening brace ({) and ends with a closing brace (}). Every
class has a class block that groups the data and methods of the class. Similarly, every method
has a method block that groups the statements in the method. Blocks can be nested, meaning
that one block can be placed within another, as shown in the following code.

Tip
An opening brace must be matched by a closing brace. Whenever you type an opening
brace, immediately type a closing brace to prevent the missing-brace error. Most Java
IDEs automatically insert the closing brace for each opening brace.

VideoNote

match braces

block comment

18 Chapter 1 Introduction to Computers, Programs, and Java

public class Welcome {
 public static void main(String[] args) {

 System.out.println("Welcome to Java!");
 }
}

Method block
Class block

TABLE 1.2 Special Characters

Character Name Description

{} Opening and closing braces Denote a block to enclose statements.

() Opening and closing parentheses Used with methods.

[] Opening and closing brackets Denote an array.

// Double slashes Precede a comment line.

" " Opening and closing quotation marks Enclose a string (i.e., sequence of characters).

; Semicolon Mark the end of a statement.

case sensitive

special characters

common errors

syntax rules

class
main method
display message

Caution
Java source programs are case sensitive. It would be wrong, for example, to replace
main in the program with Main.

You have seen several special characters (e.g., { }, //, ;) in the program. They are
used in almost every program. Table 1.2 summarizes their uses.

Programming is fun!
Fundamentals First
Problem Driven

The most common errors you will make as you learn to program will be syntax errors. Like
any programming language, Java has its own syntax, and you need to write code that con-
forms to the syntax rules. If your program violates a rule—for example, if the semicolon is
missing, a brace is missing, a quotation mark is missing, or a word is misspelled—the Java
compiler will report syntax errors. Try to compile the program with these errors and see what
the compiler reports.

Note
You are probably wondering why the main method is defined this way and why
System.out.println(...) is used to display a message on the console. For the
time being, simply accept that this is how things are done. Your questions will be fully
answered in subsequent chapters.

The program in Listing 1.1 displays one message. Once you understand the program, it is
easy to extend it to display more messages. For example, you can rewrite the program to dis-
play three messages, as shown in Listing 1.2.

LISTING 1.2 WelcomeWithThreeMessages.java
1 public class WelcomeWithThreeMessages {
2 public static void main(String[] args) {
3 System.out.println("Programming is fun!");
4 System.out.println("Fundamentals First");
5 System.out.println("Problem Driven");
6 }
7 }

1.8 Creating, Compiling, and Executing a Java Program 19

class
main method
compute expression

Further, you can perform mathematical computations and display the result on the console.

Listing 1.3 gives an example of evaluating

LISTING 1.3 ComputeExpression.java
1 public class ComputeExpression {
2 public static void main(String[] args) {
3 System.out.println((10.5 + 2 * 3) / (45 – 3.5));
4 }
5 }

10.5 + 2 * 3

45 - 3.5
.

0.39759036144578314

The multiplication operator in Java is *. As you can see, it is a straightforward process to
translate an arithmetic expression to a Java expression. We will discuss Java expressions fur-
ther in Chapter 2.

1.28 What is a keyword? List some Java keywords.

1.29 Is Java case sensitive? What is the case for Java keywords?

1.30 What is a comment? Is the comment ignored by the compiler? How do you denote a
comment line and a comment paragraph?

1.31 What is the statement to display a string on the console?

1.32 Show the output of the following code:

public class Test {
public static void main(String[] args) {
System.out.println("3.5 * 4 / 2 – 2.5 is ");
System.out.println(3.5 * 4 / 2 – 2.5);

}
}

1.8 Creating, Compiling, and Executing a Java Program
You save a Java program in a .java file and compile it into a .class file. The .class file
is executed by the Java Virtual Machine.

You have to create your program and compile it before it can be executed. This process is
repetitive, as shown in Figure 1.14. If your program has compile errors, you have to modify
the program to fix them, then recompile it. If your program has runtime errors or does not
produce the correct result, you have to modify the program, recompile it, and execute it
again.

You can use any text editor or IDE to create and edit a Java source-code file. This section
demonstrates how to create, compile, and run Java programs from a command window. If you
wish to use an IDE such as Eclipse, NetBeans, or TextPad, refer to Supplement II for tutori-
als. From the command window, you can use a text editor such as Notepad to create the Java
source-code file, as shown in Figure 1.15.

Note
The source file must end with the extension .java and must have the same exact
name as the public class name. For example, the file for the source code in Listing 1.1
should be named Welcome.java, since the public class name is Welcome.

✓Point✓Check

Eclipse brief tutorial

NetBeans brief tutorial

VideoNote

command window

IDE Supplements

VideoNote

file name

Key
Point

20 Chapter 1 Introduction to Computers, Programs, and Java

Create/Modify Source Code

Result

Compile Source Code
e.g., javac Welcome.java

Saved on the disk

Stored on the disk
If compile errors occur

If runtime errors or incorrect result

Source code (developed by the programmer)

Bytecode (generated by the compiler for JVM
to read and interpret)

…
Method Welcome()
 0 aload_0
 …

Method void main(java.lang.String[])
 0 getstatic #2 …
 3 ldc #3 <String "Welcome to Java!">
 5 invokevirtual #4 …
 8 return

public class Welcome {
 public static void main(String[] args) {
 System.out.println("Welcome to Java!");
 }
}

Run Bytecode
e.g., java Welcome

Source Code

Bytecode

“Welcome to Java” is displayed on the console

Welcome to Java!

FIGURE 1.14 The Java program-development process consists of repeatedly creating/modifying source code, compiling,
and executing programs.

FIGURE 1.15 You can create a Java source file using Windows Notepad.

compile

Supplement I.B

Supplement I.C

.class bytecode file

A Java compiler translates a Java source file into a Java bytecode file. The following com-
mand compiles Welcome.java:

javac Welcome.java

Note
You must first install and configure the JDK before you can compile and run programs.
See Supplement I.B, Installing and Configuring JDK 7, for how to install the JDK and set
up the environment to compile and run Java programs. If you have trouble compiling
and running programs, see Supplement I.C, Compiling and Running Java from the
Command Window. This supplement also explains how to use basic DOS commands
and how to use Windows Notepad and WordPad to create and edit files. All the
supplements are accessible from the Companion Website.

If there aren’t any syntax errors, the compiler generates a bytecode file with a .class
extension. Thus, the preceding command generates a file named Welcome.class, as shown in

1.8 Creating, Compiling, and Executing a Java Program 21

bytecode
Java Virtual Machine (JVM)

Figure 1.16a. The Java language is a high-level language, but Java bytecode is a low-level lan-
guage. The bytecode is similar to machine instructions but is architecture neutral and can run
on any platform that has a Java Virtual Machine (JVM), as shown in Figure 1.16b. Rather than
a physical machine, the virtual machine is a program that interprets Java bytecode. This is one
of Java’s primary advantages: Java bytecode can run on a variety of hardware platforms and
operating systems. Java source code is compiled into Java bytecode and Java bytecode is
interpreted by the JVM. Your Java code may use the code in the Java library. The JVM exe-
cutes your code along with the code in the library.

To execute a Java program is to run the program’s bytecode. You can execute the bytecode
on any platform with a JVM, which is an interpreter. It translates the individual instructions in
the bytecode into the target machine language code one at a time rather than the whole pro-
gram as a single unit. Each step is executed immediately after it is translated.

The following command runs the bytecode for Listing 1.1:

java Welcome

Figure 1.17 shows the javac command for compiling Welcome.java. The compiler gen-
erates the Welcome.class file, and this file is executed using the java command.

Note
For simplicity and consistency, all source-code and class files used in this book are
placed under c:\book unless specified otherwise.

interpret bytecode

run

javac command

java command

Compile and run a Java
program

c:\book

Ja
va

Virtual Machine

Any
Computer

Java Bytecode

Welcome.java
(Java source-

code file)

Welcome.class
(Java bytecode
executable file)

Library Code

JVMJava
Compiler

compiled
by generates

executed
by

(a) (b)

FIGURE 1.16 (a) Java source code is translated into bytecode. (b) Java bytecode can be executed on any computer with a
Java Virtual Machine.

Compile

Show files

Run

FIGURE 1.17 The output of Listing 1.1 displays the message “Welcome to Java!”

VideoNote

22 Chapter 1 Introduction to Computers, Programs, and Java

Caution
Do not use the extension .class in the command line when executing the program.
Use java ClassName to run the program. If you use java ClassName.class in
the command line, the system will attempt to fetch ClassName.class.class.

Tip
If you execute a class file that does not exist, a NoClassDefFoundError will occur.
If you execute a class file that does not have a main method or you mistype the main
method (e.g., by typing Main instead of main), a NoSuchMethodError will occur.

Note
When executing a Java program, the JVM first loads the bytecode of the class to memory
using a program called the class loader. If your program uses other classes, the class loader
dynamically loads them just before they are needed. After a class is loaded, the JVM uses
a program called the bytecode verifier to check the validity of the bytecode and to ensure
that the bytecode does not violate Java’s security restrictions. Java enforces strict security
to make sure that Java class files are not tampered and do not harm your computer.

Pedagogical Note
Your instructor may require you to use packages for organizing programs. For example,
you may place all programs in this chapter in a package named chapter1. For instructions
on how to use packages, see Supplement I.F, Using Packages to Organize the Classes in
the Text.

1.33 What is the Java source filename extension, and what is the Java bytecode file-
name extension?

1.34 What are the input and output of a Java compiler?

1.35 What is the command to compile a Java program?

1.36 What is the command to run a Java program?

1.37 What is the JVM?

1.38 Can Java run on any machine? What is needed to run Java on a computer?

1.39 If a NoClassDefFoundError occurs when you run a program, what is the cause
of the error?

1.40 If a NoSuchMethodError occurs when you run a program, what is the cause of the
error?

1.9 Displaying Text in a Message Dialog Box
You can display text in a graphical dialog box.

The program in Listing 1.1 displays the text on the console, as shown in Figure 1.17. You can
rewrite the program to display the text in a message dialog box. To do so, you need to use the
showMessageDialog method in the JOptionPane class. JOptionPane is one of the many
predefined classes in the Java library that you can reuse rather than “reinvent the wheel.” You
can use the showMessageDialog method to display any text in a message dialog box, as
shown in Figure 1.18. The new program is given in Listing 1.4.

LISTING 1.4 WelcomeInMessageDialogBox.java
1 /* This application program displays Welcome to Java!
2 * in a message dialog box.
3 */

java ClassName

NoClassDefFoundError

NoSuchMethodError

class loader

bytecode verifier

use package

JOptionPane

showMessageDialog

block comment

✓Point✓Check

Key
Point

1.9 Displaying Text in a Message Dialog Box 23

Title bar

Message

Click the OK button to
close the dialog box

Title

FIGURE 1.18 “Welcome to Java!” is displayed in a message box.

4
5
6 public class WelcomeInMessageDialogBox {
7 public static void main(String[] args) {
8 // Display Welcome to Java! in a message dialog box
9
10 }
11 }

The first three lines are block comments. The first line begins with /* and the last line ends
with */. By convention, all other lines begin with an asterisk (*).

This program uses the Java class JOptionPane (line 9). Java’s predefined classes are
grouped into packages. JOptionPane is in the javax.swing package. JOptionPane is
imported into the program using the import statement in line 4 so that the compiler can
locate the class without the full name javax.swing.JOptionPane.

Note
If you replace JOptionPane in line 9 with javax.swing.JOptionPane, you
don’t need to import it in line 4. javax.swing.JOptionPane is the full name for
the JOptionPane class.

The showMessageDialog method is a static method. Such a method should be invoked
by using the class name followed by a dot operator (.) and the method name with arguments.
Details of methods will be discussed in Chapter 5. The showMessageDialog method can be
invoked with two arguments, as shown below.

JOptionPane.showMessageDialog(null,"Welcome to Java!");

import javax.swing.JOptionPane; import

main method

display message

package

JOptionPane.showMessageDialog(null,
 "Welcome to Java!");

The first argument can always be null. null is a Java keyword that will be fully dis-
cussed in Chapter 8. The second argument is a string for text to be displayed.

There are several ways to use the showMessageDialog method. For the time being, you
need to know only two ways. One is to use a statement, as shown in the example:

JOptionPane.showMessageDialog(null, x);

where x is a string for the text to be displayed.
The other is to use a statement like this one:

JOptionPane.showMessageDialog(null, x,
y, JOptionPane.INFORMATION_MESSAGE);

two versions of
showMessageDialog

24 Chapter 1 Introduction to Computers, Programs, and Java

JOptionPane.showMessageDialog(null,
 "Welcome to Java!",
 "Display Message",
 JOptionPane.INFORMATION_MESSAGE);

where x is a string for the text to be displayed, and y is a string for the title of the message
box. The fourth argument can be JOptionPane.INFORMATION_MESSAGE, which causes
the information icon () to be displayed in the message box, as shown in the following
example.

Note
There are two types of import statements: specific import and wildcard import. The
specific import specifies a single class in the import statement. For example, the follow-
ing statement imports JOptionPane from the package javax.swing.

import javax.swing.JOptionPane;

The wildcard import imports all the classes in a package by using the asterisk as the
wildcard. For example, the following statement imports all the classes from the package
javax.swing.

import javax.swing.*;

The information for the classes in an imported package is not read in at compile time or
runtime unless the class is used in the program. The import statement simply tells the
compiler where to locate the classes. There is no performance difference between a spe-
cific import and a wildcard import declaration.

Note
Recall that you have used the System class in the statement System.out.println
("Welcome to Java"); in Listing 1.1. The System class is not imported because it is
in the java.lang package. All the classes in the java.lang package are implicitly
imported in every Java program.

1.41 What is the statement to display the message “Hello world” in a message dialog box?

1.42 Why does the System class not need to be imported?

1.43 Are there any performance differences between the following two import statements?

import javax.swing.JOptionPane;
import javax.swing.*;

1.10 Programming Style and Documentation
Good programming style and proper documentation make a program easy to read and
help programmers prevent errors.

Programming style deals with what programs look like. A program can compile and run
properly even if written on only one line, but writing it all on one line would be bad pro-
gramming style because it would be hard to read. Documentation is the body of explanatory
remarks and comments pertaining to a program. Programming style and documentation are
as important as coding. Good programming style and appropriate documentation reduce the
chance of errors and make programs easy to read. This section gives several guidelines. For

specific import

wildcard import

no performance difference

java.lang package

implicitly imported

programming style

documentation

Key
Point

✓Point✓Check

1.10 Programming Style and Documentation 25

more detailed guidelines, see Supplement I.D, Java Coding Style Guidelines, on the Com-
panion Website.

1.10.1 Appropriate Comments and Comment Styles
Include a summary at the beginning of the program that explains what the program does, its
key features, and any unique techniques it uses. In a long program, you should also include
comments that introduce each major step and explain anything that is difficult to read. It is
important to make comments concise so that they do not crowd the program or make it diffi-
cult to read.

In addition to line comments (beginning with //) and block comments (beginning with
/*), Java supports comments of a special type, referred to as javadoc comments. javadoc
comments begin with /** and end with */. They can be extracted into an HTML file using
the JDK’s javadoc command. For more information, see java.sun.com/j2se/javadoc.

Use javadoc comments (/** ... */) for commenting on an entire class or an entire
method. These comments must precede the class or the method header in order to be extracted
into a javadoc HTML file. For commenting on steps inside a method, use line comments (//).
To see an example of a javadoc HTML file, check out www.cs.armstrong.edu/liang/javadoc/
Exercise1.html. Its corresponding Java code is shown in www.cs.armstrong.edu/liang/javadoc/
Exercise1.java.

1.10.2 Proper Indentation and Spacing
A consistent indentation style makes programs clear and easy to read, debug, and maintain.
Indentation is used to illustrate the structural relationships between a program’s components
or statements. Java can read the program even if all of the statements are on the same long line,
but humans find it easier to read and maintain code that is aligned properly. Indent each sub-
component or statement at least two spaces more than the construct within which it is nested.

A single space should be added on both sides of a binary operator, as shown in the follow-
ing statement:

javadoc comment

indent code

System.out.println(3+4*4); Bad style

System.out.println(3 + 4 * 4); Good style

1.10.3 Block Styles
A block is a group of statements surrounded by braces. There are two popular styles, next-line
style and end-of-line style, as shown below.

public class Test
{
public static void main(String[] args)
{
System.out.println("Block Styles");

}
}

Next-line style

public class Test {
public static void main(String[] args) {
System.out.println("Block Styles");

}
}

End-of-line style

The next-line style aligns braces vertically and makes programs easy to read, whereas the
end-of-line style saves space and may help avoid some subtle programming errors. Both are
acceptable block styles. The choice depends on personal or organizational preference. You
should use a block style consistently—mixing styles is not recommended. This book uses the
end-of-line style to be consistent with the Java API source code.

www.cs.armstrong.edu/liang/javadoc/Exercise1.html
www.cs.armstrong.edu/liang/javadoc/Exercise1.html
www.cs.armstrong.edu/liang/javadoc/Exercise1.java
www.cs.armstrong.edu/liang/javadoc/Exercise1.java

26 Chapter 1 Introduction to Computers, Programs, and Java

Compile

FIGURE 1.19 The compiler reports syntax errors.

1.44 Reformat the following program according to the programming style and documenta-
tion guidelines. Use the end-of-line brace style.

public class Test
{
// Main method
public static void main(String[] args) {
/** Display output */
System.out.println("Welcome to Java");
}

}

1.11 Programming Errors
Programming errors can be categorized into three types: syntax errors, runtime errors,
and logic errors.

1.11.1 Syntax Errors
Errors that are detected by the compiler are called syntax errors or compile errors. Syntax
errors result from errors in code construction, such as mistyping a keyword, omitting some
necessary punctuation, or using an opening brace without a corresponding closing brace.
These errors are usually easy to detect, because the compiler tells you where they are and
what caused them. For example, the program in Listing 1.5 has a syntax error, as shown in
Figure 1.19.

LISTING 1.5 ShowSyntaxErrors.java
1 public class ShowSyntaxErrors {
2 public static main(String[] args) {
3 System.out.println("Welcome to Java);
4 }
5 }

Four errors are reported, but the program actually has two errors:

■ The keyword void is missing before main in line 2.

■ The string Welcome to Java should be closed with a closing quotation mark in line 3.

Since a single error will often display many lines of compile errors, it is a good practice to
fix errors from the top line and work downward. Fixing errors that occur earlier in the pro-
gram may also fix additional errors that occur later.

syntax errors

compile errors

✓Point✓Check

Key
Point

1.11 Programming Errors 27

Run

FIGURE 1.20 The runtime error causes the program to terminate abnormally.

Tip
If you don’t know how to correct it, compare your program closely, character by char-
acter, with similar examples in the text. In the first few weeks of this course, you will
probably spend a lot of time fixing syntax errors. Soon you will be familiar with Java
syntax and can quickly fix syntax errors.

1.11.2 Runtime Errors
Runtime errors are errors that cause a program to terminate abnormally. They occur while a
program is running if the environment detects an operation that is impossible to carry out.
Input mistakes typically cause runtime errors. An input error occurs when the program is
waiting for the user to enter a value, but the user enters a value that the program cannot han-
dle. For instance, if the program expects to read in a number, but instead the user enters a
string, this causes data-type errors to occur in the program.

Another example of runtime errors is division by zero. This happens when the divisor is
zero for integer divisions. For instance, the program in Listing 1.6 would cause a runtime
error, as shown in Figure 1.20.

LISTING 1.6 ShowRuntimeErrors.java
1 public class ShowRuntimeErrors {
2 public static void main(String[] args) {
3 System.out.println(1 / 0);
4 }
5 }

1.11.3 Logic Errors
Logic errors occur when a program does not perform the way it was intended to. Errors of this
kind occur for many different reasons. For example, suppose you wrote the program in
Listing 1.7 to convert Celsius 35 degrees to a Fahrenheit degree:

LISTING 1.7 ShowLogicErrors.java
1 public class ShowLogicErrors {
2 public static void main(String[] args) {
3 System.out.println("Celsius 35 is Fahrenheit degree ");
4 System.out.println((9 / 5) * 35 + 32);
5 }
6 }

fix syntax errors

runtime errors

runtime error

logic errors

Celsius 35 is Fahrenheit degree
67

28 Chapter 1 Introduction to Computers, Programs, and Java

You will get Fahrenheit 67 degrees, which is wrong. It should be 95.0. In Java, the divi-
sion for integers is an integer—the fractional part is truncated—so in Java 9 / 5 is 1. To get
the correct result, you need to use 9.0 / 5, which results in 1.8.

In general, syntax errors are easy to find and easy to correct, because the compiler gives indi-
cations as to where the errors came from and why they are wrong. Runtime errors are not diffi-
cult to find, either, since the reasons and locations for the errors are displayed on the console
when the program aborts. Finding logic errors, on the other hand, can be very challenging. In the
upcoming chapters, you will learn the techniques of tracing programs and finding logic errors.

1.45 What are syntax errors (compile errors), runtime errors, and logic errors?

1.46 Give examples of syntax errors, runtime errors, and logic errors.

1.47 If you forget to put a closing quotation mark on a string, what kind error will be raised?

1.48 If your program needs to read integers, but the user entered strings, an error would
occur when running this program. What kind of error is this?

1.49 Suppose you write a program for computing the perimeter of a rectangle and you
mistakenly write your program so that it computes the area of a rectangle. What kind
of error is this?

1.50 Identify and fix the errors in the following code:

1 public class Welcome {
2 public void Main(String[] args) {
3 System.out.println('Welcome to Java!);
4 }
5 }

1.51 The following program is wrong. Reorder the lines so that the program displays
morning followed by afternoon.

1 public static void main(String[] args) {
2 }
3 public class Welcome {
4 System.out.println("afternoon");
5 System.out.println("morning");
6 }

KEY TERMS

Application Program Interface (API) 16
assembler 10
assembly language 10
bit 4
block 17
block comment 17
bus 2
byte 4
bytecode 21
bytecode verifier 22
cable modem 8
central processing unit (CPU) 3
class loader 22
comment 17
compiler 10
console 16

dot pitch 8
DSL (digital subscriber line) 8
encoding scheme 4
hardware 2
high-level language 10
integrated development environment

(IDE) 16
interpreter 10
java command 21
Java Development Toolkit (JDK) 16
Java language specification 16
Java Virtual Machine (JVM) 21
javac command 21
keyword (or reserved word) 17
library 16
line comment 17

✓Point✓Check

Chapter Summary 29

logic error 27
low-level language 10
machine language 9
main method 17
memory 5
modem 8
motherboard 3
network interface card (NIC) 8
operating system (OS) 12
pixel 8
program 2

programming 2
runtime error 27
screen resolution 8
software 2
source code 10
source program 10
specific import 24
statement 10
storage devices 5
syntax error 26
wildcard import 24

Note
The above terms are defined in this chapter. Supplement I.A, Glossary, lists all the
key terms and descriptions in the book, organized by chapters.

CHAPTER SUMMARY

1. A computer is an electronic device that stores and processes data.

2. A computer includes both hardware and software.

3. Hardware is the physical aspect of the computer that can be touched.

4. Computer programs, known as software, are the invisible instructions that control the
hardware and make it perform tasks.

5. Computer programming is the writing of instructions (i.e., code) for computers to
perform.

6. The central processing unit (CPU) is a computer’s brain. It retrieves instructions
from memory and executes them.

7. Computers use zeros and ones because digital devices have two stable states, referred
to by convention as zero and one.

8. A bit is a binary digit 0 or 1.

9. A byte is a sequence of 8 bits.

10. A kilobyte is about 1,000 bytes, a megabyte about 1 million bytes, a gigabyte about 1
billion bytes, and a terabyte about 1,000 gigabytes.

11. Memory stores data and program instructions for the CPU to execute.

12. A memory unit is an ordered sequence of bytes.

13. Memory is volatile, because information is lost when the power is turned off.

Supplement I.A

30 Chapter 1 Introduction to Computers, Programs, and Java

14. Programs and data are permanently stored on storage devices and are moved to mem-
ory when the computer actually uses them.

15. The machine language is a set of primitive instructions built into every computer.

16. Assembly language is a low-level programming language in which a mnemonic is
used to represent each machine-language instruction.

17. High-level languages are English-like and easy to learn and program.

18. A program written in a high-level language is called a source program.

19. A compiler is a software program that translates the source program into a machine-
language program.

20. The operating system (OS) is a program that manages and controls a computer’s
activities.

21. Java is platform independent, meaning that you can write a program once and run it
on any computer.

22. Java programs can be embedded in HTML pages and downloaded by Web browsers
to bring live animation and interaction to Web clients.

23. The Java source file name must match the public class name in the program. Java
source code files must end with the .java extension.

24. Every class is compiled into a separate bytecode file that has the same name as the
class and ends with the .class extension.

25. To compile a Java source-code file from the command line, use the javac command.

26. To run a Java class from the command line, use the java command.

27. Every Java program is a set of class definitions. The keyword class introduces a
class definition. The contents of the class are included in a block.

28. A block begins with an opening brace ({) and ends with a closing brace (}).

29. Methods are contained in a class. To run a Java program, the program must have a
main method. The main method is the entry point where the program starts when it
is executed.

30. Every statement in Java ends with a semicolon (;), known as the statement terminator.

31. Reserved words, or keywords, have a specific meaning to the compiler and cannot be
used for other purposes in the program.

32. In Java, comments are preceded by two slashes (//) on a line, called a line comment,
or enclosed between /* and */ on one or several lines, called a block comment or
paragraph comment. Comments are ignored by the compiler.

33. Java source programs are case sensitive.

Programming Exercises 31

34. There are two types of import statements: specific import and wildcard import. The
specific import specifies a single class in the import statement; the wildcard import
imports all the classes in a package.

35. Programming errors can be categorized into three types: syntax errors, runtime errors,
and logic errors. Errors that occur during compilation are called syntax errors or
compile errors. Runtime errors are errors that cause a program to terminate abnor-
mally. Logic errors occur when a program does not perform the way it was intended to.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Note
Solutions to even-numbered exercises are on the Companion Website. Solutions to
all exercises are on the Instructor Resource Website. The level of difficulty is rated
easy (no star), moderate (*), hard (**), or challenging (***).

1.1 (Display three messages) Write a program that displays Welcome to Java,
Welcome to Computer Science, and Programming is fun.

1.2 (Display five messages) Write a program that displays Welcome to Java five times.

*1.3 (Display a pattern) Write a program that displays the following pattern:

J A V V A
J A A V V A A

J J AAAAA V V AAAAA
J J A A V A A

1.4 (Print a table) Write a program that displays the following table:

a a^2 a^3
1 1 1
2 4 8
3 9 27
4 16 64

1.5 (Compute expressions) Write a program that displays the result of

1.6 (Summation of a series) Write a program that displays the result of

1.7 (Approximate) can be computed using the following formula:

Write a program that displays the result of

and Use 1.0 instead of 1 in your

program.

4 * ¢1 -
1

3
+

1

5
-

1

7
+

1

9
-

1

11
+

1

13
≤ .

4 * ¢1 -
1

3
+

1

5
-

1

7
+

1

9
-

1

11
≤

p = 4 * ¢1 -
1

3
+

1

5
-

1

7
+

1

9
-

1

11
+ c ≤

pp

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9.

9.5 * 4.5 - 2.5 * 3

45.5 - 3.5
.

level of difficulty

www.cs.armstrong.edu/liang/intro9e/test.html

32 Chapter 1 Introduction to Computers, Programs, and Java

1.8 (Area and perimeter of a circle) Write a program that displays the area and
perimeter of a circle that has a radius of 5.5 using the following formula:

1.9 (Area and perimeter of a rectangle) Write a program that displays the area and
perimeter of a rectangle with the width of 4.5 and height of 7.9 using the follow-
ing formula:

1.10 (Average speed in miles) Assume a runner runs 14 kilometers in 45 minutes and
30 seconds. Write a program that displays the average speed in miles per hour.
(Note that 1 mile is 1.6 kilometers.)

*1.11 (Population projection) The U.S. Census Bureau projects population based on the
following assumptions:

■ One birth every 7 seconds
■ One death every 13 seconds
■ One new immigrant every 45 seconds

Write a program to display the population for each of the next five years. Assume
the current population is 312,032,486 and one year has 365 days. Hint: In Java, if
two integers perform division, the result is an integer. The fraction part is trun-
cated. For example, 5 / 4 is 1 (not 1.25) and 10 / 4 is 2 (not 2.5).

1.12 (Average speed in kilometers) Assume a runner runs 24 miles in 1 hour, 40 minutes,
and 35 seconds. Write a program that displays the average speed in kilometers per
hour. (Note that 1 mile is 1.6 kilometers.)

area = width * height

area = radius * radius * p
perimeter = 2 * radius * p

ELEMENTARY
PROGRAMMING

Objectives
■ To write Java programs to perform simple computations (§2.2).

■ To obtain input from the console using the Scanner class (§2.3).

■ To use identifiers to name variables, constants, methods, and classes (§2.4).

■ To use variables to store data (§§2.5–2.6).

■ To program with assignment statements and assignment expressions (§2.6).

■ To use constants to store permanent data (§2.7).

■ To name classes, methods, variables, and constants by following their
naming conventions (§2.8).

■ To explore Java numeric primitive data types: byte, short, int, long,
float, and double (§2.9.1).

■ To perform operations using operators +, -, *, /, and % (§2.9.2).

■ To perform exponent operations using Math.pow(a, b) (§2.9.3).

■ To write integer literals, floating-point literals, and literals in scientific
notation (§2.10).

■ To write and evaluate numeric expressions (§2.11).

■ To obtain the current system time using
System.currentTimeMillis() (§2.12).

■ To use augmented assignment operators (§2.13).

■ To distinguish between postincrement and preincrement and between
postdecrement and predecrement (§2.14).

■ To cast the value of one type to another type (§2.15).

■ To describe the software development process and apply it to develop the
loan payment program (§2.16).

■ To represent characters using the char type (§2.17).

■ To represent a string using the String type (§2.18).

■ To obtain input using the JOptionPane input dialog boxes (§2.19).

CHAPTER

2

34 Chapter 2 Elementary Programming

2.1 Introduction
The focus of this chapter is on learning elementary programming techniques to
solve problems.

In Chapter 1 you learned how to create, compile, and run very basic Java programs. Now you
will learn how to solve problems by writing programs. Through these problems, you will
learn elementary programming using primitive data types, variables, constants, operators,
expressions, and input and output.

Suppose, for example, that you need to take out a student loan. Given the loan amount,
loan term, and annual interest rate, can you write a program to compute the monthly payment
and total payment? This chapter shows you how to write programs like this. Along the way,
you learn the basic steps that go into analyzing a problem, designing a solution, and imple-
menting the solution by creating a program.

2.2 Writing a Simple Program
Writing a program involves designing a strategy for solving the problem and then
using a programming language to implement that strategy.

Let’s first consider the simple problem of computing the area of a circle. How do we write a
program for solving this problem?

Writing a program involves designing algorithms and translating algorithms into pro-
gramming instructions, or code. An algorithm describes how a problem is solved by list-
ing the actions that need to be taken and the order of their execution. Algorithms can help
the programmer plan a program before writing it in a programming language. Algorithms
can be described in natural languages or in pseudocode (natural language mixed with
some programming code). The algorithm for calculating the area of a circle can be
described as follows:

1. Read in the circle’s radius.

2. Compute the area using the following formula:

3. Display the result.

Tip
It’s always good practice to outline your program (or its underlying problem) in the form
of an algorithm before you begin coding.

When you code—that is, when you write a program—you translate an algorithm into a
program. You already know that every Java program begins with a class definition in which
the keyword class is followed by the class name. Assume that you have chosen
ComputeArea as the class name. The outline of the program would look like this:

public class ComputeArea {
// Details to be given later

}

As you know, every Java program must have a main method where program execution
begins. The program is then expanded as follows:

public class ComputeArea {
public static void main(String[] args) {
// Step 1: Read in radius

// Step 2: Compute area

area = radius * radius * p

problem

algorithm

pseudocode

Key
Point

Key
Point

2.2 Writing a Simple Program 35

// Step 3: Display the area
}

}

The program needs to read the radius entered by the user from the keyboard. This raises
two important issues:

■ Reading the radius.

■ Storing the radius in the program.

Let’s address the second issue first. In order to store the radius, the program needs to
declare a symbol called a variable. A variable represents a value stored in the computer’s
memory.

Rather than using x and y as variable names, choose descriptive names: in this case, radius
for radius, and area for area. To let the compiler know what radius and area are, specify their
data types. That is the kind of the data stored in a variable, whether integer, floating-point
number, or something else. This is known as declaring variables. Java provides simple data types
for representing integers, floating-point numbers (i.e., numbers with a decimal point), characters,
and Boolean types. These types are known as primitive data types or fundamental types.

Declare radius and area as double-precision floating-point numbers. The program can
be expanded as follows:

public class ComputeArea {
public static void main(String[] args) {
double radius;
double area;

// Step 1: Read in radius

// Step 2: Compute area

// Step 3: Display the area
}

}

The program declares radius and area as variables. The reserved word double indicates
that radius and area are double-precision floating-point values stored in the computer.

The first step is to prompt the user to designate the circle’s radius. You will learn how to
prompt the user for information shortly. For now, to learn how variables work, you can assign
a fixed value to radius in the program as you write the code; later, you’ll modify the pro-
gram to prompt the user for this value.

The second step is to compute area by assigning the result of the expression radius *
radius * 3.14159 to area.

In the final step, the program will display the value of area on the console by using the
System.out.println method.

Listing 2.1 shows the complete program, and a sample run of the program is shown in
Figure 2.1.

LISTING 2.1 ComputeArea.java
1 public class ComputeArea {
2 public static void main(String[] args) {
3 double radius; // Declare radius
4 double area; // Declare area
5
6 // Assign a radius
7 radius = 20; // radius is now 20

variable

descriptive names

data type

floating-point number

declare variables

primitive data types

36 Chapter 2 Elementary Programming

8
9 // Compute area
10 area = radius * radius * 3.14159;
11
12 // Display results
13 System.out.println("The area for the circle of radius " +
14 radius + " is " + area);
15 }
16 }

The plus sign (+) has two meanings: one for addition and the other for concatenating (com-
bining) strings. The plus sign (+) in lines 13–14 is called a string concatenation operator. It
combines two strings into one. If a string is combined with a number, the number is converted
into a string and concatenated with the other string. Therefore, the plus signs (+) in lines
13–14 concatenate strings into a longer string, which is then displayed in the output. Strings
and string concatenation will be discussed further in Section 2.18.

Caution
A string cannot cross lines in the source code. Thus, the following statement would
result in a compile error:

System.out.println("Introduction to Java Programming,
by Y. Daniel Liang");

declare variable

assign value

tracing program

concatenate strings

concatenate strings with
numbers

Compile

Run

FIGURE 2.1 The program displays the area of a circle.

Variables such as radius and area correspond to memory locations. Every variable has a
name, a type, a size, and a value. Line 3 declares that radius can store a double value. The
value is not defined until you assign a value. Line 7 assigns 20 into variable radius. Simi-
larly, line 4 declares variable area, and line 10 assigns a value into area. The following table
shows the value in the memory for area and radius as the program is executed. Each row in
the table shows the values of variables after the statement in the corresponding line in the pro-
gram is executed. This method of reviewing how a program works is called tracing a pro-
gram. Tracing programs are helpful for understanding how programs work, and they are
useful tools for finding errors in programs.

line# radius area

3 no value

4 no value

7 20

10 1256.636

2.3 Reading Input from the Console 37

To fix the error, break the string into separate substrings, and use the concatenation
operator (+) to combine them:

System.out.println("Introduction to Java Programming, " +
"by Y. Daniel Liang");

Tip
This example consists of three steps. It is a good approach to develop and test these
steps incrementally by adding them one at a time.

2.1 Identify and fix the errors in the following code:

1 public class Test {
2 public void main(string[] args) {
3 int i;
4 int k = 100.0;
5 int j = i + 1;
6
7 System.out.println("j is " + j + " and
8 k is " + k);
9 }
10 }

2.3 Reading Input from the Console
Reading input from the console enables the program to accept input from the user.

In Listing 2.1, the radius is fixed in the source code. To use a different radius, you have to
modify the source code and recompile it. Obviously, this is not convenient, so instead you can
use the Scanner class for console input.

Java uses System.out to refer to the standard output device and System.in to the stan-
dard input device. By default, the output device is the display monitor and the input device is
the keyboard. To perform console output, you simply use the println method to display a
primitive value or a string to the console. Console input is not directly supported in Java, but
you can use the Scanner class to create an object to read input from System.in, as follows:

Scanner input = new Scanner(System.in);

The syntax new Scanner(System.in) creates an object of the Scanner type. The syn-
tax Scanner input declares that input is a variable whose type is Scanner. The whole
line Scanner input = new Scanner(System.in) creates a Scanner object and assigns
its reference to the variable input. An object may invoke its methods. To invoke a method on
an object is to ask the object to perform a task. You can invoke the methods listed in Table 2.1
to read various types of input.

For now, we will see how to read a number that includes a decimal point by invoking the
nextDouble() method. Other methods will be covered when they are used. Listing 2.2
rewrites Listing 2.1 to prompt the user to enter a radius.

LISTING 2.2 ComputeAreaWithConsoleInput.java
1 // Scanner is in the java.util package
2
3 public class ComputeAreaWithConsoleInput {
4 public static void main(String[] args) {
5 // Create a Scanner object
6
7

Scanner input = new Scanner(System.in);

import java.util.Scanner;

break a long string

incremental development and
testing

Obtain input

✓Point✓Check

Key
Point

VideoNote

import class

create a Scanner

38 Chapter 2 Elementary Programming

TABLE 2.1 Methods for Scanner Objects

Method Description

nextByte() reads an integer of the byte type.

nextShort() reads an integer of the short type.

nextInt() reads an integer of the int type.

nextLong() reads an integer of the long type.

nextFloat() reads a number of the float type.

nextDouble() reads a number of the double type.

next() reads a string that ends before a whitespace character.

nextLine() reads a line of text (i.e., a string ending with the Enter key pressed).

8 // Prompt the user to enter a radius
9 System.out.print("Enter a number for radius: ");
10 double radius =
11
12 // Compute area
13 double area = radius * radius * 3.14159;
14
15 // Display results
16 System.out.println("The area for the circle of radius " +
17 radius + " is " + area);
18 }
19 }

input.nextDouble();read a double

Enter a number for radius:
The area for the circle of radius 2.5 is 19.6349375

2.5

Enter a number for radius:
The area for the circle of radius 23.0 is 1661.90111

23

The Scanner class is in the java.util package. It is imported in line 1. Line 6 creates a
Scanner object.

The statement in line 9 displays a message to prompt the user for input.

System.out. ("Enter a number for radius: ");

The print method is identical to the println method except that println moves to the
beginning of the next line after displaying the string, but print does not advance to the next
line when completed.

The statement in line 10 reads input from the keyboard.

double radius = input.nextDouble();

After the user enters a number and presses the Enter key, the program reads the number
and assigns it to radius.

print

print vs. println

2.3 Reading Input from the Console 39

More details on objects will be introduced in Chapter 8. For the time being, simply accept
that this is how to obtain input from the console.

Listing 2.3 gives an example of reading multiple input from the keyboard. The program
reads three numbers and displays their average.

LISTING 2.3 ComputeAverage.java
1 // Scanner is in the java.util package
2
3 public class ComputeAverage {
4 public static void main(String[] args) {
5 // Create a Scanner object
6
7
8 // Prompt the user to enter three numbers
9 System.out.print("Enter three numbers: ");
10 double number1 =
11 double number2 =
12 double number3 =
13
14 // Compute average
15 double average = (number1 + number2 + number3) / 3;
16
17 // Display results
18 System.out.println("The average of " + number1 + " " + number2
19 + " " + number3 + " is " + average);
20 }
21 }

input.nextDouble();
input.nextDouble();
input.nextDouble();

Scanner input = new Scanner(System.in);

import java.util.Scanner; import class

create a Scanner

read a double

Enter three numbers:
The average of 1.0 2.0 3.0 is 2.0

1 2 3

enter input in one line

Enter three numbers:

The average of 10.5 11.0 11.5 is 11.0
11.5
11

10.5

enter input in multiple lines

The code for importing the Scanner class (line 1) and creating a Scanner object (line 6)
are the same as in the preceding example as well as in all new programs you will write for
reading input from the keyboard.

Line 9 prompts the user to enter three numbers. The numbers are read in lines 10–12. You
may enter three numbers separated by spaces, then press the Enter key, or enter each number
followed by a press of the Enter key, as shown in the sample runs of this program.

If you entered an input other than a numeric value, a runtime error would occur. In Chapter
14, you will learn how to handle the exception so that the program can continue to run.

Note
Most of the programs in the early chapters of this book perform three steps: input,
process, and output, called IPO. Input is receiving input from the user; process is pro-
ducing results using the input; and output is displaying the results.

runtime error

IPO

40 Chapter 2 Elementary Programming

2.2 How do you write a statement to let the user enter an integer or a double value from
the keyboard?

2.3 What happens if you entered 5a when executing the following code?
double radius = input.nextDouble();

2.4 Identifiers
Identifiers are the names that identify the elements such as classes, methods, and
variables in a program.

As you see in Listing 2.3, ComputeAverage, main, input, number1, number2, number3,
and so on are the names of things that appear in the program. In programming terminology,
such names are called identifiers. All identifiers must obey the following rules:

■ An identifier is a sequence of characters that consists of letters, digits, underscores
(_), and dollar signs ($).

■ An identifier must start with a letter, an underscore (_), or a dollar sign ($). It cannot
start with a digit.

■ An identifier cannot be a reserved word. (See Appendix A for a list of reserved words.)

■ An identifier cannot be true, false, or null.

■ An identifier can be of any length.

For example, $2, ComputeArea, area, radius, and showMessageDialog are legal
identifiers, whereas 2A and d+4 are not because they do not follow the rules. The Java com-
piler detects illegal identifiers and reports syntax errors.

Note
Since Java is case sensitive, area, Area, and AREA are all different identifiers.

Tip
Identifiers are for naming variables, constants, methods, classes, and packages. Descrip-
tive identifiers make programs easy to read. Avoid using abbreviations for identifiers.
Using complete words is more descriptive. For example, numberOfStudents is better
than numStuds, numOfStuds, or numOfStudents. We use descriptive names for
complete programs in the text. However, we will occasionally use variables names such
as i, j, k, x, and y in the code snippets for brevity. These names also provide a generic
tone to the code snippets.

Tip
Do not name identifiers with the $ character. By convention, the $ character should be
used only in mechanically generated source code.

2.4 Which of the following identifiers are valid? Which are Java keywords?

miles, Test, a++, ––a, 4#R, $4, #44, apps
class, public, int, x, y, radius

2.5 Variables
Variables are used to represent values that may be changed in the program.

As you see from the programs in the preceding sections, variables are used to store values to
be used later in a program. They are called variables because their values can be changed. In

identifiers

identifier naming rules

case sensitive

descriptive names

the $ character

why called variables?

✓Point✓Check

✓Point✓Check

Key
Point

Key
Point

2.5 Variables 41

the program in Listing 2.2, radius and area are variables of the double-precision, floating-
point type. You can assign any numerical value to radius and area, and the values of
radius and area can be reassigned. For example, in the following code, radius is initially
1.0 (line 2) and then changed to 2.0 (line 7), and area is set to 3.14159 (line 3) and then
reset to 12.56636 (line 8).

1 // Compute the first area
2 radius = 1.0; radius: 1.0
3 area = radius * radius * 3.14159; area: 3.14159
4 System.out.println("The area is " + area + " for radius " + radius);
5
6 // Compute the second area
7 radius = 2.0; radius: 2.0
8 area = radius * radius * 3.14159; area: 12.56636
9 System.out.println("The area is " + area + " for radius " + radius);

Variables are for representing data of a certain type. To use a variable, you declare it by
telling the compiler its name as well as what type of data it can store. The variable declara-
tion tells the compiler to allocate appropriate memory space for the variable based on its data
type. The syntax for declaring a variable is

datatype variableName;

Here are some examples of variable declarations:

int count; // Declare count to be an integer variable
double radius; // Declare radius to be a double variable
double interestRate; // Declare interestRate to be a double variable

These examples use the data types int and double. Later you will be introduced to addi-
tional data types, such as byte, short, long, float, char, and boolean.

If variables are of the same type, they can be declared together, as follows:

datatype variable1, variable2, ..., variablen;

The variables are separated by commas. For example,

int i, j, k; // Declare i, j, and k as int variables

Variables often have initial values. You can declare a variable and initialize it in one step.
Consider, for instance, the following code:

int count = 1;

This is equivalent to the next two statements:

int count;
count = 1;

You can also use a shorthand form to declare and initialize variables of the same type
together. For example,

int i = 1, j = 2;

Tip
A variable must be declared before it can be assigned a value. A variable declared in a
method must be assigned a value before it can be used.

Whenever possible, declare a variable and assign its initial value in one step. This will
make the program easy to read and avoid programming errors.

declare variable

initialize variables

42 Chapter 2 Elementary Programming

Every variable has a scope. The scope of a variable is the part of the program where the
variable can be referenced. The rules that define the scope of a variable will be introduced
gradually later in the book. For now, all you need to know is that a variable must be declared
and initialized before it can be used. Consider the following code:

int interestRate = 0.05
int interest = interestrate * 45

This code is wrong, because interestRate is assigned a value 0.05, but interestrate
has not been declared and initialized. Java is case sensitive, so it considers interestRate and
interestrate to be two different variables.

2.6 Assignment Statements and Assignment
Expressions
An assignment statement designates a value for a variable. An assignment statement
can be used as an expression in Java.

After a variable is declared, you can assign a value to it by using an assignment statement. In
Java, the equal sign (=) is used as the assignment operator. The syntax for assignment state-
ments is as follows:

variable = expression;

An expression represents a computation involving values, variables, and operators that,
taking them together, evaluates to a value. For example, consider the following code:

int y = 1; // Assign 1 to variable y
double radius = 1.0; // Assign 1.0 to variable radius
int x = 5 * (3 / 2); // Assign the value of the expression to x
x = y + 1; // Assign the addition of y and 1 to x
area = radius * radius * 3.14159; // Compute area

You can use a variable in an expression. A variable can also be used in both sides of the
operator. For example,

x = x + 1;

In this assignment statement, the result of x + 1 is assigned to x. If x is 1 before the state-
ment is executed, then it becomes 2 after the statement is executed.

To assign a value to a variable, you must place the variable name to the left of the assign-
ment operator. Thus, the following statement is wrong:

1 = x; // Wrong

Note
In mathematics, x = 2 * x + 1 denotes an equation. However, in Java, x = 2 * x
+ 1 is an assignment statement that evaluates the expression 2 * x + 1 and assigns
the result to x.

In Java, an assignment statement is essentially an expression that evaluates to the value to
be assigned to the variable on the left side of the assignment operator. For this reason, an
assignment statement is also known as an assignment expression. For example, the following
statement is correct:

System.out.println(x = 1);

=

scope of a variable

assignment statement

assignment operator

expression

assignment expression

Key
Point

2.7 Named Constants 43

which is equivalent to

x = 1;
System.out.println(x);

If a value is assigned to multiple variables, you can use this syntax:

i = j = k = 1;

which is equivalent to

k = 1;
j = k;
i = j;

Note
In an assignment statement, the data type of the variable on the left must be compatible
with the data type of the value on the right. For example, int x = 1.0 would be illegal,
because the data type of x is int. You cannot assign a double value (1.0) to an int
variable without using type casting. Type casting is introduced in Section 2.15.

2.7 Named Constants
A named constant is an identifier that represents a permanent value.

The value of a variable may change during the execution of a program, but a named constant,
or simply constant, represents permanent data that never changes. In our ComputeArea pro-
gram, is a constant. If you use it frequently, you don’t want to keep typing 3.14159;
instead, you can declare a constant for Here is the syntax for declaring a constant:

final datatype CONSTANTNAME = value;

A constant must be declared and initialized in the same statement. The word final is a
Java keyword for declaring a constant. For example, you can declare as a constant and
rewrite Listing 2.1 as follows:

// ComputeArea.java: Compute the area of a circle
public class ComputeArea {
public static void main(String[] args) {

// Declare a constant

// Assign a radius
double radius = 20;

// Compute area
double area = radius * radius * ;

// Display results
System.out.println("The area for the circle of radius " +
radius + " is " + area);

}
}

There are three benefits of using constants: (1) You don’t have to repeatedly type the same
value if it is used multiple times; (2) if you have to change the constant value (e.g., from
3.14 to 3.14159 for PI), you need to change it only in a single location in the source code;
and (3) a descriptive name for a constant makes the program easy to read.

PI

final double PI = 3.14159;

p

p.
p

constant

final keyword

benefits of constants

Key
Point

44 Chapter 2 Elementary Programming

2.8 Naming Conventions
Sticking with the Java naming conventions makes your programs easy to read and
avoids errors.

Make sure that you choose descriptive names with straightforward meanings for the variables,
constants, classes, and methods in your program. As mentioned earlier, names are case sensi-
tive. Listed below are the conventions for naming variables, methods, and classes.

■ Use lowercase for variables and methods. If a name consists of several words,
concatenate them into one, making the first word lowercase and capitalizing the first
letter of each subsequent word—for example, the variables radius and area and
the method showMessageDialog.

■ Capitalize the first letter of each word in a class name—for example, the class names
ComputeArea, System, and JOptionPane.

■ Capitalize every letter in a constant, and use underscores between words—for exam-
ple, the constants PI and MAX_VALUE.

It is important to follow the naming conventions to make your programs easy to read.

Caution
Do not choose class names that are already used in the Java library. For example, since
the System class is defined in Java, you should not name your class System.

2.5 What are the benefits of using constants? Declare an int constant SIZE with value 20.

2.6 What are the naming conventions for class names, method names, constants, and
variables? Which of the following items can be a constant, a method, a variable, or a
class according to the Java naming conventions?

MAX_VALUE, Test, read, readInt

2.7 Translate the following algorithm into Java code:

Step 1: Declare a double variable named miles with initial value 100.

Step 2: Declare a double constant named KILOMETERS_PER_MILE with value
1.609.

Step 3: Declare a double variable named kilometers, multiply miles and
KILOMETERS_PER_MILE, and assign the result to kilometers.

Step 4: Display kilometers to the console.

What is kilometers after Step 4?

2.9 Numeric Data Types and Operations
Java has six numeric types for integers and floating-point numbers with operators +, -,
*, /, and %.

2.9.1 Numeric Types
Every data type has a range of values. The compiler allocates memory space for each variable or
constant according to its data type. Java provides eight primitive data types for numeric values,
characters, and Boolean values. This section introduces numeric data types and operators.

Table 2.2 lists the six numeric data types, their ranges, and their storage sizes.

name variables and methods

name classes

name constants

name classes

Key
Point

Key
Point

✓Point✓Check

2.9 Numeric Data Types and Operations 45

TABLE 2.2 Numeric Data Types

Name Range Storage Size

byte to (-128 to 127)27-1- ˛27 8-bit signed

short to (- ˛32768 to 32767)215-1- ˛215 16-bit signed

int to to 2147483647)(- ˛2147483648231-1- ˛231 32-bit signed

long to

(i.e., to 9223372036854775807)- ˛9223372036854775808

263-1- ˛263 64-bit signed

float Negative range: to

Positive range: to 3.4028235E+381.4E-45

-1.4E-45- ˛3.4028235E+38 32-bit IEEE 754

double Negative range: to

Positive range: to 1.7976931348623157E+3084.9E-324

- ˛4.9E-324- ˛1.7976931348623157E+308 64-bit IEEE 754

Note
IEEE 754 is a standard approved by the Institute of Electrical and Electronics Engineers
for representing floating-point numbers on computers. The standard has been widely
adopted. Java uses the 32-bit IEEE 754 for the float type and the 64-bit IEEE 754 for
the double type. The IEEE 754 standard also defines special floating-point values,
which are listed in Appendix E.

Java uses four types for integers: byte, short, int, and long. Choose the type that is
most appropriate for your variable. For example, if you know an integer stored in a variable is
within a range of a byte, declare the variable as a byte. For simplicity and consistency, we
will use int for integers most of the time in this book.

Java uses two types for floating-point numbers: float and double. The double type is
twice as big as float, so the double is known as double precision and float as single
precision. Normally you should use the double type, because it is more accurate than the
float type.

Caution
When a variable is assigned a value that is too large (in size) to be stored, it causes
overflow. For example, executing the following statement causes overflow, because the
largest value that can be stored in a variable of the int type is 2147483647.
2147483648 will be too large for an int value.

int value = 2147483647 + 1;
// value will actually be -2147483648

Likewise, executing the following statement causes overflow, because the smallest value
that can be stored in a variable of the int type is -2147483648. -2147483649 will
be too large in size to be stored in an int variable.

int value = -2147483648 - 1;
// value will actually be 2147483647

Java does not report warnings or errors on overflow, so be careful when working with
numbers close to the maximum or minimum range of a given type.

integer types

floating-point types

what is overflow?

byte type

short type

int type

long type

float type

double type

46 Chapter 2 Elementary Programming

When a floating-point number is too small (i.e., too close to zero) to be stored, it causes
underflow. Java approximates it to zero, so normally you don’t need to be concerned about
underflow.

2.9.2 Numeric Operators
The operators for numeric data types include the standard arithmetic operators: addition (+),
subtraction (–), multiplication (*), division (/), and remainder (%), as shown in Table 2.3. The
operands are the values operated by an operator.

The % operator is often used for positive integers, but it can also be used with negative inte-
gers and floating-point values. The remainder is negative only if the dividend is negative. For
example, -7 % 3 yields -1, -12 % 4 yields 0, -26 % -8 yields -2, and 20 % -13 yields 7.

Remainder is very useful in programming. For example, an even number % 2 is always 0
and an odd number % 2 is always 1. Thus, you can use this property to determine whether a
number is even or odd. If today is Saturday, it will be Saturday again in 7 days. Suppose you
and your friends are going to meet in 10 days. What day is in 10 days? You can find that the
day is Tuesday using the following expression:

what is underflow?

operators +, -, *, /, %

operands

integer division

TABLE 2.3 Numeric Operators

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

4 12

12
0

3

8 26

24
2

3

Remainder

Quotient

Divisor Dividend13 20

13
7

1

7 3

0
3

0

3 7

6
1

2

Day 6 in a week is Saturday

A week has 7 days

After 10 days
Day 2 in a week is Tuesday
Note: Day 0 in a week is Sunday

(6 + 10) % 7 is 2

When both operands of a division are integers, the result of the division is an integer and
the fractional part is truncated. For example, 5 / 2 yields 2, not 2.5, and –5 / 2 yields -2,
not –2.5. To perform regular mathematical division, one of the operands must be a floating-
point number. For example, 5.0 / 2 yields 2.5.

The % operator, known as remainder or modulo operator, yields the remainder after
division. The operand on the left is the dividend and the operand on the right is the divisor.
Therefore, 7 % 3 yields 1, 3 % 7 yields 3, 12 % 4 yields 0, 26 % 8 yields 2, and 20 % 13
yields 7.

2.9 Numeric Data Types and Operations 47

The program in Listing 2.4 obtains minutes and remaining seconds from an amount of time
in seconds. For example, 500 seconds contains 8 minutes and 20 seconds.

LISTING 2.4 DisplayTime.java
1
2
3 public class DisplayTime {
4 public static void main(String[] args) {
5
6 // Prompt the user for input
7 System.out.print("Enter an integer for seconds: ");
8 int seconds = ;
9
10 int minutes = ; // Find minutes in seconds
11 int remainingSeconds = ; // Seconds remaining
12 System.out.println(seconds + " seconds is " + minutes +
13 " minutes and " + remainingSeconds + " seconds");
14 }
15 }

seconds % 60
seconds / 60

input.nextInt()

Scanner input = new Scanner(System.in);

import java.util.Scanner; import Scanner

create a Scanner

read an integer

divide
remainder

Enter an integer for seconds:
500 seconds is 8 minutes and 20 seconds

500

The nextInt() method (line 8) reads an integer for seconds. Line 10 obtains the min-
utes using seconds / 60. Line 11 (seconds % 60) obtains the remaining seconds after
taking away the minutes.

The + and - operators can be both unary and binary. A unary operator has only one operand;
a binary operator has two. For example, the - operator in -5 is a unary operator to negate num-
ber 5, whereas the - operator in 4 - 5 is a binary operator for subtracting 5 from 4.

Note
Calculations involving floating-point numbers are approximated because these numbers
are not stored with complete accuracy. For example,

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

displays 0.5000000000000001, not 0.5, and

System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1. Integers are stored precisely. Therefore,
calculations with integers yield a precise integer result.

unary operator

binary operator

line# seconds minutes remainingSeconds

8 500

10 8

11 20

floating-point approximation

48 Chapter 2 Elementary Programming

2.9.3 Exponent Operations
The Math.pow(a, b) method can be used to compute The pow method is defined in the
Math class in the Java API. You invoke the method using the syntax Math.pow(a, b) (i.e.,
Math.pow(2, 3)), which returns the result of Here a and b are parameters for the
pow method and the numbers 2 and 3 are actual values used to invoke the method. For
example,

System.out.println(Math.pow(2, 3)); // Displays 8.0
System.out.println(Math.pow(4, 0.5)); // Displays 2.0
System.out.println(Math.pow(2.5, 2)); // Displays 6.25
System.out.println(Math.pow(2.5, -2)); // Displays 0.16

Chapter 5 introduces more details on methods. For now, all you need to know is how to
invoke the pow method to perform the exponent operation.

2.8 Find the largest and smallest byte, short, int, long, float, and double. Which
of these data types requires the least amount of memory?

2.9 Show the result of the following remainders.

56 % 6

78 % -4

-34 % 5

-34 % -5

5 % 1

1 % 5

2.10 If today is Tuesday, what will be the day in 100 days?

2.11 What is the result of 25 / 4? How would you rewrite the expression if you wished
the result to be a floating-point number?

2.12 Are the following statements correct? If so, show the output.

System.out.println("25 / 4 is " + 25 / 4);
System.out.println("25 / 4.0 is " + 25 / 4.0);
System.out.println("3 * 2 / 4 is " + 3 * 2 / 4);
System.out.println("3.0 * 2 / 4 is " + 3.0 * 2 / 4);

2.13 Write a statement to display the result of

2.14 Suppose m and r are integers. Write a Java expression for to obtain a floating-
point result.

2.10 Numeric Literals
A literal is a constant value that appears directly in a program.

For example, 34 and 0.305 are literals in the following statements:

int numberOfYears = 34;
double weight = 0.305;

2.10.1 Integer Literals
An integer literal can be assigned to an integer variable as long as it can fit into the variable. A
compile error will occur if the literal is too large for the variable to hold. The statement byte
b = 128, for example, will cause a compile error, because 128 cannot be stored in a variable
of the byte type. (Note that the range for a byte value is from –128 to 127.)

mr2

23.5.

ab (23).

ab.Math.pow(a, b) method

literal

Key
Point

✓Point✓Check

2.10 Numeric Literals 49

An integer literal is assumed to be of the int type, whose value is between
and To denote an integer literal of the long

type, append the letter L or l to it. For example, to write integer 2147483648 in a Java pro-
gram, you have to write it as 2147483648L or 2147483648l, because 2147483648 exceeds
the range for the int value. L is preferred because l (lowercase L) can easily be confused
with 1 (the digit one).

Note
By default, an integer literal is a decimal integer number. To denote an octal integer lit-
eral, use a leading 0 (zero), and to denote a hexadecimal integer literal, use a leading 0x
or 0X (zero x). For example, the following code displays the decimal value 65535 for
hexadecimal number FFFF.

System.out.println(FFFF);

Hexadecimal numbers, binary numbers, and octal numbers are introduced in Appendix F.

2.10.2 Floating-Point Literals
Floating-point literals are written with a decimal point. By default, a floating-point literal is
treated as a double type value. For example, 5.0 is considered a double value, not a float
value. You can make a number a float by appending the letter f or F, and you can make a
number a double by appending the letter d or D. For example, you can use 100.2f or
100.2F for a float number, and 100.2d or 100.2D for a double number.

Note
The double type values are more accurate than the float type values. For example,

System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);

displays 1.0 / 3.0 is 0.3333333333333333.

System.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);

displays 1.0F / 3.0F is 0.33333334.

2.10.3 Scientific Notation
Floating-point literals can be written in scientific notation in the form of For exam-
ple, the scientific notation for 123.456 is and for 0.0123456 is

A special syntax is used to write scientific notation numbers. For example,
is written as 1.23456E2 or 1.23456E+2 and as

1.23456E-2. E (or e) represents an exponent and can be in either lowercase or uppercase.

Note
The float and double types are used to represent numbers with a decimal point.
Why are they called floating-point numbers? These numbers are stored in scientific
notation internally. When a number such as 50.534 is converted into scientific nota-
tion, such as 5.0534E+1, its decimal point is moved (i.e., floated) to a new position.

2.15 Which of the following are correct literals for floating-point numbers?

12.3, 12.3e+2, 23.4e-2, –334.4, 20.5, 39F, 40D

2.16 Which of the following are the same as 52.534?

5.2534e+1, 0.52534e+2, 525.34e-1, 5.2534e+0

1.23456 * 10- ˛21.23456 * 102
1.23456 * 10- ˛2.

1.23456 * 102
a * 10b.

0x

231 - 1 (2147483647).- ˛231 (- ˛2147483648) long type

octal and hex literals

suffix f or F

suffix d or D

double vs. float

why called floating-point?

✓Point✓Check

50 Chapter 2 Elementary Programming

2.11 Evaluating Expressions and Operator Precedence
Java expressions are evaluated in the same way as arithmetic expressions.

Writing a numeric expression in Java involves a straightforward translation of an arithmetic
expression using Java operators. For example, the arithmetic expression

can be translated into a Java expression as:

(3 + 4 * x) / 5 – 10 * (y - 5) * (a + b + c) / x +
9 * (4 / x + (9 + x) / y)

Though Java has its own way to evaluate an expression behind the scene, the result of a Java
expression and its corresponding arithmetic expression are the same. Therefore, you can safely
apply the arithmetic rule for evaluating a Java expression. Operators contained within pairs of
parentheses are evaluated first. Parentheses can be nested, in which case the expression in the
inner parentheses is evaluated first. When more than one operator is used in an expression, the
following operator precedence rule is used to determine the order of evaluation.

■ Multiplication, division, and remainder operators are applied first. If an expression
contains several multiplication, division, and remainder operators, they are applied
from left to right.

■ Addition and subtraction operators are applied last. If an expression contains several
addition and subtraction operators, they are applied from left to right.

Here is an example of how an expression is evaluated:

3 + 4x

5
-

10(y - 5)(a + b + c)

x
+ 9¢4

x
+

9 + x

y
≤

evaluating an expression

operator precedence rule

3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

54 – 1

53

(1) inside parentheses first

(2) multiplication

(3) multiplication

(4) addition

(5) addition

(6) subtraction

Key
Point

Listing 2.5 gives a program that converts a Fahrenheit degree to Celsius using the formula

LISTING 2.5 FahrenheitToCelsius.java
1 import java.util.Scanner;
2
3 public class FahrenheitToCelsius {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6
7 System.out.print("Enter a degree in Fahrenheit: ");

celsius = (5
9)(fahrenheit - 32).

2.12 Case Study: Displaying the Current Time 51

line# fahrenheit celsius

8 100

11 37.77777777777778

8 double fahrenheit = input.nextDouble();
9
10 // Convert Fahrenheit to Celsius
11 double celsius = * (fahrenheit - 32);
12 System.out.println("Fahrenheit " + fahrenheit + " is " +
13 celsius + " in Celsius");
14 }
15 }

(5.0 / 9) divide

Enter a degree in Fahrenheit:
Fahrenheit 100.0 is 37.77777777777778 in Celsius

100

Be careful when applying division. Division of two integers yields an integer in Java. is
translated to 5.0 / 9 instead of 5 / 9 in line 11, because 5 / 9 yields 0 in Java.

2.17 How would you write the following arithmetic expression in Java?

2.12 Case Study: Displaying the Current Time
You can invoke System.currentTimeMillis() to return the current time.

The problem is to develop a program that displays the current time in GMT (Greenwich Mean
Time) in the format hour:minute:second, such as 13:19:8.

The currentTimeMillis method in the System class returns the current time in mil-
liseconds elapsed since the time 00:00:00 on January 1, 1970 GMT, as shown in Figure 2.2.
This time is known as the UNIX epoch. The epoch is the point when time starts, and 1970 was
the year when the UNIX operating system was formally introduced.

4

3(r + 34)
- 9(a + bc) +

3 + d(2 + a)

a + bd

5
9 integer vs. decimal division

Use operators / and %

currentTimeMillis

UNIX epoch

UNIX epoch
01-01-1970

00:00:00 GMT

Elapsed
time

Current time
System.currentTimeMillis()

Time

FIGURE 2.2 The System.currentTimeMillis() returns the number of milliseconds
since the UNIX epoch.

You can use this method to obtain the current time, and then compute the current second,
minute, and hour as follows.

1. Obtain the total milliseconds since midnight, January 1, 1970, in totalMilliseconds
by invoking System.currentTimeMillis() (e.g., 1203183068328 milliseconds).

VideoNote

✓Point✓Check

Key
Point

52 Chapter 2 Elementary Programming

2. Obtain the total seconds totalSeconds by dividing totalMilliseconds by 1000

(e.g., 1203183068328 milliseconds / 1000 1203183068 seconds).

3. Compute the current second from totalSeconds % 60 (e.g., 1203183068 seconds
% 60 8, which is the current second).

4. Obtain the total minutes totalMinutes by dividing totalSeconds by 60 (e.g.,
1203183068 seconds / 60 20053051 minutes).

5. Compute the current minute from totalMinutes % 60 (e.g., 20053051 minutes %
60 31, which is the current minute).

6. Obtain the total hours totalHours by dividing totalMinutes by 60 (e.g.,
20053051 minutes / 60 334217 hours).

7. Compute the current hour from totalHours % 24 (e.g., 334217 hours % 24 17,
which is the current hour).

Listing 2.6 gives the complete program.

LISTING 2.6 ShowCurrentTime.java
1 public class ShowCurrentTime {
2 public static void main(String[] args) {
3 // Obtain the total milliseconds since midnight, Jan 1, 1970
4 long totalMilliseconds = System.currentTimeMillis();
5
6 // Obtain the total seconds since midnight, Jan 1, 1970
7 long totalSeconds = totalMilliseconds / 1000;
8
9 // Compute the current second in the minute in the hour
10 long currentSecond = totalSeconds % 60;
11
12 // Obtain the total minutes
13 long totalMinutes = totalSeconds / 60;
14
15 // Compute the current minute in the hour
16 long currentMinute = totalMinutes % 60;
17
18 // Obtain the total hours
19 long totalHours = totalMinutes / 60;
20
21 // Compute the current hour
22 long currentHour = totalHours % 24;
23
24 // Display results
25 System.out.println("Current time is " + currentHour + ":"
26 + currentMinute + ":" + currentSecond + " GMT");
27 }
28 }

=

=

=

=

=

=

totalMilliseconds

totalSeconds

currentSecond

totalMinutes

currentMinute

totalHours

currentHour

preparing output

Current time is 17:31:8 GMT

Line 4 invokes System.currentTimeMillis() to obtain the current time in milliseconds
as a long value. Thus, all the variables are declared as the long type in this program. The seconds,
minutes, and hours are extracted from the current time using the / and % operators (lines 6–22).

2.13 Augmented Assignment Operators 53

line#
variables

4 7 10 13 16 19 22

totalMilliseconds 1203183068328

totalSeconds 1203183068

currentSecond 8

totalMinutes 20053051

currentMinute 31

totalHours 334217

currentHour 17

addition assignment operator

TABLE 2.4 Augmented Assignment Operators

Operator Name Example Equivalent

+= Addition assignment i += 8 i = i + 8

-= Subtraction assignment i -= 8 i = i – 8

*= Multiplication assignment i *= 8 i = i * 8

/= Division assignment i /= 8 i = i / 8

%= Remainder assignment i %= 8 i = i % 8

In the sample run, a single digit 8 is displayed for the second. The desirable output
would be 08. This can be fixed by using a function that formats a single digit with a prefix
0 (see Exercise 5.37).

2.13 Augmented Assignment Operators
The operators +, -, *, /, and % can be combined with the assignment operator to form
augmented operators.

Very often the current value of a variable is used, modified, and then reassigned back to the
same variable. For example, the following statement increases the variable count by 1:

count = count + 1;

Java allows you to combine assignment and addition operators using an augmented (or
compound) assignment operator. For example, the preceding statement can be written as:

count 1;

The += is called the addition assignment operator. Table 2.4 shows other augmented
assignment operators.

+=

Key
Point

54 Chapter 2 Elementary Programming

TABLE 2.5 Increment and Decrement Operators

Operator Name Description Example (assume i = 1)

++var preincrement Increment var by 1, and use the
new var value in the statement

int j = ++i;

// j is 2, i is 2

var++ postincrement Increment var by 1, but use the
original var value in the statement

int j = i++;

// j is 1, i is 2

——var predecrement Decrement var by 1, and use the
new var value in the statement

int j = ——i;

// j is 0, i is 0

var—— postdecrement Decrement var by 1, and use the
original var value in the statement

int j = i——;

// j is 1, i is 0

Caution
There are no spaces in the augmented assignment operators. For example, + = should
be +=.

Note
Like the assignment operator (=), the operators (+=, -=, *=, /=, %=) can be used to
form an assignment statement as well as an expression. For example, in the following
code, x += 2 is a statement in the first line and an expression in the second line.

// Statement
System.out.println(); // Expression

2.14 Increment and Decrement Operators
The increment (++) and decrement (– –) operators are for incrementing and
decrementing a variable by 1.

The ++ and —— are two shorthand operators for incrementing and decrementing a variable by 1.
These are handy, because that’s often how much the value needs to be changed in many pro-
gramming tasks. For example, the following code increments i by 1 and decrements j by 1.

int i = 3, j = 3;
i++; // i becomes 4
j——; // j becomes 2

i++ is pronounced as i plus plus and i—— as i minus minus. These operators are known as
postfix increment (or postincrement) and postfix decrement (or postdecrement), because the
operators ++ and —— are placed after the variable. These operators can also be placed before
the variable. For example,

int i = 3, j = 3;
++i; // i becomes 4
——j; // j becomes 2

++i increments i by 1 and ——j decrements j by 1. These operators are known as prefix
increment (or preincrement) and prefix decrement (or predecrement).

As you see, the effect of i++ and ++i or i—— and ——i are the same in the preceding exam-
ples. However, their effects are different when they are used in statements that do more than
just increment and decrement. Table 2.5 describes their differences and gives examples.

x += 2
x += 2;

postincrement

postdecrement

preincrement

predecrement

Key
Point

decrement operator (––)

increment operator (++)

2.14 Increment and Decrement Operators 55

int i = 10;

System.out.print("i is " + i
+ ", newNum is " + newNum);

int newNum = 10 * i++;

Here are additional examples to illustrate the differences between the prefix form of ++ (or
——) and the postfix form of ++ (or ——). Consider the following code:

i is 11, newNum is 100

In this case, i is incremented by 1, then the old value of i is used in the multiplication. So
newNum becomes 100. If i++ is replaced by ++i as follows,

i is 11, newNum is 110

i is incremented by 1, and the new value of i is used in the multiplication. Thus newNum
becomes 110.

Here is another example:

double x = 1.0;
double y = 5.0;
double z = x–– + (++y);

After all three lines are executed, y becomes 6.0, z becomes 7.0, and x becomes 0.0.

Tip
Using increment and decrement operators makes expressions short, but it also
makes them complex and difficult to read. Avoid using these operators in expres-
sions that modify multiple variables or the same variable multiple times, such as this
one: int k = ++i + i.

2.18 Which of these statements are true?

a. Any expression can be used as a statement.

b. The expression x++ can be used as a statement.

c. The statement x = x + 5 is also an expression.

d. The statement x = y = x = 0 is illegal.

2.19 Assume that int a = 1 and double d = 1.0, and that each expression is inde-
pendent. What are the results of the following expressions?

a = 46 / 9;
a = 46 % 9 + 4 * 4 - 2;
a = 45 + 43 % 5 * (23 * 3 % 2);
a %= 3 / a + 3;
d = 4 + d * d + 4;
d += 1.5 * 3 + (++a);
d -= 1.5 * 3 + a++;

int i = 10;

System.out.print("i is " + i
+ ", newNum is " + newNum);

int newNum = 10 * (++i);

Same effect as
int newNum = 10 * i;
i = i + 1;

Same effect as i = i + 1;
int newNum = 10 * i;

✓Point✓Check

56 Chapter 2 Elementary Programming

2.20 How do you obtain the current minute using the System.currentTimeMillis()
method?

2.15 Numeric Type Conversions
Floating-point numbers can be converted into integers using explicit casting.

Can you perform binary operations with two operands of different types? Yes. If an integer
and a floating-point number are involved in a binary operation, Java automatically converts
the integer to a floating-point value. So, 3 * 4.5 is same as 3.0 * 4.5.

You can always assign a value to a numeric variable whose type supports a larger range of
values; thus, for instance, you can assign a long value to a float variable. You cannot, how-
ever, assign a value to a variable of a type with a smaller range unless you use type casting.
Casting is an operation that converts a value of one data type into a value of another data type.
Casting a type with a small range to a type with a larger range is known as widening a type. Cast-
ing a type with a large range to a type with a smaller range is known as narrowing a type. Java
will automatically widen a type, but you must narrow a type explicitly.

The syntax for casting a type is to specify the target type in parentheses, followed by the
variable’s name or the value to be cast. For example, the following statement

System.out.println((int)1.7);

displays 1. When a double value is cast into an int value, the fractional part is truncated.
The following statement

System.out.println((double)1 / 2);

displays 0.5, because 1 is cast to 1.0 first, then 1.0 is divided by 2. However, the statement

System.out.println(1 / 2);

displays 0, because 1 and 2 are both integers and the resulting value should also be an integer.

Caution
Casting is necessary if you are assigning a value to a variable of a smaller type range,
such as assigning a double value to an int variable. A compile error will occur if cast-
ing is not used in situations of this kind. However, be careful when using casting, as loss
of information might lead to inaccurate results.

Note
Casting does not change the variable being cast. For example, d is not changed after
casting in the following code:

double d = 4.5;
int i = (int)d; // i becomes 4, but d is still 4.5

Note
In Java, an augmented expression of the form x1 op= x2 is implemented as x1 =
(T)(x1 op x2), where T is the type for x1. Therefore, the following code is correct.

int sum = 0;
sum += 4.5; // sum becomes 4 after this statement

sum += 4.5 is equivalent to sum = (int)(sum + 4.5).

casting

widening a type

narrowing a type

possible loss of precision

Key
Point

casting in an augmented
expression

2.15 Numeric Type Conversions 57

Note
To assign a variable of the int type to a variable of the short or byte type, explicit
casting must be used. For example, the following statements have a compile error:

int i = 1;
byte b = i; // Error because explicit casting is required

However, so long as the integer literal is within the permissible range of the target vari-
able, explicit casting is not needed to assign an integer literal to a variable of the short
or byte type (see Section 2.10, Numeric Literals).

The program in Listing 2.7 displays the sales tax with two digits after the decimal point.

LISTING 2.7 SalesTax.java
1 import java.util.Scanner;
2
3 public class SalesTax {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6
7 System.out.print("Enter purchase amount: ");
8 double purchaseAmount = input.nextDouble();
9
10 double tax = purchaseAmount * 0.06;
11 System.out.println("Sales tax is $" +
12 }
13 }

(int)(tax * 100) / 100.0);
casting

Enter purchase amount:
Sales tax is $11.85

197.55

The variable purchaseAmount is 197.55 (line 8). The sales tax is 6% of the purchase, so
the tax is evaluated as 11.853 (line 10). Note that

tax * 100 is 1185.3

(int)(tax * 100) is 1185

(int)(tax * 100) / 100.0 is 11.85

So, the statement in line 11 displays the tax 11.85 with two digits after the decimal point.

2.21 Can different types of numeric values be used together in a computation?

2.22 What does an explicit casting from a double to an int do with the fractional part of
the double value? Does casting change the variable being cast?

2.23 Show the following output:

float f = 12.5F;
int i = (int)f;

formatting numbers

line# purchaseAmount tax output

8 197.55

10 11.853

11 11.85

✓Point✓Check

58 Chapter 2 Elementary Programming

Requirements
Specification

System Analysis

System
Design

Testing

Input, Process, Output
IPO

Implementation

Maintenance

Deployment

FIGURE 2.3 At any stage of the software development life cycle, it may be necessary to go
back to a previous stage to correct errors or deal with other issues that might prevent the
software from functioning as expected.

System.out.println("f is " + f);
System.out.println("i is " + i);

2.24 If you change (int)(tax * 100) / 100.0 to (int)(tax * 100) / 100 in line 11
in Listing 2.7, what will be the output for the input purchase amount of 197.556?

2.16 Software Development Process
The software development life cycle is a multi-stage process that includes requirements
specification, analysis, design, implementation, testing, deployment, and maintenance.

Developing a software product is an engineering process. Software products, no matter how
large or how small, have the same life cycle: requirements specification, analysis, design,
implementation, testing, deployment, and maintenance, as shown in Figure 2.3.

Requirements specification is a formal process that seeks to understand the problem that
the software will address and to document in detail what the software system needs to do.
This phase involves close interaction between users and developers. Most of the examples in
this book are simple, and their requirements are clearly stated. In the real world, however,
problems are not always well defined. Developers need to work closely with their customers
(the individuals or organizations that will use the software) and study the problem carefully to
identify what the software needs to do.

System analysis seeks to analyze the data flow and to identify the system’s input and out-
put. When you do analysis, it helps to identify what the output is first, and then figure out
what input data you need in order to produce the output.

System design is to design a process for obtaining the output from the input. This phase
involves the use of many levels of abstraction to break down the problem into manageable
components and design strategies for implementing each component. You can view each
component as a subsystem that performs a specific function of the system. The essence of sys-
tem analysis and design is input, process, and output (IPO).

Software development process

requirements specification

system analysis

system design

IPO

VideoNote

Key
Point

2.16 Software Development Process 59

Implementation involves translating the system design into programs. Separate programs
are written for each component and then integrated to work together. This phase requires the
use of a programming language such as Java. The implementation involves coding, self-testing,
and debugging (that is, finding errors, called bugs, in the code).

Testing ensures that the code meets the requirements specification and weeds out bugs. An
independent team of software engineers not involved in the design and implementation of the
product usually conducts such testing.

Deployment makes the software available for use. Depending on the type of the soft-
ware, it may be installed on each user’s machine or installed on a server accessible on the
Internet.

Maintenance is concerned with updating and improving the product. A software product
must continue to perform and improve in an ever-evolving environment. This requires peri-
odic upgrades of the product to fix newly discovered bugs and incorporate changes.

To see the software development process in action, we will now create a program that com-
putes loan payments. The loan can be a car loan, a student loan, or a home mortgage loan. For
an introductory programming course, we focus on requirements specification, analysis,
design, implementation, and testing.

Stage 1: Requirements Specification

The program must satisfy the following requirements:

■ It must let the user enter the interest rate, the loan amount, and the number of years
for which payments will be made.

■ It must compute and display the monthly payment and total payment amounts.

Stage 2: System Analysis

The output is the monthly payment and total payment, which can be obtained using the fol-
lowing formulas:

So, the input needed for the program is the monthly interest rate, the length of the loan in
years, and the loan amount.

Note
The requirements specification says that the user must enter the annual interest rate, the
loan amount, and the number of years for which payments will be made. During analy-
sis, however, it is possible that you may discover that input is not sufficient or that some
values are unnecessary for the output. If this happens, you can go back and modify the
requirements specification.

Note
In the real world, you will work with customers from all walks of life. You may develop
software for chemists, physicists, engineers, economists, and psychologists, and of
course you will not have (or need) complete knowledge of all these fields. Therefore,
you don’t have to know how formulas are derived, but given the monthly interest rate,
the number of years, and the loan amount, you can compute the monthly payment in
this program. You will, however, need to communicate with customers and understand
how a mathematical model works for the system.

totalPayment = monthlyPayment * numberOfYears * 12

monthlyPayment =
loanAmount * monthlyInterestRate

1 -
1

(1 + monthlyInterestRate)numberOfYears*12

implementation

testing

deployment

maintenance

Compute loan payments
VideoNote

60 Chapter 2 Elementary Programming

Stage 3: System Design

During system design, you identify the steps in the program.

Step 1. Prompt the user to enter the annual interest rate, the number of years, and the
loan amount.

Step 2. The input for the annual interest rate is a number in percent format, such as
4.5%. The program needs to convert it into a decimal by dividing it by 100. To
obtain the monthly interest rate from the annual interest rate, divide it by 12,
since a year has 12 months. So, to obtain the monthly interest rate in decimal
format, you need to divide the annual interest rate in percentage by 1200. For
example, if the annual interest rate is 4.5%, then the monthly interest rate is

Step 3. Compute the monthly payment using the preceding formula.

Step 4. Compute the total payment, which is the monthly payment multiplied by 12 and
multiplied by the number of years.

Step 5. Display the monthly payment and total payment.

Stage 4: Implementation

Implementation is also known as coding (writing the code). In the formula, you have to com-
pute which can be obtained using Math.pow(1 +
monthlyInterestRate, numberOfYears * 12).

Listing 2.8 gives the complete program.

LISTING 2.8 ComputeLoan.java
1
2
3 public class ComputeLoan {
4 public static void main(String[] args) {
5 // Create a Scanner
6
7
8 // Enter annual interest rate in percentage, e.g., 7.25%
9 System.out.print("Enter annual interest rate, e.g., 7.25%: ");
10
11
12 // Obtain monthly interest rate
13 double monthlyInterestRate = annualInterestRate / 1200;
14
15 // Enter number of years
16 System.out.print(
17 "Enter number of years as an integer, e.g., 5: ");
18
19
20 // Enter loan amount
21 System.out.print("Enter loan amount, e.g., 120000.95: ");
22
23
24 // Calculate payment
25 double = loanAmount * monthlyInterestRate / (1
26 - 1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12));
27 double = monthlyPayment * numberOfYears * 12;
28
29 // Display results

totalPayment

monthlyPayment

double loanAmount = input.nextDouble();

int numberOfYears = input.nextInt();

double annualInterestRate = input.nextDouble();

Scanner input = new Scanner(System.in);

import java.util.Scanner;

(1 + monthlyInterestRate)numberOfYears*12,

4.5/1200 = 0.00375.

Math.pow(a, b) method

import class

create a Scanner

enter interest rate

enter years

enter loan amount

monthlyPayment

totalPayment

2.16 Software Development Process 61

casting
30 System.out.println("The monthly payment is $" +
31 (int)(monthlyPayment * 100) / 100.0);
32 System.out.println("The total payment is $" +
33 (int)(totalPayment * 100) / 100.0);
34 }
35 }

casting

Enter annual interest rate, e.g., 5.75%:

Enter number of years as an integer, e.g., 5:

Enter loan amount, e.g., 120000.95:

The monthly payment is $2076.02

The total payment is $373684.53

250000

15

5.75

Line 10 reads the annual interest rate, which is converted into the monthly interest rate
in line 13.

Choose the most appropriate data type for the variable. For example, numberOfYears
is best declared as an int (line 18), although it could be declared as a long, float, or
double. Note that byte might be the most appropriate for numberOfYears. For simplic-
ity, however, the examples in this book will use int for integer and double for floating-
point values.

The formula for computing the monthly payment is translated into Java code in lines 25–27.
Casting is used in lines 31 and 33 to obtain a new monthlyPayment and totalPayment

with two digits after the decimal points.
The program uses the Scanner class, imported in line 1. The program also uses the Math

class, and you might be wondering why that class isn’t imported into the program. The Math
class is in the java.lang package, and all classes in the java.lang package are implicitly
imported. Therefore, you don’t need to explicitly import the Math class.

Stage 5: Testing

After the program is implemented, test it with some sample input data and verify whether the
output is correct. Some of the problems may involve many cases, as you will see in later chap-
ters. For these types of problems, you need to design test data that cover all cases.

Tip
The system design phase in this example identified several steps. It is a good approach
to developing and testing these steps incrementally by adding them one at a time. This
approach makes it much easier to pinpoint problems and debug the program.

java.lang package

incremental development and
testing

line#

variables

10 13 18 22 25 27

annualInterestRate 5.75

monthlyInterestRate 0.0047916666666

numberOfYears 15

loanAmount 250000

monthlyPayment 2076.0252175

totalPayment 373684.539

62 Chapter 2 Elementary Programming

 1 import javax.swing.JOptionPane;
 2
 3 public class DisplayUnicode {
 4 public static void main(String[] args) {
 5 JOptionPane.showMessageDialog(null,
 6 "\u6B22\u8FCE \u03b1 \u03b2 \u03b3",
 7 "\u6B22\u8FCE Welcome",

2.25 How would you write the following arithmetic expression?

2.17 Character Data Type and Operations
A character data type represents a single character.

In addition to processing numeric values, you can process characters in Java. The character
data type, char, is used to represent a single character. A character literal is enclosed in sin-
gle quotation marks. Consider the following code:

char letter = 'A';
char numChar = '4';

The first statement assigns character A to the char variable letter. The second statement
assigns digit character 4 to the char variable numChar.

Caution
A string literal must be enclosed in quotation marks (" "). A character literal is a single
character enclosed in single quotation marks (' '). Therefore, "A" is a string, but 'A'
is a character.

2.17.1 Unicode and ASCII code
Computers use binary numbers internally. A character is stored in a computer as a sequence of
0s and 1s. Mapping a character to its binary representation is called encoding. There are differ-
ent ways to encode a character. How characters are encoded is defined by an encoding scheme.

Java supports Unicode, an encoding scheme established by the Unicode Consortium to
support the interchange, processing, and display of written texts in the world’s diverse lan-
guages. Unicode was originally designed as a 16-bit character encoding. The primitive data
type char was intended to take advantage of this design by providing a simple data type that
could hold any character. However, it turned out that the 65,536 characters possible in a 16-bit
encoding are not sufficient to represent all the characters in the world. The Unicode standard
therefore has been extended to allow up to 1,112,064 characters. Those characters that go
beyond the original 16-bit limit are called supplementary characters. Java supports the sup-
plementary characters. The processing and representing of supplementary characters are
beyond the scope of this book. For simplicity, this book considers only the original 16-bit
Unicode characters. These characters can be stored in a char type variable.

A 16-bit Unicode takes two bytes, preceded by \u, expressed in four hexadecimal digits
that run from \u0000 to \uFFFF. Hexadecimal numbers are introduced in Appendix F, Num-
ber Systems. For example, the English word welcome is translated into Chinese using two
characters, . The Unicodes of these two characters are \u6B22\u8FCE.

Listing 2.9 gives a program that displays two Chinese characters and three Greek letters.

LISTING 2.9 DisplayUnicode.java

- ˛b + 2b2 - 4ac

2a

char type

char literal

encoding

Unicode

original Unicode

supplementary Unicode

Key
Point

✓Point✓Check

2.17 Character Data Type and Operations 63

 8 JOptionPane.INFORMATION_MESSAGE);
 9 }
10 }

If no Chinese font is installed on your system, you will not be able to see the Chinese char-
acters. The Unicodes for the Greek letters are \u03b1 \u03b2 \u03b3.

Most computers use ASCII (American Standard Code for Information Interchange), a 7-bit
encoding scheme for representing all uppercase and lowercase letters, digits, punctuation marks,
and control characters. Unicode includes ASCII code, with \u0000 to \u007F corresponding
to the 128 ASCII characters. (See Appendix B for a list of ASCII characters and their decimal
and hexadecimal codes.) You can use ASCII characters such as 'X', '1', and '$' in a Java
program as well as Unicodes. Thus, for example, the following statements are equivalent:

char letter = 'A';
char letter = '\u0041'; // Character A's Unicode is 0041

Both statements assign character A to the char variable letter.

Note
The increment and decrement operators can also be used on char variables to get the
next or preceding Unicode character. For example, the following statements display
character b.

char ch = 'a';
System.out.println(++ch);

2.17.2 Escape Characters
Suppose you want to print a message with quotation marks in the output. Can you write a
statement like this?

System.out.println("He said "Java is fun"");

No, this statement has a compile error. The compiler thinks the second quotation character
is the end of the string and does not know what to do with the rest of the characters.

To overcome this problem, Java uses a special notation to represent special characters, as
shown in Table 2.6. This special notation, called an escape character, consists of a backslash
(\) followed by a character or a character sequence. For example, \t is an escape character
for the Tab character and an escape character such as \u03b1 is used to represent a Unicode.
The symbols in an escape character are interpreted as a whole rather than individually.

So, now you can print the quoted message using the following statement:

System.out.println("He said \"Java is fun\"");

The output is

He said "Java is fun"

Note that the symbols \ and " together represent one character.

2.17.3 Casting between char and Numeric Types
A char can be cast into any numeric type, and vice versa. When an integer is cast into a
char, only its lower 16 bits of data are used; the other part is ignored. For example:

char ch = (char)0XAB0041; // The lower 16 bits hex code 0041 is
// assigned to ch

System.out.println(ch); // ch is character A

a b g

ASCII

char increment and
decrement

escape character

64 Chapter 2 Elementary Programming

TABLE 2.6 Escape Characters

Escape Character Name Unicode Code Decimal Value

\b Backspace \u0008 8

\t Tab \u0009 9

\n Linefeed \u000A 10

\f Formfeed \u000C 12

\r Carriage Return \u000D 13

\\ Backslash \u005C 92

\" Double Quote \u0022 34

When a floating-point value is cast into a char, the floating-point value is first cast into an
int, which is then cast into a char.

char ch = (char)65.25; // Decimal 65 is assigned to ch
System.out.println(ch); // ch is character A

When a char is cast into a numeric type, the character’s Unicode is cast into the specified
numeric type.

int i = (int)'A'; // The Unicode of character A is assigned to i
System.out.println(i); // i is 65

Implicit casting can be used if the result of a casting fits into the target variable. Otherwise,
explicit casting must be used. For example, since the Unicode of 'a' is 97, which is within
the range of a byte, these implicit castings are fine:

byte b = 'a';
int i = 'a';

But the following casting is incorrect, because the Unicode \uFFF4 cannot fit into a byte:

byte b = '\uFFF4';

To force this assignment, use explicit casting, as follows:

byte b = (byte)'\uFFF4';

Any positive integer between 0 and FFFF in hexadecimal can be cast into a character
implicitly. Any number not in this range must be cast into a char explicitly.

Note
All numeric operators can be applied to char operands. A char operand is automati-
cally cast into a number if the other operand is a number or a character. If the other
operand is a string, the character is concatenated with the string. For example, the fol-
lowing statements

int i = '2' + '3'; // (int)'2' is 50 and (int)'3' is 51
System.out.println("i is " + i); // i is 101

numeric operators on
characters

2.17 Character Data Type and Operations 65

int j = 2 + 'a'; // (int)'a' is 97
System.out.println("j is " + j); // j is 99
System.out.println(j + " is the Unicode for character "
+ (char)j); // j is the Unicode for character c

System.out.println("Chapter " + '2');

display

i is 101
j is 99
99 is the Unicode for character c
Chapter 2

Note
The Unicodes for lowercase letters are consecutive integers starting from the Unicode for
'a', then for 'b', 'c', . . . , and 'z'. The same is true for the uppercase letters. Fur-
thermore, the Unicode for 'a' is greater than the Unicode for 'A', so 'a' - 'A' is
the same as 'b' - 'B'. For a lowercase letter ch, its corresponding uppercase letter is
(char)('A' + (ch - 'a')).

2.17.4 Case Study: Counting Monetary Units
Suppose you want to develop a program that changes a given amount of money into smaller
monetary units. The program lets the user enter an amount as a double value representing a
total in dollars and cents, and outputs a report listing the monetary equivalent in the maximum
number of dollars, quarters, dimes, nickels, and pennies, in this order, to result in the
minimum number of coins, as shown in the sample run.

Here are the steps in developing the program:

1. Prompt the user to enter the amount as a decimal number, such as 11.56.

2. Convert the amount (e.g., 11.56) into cents (1156).

3. Divide the cents by 100 to find the number of dollars. Obtain the remaining cents using
the cents remainder 100.

4. Divide the remaining cents by 25 to find the number of quarters. Obtain the remaining
cents using the remaining cents remainder 25.

5. Divide the remaining cents by 10 to find the number of dimes. Obtain the remaining
cents using the remaining cents remainder 10.

6. Divide the remaining cents by 5 to find the number of nickels. Obtain the remaining
cents using the remaining cents remainder 5.

7. The remaining cents are the pennies.

8. Display the result.

The complete program is given in Listing 2.10.

LISTING 2.10 ComputeChange.java
1 import java.util.Scanner;
2
3 public class ComputeChange {
4 public static void main(String[] args) {
5 // Create a Scanner
6 Scanner input = new Scanner(System.in);
7
8 // Receive the amount
9 System.out.print(

import class

66 Chapter 2 Elementary Programming

10 "Enter an amount, for example, 11.56: ");
11
12
13 int remainingAmount = (int)(amount * 100);
14
15 // Find the number of one dollars
16
17 remainingAmount = remainingAmount % 100;
18
19 // Find the number of quarters in the remaining amount
20
21 remainingAmount = remainingAmount % 25;
22
23 // Find the number of dimes in the remaining amount
24
25 remainingAmount = remainingAmount % 10;
26
27 // Find the number of nickels in the remaining amount
28
29 remainingAmount = remainingAmount % 5;
30
31 // Find the number of pennies in the remaining amount
32 int numberOfPennies = remainingAmount;
33
34 // Display results
35 System.out.println("Your amount " + amount + " consists of \n" +
36 "\t" + numberOfOneDollars + " dollars\n" +
37 "\t" + numberOfQuarters + " quarters\n" +
38 "\t" + numberOfDimes + " dimes\n" +
39 "\t" + numberOfNickels + " nickels\n" +
40 "\t" + numberOfPennies + " pennies");
41 }
42 }

int numberOfNickels = remainingAmount / 5;

int numberOfDimes = remainingAmount / 10;

int numberOfQuarters = remainingAmount / 25;

int numberOfOneDollars = remainingAmount / 100;

double amount = input.nextDouble();enter input

dollars

quarters

dimes

nickels

pennies

output

Enter an amount, for example, 11.56:
Your amount 11.56 consists of

11 dollars
2 quarters
0 dimes
1 nickels
1 pennies

11.56

line#
variables

11 13 16 17 20 21 24 25 28 29 32

amount 11.56

remainingAmount 1156 56 6 6 1

numberOfOneDollars 11

numberOfQuarters 2

numberOfDimes 0

numberOfNickels 1

numberOfPennies 1

2.17 Character Data Type and Operations 67

The variable amount stores the amount entered from the console (line 11). This variable is
not changed, because the amount has to be used at the end of the program to display the
results. The program introduces the variable remainingAmount (line 13) to store the chang-
ing remaining amount.

The variable amount is a double decimal representing dollars and cents. It is converted to
an int variable remainingAmount, which represents all the cents. For instance, if amount
is 11.56, then the initial remainingAmount is 1156. The division operator yields the inte-
ger part of the division, so 1156 / 100 is 11. The remainder operator obtains the remainder
of the division, so 1156 % 100 is 56.

The program extracts the maximum number of singles from the remaining amount and
obtains a new remaining amount in the variable remainingAmount (lines 16–17). It then
extracts the maximum number of quarters from remainingAmount and obtains a new
remainingAmount (lines 20–21). Continuing the same process, the program finds the max-
imum number of dimes, nickels, and pennies in the remaining amount.

One serious problem with this example is the possible loss of precision when casting a
double amount to an int remainingAmount. This could lead to an inaccurate result. If you
try to enter the amount 10.03, 10.03 * 100 becomes 1002.9999999999999. You will
find that the program displays 10 dollars and 2 pennies. To fix the problem, enter the amount
as an integer value representing cents (see Exercise 2.24).

As shown in the sample run, 0 dimes, 1 nickels, and 1 pennies are displayed in the result.
It would be better not to display 0 dimes, and to display 1 nickel and 1 penny using the sin-
gular forms of the words. You will learn how to use selection statements to modify this pro-
gram in the next chapter (see Exercise 3.7).

2.26 Use print statements to find out the ASCII code for '1', 'A', 'B', 'a', and 'b'.
Use print statements to find out the character for the decimal codes 40, 59, 79, 85,
and 90. Use print statements to find out the character for the hexadecimal code 40,
5A, 71, 72, and 7A.

2.27 Which of the following are correct literals for characters?
'1', '\u345dE', '\u3fFa', '\b', '\t'

2.28 How do you display the characters \ and "?

2.29 Evaluate the following:

int i = '1';
int j = '1' + '2' * ('4' - '3') + 'b' / 'a';
int k = 'a';
char c = 90;

2.30 Can the following conversions involving casting be allowed? If so, find the con-
verted result.

char c = 'A';
int i = (int)c;

float f = 1000.34f;
int i = (int)f;

double d = 1000.34;
int i = (int)d;

int i = 97;
char c = (char)i;

loss of precision

✓Point✓Check

68 Chapter 2 Elementary Programming

2.31 Show the output of the following program:

public class Test {
public static void main(String[] args) {
char x = 'a';
char y = 'c';

System.out.println(++x);
System.out.println(y++);
System.out.println(x - y);

}
}

2.18 The String Type
A string is a sequence of characters.

The char type represents only one character. To represent a string of characters, use the data
type called String. For example, the following code declares the message to be a string with
the value "Welcome to Java".

String message = "Welcome to Java";

String is a predefined class in the Java library, just like the classes System, JOptionPane,
and Scanner. The String type is not a primitive type. It is known as a reference type. Any Java
class can be used as a reference type for a variable. Reference data types will be thoroughly dis-
cussed in Chapter 8, Objects and Classes. For the time being, you need to know only how to
declare a String variable, how to assign a string to the variable, and how to concatenate strings.

As first shown in Listing 2.1, two strings can be concatenated. The plus sign (+) is the con-
catenation operator if one of the operands is a string. If one of the operands is a nonstring
(e.g., a number), the nonstring value is converted into a string and concatenated with the other
string. Here are some examples:

// Three strings are concatenated
String message = "Welcome " + "to " + "Java";

// String Chapter is concatenated with number 2
String s = "Chapter" + 2; // s becomes Chapter2

// String Supplement is concatenated with character B
String s1 = "Supplement" + 'B'; // s1 becomes SupplementB

If neither of the operands is a string, the plus sign (+) is the addition operator that adds
two numbers.

The augmented += operator can also be used for string concatenation. For example, the fol-
lowing code appends the string "and Java is fun" with the string "Welcome to Java" in
message.

message += " and Java is fun";

So the new message is "Welcome to Java and Java is fun".
If i = 1 and j = 2, what is the output of the following statement?

System.out.println("i + j is " + i + j);

The output is "i + j is 12" because "i + j is " is concatenated with the value of
i first. To force i + j to be executed first, enclose i + j in the parentheses, as follows:

System.out.println("i + j is " + i + j);)(

concatenate strings and
numbers

Key
Point

2.18 The String Type 69

To read a string from the console, invoke the next() method on a Scanner object. For
example, the following code reads three strings from the keyboard:

Scanner input = new Scanner(System.in);
System.out.println("Enter three words separated by spaces: ");
String s1 = input.next();
String s2 = input.next();
String s3 = input.next();
System.out.println("s1 is " + s1);
System.out.println("s2 is " + s2);
System.out.println("s3 is " + s3);

read strings

Enter three words separated by spaces:
s1 is Welcome
s2 is to
s3 is Java

Welcome to Java

The next() method reads a string that ends with a whitespace character. The characters
' ', \t, \f, \r, or \n are known as whitespace characters.

You can use the nextLine() method to read an entire line of text. The nextLine()
method reads a string that ends with the Enter key pressed. For example, the following state-
ments read a line of text.

Scanner input = new Scanner(System.in);
System.out.println("Enter a line: ");
String s = input.nextLine();
System.out.println("The line entered is " + s);

whitespace character

Enter a line:
The line entered is Welcome to Java

Welcome to Java

Important Caution
To avoid input errors, do not use nextLine() after nextByte(), nextShort(),
nextInt(), nextLong(), nextFloat(), nextDouble(), or next(). The rea-
sons will be explained in Section 14.11.3, “How Does Scanner Work?”

2.32 Show the output of the following statements (write a program to verify your results):

System.out.println("1" + 1);
System.out.println('1' + 1);
System.out.println("1" + 1 + 1);
System.out.println("1" + (1 + 1));
System.out.println('1' + 1 + 1);

2.33 Evaluate the following expressions (write a program to verify your results):

1 + "Welcome " + 1 + 1

1 + "Welcome " + (1 + 1)
1 + "Welcome " + ('\u0001' + 1)
1 + "Welcome " + 'a' + 1

avoid input errors

✓Point✓Check

70 Chapter 2 Elementary Programming

String input =
 JOptionPane.showInputDialog(
"Enter an input");

Click Cancel to close the
dialog without input

Click OK to accept
input and close
the dialog

FIGURE 2.4 The input dialog box enables the user to enter a string.

JOptionPane class

2.19 Getting Input from Input Dialogs
An input dialog box prompts the user to enter an input graphically.

You can obtain input from the console. Alternatively, you can obtain input from an input dia-
log box by invoking the JOptionPane.showInputDialog method, as shown in Figure 2.4.

showInputDialog method

When this method is executed, a dialog is displayed to enable you to enter an input value.
After entering a string, click OK to accept the input and close the dialog box. The input is
returned from the method as a string.

There are several ways to use the showInputDialog method. For the time being, you
need to know only two ways to invoke it.

One is to use a statement like this one:

JOptionPane.showInputDialog(x);

where x is a string for the prompting message.
The other is to use a statement such as the following:

String string = JOptionPane.showInputDialog(null, x,
y, JOptionPane.QUESTION_MESSAGE);

where x is a string for the prompting message and y is a string for the title of the input dialog
box, as shown in the example below.

2.19.1 Converting Strings to Numbers
The input returned from the input dialog box is a string. If you enter a numeric value such as 123,
it returns "123". You have to convert a string into a number to obtain the input as a number.

To convert a string into an int value, use the Integer.parseInt method, as follows:

where intString is a numeric string such as 123.
To convert a string into a double value, use the Double.parseDouble method, as follows:

where doubleString is a numeric string such as 123.45.
The Integer and Double classes are both included in the java.lang package, and thus

they are automatically imported.

double doubleValue = Double.parseDouble(doubleString);

int intValue = Integer.parseInt(intString);

Integer.parseInt method

Double.parseDouble
method

String input =
 JOptionPane.showInputDialog(null,

"Enter an input",
"Input Dialog Demo",

 JOptionPane.QUESTION_MESSAGE);

Key
Point

2.19 Getting Input from Input Dialogs 71

(a)

(c)

(b)

(d)

FIGURE 2.5 The program accepts the annual interest rate (a), number of years (b), and loan
amount (c), then displays the monthly payment and total payment (d).

2.19.2 Using Input Dialog Boxes
Having learned how to read input from an input dialog box, you can rewrite the program in
Listing 2.8, ComputeLoan.java, to read from input dialog boxes rather than from the console.
Listing 2.11 gives the complete program. Figure 2.5 shows a sample run of the program.

LISTING 2.11 ComputeLoanUsingInputDialog.java
1 import javax.swing.JOptionPane;
2
3 public class ComputeLoanUsingInputDialog {
4 public static void main(String[] args) {
5 // Enter annual interest rate
6 String annualInterestRateString = JOptionPane.showInputDialog(
7 "Enter annual interest rate, for example, 8.25:");
8
9 // Convert string to double
10 double annualInterestRate =
11 Double.parseDouble(annualInterestRateString);
12
13 // Obtain monthly interest rate
14 double monthlyInterestRate = annualInterestRate / 1200;
15
16 // Enter number of years
17 String numberOfYearsString = JOptionPane.showInputDialog(
18 "Enter number of years as an integer, for example, 5:");
19
20 // Convert string to int
21 int numberOfYears = Integer.parseInt(numberOfYearsString);
22
23 // Enter loan amount
24 String loanString = JOptionPane.showInputDialog(
25 "Enter loan amount, for example, 120000.95:");
26
27 // Convert string to double
28 double loanAmount = Double.parseDouble(loanString);
29

enter interest rate

convert string to double

72 Chapter 2 Elementary Programming

30 // Calculate payment
31
32
33
34
35 // Format to keep two digits after the decimal point
36
37
38
39 // Display results
40
41
42 JOptionPane.showMessageDialog(null,);
43 }
44 }

The showInputDialog method in lines 6–7 displays an input dialog. Enter the interest
rate as a double value and click OK to accept the input. The value is returned as a string that
is assigned to the String variable annualInterestRateString. The
Double.parseDouble (annualInterestRateString) (line 11) is used to convert the
string into a double value.

Pedagogical Note
For obtaining input you can use either JOptionPane or Scanner—whichever is
more convenient. For consistency and simplicity, the examples in this book use
Scanner for getting input. You can easily revise the examples using JOptionPane
for getting input.

2.34 Why do you have to import JOptionPane but not the Math class?

2.35 How do you prompt the user to enter an input using a dialog box?

2.36 How do you convert a string to an integer? How do you convert a string to a
double?

KEY TERMS

output
"\nThe total payment is $" + totalPayment;

String output = "The monthly payment is $" + monthlyPayment +

totalPayment = (int)(totalPayment * 100) / 100.0;
monthlyPayment = (int)(monthlyPayment * 100) / 100.0;

double totalPayment = monthlyPayment * numberOfYears * 12;
– 1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12));

double monthlyPayment = loanAmount * monthlyInterestRate / (1monthlyPayment

totalPayment

preparing output

JOptionPane or Scanner?

algorithm 34
assignment operator (=) 42
assignment statement 42
byte type 45
casting 56
char type 62
constant 43
data type 35
declare variables 35
decrement operator (– –) 54
double type 45
encoding 62
escape character 63
expression 42
final keyword 43
float type 45
floating-point number 35
identifier 40

increment operator (++) 54
incremental development

and testing 37
int type 45
IPO 39
literal 48
long type 45
narrowing (of types) 56
operands 46
operator 46
overflow 45
postdecrement 54
postincrement 54
predecrement 54
preincrement 54
primitive data type 35
pseudocode 34
requirements specification 58

✓Point✓Check

Chapter Summary 73

CHAPTER SUMMARY

1. Identifiers are names for naming elements such as variables, constants, methods,
classes, packages in a program.

2. An identifier is a sequence of characters that consists of letters, digits, underscores (_),
and dollar signs ($). An identifier must start with a letter or an underscore. It cannot start
with a digit. An identifier cannot be a reserved word. An identifier can be of any length.

3. Variables are used to store data in a program.

4. To declare a variable is to tell the compiler what type of data a variable can hold.

5. In Java, the equal sign (=) is used as the assignment operator.

6. A variable declared in a method must be assigned a value before it can be used.

7. A named constant (or simply a constant) represents permanent data that never changes.

8. A named constant is declared by using the keyword final.

9. Java provides four integer types (byte, short, int, and long) that represent inte-
gers of four different sizes.

10. Java provides two floating-point types (float and double) that represent floating-
point numbers of two different precisions.

11. Java provides operators that perform numeric operations: + (addition), – (subtrac-
tion), * (multiplication), / (division), and % (remainder).

12. Integer arithmetic (/) yields an integer result.

13. The numeric operators in a Java expression are applied the same way as in an arith-
metic expression.

14. Java provides the augmented assignment operators += (addition assignment), –=
(subtraction assignment), *= (multiplication assignment), /= (division assignment),
and %= (remainder assignment).

15. The increment operator (++) and the decrement operator (––) increment or decre-
ment a variable by 1.

16. When evaluating an expression with values of mixed types, Java automatically con-
verts the operands to appropriate types.

17. You can explicitly convert a value from one type to another using the (type)value
notation.

scope of a variable 42
short type 45
supplementary Unicode 62
system analysis 58
system design 58
underflow 46

Unicode 62
UNIX epoch 51
variable 35
whitespace character 69
widening (of types) 56

74 Chapter 2 Elementary Programming

18. Casting a variable of a type with a small range to a variable of a type with a larger
range is known as widening a type.

19. Casting a variable of a type with a large range to a variable of a type with a smaller
range is known as narrowing a type.

20. Widening a type can be performed automatically without explicit casting. Narrowing
a type must be performed explicitly.

21. The character type char represents a single character.

22. An escape character is a notation for representing a special character. An escape
character consists of a backslash (\) followed by a character or a character
sequence.

23. The characters ' ', \t, \f, \r, and \n are known as the whitespace characters.

24. In computer science, midnight of January 1, 1970, is known as the UNIX epoch.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Note
You can run all exercises by downloading exercise9e.zip from
www.cs.armstrong.edu/liang/intro9e/exercise9e.zip and use the command java -cp

exercise9e.zip Exercisei_j to run Exercisei_ j. For example, to run
Exercise 2.1, use

java -cp exercise9e.zip Exercise02_01

This will give you an idea how the program runs.

Debugging TIP
The compiler usually gives a reason for a syntax error. If you don’t know how to cor-
rect it, compare your program closely, character by character, with similar examples
in the text.

Pedagogical Note
Instructors may ask you to document your analysis and design for selected exercises.
Use your own words to analyze the problem, including the input, output, and what
needs to be computed, and describe how to solve the problem in pseudocode.

Sections 2.2–2.12
2.1 (Convert Celsius to Fahrenheit) Write a program that reads a Celsius degree in a

double value from the console, then converts it to Fahrenheit and displays the
result. The formula for the conversion is as follows:

fahrenheit = (9 / 5) * celsius + 32

Hint: In Java, 9 / 5 is 1, but 9.0 / 5 is 1.8.

Here is a sample run:

sample runs

learn from examples

document analysis and design

www.cs.armstrong.edu/liang/intro9e/test.html
www.cs.armstrong.edu/liang/intro9e/exercise9e.zip

Programming Exercises 75

Enter a degree in Celsius:
43 Celsius is 109.4 Fahrenheit

43

2.2 (Compute the volume of a cylinder) Write a program that reads in the radius and
length of a cylinder and computes the area and volume using the following formulas:

area = radius * radius *
volume = area * length

Here is a sample run:

p

Enter the radius and length of a cylinder:
The area is 95.0331
The volume is 1140.4

5.5 12

2.3 (Convert feet into meters) Write a program that reads a number in feet, converts it
to meters, and displays the result. One foot is 0.305 meter. Here is a sample run:

Enter a value for feet:
16.5 feet is 5.0325 meters

16.5

2.4 (Convert pounds into kilograms) Write a program that converts pounds into kilo-
grams. The program prompts the user to enter a number in pounds, converts it to
kilograms, and displays the result. One pound is 0.454 kilograms. Here is a
sample run:

Enter a number in pounds:
55.5 pounds is 25.197 kilograms

55.5

*2.5 (Financial application: calculate tips) Write a program that reads the subtotal and
the gratuity rate, then computes the gratuity and total. For example, if the user
enters 10 for subtotal and 15% for gratuity rate, the program displays $1.5 as gra-
tuity and $11.5 as total. Here is a sample run:

Enter the subtotal and a gratuity rate:
The gratuity is $1.5 and total is $11.5

10 15

**2.6 (Sum the digits in an integer) Write a program that reads an integer between 0 and
1000 and adds all the digits in the integer. For example, if an integer is 932, the
sum of all its digits is 14.

Hint: Use the % operator to extract digits, and use the / operator to remove the
extracted digit. For instance, 932 % 10 = 2 and 932 / 10 = 93.

Here is a sample run:

Enter a number between 0 and 1000:
The sum of the digits is 27

999

76 Chapter 2 Elementary Programming

*2.7 (Find the number of years) Write a program that prompts the user to enter the
minutes (e.g., 1 billion), and displays the number of years and days for the
minutes. For simplicity, assume a year has 365 days. Here is a sample run:

Enter the number of minutes:
1000000000 minutes is approximately 1902 years and 214 days

1000000000

*2.8 (Current time) Listing 2.6, ShowCurrentTime.java, gives a program that displays
the current time in GMT. Revise the program so that it prompts the user to enter
the time zone offset to GMT and displays the time in the specified time zone. Here
is a sample run:

Enter the time zone offset to GMT:
The current time is 4:50:34

-5

2.9 (Physics: acceleration) Average acceleration is defined as the change of velocity
divided by the time taken to make the change, as shown in the following formula:

Write a program that prompts the user to enter the starting velocity in
meters/second, the ending velocity in meters/second, and the time span t in
seconds, and displays the average acceleration. Here is a sample run:

v1

v0

a =
v1 - v0

t

Enter v0, v1, and t:
The average acceleration is 10.0889

5.5 50.9 4.5

2.10 (Science: calculating energy) Write a program that calculates the energy needed to
heat water from an initial temperature to a final temperature. Your program should
prompt the user to enter the amount of water in kilograms and the initial and final
temperatures of the water. The formula to compute the energy is

Q = M * (finalTemperature – initialTemperature) * 4184

where M is the weight of water in kilograms, temperatures are in degrees Celsius,
and energy Q is measured in joules. Here is a sample run:

Enter the amount of water in kilograms:
Enter the initial temperature:
Enter the final temperature:
The energy needed is 1625484.0

10.5
3.5

55.5

2.11 (Population projection) Rewrite Exercise 1.11 to prompt the user to enter the
number of years and displays the population after the number of years. Here is a
sample run of the program:

Programming Exercises 77

Enter the number of years:
The population in 5 years is 325932970

5

2.12 (Physics: finding runway length) Given an airplane’s acceleration a and take-off
speed v, you can compute the minimum runway length needed for an airplane to
take off using the following formula:

Write a program that prompts the user to enter v in meters/second (m/s) and the
acceleration a in meters/second squared and displays the minimum runway
length. Here is a sample run:

(m/s2),

length =
v2

2a

Enter speed and acceleration:
The minimum runway length for this airplane is 514.286

60 3.5

**2.13 (Financial application: compound value) Suppose you save $100 each month
into a savings account with the annual interest rate 5%. Thus, the monthly inter-
est rate is After the first month, the value in the account
becomes

100 * (1 + 0.00417) = 100.417

After the second month, the value in the account becomes

(100 + 100.417) * (1 + 0.00417) = 201.252

After the third month, the value in the account becomes

(100 + 201.252) * (1 + 0.00417) = 302.507

and so on.

Write a program that prompts the user to enter a monthly saving amount and dis-
plays the account value after the sixth month. (In Exercise 4.30, you will use a
loop to simplify the code and display the account value for any month.)

0.05/12 = 0.00417.

Enter the monthly saving amount:
After the sixth month, the account value is $608.81

100

*2.14 (Health application: computing BMI) Body Mass Index (BMI) is a measure of
health on weight. It can be calculated by taking your weight in kilograms and
dividing by the square of your height in meters. Write a program that prompts the
user to enter a weight in pounds and height in inches and displays the BMI. Note
that one pound is 0.45359237 kilograms and one inch is 0.0254 meters. Here is
a sample run:

Compute BMI
VideoNote

78 Chapter 2 Elementary Programming

Enter weight in pounds:

Enter height in inches:

BMI is 26.8573

50

95.5

*2.15 (Geometry: area of a triangle) Write a program that prompts the user to enter
three points (x1, y1), (x2, y2), (x3, y3) of a triangle and displays its area.
The formula for computing the area of a triangle is

Here is a sample run:

area = 2s(s - side1)(s - side2)(s - side3)

s = (side1 + side2 + side3)/2;

Enter three points for a triangle:
The area of the triangle is 33.6

1.5 -3.4 4.6 5 9.5 -3.4

2.16 (Geometry: area of a hexagon) Write a program that prompts the user to enter the side
of a hexagon and displays its area. The formula for computing the area of a hexagon is

where s is the length of a side. Here is a sample run:

Area =
323

2
s2,

Enter the side:
The area of the hexagon is 78.5895

5.5

*2.17 (Science: wind-chill temperature) How cold is it outside? The temperature alone is
not enough to provide the answer. Other factors including wind speed, relative
humidity, and sunshine play important roles in determining coldness outside. In
2001, the National Weather Service (NWS) implemented the new wind-chill tem-
perature to measure the coldness using temperature and wind speed. The formula is:

where is the outside temperature measured in degrees Fahrenheit and v is the speed
measured in miles per hour. is the wind-chill temperature. The formula cannot be
used for wind speeds below 2 mph or temperatures below or above

Write a program that prompts the user to enter a temperature between and
and a wind speed greater than or equal to 2 and displays the wind-chill tem-

perature. Use Math.pow(a, b) to compute Here is a sample run:v0.16.
˛41�F

- ˛58�F

˛41�F.- ˛58�F
twc

ta

twc = 35.74 + 0.6215ta - 35.75v0.16 + 0.4275tav
0.16

Enter the temperature in Fahrenheit:

Enter the wind speed in miles per hour:

The wind chill index is -5.56707

6

5.3

Programming Exercises 79

2.18 (Print a table) Write a program that displays the following table:

a b pow(a, b)
1 2 1
2 3 8
3 4 81
4 5 1024
5 6 15625

2.19 (Geometry: distance of two points) Write a program that prompts the user to enter
two points (x1, y1) and (x2, y2) and displays their distance between them.

The formula for computing the distance is Note that

you can use Math.pow(a, 0.5) to compute Here is a sample run:2a.

2(x2 - x1)
2 + (y2 - y1)

2.

Enter x1 and y1:
Enter x2 and y2:
The distance between the two points is 8.764131445842194

4 5
1.5 -3.4

Sections 2.13–2.16
*2.20 (Financial application: calculate interest) If you know the balance and the annual

percentage interest rate, you can compute the interest on the next monthly pay-
ment using the following formula:

Write a program that reads the balance and the annual percentage interest rate and
displays the interest for the next month. Here is a sample run:

interest = balance * (annualInterestRate / 1200)

Enter balance and interest rate (e.g., 3 for 3%):
The interest is 2.91667

1000 3.5

*2.21 (Financial application: calculate future investment value) Write a program that
reads in investment amount, annual interest rate, and number of years, and dis-
plays the future investment value using the following formula:

futureInvestmentValue =
investmentAmount x (1 + monthlyInterestRate)numberOfYears*12

For example, if you enter amount 1000, annual interest rate 3.25%, and number of
years 1, the future investment value is 1032.98.

Here is a sample run:

Enter investment amount:
Enter annual interest rate in percentage:
Enter number of years:
Accumulated value is $1043.34

1
4.25

1000

80 Chapter 2 Elementary Programming

Sections 2.17–2.18
2.22 (Random character) Write a program that displays a random uppercase letter

using the System.CurrentTimeMillis() method.

2.23 (Find the character of an ASCII code) Write a program that receives an ASCII
code (an integer between 0 and 127) and displays its character. For example, if the
user enters 97, the program displays character a. Here is a sample run:

Enter an ASCII code:
The character is E

69

*2.24 (Financial application: monetary units) Rewrite Listing 2.10,
ComputeChange.java, to fix the possible loss of accuracy when converting a
double value to an int value. Enter the input as an integer whose last two digits
represent the cents. For example, the input 1156 represents 11 dollars and 56 cents.

*2.25 (Financial application: payroll) Write a program that reads the following infor-
mation and prints a payroll statement:

Employee’s name (e.g., Smith)
Number of hours worked in a week (e.g., 10)
Hourly pay rate (e.g., 6.75)
Federal tax withholding rate (e.g., 20%)
State tax withholding rate (e.g., 9%)

Enter employee's name:
Enter number of hours worked in a week:
Enter hourly pay rate:
Enter federal tax withholding rate:
Enter state tax withholding rate:

Employee Name: Smith
Hours Worked: 10.0
Pay Rate: $6.75
Gross Pay: $67.5
Deductions:
Federal Withholding (20.0%): $13.5
State Withholding (9.0%): $6.07
Total Deduction: $19.57

Net Pay: $47.92

0.09
0.20

6.75
10

Smith

Section 2.19
*2.26 (Use input dialog) Rewrite Listing 2.10, ComputeChange.java, using input and

output dialog boxes.

*2.27 (Financial application: payroll) Rewrite Exercise 2.25 using GUI input and
output dialog boxes.

SELECTIONS

Objectives
■ To declare boolean variables and write Boolean expressions using

comparison operators (§3.2).

■ To implement selection control using one-way if statements (§3.3).

■ To program using one-way if statements (GuessBirthday) (§3.4).

■ To implement selection control using two-way if-else statements
(§3.5).

■ To implement selection control using nested if and multi-way if
statements (§3.6).

■ To avoid common errors in if statements (§3.7).

■ To generate random numbers using the Math.random() method (§3.8).

■ To program using selection statements for a variety of examples
(SubtractionQuiz, BMI, ComputeTax) (§§3.8–3.10).

■ To combine conditions using logical operators (&&, ||, and !) (§3.11).

■ To program using selection statements with combined conditions
(LeapYear, Lottery) (§§3.12–3.13).

■ To implement selection control using switch statements (§3.14).

■ To write expressions using the conditional operator (§3.15).

■ To format output using the System.out.printf method (§3.16).

■ To examine the rules governing operator precedence and associativity
(§3.17).

■ To get user confirmation using confirmation dialogs (§3.18).

■ To apply common techniques to debug errors (§3.19).

CHAPTER

3

82 Chapter 3 Selections

Key
Point

Key
Point

3.1 Introduction
The program can decide which statements to execute based on a condition.

If you enter a negative value for radius in Listing 2.2, ComputeAreaWithConsoleInput.java,
the program displays an invalid result. If the radius is negative, you don’t want the program to
compute the area. How can you deal with this situation?

Like all high-level programming languages, Java provides selection statements: statements
that let you choose actions with two or more alternative courses. You can use the following
selection statement to replace lines 12–17 in Listing 2.2:

if (radius < 0) {
System.out.println("Incorrect input");

}
else {
area = radius * radius * 3.14159;
System.out.println("Area is " + area);

}

Selection statements use conditions that are Boolean expressions. A Boolean expression is
an expression that evaluates to a Boolean value: true or false. We now introduce Boolean
types and comparison operators.

3.2 boolean Data Type
A boolean data type declares a variable with the value either true or false.

How do you compare two values, such as whether a radius is greater than 0, equal to 0, or less
than 0? Java provides six comparison operators (also known as relational operators), shown
in Table 3.1, which can be used to compare two values (assume radius is 5 in the table).

problem

selection statements

Boolean expression

Boolean value

boolean data type
comparison operators

compare characters

== vs. =

TABLE 3.1 Comparison Operators

Java Operator Mathematics Symbol Name Example (radius is 5) Result

< < less than radius < 0 false

<= <– less than or equal to radius <= 0 false

> > greater than radius > 0 true

>= >– greater than or equal to radius >= 0 true

== = equal to radius == 0 false

!= =/ not equal to radius != 0 true

Note
You can also compare characters. Comparing characters is the same as comparing their
Unicodes. For example, a is larger than A because the Unicode of a is larger than the
Unicode of A. See Appendix B, The ASCII Character Set, to find the order of characters.

Caution
The equality comparison operator is two equal signs (==), not a single equal sign (=).
The latter symbol is for assignment.

The result of the comparison is a Boolean value: true or false. For example, the follow-
ing statement displays true:

double radius = 1;
System.out.println(radius > 0);

3.2 boolean Data Type 83

A variable that holds a Boolean value is known as a Boolean variable. The boolean data
type is used to declare Boolean variables. A boolean variable can hold one of the two values:
true or false. For example, the following statement assigns true to the variable lightsOn:

boolean lightsOn = true;

true and false are literals, just like a number such as 10. They are reserved words and
cannot be used as identifiers in your program.

Suppose you want to develop a program to let a first-grader practice addition. The program
randomly generates two single-digit integers, number1 and number2, and displays to the student
a question such as “What is ”, as shown in the sample run in Listing 3.1. After the student
types the answer, the program displays a message to indicate whether it is true or false.

There are several ways to generate random numbers. For now, generate the first
integer using System.currentTimeMillis() % 10 and the second using
System.currentTimeMillis() / 7 % 10. Listing 3.1 gives the program. Lines 5–6
generate two numbers, number1 and number2. Line 14 obtains an answer from the user. The
answer is graded in line 18 using a Boolean expression number1 + number2 == answer.

LISTING 3.1 AdditionQuiz.java
1 import java.util.Scanner;
2
3 public class AdditionQuiz {
4 public static void main(String[] args) {
5
6
7
8 // Create a Scanner
9 Scanner input = new Scanner(System.in);
10
11 System.out.print(
12 "What is " + number1 + " + " + number2 + "? ");
13
14
15
16 System.out.println(
17 number1 + " + " + number2 + " = " + answer + " is " +
18 ());
19 }
20 }

number1 + number2 == answer

int answer = input.nextInt();

int number2 = (int)(System.currentTimeMillis() / 7 % 10);
int number1 = (int)(System.currentTimeMillis() % 10);

1 + 7?

Boolean variable

Boolean literals

Program addition quiz

generate number1
generate number2

show question

display result

What is 1 + 7?
1 + 7 = 8 is true

8

What is 4 + 8?
4 + 8 = 9 is false

9

line# number1 number2 answer output

5 4

6 8

14 9

16 4 + 8 = 9 is false

VideoNote

84 Chapter 3 Selections

3.1 List six comparison operators.

3.2 Show the printout of the following statements:

System.out.println('a' < 'b');
System.out.println('a' <= 'A');
System.out.println('a' > 'b');
System.out.println('a' >= 'A');
System.out.println('a' == 'a');
System.out.println('a' != 'b');

3.3 Can the following conversions involving casting be allowed? If so, find the converted
result.

boolean b = true;
i = (int)b;

int i = 1;
boolean b = (boolean)i;

3.3 if Statements
An if statement executes the statements if the condition is true.

The preceding program displays a message such as “ is false.” If you wish the
message to be “ is incorrect,” you have to use a selection statement to make this
minor change.

Java has several types of selection statements: one-way if statements, two-way if-else
statements, nested if statements, switch statements, and conditional expressions.

A one-way if statement executes an action if and only if the condition is true. The syntax
for a one-way if statement is:

if (boolean-expression) {
statement(s);

}

The flowchart in Figure 3.1 illustrates how Java executes the syntax of an if statement.
A flowchart is a diagram that describes an algorithm or process, showing the steps as boxes
of various kinds, and their order by connecting these with arrows. Process operations are
represented in these boxes, and arrows connecting them represent the flow of control. A
diamond box is used to denote a Boolean condition and a rectangle box is for representing
statements.

If the boolean-expression evaluates to true, the statements in the block are executed.
As an example, see the following code:

if (radius >= 0) {
area = radius * radius * PI;
System.out.println("The area for the circle of radius " +
radius + " is " + area);

}

The flowchart of the preceding statement is shown in Figure 3.1b. If the value of radius
is greater than or equal to 0, then the area is computed and the result is displayed; otherwise,
the two statements in the block will not be executed.

The boolean-expression is enclosed in parentheses. For example, the code in (a)
below is wrong. It should be corrected, as shown in (b).

6 + 2 = 7
6 + 2 = 7

✓Point✓Check

Key
Point

why if statement?

if statement

flowchart

3.3 if Statements 85

The block braces can be omitted if they enclose a single statement. For example, the fol-
lowing statements are equivalent.

Omitting braces or not

if i > 0 {
System.out.println("i is positive");

}

if i > 0 {
System.out.println("i is positive");

}

)(

(a) Wrong (b) Correct

if (i > 0)
System.out.println("i is positive");

}

{

(a)

if (i > 0)
System.out.println("i is positive");

(b)

Equivalent

Note
Omitting braces makes the code shorter, but it is prone to errors. It is a common mistake
to forget the braces when you go back to modify the code that omits the braces.

Listing 3.2 gives a program that prompts the user to enter an integer. If the number is a
multiple of 5, the program displays HiFive. If the number is divisible by 2, it displays HiEven.

LISTING 3.2 SimpleIfDemo.java
1 import java.util.Scanner;
2
3 public class SimpleIfDemo {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6 System.out.println("Enter an integer: ");
7 int number = input.nextInt();
8
9
10 System.out.println("HiFive");
11
12
13 System.out.println("HiEven");
14 }
15 }

if (number % 2 == 0)

if (number % 5 == 0)

enter input

check 5

check even

Statement(s)

boolean-
expression

true

false

(a)

area = radius * radius * PI;
System.out.println("The area for the circle of" +
 "radius" + radius + "is" + area);

(radius >= 0)

true

false

(b)

FIGURE 3.1 An if statement executes statements if the boolean-expression evaluates to true.

86 Chapter 3 Selections

Enter an integer:
HiFive
HiEven

30

The program prompts the user to enter an integer (lines 6–7) and displays HiFive if it is
divisible by 5 (lines 9–10) and HiEven if it is divisible by 2 (lines 12–13).

3.4 Write an if statement that assigns 1 to x if y is greater than 0.

3.5 Write an if statement that increases pay by 3% if score is greater than 90.

3.4 Case Study: Guessing Birthdays
Guessing birthdays is an interesting problem with a simple programming solution.

You can find out the date of the month when your friend was born by asking five questions.
Each question asks whether the day is in one of the five sets of numbers.

✓Point✓Check

Key
Point

16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

9 10 11
12 13 14 15
24 25 26 27
28 29 30 31

5 6 7
12 13 14 15
20 21 22 23
28 29 30 31

2 3 6 7
10 11 14 15
18 22 23
26 27 30 31

3 5 7
9 11 13 15

17 19 1921 23
25 27 29 31

Set1 Set2 Set3 Set4 Set5

= 19

841

+

The birthday is the sum of the first numbers in the sets where the day appears. For exam-
ple, if the birthday is 19, it appears in Set1, Set2, and Set5. The first numbers in these three
sets are 1, 2, and 16. Their sum is 19.

Listing 3.3 gives a program that prompts the user to answer whether the day is in Set1
(lines 41–44), in Set2 (lines 50–53), in Set3 (lines 59–62), in Set4 (lines 68–71), and in Set5
(lines 77–80). If the number is in the set, the program adds the first number in the set to day
(lines 47, 56, 65, 74, 83).

LISTING 3.3 GuessBirthday.java
1 import java.util.Scanner;
2
3 public class GuessBirthday {
4 public static void main(String[] args) {
5 String set1 =
6 " 1 3 5 7\n" +

Enter an integer:
HiEven

4

3.4 Case Study: Guessing Birthdays 87

7 " 9 11 13 15\n" +
8 "17 19 21 23\n" +
9 "25 27 29 31";
10
11 String set2 =
12 " 2 3 6 7\n" +
13 "10 11 14 15\n" +
14 "18 19 22 23\n" +
15 "26 27 30 31";
16
17 String set3 =
18 " 4 5 6 7\n" +
19 "12 13 14 15\n" +
20 "20 21 22 23\n" +
21 "28 29 30 31";
22
23 String set4 =
24 " 8 9 10 11\n" +
25 "12 13 14 15\n" +
26 "24 25 26 27\n" +
27 "28 29 30 31";
28
29 String set5 =
30 "16 17 18 19\n" +
31 "20 21 22 23\n" +
32 "24 25 26 27\n" +
33 "28 29 30 31";
34
35
36
37 // Create a Scanner
38 Scanner input = new Scanner(System.in);
39
40 // Prompt the user to answer questions
41 System.out.print("Is your birthday in Set1?\n");
42 System.out.print(set1);
43 System.out.print("\nEnter 0 for No and 1 for Yes: ");
44 int answer = input.nextInt();
45
46
47 day += 1;
48
49 // Prompt the user to answer questions
50 System.out.print("\nIs your birthday in Set2?\n");
51 System.out.print(set2);
52 System.out.print("\nEnter 0 for No and 1 for Yes: ");
53 answer = input.nextInt();
54
55
56 day += 2;
57
58 // Prompt the user to answer questions
59 System.out.print("Is your birthday in Set3?\n");
60 System.out.print(set3);
61 System.out.print("\nEnter 0 for No and 1 for Yes: ");
62 answer = input.nextInt();
63
64
65 day += 4;
66

if (answer == 1)

if (answer == 1)

if (answer == 1)

int day = 0; day to be determined

in Set1?

in Set2?

in Set3?

88 Chapter 3 Selections

67 // Prompt the user to answer questions
68 System.out.print("\nIs your birthday in Set4?\n");
69 System.out.print(set4);
70 System.out.print("\nEnter 0 for No and 1 for Yes: ");
71 answer = input.nextInt();
72
73
74 day += 8;
75
76 // Prompt the user to answer questions
77 System.out.print("\nIs your birthday in Set5?\n");
78 System.out.print(set5);
79 System.out.print("\nEnter 0 for No and 1 for Yes: ");
80 answer = input.nextInt();
81
82
83 day += 16;
84
85 System.out.println("\nYour birthday is " + day + "!");
86 }
87 }

if (answer == 1)

if (answer == 1)in Set4?

in Set5?

Is your birthday in Set1?
1 3 5 7
9 11 13 15
17 19 21 23
25 27 29 31
Enter 0 for No and 1 for Yes:

Is your birthday in Set2?
2 3 6 7
10 11 14 15
18 19 22 23
26 27 30 31
Enter 0 for No and 1 for Yes:

Is your birthday in Set3?
4 5 6 7
12 13 14 15
20 21 22 23
28 29 30 31
Enter 0 for No and 1 for Yes:

Is your birthday in Set4?
8 9 10 11
12 13 14 15
24 25 26 27
28 29 30 31
Enter 0 for No and 1 for Yes:

Is your birthday in Set5?
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
Enter 0 for No and 1 for Yes:
Your birthday is 19!

1

0

0

1

1

3.5 Two-Way if-else Statements 89

mathematics behind the gameThis game is easy to program. You may wonder how the game was created. The mathematics
behind the game is actually quite simple. The numbers are not grouped together by accident—
the way they are placed in the five sets is deliberate. The starting numbers in the five sets are 1,
2, 4, 8, and 16, which correspond to 1, 10, 100, 1000, and 10000 in binary (binary numbers are
introduced in Appendix F, Number Systems). A binary number for decimal integers between 1
and 31 has at most five digits, as shown in Figure 3.2a. Let it be Thus,

as shown in Figure 3.2b. If a day’s binary
number has a digit 1 in the number should appear in Setk. For example, number 19 is
binary 10011, so it appears in Set1, Set2, and Set5. It is binary 1 + 10 + 10000 = 10011 or
decimal 1 + 2 + 16 = 19. Number 31 is binary 11111, so it appears in Set1, Set2, Set3, Set4,
and Set5. It is binary 1 + 10 + 100 + 1000 + 10000 = 11111 or decimal 1 + 2 + 4 +
8 + 16 = 31.

bk,
b5b4b3b2b1 = b50000 + b4000 + b300 + b20 + b1,

b5b4b3b2b1.

Key
Point

line# day answer output

35 0

44 1

47 1

53 1

56 3

62 0

71 0

80 1

83 19

85 Your birthday is 19!

3.5 Two-Way if-else Statements
An if-else statement decides which statements to execute based on whether the
condition is true or false.

A one-way if statement takes an action if the specified condition is true. If the condition is
false, nothing is done. But what if you want to take alternative actions when the condition is
false? You can use a two-way if-else statement. The actions that a two-way if-else
statement specifies differ based on whether the condition is true or false.

Decimal Binary

1 00001
2 00010

000113
...
19 10011
...
31 11111

10000
10
1+

10011

19 31

10000
1000
100
10

+ 1
11111

0
0 0

0
0

0

b5

b4
b3

b2

b1

b5 b4 b3 b2 b1

0

0 00

+

(a) (b)

FIGURE 3.2 (a) A number between 1 and 31 can be represented using a 5-digit binary
number. (b) A 5-digit binary number can be obtained by adding binary numbers 1, 10, 100,
1000, or 10000.

90 Chapter 3 Selections

Here is the syntax for a two-way if-else statement:

if (boolean-expression) {
statement(s)-for-the-true-case;

}
else {
statement(s)-for-the-false-case;

}

The flowchart of the statement is shown in Figure 3.3.

two-way if-else statement

If the boolean-expression evaluates to true, the statement(s) for the true case are exe-
cuted; otherwise, the statement(s) for the false case are executed. For example, consider the
following code:

if (radius >= 0) {
area = radius * radius * PI;
System.out.println("The area for the circle of radius " +
radius + " is " + area);

}
else {
System.out.println("Negative input");

}

If radius >= 0 is true, area is computed and displayed; if it is false, the message
"Negative input" is displayed.

As usual, the braces can be omitted if there is only one statement within them. The braces
enclosing the System.out.println("Negative input") statement can therefore be
omitted in the preceding example.

Here is another example of using the if-else statement. The example checks whether a
number is even or odd, as follows:

if (number % 2 == 0)
System.out.println(number + " is even.");

else

System.out.println(number + " is odd.");

Statement(s) for the true case Statement(s) for the false case

boolean-
expression

true false

FIGURE 3.3 An if-else statement executes statements for the true case if the Boolean-
expression evaluates to true; otherwise, statements for the false case are executed.

3.6 Nested if and Multi-Way if-else Statements 91

✓Point✓Check

Key
Point

nested if statement

3.6 Write an if statement that increases pay by 3% if score is greater than 90, other-
wise increases pay by 1%.

3.7 What is the printout of the code in (a) and (b) if number is 30? What if number
is 35?

if (number % 2 == 0)
System.out.println(number + " is even.");

System.out.println(number + " is odd.");

(a)

if (number % 2 == 0)
System.out.println(number + " is even.");

else

System.out.println(number + " is odd.");

(b)

3.6 Nested if and Multi-Way if-else Statements
An if statement can be inside another if statement to form a nested if statement.

The statement in an if or if-else statement can be any legal Java statement, including
another if or if-else statement. The inner if statement is said to be nested inside the outer
if statement. The inner if statement can contain another if statement; in fact, there is no
limit to the depth of the nesting. For example, the following is a nested if statement:

if (i > k) {
if (j > k)
System.out.println("i and j are greater than k");

}
else

System.out.println("i is less than or equal to k");

The if (j > k) statement is nested inside the if (i > k) statement.
The nested if statement can be used to implement multiple alternatives. The statement

given in Figure 3.4a, for instance, assigns a letter grade to the variable grade according to the
score, with multiple alternatives.

FIGURE 3.4

if (score >= 90.0)
grade = 'A';

else
if (score >= 80.0)
grade = 'B';

else
if (score >= 70.0)
grade = 'C';

else
if (score >= 60.0)
grade = 'D';

else
grade = 'F';

if (score >= 90.0)
grade = 'A';

else if (score >= 80.0)
grade = 'B';

else if (score >= 70.0)
grade = 'C';

else if (score >= 60.0)
grade = 'D';

else
grade = 'F';

Equivalent

This is better

(a) (b)

A preferred format for multiple alternatives is shown in (b) using a multi-way
if-else statement.

The execution of this if statement proceeds as shown in Figure 3.5. The first condition
(score >= 90.0) is tested. If it is true, the grade becomes A. If it is false, the second
condition (score >= 80.0) is tested. If the second condition is true, the grade becomes B.
If that condition is false, the third condition and the rest of the conditions (if necessary)
are tested until a condition is met or all of the conditions prove to be false. If all of the
conditions are false, the grade becomes F. Note that a condition is tested only when all of
the conditions that come before it are false.

92 Chapter 3 Selections

The if statement in Figure 3.4a is equivalent to the if statement in Figure 3.4b. In fact,
Figure 3.4b is the preferred coding style for multiple alternative if statements. This style, called
multi-way if-else statements, avoids deep indentation and makes the program easy to read.

3.8 Suppose x = 3 and y = 2; show the output, if any, of the following code. What is
the output if x = 3 and y = 4? What is the output if x = 2 and y = 2? Draw a flow-
chart of the code.

if (x > 2) {
if (y > 2) {
z = x + y;
System.out.println("z is " + z);

}
}
else

System.out.println("x is " + x);

3.9 Suppose x = 2 and y = 3. Show the output, if any, of the following code. What is
the output if x = 3 and y = 2? What is the output if x = 3 and y = 3? (Hint: Indent
the statement correctly first.)

if (x > 2)
if (y > 2) {
int z = x + y;
System.out.println("z is " + z);

}
else

System.out.println("x is " + x);

multi-way if statement

✓Point✓Check

grade = 'A'

true

false

false

false

false

grade = 'B'

score >= 80

true

grade = 'C'

score >= 70

true

grade = 'D'

score >= 60

true

grade = 'F'

score >= 90

FIGURE 3.5 You can use a multi-way if-else statement to assign a grade.

3.7 Common Errors in Selection Statements 93

3.10 What is wrong in the following code?

if (score >= 60.0)
grade = 'D';

else if (score >= 70.0)
grade = 'C';

else if (score >= 80.0)
grade = 'B';

else if (score >= 90.0)
grade = 'A';

else

grade = 'F';

3.7 Common Errors in Selection Statements
Forgetting necessary braces, ending an if statement in the wrong place, mistaking ==
for =, and dangling else clauses are common errors in selection statements.

The following errors are common among new programmers.

Common Error 1: Forgetting Necessary Braces

The braces can be omitted if the block contains a single statement. However, forgetting the
braces when they are needed for grouping multiple statements is a common programming
error. If you modify the code by adding new statements in an if statement without braces,
you will have to insert the braces. For example, the following code in (a) is wrong. It should
be written with braces to group multiple statements, as shown in (b).

if (radius >= 0)
area = radius * radius * PI;
System.out.println("The area "
+ " is " + area);

(a) Wrong

if (radius >= 0)
area = radius * radius * PI;
System.out.println("The area "
+ " is " + area);

}

{

(b) Correct

Common Error 2: Wrong Semicolon at the if Line

Adding a semicolon at the end of an if line, as shown in (a) below, is a common mistake.

if (radius >= 0)
{
area = radius * radius * PI;
System.out.println("The area "
+ " is " + area);

}

;

(a)

if (radius >= 0) ;
{
area = radius * radius * PI;
System.out.println("The area "
+ " is " + area);

}

{ }

(b)

Logic error

Equivalent

Empty block

This mistake is hard to find, because it is neither a compile error nor a runtime error; it is a
logic error. The code in (a) is equivalent to that in (b) with an empty block.

This error often occurs when you use the next-line block style. Using the end-of-line block
style can help prevent this error.

Key
Point

94 Chapter 3 Selections

Common Error 3: Redundant Testing of Boolean Values

To test whether a boolean variable is true or false in a test condition, it is redundant to
use the equality comparison operator like the code in (a):

dangling else ambiguity

if (even == true)
System.out.println(
"It is even.");

(a)

if (even)
System.out.println(
"It is even.");

(b)

Equivalent

This is better

Equivalent

This is better
with correct
indentation

Instead, it is better to test the boolean variable directly, as shown in (b). Another good
reason for doing this is to avoid errors that are difficult to detect. Using the = operator instead
of the == operator to compare the equality of two items in a test condition is a common error.
It could lead to the following erroneous statement:

if (even = true)
System.out.println("It is even.");

This statement does not have compile errors. It assigns true to even, so that even is
always true.

Common Error 4: Dangling else Ambiguity

The code in (a) below has two if clauses and one else clause. Which if clause is matched by
the else clause? The indentation indicates that the else clause matches the first if clause.
However, the else clause actually matches the second if clause. This situation is known as
the dangling else ambiguity. The else clause always matches the most recent unmatched if
clause in the same block. So, the statement in (a) is equivalent to the code in (b).

int i = 1, j = 2, k = 3;

if (i > j)
(i > k)

System.out.println("A");

System.out.println("B");
else

if

(a)

int i = 1, j = 2, k = 3;

if (i > j)
(i > k)

System.out.println("A");

System.out.println("B");
else

if

(b)

Since (i > j) is false, nothing is displayed from the statements in (a) and (b). To force
the else clause to match the first if clause, you must add a pair of braces:

int i = 1, j = 2, k = 3;

if (i > j)
if (i > k)
System.out.println("A");

else

System.out.println("B");

This statement displays B.

}

{

3.7 Common Errors in Selection Statements 95

The code can be simplified by assigning the test value directly to the variable, as shown
in (b).

3.11 Which of the following statements are equivalent? Which ones are correctly indented?

Equivalent

This is shorter

if (number % 2 == 0)
even = true;

else

even = false;

(a)

boolean even
= number % 2 == 0;

(b)

if (i > 0) if

(j > 0)
x = 0; else

if (k > 0) y = 0;
else z = 0;

(a)

if (i > 0) {
if (j > 0)
x = 0;

else if (k > 0)
y = 0;

}
else

z = 0;

(b)

if (i > 0)
if (j > 0)
x = 0;

else if (k > 0)
y = 0;

else

z = 0;

(c)

if (i > 0)
if (j > 0)
x = 0;

else if (k > 0)
y = 0;

else

z = 0;

(d)

3.12 Rewrite the following statement using a Boolean expression:

if (count % 10 == 0)
newLine = true;

else

newLine = false;

3.13 Are the following statements correct? Which one is better?

if (age < 16)
System.out.println
("Cannot get a driver's license");

if (age >= 16)
System.out.println
("Can get a driver's license");

(a)

if (age < 16)
System.out.println
("Cannot get a driver's license");

else

System.out.println
("Can get a driver's license");

(b)

3.14 What is the output of the following code if number is 14, 15, and 30?

if (number % 2 == 0)
System.out.println
(number + " is even");

if (number % 5 == 0)
System.out.println
(number + " is multiple of 5");

(a)

if (number % 2 == 0)
System.out.println
(number + " is even");

else if (number % 5 == 0)
System.out.println
(number + " is multiple of 5");

(b)

assign boolean variable

✓Point✓Check

Tip
Often new programmers write the code that assigns a test condition to a boolean
variable like the code in (a):

96 Chapter 3 Selections

3.8 Generating Random Numbers
You can use Math.random() to obtain a random double value between 0.0 and 1.0,
excluding 1.0.

Suppose you want to develop a program for a first-grader to practice subtraction. The program
randomly generates two single-digit integers, number1 and number2, with number1 >=

number2, and it displays to the student a question such as “What is 9 – 2?” After the student
enters the answer, the program displays a message indicating whether it is correct.

The previous programs generate random numbers using System.currentTimeMillis().
A better approach is to use the random() method in the Math class. Invoking this method
returns a random double value d such that Thus, (int)(Math.random() *
10) returns a random single-digit integer (i.e., a number between 0 and 9).

The program can work as follows:

1. Generate two single-digit integers into number1 and number2.

2. If number1 < number2, swap number1 with number2.

3. Prompt the student to answer, "What is number1 – number2?"

4. Check the student’s answer and display whether the answer is correct.

The complete program is shown in Listing 3.4.

LISTING 3.4 SubtractionQuiz.java
1 import java.util.Scanner;
2
3 public class SubtractionQuiz {
4 public static void main(String[] args) {
5 // 1. Generate two random single-digit integers
6 int number1 = (int)(Math.random() * 10);
7 int number2 = (int)(Math.random() * 10);
8
9 // 2. If number1 < number2, swap number1 with number2
10 {
11 int temp = number1;
12 number1 = number2;
13 number2 = temp;
14 }
15
16 // 3. Prompt the student to answer "What is number1 – number2?"
17 System.out.print
18 ("What is " + number1 + " - " + number2 + "? ");
19 Scanner input = new Scanner(System.in);
20
21
22 // 4. Grade the answer and display the result
23
24 System.out.println("You are correct!");
25 else

26 System.out.println("Your answer is wrong\n" + number1 + " - "
27 + number2 + " is " + (number1 - number2));
28 }
29 }

if (number1 - number2 == answer)

int answer = input.nextInt();

if (number1 < number2)

0.0 … d 6 1.0.

Key
Point

Program subtraction quiz

random() method

What is 6 - 6?
You are correct!

0

random number

get answer

check the answer

VideoNote

3.9 Case Study: Computing Body Mass Index 97

What is 9 - 2?
Your answer is wrong
9 - 2 is 7

5

line# number1 number2 temp answer output

6 2

7 9

11 2

12 9

13 2

20 5

26 Your answer is wrong

9 – 2 should be 7

To swap two variables number1 and number2, a temporary variable temp (line 11) is used
to first hold the value in number1. The value in number2 is assigned to number1 (line 12),
and the value in temp is assigned to number2 (line 13).

3.15 Which of the following is a possible output from invoking Math.random()?

323.4, 0.5, 34, 1.0, 0.0, 0.234

3.16 a. How do you generate a random integer i such that

b. How do you generate a random integer i such that

c. How do you generate a random integer i such that

3.9 Case Study: Computing Body Mass Index
You can use nested if statements to write a program that interprets body mass index.

Body Mass Index (BMI) is a measure of health based on height and weight. It can be calcu-
lated by taking your weight in kilograms and dividing it by the square of your height in
meters. The interpretation of BMI for people 20 years or older is as follows:

10 … i … 50?

10 … i 6 20?

0 … i 6 20?

✓Point✓Check

Key
Point

BMI Interpretation

Below 18.5 Underweight

18.5–24.9 Normal

25.0–29.9 Overweight

Above 30.0 Obese

Write a program that prompts the user to enter a weight in pounds and height in inches and
displays the BMI. Note that one pound is 0.45359237 kilograms and one inch is 0.0254
meters. Listing 3.5 gives the program.

98 Chapter 3 Selections

LISTING 3.5 ComputeAndInterpretBMI.java
1 import java.util.Scanner;
2
3 public class ComputeAndInterpretBMI {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6
7 // Prompt the user to enter weight in pounds
8 System.out.print("Enter weight in pounds: ");
9 double weight = input.nextDouble();

10
11 // Prompt the user to enter height in inches
12 System.out.print("Enter height in inches: ");
13 double height = input.nextDouble();
14
15 final double KILOGRAMS_PER_POUND = 0.45359237; // Constant
16 final double METERS_PER_INCH = 0.0254; // Constant
17
18 // Compute BMI
19 double weightInKilograms = weight * KILOGRAMS_PER_POUND;
20 double heightInMeters = height * METERS_PER_INCH;
21 double bmi = weightInKilograms /
22 (heightInMeters * heightInMeters);
23
24 // Display result
25 System.out.println("BMI is " + bmi);
26 if (bmi < 18.5)
27 System.out.println("Underweight");
28 else if (bmi < 25)
29 System.out.println("Normal");
30 else if (bmi < 30)
31 System.out.println("Overweight");
32 else

33 System.out.println("Obese");
34 }
35 }

input weight

input height

compute bmi

display output

Enter weight in pounds:
Enter height in inches:
BMI is 20.948603801493316
Normal

70
146

line# weight height weightInKilograms heightInMeters bmi output

9 146

13 70

19 66.22448602

20 1.778

21 20.9486

25 BMI is

20.95

31 Normal

3.10 Case Study: Computing Taxes 99

The constants KILOGRAMS_PER_POUND and METERS_PER_INCH are defined in lines
15–16. Using constants here makes programs easy to read.

3.10 Case Study: Computing Taxes
You can use nested if statements to write a program for computing taxes.

The United States federal personal income tax is calculated based on filing status and taxable
income. There are four filing statuses: single filers, married filing jointly or qualified widow(er),
married filing separately, and head of household. The tax rates vary every year. Table 3.2 shows
the rates for 2009. If you are, say, single with a taxable income of $10,000, the first $8,350 is
taxed at 10% and the other $1,650 is taxed at 15%, so, your total tax is $1,082.50.

Key
Point

TABLE 3.2 2009 U.S. Federal Personal Tax Rates

Marginal
Tax Rate Single

Married Filing Jointly
or Qualifying Widow(er) Married Filing Separately Head of Household

10% $0 – $8,350 $0 – $16,700 $0 – $8,350 $0 – $11,950

15% $8,351– $33,950 $16,701 – $67,900 $8,351 – $33,950 $11,951 – $45,500

25% $33,951 – $82,250 $67,901 – $137,050 $33,951 – $68,525 $45,501 – $117,450

28% $82,251 – $171,550 $137,051 – $208,850 $68,526 – $104,425 $117,451 – $190,200

33% $171,551 – $372,950 $208,851 – $372,950 $104,426 – $186,475 $190,201 – $372,950

35% $372,951˛ + $372,951˛ + $186,476˛ + $372,951˛ +

You are to write a program to compute personal income tax. Your program should prompt
the user to enter the filing status and taxable income and compute the tax. Enter 0 for single
filers, 1 for married filing jointly or qualified widow(er), 2 for married filing separately, and 3
for head of household.

Your program computes the tax for the taxable income based on the filing status. The filing
status can be determined using if statements outlined as follows:

if (status == 0) {
// Compute tax for single filers

}
else if (status == 1) {
// Compute tax for married filing jointly or qualifying widow(er)

}
else if (status == 2) {
// Compute tax for married filing separately

}
else if (status == 3) {
// Compute tax for head of household

}
else {
// Display wrong status

}

For each filing status there are six tax rates. Each rate is applied to a certain amount of taxable
income. For example, of a taxable income of $400,000 for single filers, $8,350 is taxed at 10%,
(33,950 – 8,350) at 15%, (82,250 – 33,950) at 25%, (171,550 – 82,250) at 28%, (372,950 –
171,550) at 33%, and (400,000 – 372,950) at 35%.

Listing 3.6 gives the solution for computing taxes for single filers. The complete solution
is left as an exercise.

VideoNote

Use multi-way if-else
statements

100 Chapter 3 Selections

LISTING 3.6 ComputeTax.java
1 import java.util.Scanner;
2
3 public class ComputeTax {
4 public static void main(String[] args) {
5 // Create a Scanner
6 Scanner input = new Scanner(System.in);
7
8 // Prompt the user to enter filing status
9 System.out.print(
10 "(0-single filer, 1-married jointly or qualifying widow(er),

11 + "\n2-married separately, 3-head of household)\n" +
12 "Enter the filing status: ");
13 int status = input.nextInt();
14
15 // Prompt the user to enter taxable income
16 System.out.print("Enter the taxable income: ");
17 double income = input.nextDouble();
18
19 // Compute tax
20 double tax = 0;
21
22 // Compute tax for single filers
23 if (income <= 8350)
24 tax = income * 0.10;
25 else if (income <= 33950)
26 tax = 8350 * 0.10 + (income - 8350) * 0.15;
27 else if (income <= 82250)
28 tax = 8350 * 0.10 + (33950 - 8350) * 0.15 +
29 (income - 33950) * 0.25;
30 else if (income <= 171550)
31 tax = 8350 * 0.10 + (33950 - 8350) * 0.15 +
32 (82250 - 33950) * 0.25 + (income - 82250) * 0.28;
33 else if (income <= 372950)
34 tax = 8350 * 0.10 + (33950 - 8350) * 0.15 +
35 (82250 - 33950) * 0.25 + (171550 - 82250) * 0.28 +
36 (income - 171550) * 0.33;
37 else

38 tax = 8350 * 0.10 + (33950 - 8350) * 0.15 +
39 (82250 - 33950) * 0.25 + (171550 - 82250) * 0.28 +
40 (372950 - 171550) * 0.33 + (income - 372950) * 0.35;
41 }
42 // Left as exercise
43 // Compute tax for married file jointly or qualifying widow(er)
44 }
45 // Compute tax for married separately
46 // Left as exercise
47 }
48 // Compute tax for head of household
49 // Left as exercise
50 }
51
52 System.out.println("Error: invalid status");
53 System.exit(1);
54 }
55
56 // Display the result
57 System.out.println("Tax is " + (int)(tax * 100) / 100.0);
58 }
59 }

else {

else if (status == 3) {

else if (status == 2) {

else if (status == 1) {

if (status == 0) {

input status

input income

compute tax

exit program

display output

3.11 Logical Operators 101

(0-single filer, 1-married jointly or qualifying widow(er),
2-married separately, 3-head of household)
Enter the filing status:
Enter the taxable income:
Tax is 117683.5

400000
0

The program receives the filing status and taxable income. The multi-way if-else state-
ments (lines 22, 42, 45, 48, 51) check the filing status and compute the tax based on the filing
status.

System.exit(status) (line 53) is defined in the System class. Invoking this method
terminates the program. The status 0 indicates that the program is terminated normally. A
nonzero status code indicates abnormal termination.

An initial value of 0 is assigned to tax (line 20). A compile error would occur if it had no
initial value, because all of the other statements that assign values to tax are within the if
statement. The compiler thinks that these statements may not be executed and therefore
reports a compile error.

To test a program, you should provide the input that covers all cases. For this program,
your input should cover all statuses (0, 1, 2, 3). For each status, test the tax for each of the six
brackets. So, there are a total of 24 cases.

Tip
For all programs, you should write a small amount of code and test it before moving on
to add more code. This is called incremental development and testing. This approach
makes testing easier, because the errors are likely in the new code you just added.

3.17 Are the following two statements equivalent?

3.11 Logical Operators
The logical operators !, &&, ||, and ^ can be used to create a compound Boolean
expression.

Sometimes, whether a statement is executed is determined by a combination of several condi-
tions. You can use logical operators to combine these conditions to form a compound Boolean
expression. Logical operators, also known as Boolean operators, operate on Boolean values

System.exit(status)

test all cases

incremental development and
testing

✓Point✓Check

Key
Point

line# status income tax output

13 0

17 400000

20 0

38 117683.5

57 Tax is 117683.5

if (income <= 10000)
tax = income * 0.1;

else if (income <= 20000)
tax = 1000 +
(income - 10000) * 0.15;

if (income <= 10000)
tax = income * 0.1;

else if (income > 10000 &&
income <= 20000)

tax = 1000 +
(income - 10000) * 0.15;

102 Chapter 3 Selections

TABLE 3.6 Truth Table for Operator ||

p1 p2 p1 || p2 Example (assume age = 24, gender = 'F')

false false false (age > 34) || (gender == 'F') is true, because
(gender == 'F') is true.

false true true

true false true (age > 34) || (gender == 'M') is false, because (age
> 34) and (gender == 'M') are both false.

true true true

to create a new Boolean value. Table 3.3 lists the Boolean operators. Table 3.4 defines the not
(!) operator, which negates true to false and false to true. Table 3.5 defines the and
(&&) operator. The and (&&) of two Boolean operands is true if and only if both operands are
true. Table 3.6 defines the or (||) operator. The or (||) of two Boolean operands is true if
at least one of the operands is true. Table 3.7 defines the exclusive or (^) operator. The
exclusive or (^) of two Boolean operands is true if and only if the two operands have differ-
ent Boolean values. Note that p1 ^ p2 is the same as p1 != p2.

TABLE 3.3 Boolean Operators

Operator Name Description

! not logical negation

&& and logical conjunction

|| or logical disjunction

^ exclusive or logical exclusion

TABLE 3.4 Truth Table for Operator !

p !p Example (assume age = 24, gender = 'F')

true false !(age > 18) is false, because (age > 18) is true.

false true !(gender == 'M') is true, because (gender == 'M')
is false.

TABLE 3.5 Truth Table for Operator &&

p1 p2 p1 && p2 Example (assume age = 24, gender = 'F')

false false false (age > 18) && (gender == 'F') is true,
because (age > 18) and (gender == 'F') are
both true.

false true false

true false false (age > 18) && (gender != 'F') is false,

because (gender != 'F') is false.

true true true

3.11 Logical Operators 103

import class

TABLE 3.7 Truth Table for Operator ^

p1 p2 p1 ^ p2 Example (assume age = 24, gender = 'F')

false false false (age > 34) ^ (gender == 'F') is true, because (age > 34) is
false but (gender == 'F') is true.

false true true

true false true (age > 34) ^ (gender == 'M') is false, because (age > 34) and

(gender == 'M') are both false.

true true false

Listing 3.7 gives a program that checks whether a number is divisible by 2 and 3, by 2 or
3, and by 2 or 3 but not both:

LISTING 3.7 TestBooleanOperators.java
1 import java.util.Scanner;
2
3 public class TestBooleanOperators {
4 public static void main(String[] args) {
5 // Create a Scanner
6 Scanner input = new Scanner(System.in);
7
8 // Receive an input
9 System.out.print("Enter an integer: ");
10
11
12 if (number % 2 == 0 number % 3 == 0)
13 System.out.println(number + " is divisible by 2 and 3.");
14
15 if (number % 2 == 0 number % 3 == 0)
16 System.out.println(number + " is divisible by 2 or 3.");
17
18 if (number % 2 == 0 number % 3 == 0)
19 System.out.println(number +
20 " is divisible by 2 or 3, but not both.");
21 }
22 }

^

||

&&

int number = input.nextInt(); input

and

or

exclusive or

Enter an integer:
4 is divisible by 2 or 3.
4 is divisible by 2 or 3, but not both.

4

Enter an integer:
18 is divisible by 2 and 3.
18 is divisible by 2 or 3.

18

(number % 2 == 0 && number % 3 == 0) (line 12) checks whether the number is
divisible by both 2 and 3. (number % 2 == 0 || number % 3 == 0) (line 15) checks
whether the number is divisible by 2 and/or by 3. (number % 2 == 0 ^ number % 3 ==
0) (line 18) checks whether the number is divisible by 2 or 3, but not both.

Caution
In mathematics, the expression

1 <= numberOfDaysInAMonth <= 31

104 Chapter 3 Selections

is correct. However, it is incorrect in Java, because 1 <= numberOfDaysInAMonth is
evaluated to a boolean value, which cannot be compared with 31. Here, two operands
(a boolean value and a numeric value) are incompatible. The correct expression in Java is

(1 <= numberOfDaysInAMonth) && (numberOfDaysInAMonth <= 31)

Note
As shown in the preceding chapter, a char value can be cast into an int value, and
vice versa. A boolean value, however, cannot be cast into a value of another type, nor
can a value of another type be cast into a boolean value.

Note
De Morgan’s law, named after Indian-born British mathematician and logician Augustus
De Morgan (1806–1871), can be used to simplify Boolean expressions. The law states:

!(condition1 && condition2) is the same as
!condition1 || !condition2

!(condition1 || condition2) is the same as
!condition1 && !condition2

For example,

(number % 2 == 0 number % 3 == 0)

can be simplified using an equivalent expression:

(number % 2 != 0 || number % 3 != 0)

As another example,

!(number == 2 || number == 3)

is better written as

number != 2 && number != 3

If one of the operands of an && operator is false, the expression is false; if one of the
operands of an || operator is true, the expression is true. Java uses these properties to improve
the performance of these operators. When evaluating p1 && p2, Java first evaluates p1 and then,
if p1 is true, evaluates p2; if p1 is false, it does not evaluate p2. When evaluating p1 || p2,
Java first evaluates p1 and then, if p1 is false, evaluates p2; if p1 is true, it does not evaluate
p2. Therefore, && is referred to as the conditional or short-circuit AND operator, and is
referred to as the conditional or short-circuit OR operator. Java also provides the conditional
AND (&) and OR (|) operators, which are covered in Supplement III.C and III.D for advanced
readers.

3.18 Assuming that x is 1, show the result of the following Boolean expressions.

(true) && (3 > 4)
!(x > 0) && (x > 0)
(x > 0) || (x < 0)

(x != 0) || (x == 0)
(x >= 0) || (x < 0)
(x != 1) == !(x == 1)

3.19 Write a Boolean expression that evaluates to true if a number stored in variable num
is between 1 and 100.

3.20 Write a Boolean expression that evaluates to true if a number stored in variable num
is between 1 and 100 or the number is negative.

� �

&&!

De Morgan’s law

conditional operator

short-circuit operator

✓Point✓Check

incompatible operands

cannot cast boolean

3.12 Case Study: Determining Leap Year 105

3.21 Assume that x and y are int type. Which of the following are legal Java expressions?

x > y > 0
x = y && y
x /= y
x or y
x and y
(x != 0) || (x = 0)

3.22 Suppose that x is 1. What is x after the evaluation of the following expression?

a. (x >= 1) && (x++ > 1)
b. (x > 1) && (x++ > 1)

3.23 What is the value of the expression ch >= 'A' && ch <= 'Z' if ch is 'A', 'p',
'E', or '5'?

3.24 Suppose, when you run the program, you enter input 2 3 6 from the console. What
is the output?

public class Test {
public static void main(String[] args) {
java.util.Scanner input = new java.util.Scanner(System.in);
double x = input.nextDouble();
double y = input.nextDouble();
double z = input.nextDouble();

System.out.println("(x < y && y < z) is " + (x < y && y < z));
System.out.println("(x < y || y < z) is " + (x < y || y < z));
System.out.println("!(x < y) is " + !(x < y));
System.out.println("(x + y < z) is " + (x + y < z));
System.out.println("(x + y < z) is " + (x + y < z));

}
}

3.25 Write a Boolean expression that evaluates true if age is greater than 13 and less
than 18.

3.26 Write a Boolean expression that evaluates true if weight is greater than 50 pounds
or height is greater than 60 inches.

3.27 Write a Boolean expression that evaluates true if weight is greater than 50 pounds
and height is greater than 60 inches.

3.28 Write a Boolean expression that evaluates true if either weight is greater than 50
pounds or height is greater than 60 inches, but not both.

3.12 Case Study: Determining Leap Year
A year is a leap year if it is divisible by 4 but not by 100, or if it is divisible by 400.

You can use the following Boolean expressions to check whether a year is a leap year:

// A leap year is divisible by 4
boolean isLeapYear = (year % 4 == 0);

// A leap year is divisible by 4 but not by 100
isLeapYear = isLeapYear && (year % 100 != 0);

// A leap year is divisible by 4 but not by 100 or divisible by 400
isLeapYear = isLeapYear || (year % 400 == 0);

Or you can combine all these expressions into one like this:

isLeapYear = (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0);

Key
Point

106 Chapter 3 Selections

Listing 3.8 gives the program that lets the user enter a year and checks whether it is a leap
year.

LISTING 3.8 LeapYear.java
1 import java.util.Scanner;
2
3 public class LeapYear {
4 public static void main(String[] args) {
5 // Create a Scanner
6 Scanner input = new Scanner(System.in);
7 System.out.print("Enter a year: ");
8 int year = input.nextInt();
9
10 // Check if the year is a leap year
11 boolean isLeapYear =
12 ;
13
14 // Display the result
15 System.out.println(year + " is a leap year? " + isLeapYear);
16 }
17 }

(year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)

input

leap year?

display result

Enter a year:
2008 is a leap year? true

2012

Enter a year:
1900 is a leap year? false

1900

Enter a year:
2002 is a leap year? false

2002

3.13 Case Study: Lottery
The lottery program involves generating random numbers, comparing digits, and
using Boolean operators.

Suppose you want to develop a program to play lottery. The program randomly generates a
lottery of a two-digit number, prompts the user to enter a two-digit number, and determines
whether the user wins according to the following rules:

1. If the user input matches the lottery number in the exact order, the award is $10,000.

2. If all the digits in the user input match all the digits in the lottery number, the award is
$3,000.

3. If one digit in the user input matches a digit in the lottery number, the award is $1,000.

The complete program is shown in Listing 3.9.

LISTING 3.9 Lottery.java
1 import java.util.Scanner;
2
3 public class Lottery {
4 public static void main(String[] args) {
5 // Generate a lottery number

Key
Point

3.13 Case Study: Lottery 107

generate a lottery number6
7
8 // Prompt the user to enter a guess
9 Scanner input = new Scanner(System.in);
10 System.out.print("Enter your lottery pick (two digits): ");
11
12
13 // Get digits from lottery
14 int lotteryDigit1 = lottery / 10;
15 int lotteryDigit2 = lottery % 10;
16
17 // Get digits from guess
18 int guessDigit1 = guess / 10;
19 int guessDigit2 = guess % 10;
20
21 System.out.println("The lottery number is " + lottery);
22
23 // Check the guess
24
25 System.out.println("Exact match: you win $10,000");
26
27
28 System.out.println("Match all digits: you win $3,000");
29
30
31
32
33 System.out.println("Match one digit: you win $1,000");
34 else

35 System.out.println("Sorry, no match");
36 }
37 }

|| guessDigit2 == lotteryDigit2)
|| guessDigit2 == lotteryDigit1
|| guessDigit1 == lotteryDigit2

else if (guessDigit1 == lotteryDigit1

&& guessDigit1 == lotteryDigit2)
else if (guessDigit2 == lotteryDigit1

if (guess == lottery)

int guess = input.nextInt();

int lottery = (int)(Math.random() * 100);

enter a guess

exact match?

match all digits?

match one digit?

Enter your lottery pick (two digits):
The lottery number is 12
Sorry, no match

45

Enter your lottery pick:
The lottery number is 34
Match one digit: you win $1,000

23

line#

variable

6 11 14 15 18 19 33

lottery 34

guess 23

lotteryDigit1 3

lotteryDigit2 4

guessDigit1 2

guessDigit2 3

Output Match one digit:

you win $1,000

108 Chapter 3 Selections

The program generates a lottery using the random() method (line 6) and prompts the user
to enter a guess (line 11). Note that guess % 10 obtains the last digit from guess and guess
/ 10 obtains the first digit from guess, since guess is a two-digit number (lines 18–19).

The program checks the guess against the lottery number in this order:

1. First, check whether the guess matches the lottery exactly (line 24).

2. If not, check whether the reversal of the guess matches the lottery (lines 26–27).

3. If not, check whether one digit is in the lottery (lines 29–32).

4. If not, nothing matches and display "Sorry, no match" (lines 34–35).

3.14 switch Statements
A switch statement executes statements based on the value of a variable or an expression.

The if statement in Listing 3.6, ComputeTax.java, makes selections based on a single true
or false condition. There are four cases for computing taxes, which depend on the value of
status. To fully account for all the cases, nested if statements were used. Overuse of nested
if statements makes a program difficult to read. Java provides a switch statement to sim-
plify coding for multiple conditions. You can write the following switch statement to replace
the nested if statement in Listing 3.6:

switch (status) {
case 0: compute tax for single filers;

break;
case 1: compute tax for married jointly or qualifying widow(er);

break;
case 2: compute tax for married filing separately;

break;
case 3: compute tax for head of household;

break;
default: System.out.println("Error: invalid status");

System.exit(1);
}

The flowchart of the preceding switch statement is shown in Figure 3.6.

Key
Point

Compute tax for single filers

Compute tax for married jointly or qualifying widow(er)

Compute tax for head of household

Default actions

status is 0

status is 1

status is 2

status is 3

default

break

break

break

break

Compute tax for married filing separately

FIGURE 3.6 The switch statement checks all cases and executes the statements in the
matched case.

3.14 switch Statements 109

This statement checks to see whether the status matches the value 0, 1, 2, or 3, in that
order. If matched, the corresponding tax is computed; if not matched, a message is displayed.
Here is the full syntax for the switch statement:

switch (switch-expression) {
case value1: statement(s)1;

break;
case value2: statement(s)2;

break;
...
case valueN: statement(s)N;

break;
default: statement(s)-for-default;

}

The switch statement observes the following rules:

■ The switch-expression must yield a value of char, byte, short, int, or
String type and must always be enclosed in parentheses. (Using String type in
the switch expression is new in JDK 7.)

■ The value1, . . ., and valueN must have the same data type as the value of the
switch-expression. Note that value1, . . ., and valueN are constant expres-
sions, meaning that they cannot contain variables, such as 1 + x.

■ When the value in a case statement matches the value of the switch-expression,
the statements starting from this case are executed until either a break statement or
the end of the switch statement is reached.

■ The default case, which is optional, can be used to perform actions when none of
the specified cases matches the switch-expression.

■ The keyword break is optional. The break statement immediately ends the
switch statement.

Caution
Do not forget to use a break statement when one is needed. Once a case is matched,
the statements starting from the matched case are executed until a break statement or
the end of the switch statement is reached. This is referred to as fall-through behavior.
For example, the following code displays the character a three times if ch is a:

switch statement

without break

fall-through behavior

truech is 'a'

ch is 'b'

ch is 'c'

false

true

false

false

true

System.out.println(ch)

System.out.println(ch)

System.out.println(ch)

switch (ch) {
 case 'a': System.out.println(ch);
 case 'b': System.out.println(ch);
 case 'c': System.out.println(ch);
}

Tip
To avoid programming errors and improve code maintainability, it is a good idea to put a
comment in a case clause if break is purposely omitted.

110 Chapter 3 Selections

Now let us write a program to find out the Chinese Zodiac sign for a given year. The
Chinese Zodiac is based on a twelve-year cycle, with each year represented by an animal—
monkey, rooster, dog, pig, rat, ox, tiger, rabbit, dragon, snake, horse, or sheep—in this cycle,
as shown in Figure 3.7.

Note that year % 12 determines the Zodiac sign. 1900 is the year of the rat because 1900
% 12 is 4. Listing 3.10 gives a program that prompts the user to enter a year and displays the
animal for the year.

LISTING 3.10 ChineseZodiac.java
1 import java.util.Scanner;
2
3 public class ChineseZodiac {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6
7 System.out.print("Enter a year: ");
8 int year = input.nextInt();
9
10 switch (year % 12) {
11 case 0: System.out.println("monkey"); break;
12 case 1: System.out.println("rooster"); break;
13 case 2: System.out.println("dog"); break;
14 case 3: System.out.println("pig"); break;
15 case 4: System.out.println("rat"); break;
16 case 5: System.out.println("ox"); break;
17 case 6: System.out.println("tiger"); break;
18 case 7: System.out.println("rabbit"); break;
19 case 8: System.out.println("dragon"); break;
20 case 9: System.out.println("snake"); break;
21 case 10: System.out.println("horse"); break;
22 case 11: System.out.println("sheep");
23 }
24 }
25 }

enter year

determine Zodiac sign

Enter a year:
rabbit

1963

rat
0: monkey
1: rooster
2: dog
3: pig
4: rat
5: ox
6: tiger
7: rabbit
8: dragon
9: snake
10: horse
11: sheep

ox

tiger

rabbit

dragon

snakehorse

sheep

monkey

rooster

dog

pig

year % 12 =

FIGURE 3.7 The Chinese Zodiac is based on a twelve-year cycle.

3.15 Conditional Expressions 111

Enter a year:
ox

1877

3.29 What data types are required for a switch variable? If the keyword break is not
used after a case is processed, what is the next statement to be executed? Can you
convert a switch statement to an equivalent if statement, or vice versa? What are
the advantages of using a switch statement?

3.30 What is y after the following switch statement is executed? Rewrite the code using
the if-else statement.

x = 3; y = 3;
switch (x + 3) {
case 6: y = 1;
default: y += 1;

}

3.31 What is x after the following if-else statement is executed? Use a switch state-
ment to rewrite it and draw the flowchart for the new switch statement.

int x = 1, a = 3;
if (a == 1)
x += 5;

else if (a == 2)
x += 10;

else if (a == 3)
x += 16;

else if (a == 4)
x += 34;

3.32 Write a switch statement that assigns a String variable dayName with Sunday,
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, if day is 0, 1, 2, 3, 4, 5,
6, accordingly.

3.15 Conditional Expressions
A conditional expression evaluates an expression based on a condition.

You might want to assign a value to a variable that is restricted by certain conditions. For
example, the following statement assigns 1 to y if x is greater than 0, and -1 to y if x is less
than or equal to 0.

if (x > 0)
y = 1;

else

y = -1;

Alternatively, as in the following example, you can use a conditional expression to achieve
the same result.

y = (x > 0) 1 -1;

Conditional expressions are in a completely different style, with no explicit if in the state-
ment. The syntax is:

boolean-expression ? expression1 : expression2;

:?

✓Point✓Check

Key
Point

conditional expression

112 Chapter 3 Selections

The result of this conditional expression is expression1 if boolean-expression is true;
otherwise the result is expression2.

Suppose you want to assign the larger number of variable num1 and num2 to max. You can
simply write a statement using the conditional expression:

max = (num1 > num2) ? num1 : num2;

For another example, the following statement displays the message “num is even” if num is
even, and otherwise displays “num is odd.”

System.out.println((num % 2 == 0) ? "num is even" : "num is odd");

As you can see from these examples, conditional expressions enable you to write short and
concise code.

Note
The symbols ? and : appear together in a conditional expression. They form a condi-
tional operator called a ternary operator because it uses three operands. It is the only
ternary operator in Java.

3.33 Suppose that, when you run the following program, you enter input 2 3 6 from the
console. What is the output?

public class Test {
public static void main(String[] args) {
java.util.Scanner input = new java.util.Scanner(System.in);
double x = input.nextDouble();
double y = input.nextDouble();
double z = input.nextDouble();

System.out.println((x < y && y < z) ? "sorted" : "not sorted");
}

}

3.34 Rewrite the following if statements using the conditional operator.

✓Point✓Check

Key
Point

if (ages >= 16)
ticketPrice = 20;

else

ticketPrice = 10;

if (count % 10 == 0)
System.out.print(count + "\n");

else

System.out.print(count);

3.35 Rewrite the following conditional expressions using if-else statements.

a. score = (x > 10) ? 3 * scale : 4 * scale;
b. tax = (income > 10000) ? income * 0.2 : income * 0.17 + 1000;
c. System.out.println((number % 3 == 0) ? i : j);

3.16 Formatting Console Output
You can use the System.out.printf method to display formatted output on the console.

Often it is desirable to display numbers in a certain format. For example, the following code
computes interest, given the amount and the annual interest rate.

double amount = 12618.98;
double interestRate = 0.0013;

3.16 Formatting Console Output 113

double interest = amount * interestRate;
System.out.println("Interest is " + interest);

Interest is 16.404674

Because the interest amount is currency, it is desirable to display only two digits after the
decimal point. To do this, you can write the code as follows:

double amount = 12618.98;
double interestRate = 0.0013;
double interest = amount * interestRate;
System.out.println("Interest is "
+ (int)(interest * 100) / 100.0);

Interest is 16.4

However, the format is still not correct. There should be two digits after the decimal point:
16.40 rather than 16.4. You can fix it by using the printf method, like this:

Interest is 16.40

The syntax to invoke this method is

System.out.printf(format, item1, item2, ..., itemk)

where format is a string that may consist of substrings and format specifiers.
A format specifier specifies how an item should be displayed. An item may be a

numeric value, a character, a Boolean value, or a string. A simple format specifier consists
of a percent sign (%) followed by a conversion code. Table 3.8 lists some frequently used
simple format specifiers.

format specifier

TABLE 3.8 Frequently Used Format Specifiers

Format Specifier Output Example

%b a Boolean value true or false

%c a character ‘a’

%d a decimal integer 200

%f a floating-point number 45.460000

%e a number in standard scientific notation 4.556000e˛ + ˛01

%s a string “Java is cool”

% 2 f4 .

field width

precision

conversion code

format specifierdouble amount = 12618.98;
double interestRate = 0.0013;
double interest = amount * interestRate;
System.out.printf("Interest is %4.2f", interest);

printf

114 Chapter 3 Selections

TABLE 3.9 Examples of Specifying Width and Precision

Example Output

%5c Output the character and add four spaces before the character item, because the width is 5.

%6b Output the Boolean value and add one space before the false value and two spaces before
the true value.

%5d Output the integer item with width at least 5. If the number of digits in the item is
add spaces before the number. If the number of digits in the item is the width is
automatically increased.

75,
65,

%10.2f Output the floating-point item with width at least 10 including a decimal point and two
digits after the point. Thus there are 7 digits allocated before the decimal point. If the
number of digits before the decimal point in the item is add spaces before the
number. If the number of digits before the decimal point in the item is the width is
automatically increased.

77,
67,

%10.2e Output the floating-point item with width at least 10 including a decimal point, two digits
after the point and the exponent part. If the displayed number in scientific notation has
width less than 10, add spaces before the number.

%12s Output the string with width at least 12 characters. If the string item has fewer than 12
characters, add spaces before the string. If the string item has more than 12 characters, the
width is automatically increased.

Here is an example:

int count = 5;
double amount = 45.56;
System.out.printf("count is %d and amount is %f", count, amount);

display count is 5 and amount is 45.560000

items

Items must match the format specifiers in order, in number, and in exact type. For example,
the format specifier for count is %d and for amount is %f. By default, a floating-point value
is displayed with six digits after the decimal point. You can specify the width and precision in
a format specifier, as shown in the examples in Table 3.9.

If an item requires more spaces than the specified width, the width is automatically
increased. For example, the following code

System.out.printf("%3d#%2s#%3.2f\n", 1234, "Java", 51.6653);

displays

1234#Java#51.67

The specified width for int item 1234 is 3, which is smaller than its actual size 4. The
width is automatically increased to 4. The specified width for string item Java is 2, which is
smaller than its actual size 4. The width is automatically increased to 4. The specified width
for double item 51.6653 is 3, but it needs width 5 to display 51.67, so the width is auto-
matically increased to 5.

3.17 Operator Precedence and Associativity 115

right justify

left justify

✓Point✓Check

By default, the output is right justified. You can put the minus sign (-) in the format spec-
ifier to specify that the item is left justified in the output within the specified field. For exam-
ple, the following statements

System.out.printf("%8d%8s%8.1f\n", 1234, "Java", 5.63);
System.out.printf("%-8d%-8s%-8.1f \n", 1234, "Java", 5.63);

display

Key
Point

8
1234 Java 5.6

1234 Java 5.6

8 8

where the square box () denotes a blank space.

Caution
The items must match the format specifiers in exact type. The item for the format spec-
ifier %f or %e must be a floating-point type value such as 40.0, not 40. Thus, an int
variable cannot match %f or %e.

Tip
The % sign denotes a format specifier. To output a literal % in the format string, use %%.

3.36 What are the format specifiers for outputting a Boolean value, a character, a decimal
integer, a floating-point number, and a string?

3.37 What is wrong in the following statements?

a. System.out.printf("%5d %d", 1, 2, 3);

b. System.out.printf("%5d %f", 1);

c. System.out.printf("%5d %f", 1, 2);

3.38 Show the output of the following statements.

a. System.out.printf("amount is %f %e\n", 32.32, 32.32);

b. System.out.printf("amount is %5.4f %5.4e\n", 32.32, 32.32);

c. System.out.printf("%6b\n", (1 > 2));

d. System.out.printf("%6s\n", "Java");

e. System.out.printf("%-6b%s\n", (1 > 2), "Java");

f. System.out.printf("%6b%-8s\n", (1 > 2), "Java");

3.17 Operator Precedence and Associativity
Operator precedence and associativity determine the order in which operators are
evaluated.

Section 2.11 introduced operator precedence involving arithmetic operators. This section
discusses operator precedence in more details. Suppose that you have this expression:

3 + 4 * 4 > 5 * (4 + 3) – 1 && (4 - 3 > 5)

What is its value? What is the execution order of the operators?
The expression in the parentheses is evaluated first. (Parentheses can be nested, in which case

the expression in the inner parentheses is executed first.) When evaluating an expression without

116 Chapter 3 Selections

parentheses, the operators are applied according to the precedence rule and the associativity
rule.

The precedence rule defines precedence for operators, as shown in Table 3.10, which
contains the operators you have learned so far. Operators are listed in decreasing order of
precedence from top to bottom. The logical operators have lower precedence than the
relational operators and the relational operators have lower precedence than the arithmetic
operators. Operators with the same precedence appear in the same group. (See Appendix C,
Operator Precedence Chart, for a complete list of Java operators and their precedence.)

operator associativity

behind the scenes

If operators with the same precedence are next to each other, their associativity deter-
mines the order of evaluation. All binary operators except assignment operators are left asso-
ciative. For example, since + and – are of the same precedence and are left associative, the
expression

a = b += c = 5
is equivalent to

a = (b += (c = 5))

a - b + c – d
is equivalent to

((a - b) + c) - d

Assignment operators are right associative. Therefore, the expression

Suppose a, b, and c are 1 before the assignment; after the whole expression is evaluated, a
becomes 6, b becomes 6, and c becomes 5. Note that left associativity for the assignment
operator would not make sense.

Note
Java has its own way to evaluate an expression internally. The result of a Java evaluation
is the same as that of its corresponding arithmetic evaluation. Advanced readers may
refer to Supplement III.B for more discussions on how an expression is evaluated in Java
behind the scenes.

operator precedence

TABLE 3.10 Operator Precedence Chart

Precedence Operator

var++ and var–– (Postfix)

+, – (Unary plus and minus), ++var and ––var (Prefix)

(type) (Casting)

!(Not)

*, /, % (Multiplication, division, and remainder)

+, – (Binary addition and subtraction)

<, <=, >, >= (Comparison)

==, != (Equality)

^ (Exclusive OR)

&& (AND)

|| (OR)

=, +=, –=, *=, /=, %= (Assignment operator)

3.18 Confirmation Dialogs 117

✓Point✓Check

Key
Point

3.39 List the precedence order of the Boolean operators. Evaluate the following expressions:

true || true && false

true && true || false

3.40 True or false? All the binary operators except = are left associative.

3.41 Evaluate the following expressions:

2 * 2 - 3 > 2 && 4 – 2 > 5

2 * 2 - 3 > 2 || 4 – 2 > 5

3.42 Is (x > 0 && x < 10) the same as ((x > 0) && (x < 10))? Is (x > 0 || x <
10) the same as ((x > 0) || (x < 10))? Is (x > 0 || x < 10 && y < 0) the
same as (x > 0 || (x < 10 && y < 0))?

3.18 Confirmation Dialogs
You can use a confirmation dialog to obtain a confirmation from the user.

You have used showMessageDialog to display a message dialog box and
showInputDialog to display an input dialog box. Occasionally it is useful to answer a ques-
tion with a confirmation dialog box. A confirmation dialog can be created using the following
statement:

import class

set1

set2

int option =

JOptionPane.showConfirmDialog

(null, "Continue");

When a button is clicked, the method returns an option value. The value is
JOptionPane.YES_OPTION (0) for the Yes button, JOptionPane.NO_OPTION (1) for the
No button, and JOptionPane.CANCEL_OPTION (2) for the Cancel button.

You may rewrite the guess-birthday program in Listing 3.3 using confirmation dialog
boxes, as shown in Listing 3.11. Figure 3.8 shows a sample run of the program for the day
19.

LISTING 3.11 GuessBirthdayUsingConfirmationDialog.java
1 import javax.swing.JOptionPane;
2
3 public class GuessBirthdayUsingConfirmationDialog {
4 public static void main(String[] args) {
5
6 " 1 3 5 7\n" +
7 " 9 11 13 15\n" +
8 "17 19 21 23\n" +
9 "25 27 29 31";
10
11
12 " 2 3 6 7\n" +
13 "10 11 14 15\n" +
14 "18 19 22 23\n" +
15 "26 27 30 31";
16

String set2 =

String set1 =

118 Chapter 3 Selections

17
18 " 4 5 6 7\n" +
19 "12 13 14 15\n" +
20 "20 21 22 23\n" +
21 "28 29 30 31";
22
23
24 " 8 9 10 11\n" +
25 "12 13 14 15\n" +
26 "24 25 26 27\n" +
27 "28 29 30 31";
28
29
30 "16 17 18 19\n" +
31 "20 21 22 23\n" +
32 "24 25 26 27\n" +
33 "28 29 30 31";
34
35 int day = 0;
36
37 // Prompt the user to answer questions
38
39
40
41
42 day += 1;
43
44 answer = JOptionPane.showConfirmDialog(null,
45 "Is your birthday in these numbers?\n" + set2);
46
47 if (answer == JOptionPane.YES_OPTION)
48 day += 2;
49
50 answer = JOptionPane.showConfirmDialog(null,
51 "Is your birthday in these numbers?\n" + set3);
52
53 if (answer == JOptionPane.YES_OPTION)
54 day += 4;
55
56 answer = JOptionPane.showConfirmDialog(null,
57 "Is your birthday in these numbers?\n" + set4);
58
59 if (answer == JOptionPane.YES_OPTION)
60 day += 8;
61
62 answer = JOptionPane.showConfirmDialog(null,
63 "Is your birthday in these numbers?\n" + set5);
64
65 if (answer == JOptionPane.YES_OPTION)
66 day += 16;
67
68 JOptionPane.showMessageDialog(null, "Your birthday is " +
69 day + "!");
70 }
71 }

The program displays confirmation dialog boxes to prompt the user to answer whether a
number is in Set1 (line 38), Set2 (line 44), Set3 (line 50), Set4 (line 56), and Set5 (line 62). If
the answer is Yes, the first number in the set is added to day (lines 42, 48, 54, 60, and 66).

if (answer == JOptionPane.YES_OPTION)

"Is your birthday in these numbers?\n" + set1);
int answer = JOptionPane.showConfirmDialog(null,

String set5 =

String set4 =

String set3 =

confirmation dialog

in set1?

in set2?

in set3?

in set4?

in set5?

set3

set4

set5

3.19 Debugging 119

✓Point✓Check

Key
Point

3.43 How do you display a confirmation dialog? What value is returned when invoking
JOptionPane.showConfirmDialog?

3.19 Debugging
Debugging is the process of finding and fixing errors in a program.

As mentioned in Section 1.11,1, syntax errors are easy to find and easy to correct because
the compiler gives indications as to where the errors came from and why they are there.
Runtime errors are not difficult to find either, because the Java interpreter displays them on
the console when the program aborts. Finding logic errors, on the other hand, can be very
challenging.

Logic errors are called bugs. The process of finding and correcting errors is called
debugging. A common approach to debugging is to use a combination of methods to help pin-
point the part of the program where the bug is located. You can hand-trace the program (i.e.,
catch errors by reading the program), or you can insert print statements in order to show the
values of the variables or the execution flow of the program. These approaches might work for
debugging a short, simple program, but for a large, complex program, the most effective
approach is to use a debugger utility.

JDK includes a command-line debugger, jdb, which is invoked with a class name. jdb is
itself a Java program, running its own copy of Java interpreter. All the Java IDE tools, such as
Eclipse and NetBeans, include integrated debuggers. The debugger utilities let you follow the
execution of a program. They vary from one system to another, but they all support most of
the following helpful features.

■ Executing a single statement at a time: The debugger allows you to execute one
statement at a time so that you can see the effect of each statement.

■ Tracing into or stepping over a method: If a method is being executed, you can
ask the debugger to enter the method and execute one statement at a time in the
method, or you can ask it to step over the entire method. You should step over the
entire method if you know that the method works. For example, always step over
system-supplied methods, such as System.out.println.

bugs

debugging

hand-traces

(a) (b) (c)

(e)(d) (f)

FIGURE 3.8 Click Yes in (a), Yes in (b), No in (c), No in (d), and Yes in (e).

120 Chapter 3 Selections

CHAPTER SUMMARY

1. A boolean type variable can store a true or false value.

2. The relational operators (<, <=, ==, !=, >, >=) work with numbers and characters, and
yield a Boolean value.

3. The Boolean operators &&, ||, !, and ^ operate with Boolean values and variables.

4. When evaluating p1 && p2, Java first evaluates p1 and then evaluates p2 if p1 is
true; if p1 is false, it does not evaluate p2. When evaluating p1 || p2, Java first
evaluates p1 and then evaluates p2 if p1 is false; if p1 is true, it does not evaluate
p2. Therefore, && is referred to as the conditional or short-circuit AND operator, and
|| is referred to as the conditional or short-circuit OR operator.

5. Selection statements are used for programming with alternative courses of actions.
There are several types of selection statements: if statements, two-way if-else
statements, nested if statements, multi-way if-else statements, switch state-
ments, and conditional expressions.

■ Setting breakpoints: You can also set a breakpoint at a specific statement. Your
program pauses when it reaches a breakpoint. You can set as many breakpoints as
you want. Breakpoints are particularly useful when you know where your program-
ming error starts. You can set a breakpoint at that statement and have the program
execute until it reaches the breakpoint.

■ Displaying variables: The debugger lets you select several variables and display
their values. As you trace through a program, the content of a variable is continuously
updated.

■ Displaying call stacks: The debugger lets you trace all of the method calls. This
feature is helpful when you need to see a large picture of the program-execution flow.

■ Modifying variables: Some debuggers enable you to modify the value of a vari-
able when debugging. This is convenient when you want to test a program with dif-
ferent samples but do not want to leave the debugger.

Tip
If you use an IDE such as Eclipse or NetBeans, please refer to Learning Java Effectively
with Eclipse/NetBeans in Supplements II.C and II.E on the Companion Website. The
supplement shows you how to use a debugger to trace programs and how debugging
can help in learning Java effectively.

KEY TERMS

Boolean expression 82
boolean data type 82
Boolean value 82
conditional operator 104
dangling else ambiguity 94
debugging 119
fall-through behavior 109

flowchart 84
format specifier 113
operator associativity 116
operator precedence 116
selection statement 82
short-circuit operator 104

debugging in IDE

Programming Exercises 121

think before coding

6. The various if statements all make control decisions based on a Boolean expression.
Based on the true or false evaluation of the expression, these statements take one
of two possible courses.

7. The switch statement makes control decisions based on a switch expression of type
char, byte, short, int, or String.

8. The keyword break is optional in a switch statement, but it is normally used at
the end of each case in order to skip the remainder of the switch statement. If the
break statement is not present, the next case statement will be executed.

9. The operators in expressions are evaluated in the order determined by the rules of
parentheses, operator precedence, and operator associativity.

10. Parentheses can be used to force the order of evaluation to occur in any sequence.

11. Operators with higher precedence are evaluated earlier. For operators of the same
precedence, their associativity determines the order of evaluation.

12. All binary operators except assignment operators are left-associative; assignment
operators are right-associative.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Pedagogical Note
For each exercise, carefully analyze the problem requirements and design strategies
for solving the problem before coding.

Debugging Tip
Before you ask for help, read and explain the program to yourself, and trace it using
several representative inputs by hand or using an IDE debugger. You learn how to
program by debugging your own mistakes.

Section 3.2
*3.1 (Algebra: solve quadratic equations) The two roots of a quadratic equation

can be obtained using the following formula:

is called the discriminant of the quadratic equation. If it is positive, the
equation has two real roots. If it is zero, the equation has one root. If it is negative,
the equation has no real roots.

Write a program that prompts the user to enter values for a, b, and c and displays
the result based on the discriminant. If the discriminant is positive, display two
roots. If the discriminant is 0, display one root. Otherwise, display “The equation
has no real roots”.

b2 - 4ac

r1 =
- ˛b + 2b2 - 4ac

2a
 and r2 =

- ˛b - 2b2 - 4ac

2a

ax2 + bx + c = 0

learn from mistakes

www.cs.armstrong.edu/liang/intro9e/test.html

122 Chapter 3 Selections

Enter a, b, c, d, e, f:
The equation has no solution

1.0 2.0 2.0 4.0 4.0 5.0

**3.4 (Game: learn addition) Write a program that generates two integers under 100
and prompts the user to enter the sum of these two integers. The program then
reports true if the answer is correct, false otherwise. The program is similar to
Listing 3.1.

*3.5 (Find future dates) Write a program that prompts the user to enter an integer for
today’s day of the week (Sunday is 0, Monday is 1, . . ., and Saturday is 6). Also
prompt the user to enter the number of days after today for a future day and dis-
play the future day of the week. Here is a sample run:

Enter today's day:

Enter the number of days elapsed since today:

Today is Monday and the future day is Thursday

3

1

Note that you can use Math.pow(x, 0.5) to compute Here are some sam-
ple runs.

2x.

Enter a, b, c:
The roots are -0.381966 and -2.61803

1.0 3 1

Enter a, b, c:
The root is -1

1 2.0 1

Enter a, b, c:
The equation has no real roots

1 2 3

3.2 (Game: add three numbers) The program in Listing 3.1 generates two integers and
prompts the user to enter the sum of these two integers. Revise the program to
generate three single-digit integers and prompt the user to enter the sum of these
three integers.

Sections 3.3–3.8
*3.3 (Algebra: solve linear equations) You can use Cramer’s rule to solve the

following system of linear equation:

Write a program that prompts the user to enter a, b, c, d, e, and f and displays the
result. If is 0, report that “The equation has no solution”.ad - bc

ax + by = e

cx + dy = f
 x =

ed - bf

ad - bc
 y =

af - ec

ad - bc

2 * 2
2 * 2

Enter a, b, c, d, e, f:
x is -2.0 and y is 3.0

9.0 4.0 3.0 -5.0 -6.0 -21.0

Programming Exercises 123

Enter today's day:

Enter the number of days elapsed since today:

Today is Sunday and the future day is Wednesday

31

0

*3.6 (Health application: BMI) Revise Listing 3.5, ComputeAndInterpretBMI.java,
to let the user enter weight, feet, and inches. For example, if a person is 5 feet and
10 inches, you will enter 5 for feet and 10 for inches. Here is a sample run:

Enter weight in pounds:

Enter feet:

Enter inches:

BMI is 20.087702275404553

Normal

10

5

140

3.7 (Financial application: monetary units) Modify Listing 2.10, ComputeChange.java,
to display the nonzero denominations only, using singular words for single units such
as 1 dollar and 1 penny, and plural words for more than one unit such as 2 dollars and
3 pennies.

*3.8 (Sort three integers) Write a program that sorts three integers. The integers are
entered from the input dialogs and stored in variables num1, num2, and num3,
respectively. The program sorts the numbers so that

**3.9 (Business: check ISBN-10) An ISBN-10 (International Standard Book Number)
consists of 10 digits: The last digit, is a checksum,
which is calculated from the other nine digits using the following formula:

If the checksum is 10, the last digit is denoted as X according to the ISBN-10
convention. Write a program that prompts the user to enter the first 9 digits and
displays the 10-digit ISBN (including leading zeros). Your program should read
the input as an integer. Here are sample runs:

d6 * 6 + d7 * 7 + d8 * 8 + d9 * 9) % 11

(d1 * 1 + d2 * 2 + d3 * 3 + d4 * 4 + d5 * 5 +

d10,d1d2d3d4d5d6d7d8d9d10.

num1 … num2 … num3.

Sort three integers

3.10 (Game: addition quiz) Listing 3.4, SubtractionQuiz.java, randomly generates a
subtraction question. Revise the program to randomly generate an addition ques-
tion with two integers less than 100.

Sections 3.9–3.19
*3.11 (Find the number of days in a month) Write a program that prompts the user to

enter the month and year and displays the number of days in the month. For

Enter the first 9 digits of an ISBN as integer:
The ISBN-10 number is 0136012671

013601267

Enter the first 9 digits of an ISBN as integer:
The ISBN-10 number is 013031997X

013031997

VideoNote

124 Chapter 3 Selections

example, if the user entered month 2 and year 2012, the program should display
that February 2012 had 29 days. If the user entered month 3 and year 2015, the
program should display that March 2015 had 31 days.

3.12 (Check a number) Write a program that prompts the user to enter an integer and
checks whether the number is divisible by both 5 and 6, or neither of them, or just
one of them. Here are some sample runs for inputs 10, 30, and 23.

10 is divisible by 5 or 6, but not both
30 is divisible by both 5 and 6
23 is not divisible by either 5 or 6

*3.13 (Financial application: compute taxes) Listing 3.6, ComputeTax.java, gives the
source code to compute taxes for single filers. Complete Listing 3.6 to give the
complete source code.

3.14 (Game: heads or tails) Write a program that lets the user guess whether the flip of
a coin results in heads or tails. The program randomly generates an integer 0 or 1,
which represents head or tail. The program prompts the user to enter a guess and
reports whether the guess is correct or incorrect.

**3.15 (Game: lottery) Revise Listing 3.9, Lottery.java, to generate a lottery of a three-
digit number. The program prompts the user to enter a three-digit number and
determines whether the user wins according to the following rules:

1. If the user input matches the lottery number in the exact order, the award is
$10,000.

2. If all the digits in the user input match all the digits in the lottery number, the
award is $3,000.

3. If one digit in the user input matches a digit in the lottery number, the award is
$1,000.

3.16 (Random character) Write a program that displays a random uppercase letter
using the Math.random() method.

*3.17 (Game: scissor, rock, paper) Write a program that plays the popular scissor-rock-
paper game. (A scissor can cut a paper, a rock can knock a scissor, and a paper can
wrap a rock.) The program randomly generates a number 0, 1, or 2 representing
scissor, rock, and paper. The program prompts the user to enter a number 0, 1, or
2 and displays a message indicating whether the user or the computer wins, loses,
or draws. Here are sample runs:

scissor (0), rock (1), paper (2):
The computer is scissor. You are rock. You won

1

scissor (0), rock (1), paper (2):
The computer is paper. You are paper too. It is a draw

2

*3.18 (Use the input dialog box) Rewrite Listing 3.8, LeapYear.java, using the input
dialog box.

**3.19 (Compute the perimeter of a triangle) Write a program that reads three edges for a
triangle and computes the perimeter if the input is valid. Otherwise, display that
the input is invalid. The input is valid if the sum of every pair of two edges is
greater than the remaining edge.

Programming Exercises 125

*3.20 (Science: wind-chill temperature) Programming Exercise 2.17 gives a formula
to compute the wind-chill temperature. The formula is valid for temperatures in
the range between ºF and 41ºF and wind speed greater than or equal to 2.
Write a program that prompts the user to enter a temperature and a wind speed.
The program displays the wind-chill temperature if the input is valid; otherwise,
it displays a message indicating whether the temperature and/or wind speed is
invalid.

Comprehensive
**3.21 (Science: day of the week) Zeller’s congruence is an algorithm developed by

Christian Zeller to calculate the day of the week. The formula is

where

■ h is the day of the week (0: Saturday, 1: Sunday, 2: Monday, 3: Tuesday, 4:
Wednesday, 5: Thursday, 6: Friday).

■ q is the day of the month.

■ m is the month (3: March, 4: April, . . ., 12: December). January and February
are counted as months 13 and 14 of the previous year.

■ j is the century (i.e.,).

■ k is the year of the century (i.e., year % 100).

Note that the division in the formula performs an integer division. Write a pro-
gram that prompts the user to enter a year, month, and day of the month, and
displays the name of the day of the week. Here are some sample runs:

year

100

h = ¢q +
26(m + 1)

10
+ k +

k

4
+

j

4
+ 5j≤ % 7

- ˛58

Enter year: (e.g., 2012):

Enter month: 1-12:

Enter the day of the month: 1-31:

Day of the week is Sunday

25

1

2015

Enter year: (e.g., 2012):

Enter month: 1-12:

Enter the day of the month: 1-31:

Day of the week is Saturday

12

5

2012

(Hint: January and February are counted as 13 and 14 in the formula, so you need
to convert the user input 1 to 13 and 2 to 14 for the month and change the year to
the previous year.)

**3.22 (Geometry: point in a circle?) Write a program that prompts the user to enter a
point (x, y) and checks whether the point is within the circle centered at (0, 0) with
radius 10. For example, (4, 5) is inside the circle and (9, 9) is outside the circle, as
shown in Figure 3.9a.

Check point location
VideoNote

126 Chapter 3 Selections

Enter a point with two coordinates:
Point (9.0, 9.0) is not in the circle

9 9

**3.23 (Geometry: point in a rectangle?) Write a program that prompts the user to enter a
point (x, y) and checks whether the point is within the rectangle centered at (0,
0) with width 10 and height 5. For example, (2, 2) is inside the rectangle and (6,
4) is outside the rectangle, as shown in Figure 3.9b. (Hint: A point is in the rectan-
gle if its horizontal distance to (0, 0) is less than or equal to 10 / 2 and its verti-
cal distance to (0, 0) is less than or equal to 5.0 / 2. Test your program to cover
all cases.) Here are two sample runs.

Enter a point with two coordinates:
Point (2.0, 2.0) is in the rectangle

2 2

Enter a point with two coordinates:
Point (6.0, 4.0) is not in the rectangle

6 4

**3.24 (Game: pick a card) Write a program that simulates picking a card from a deck of
52 cards. Your program should display the rank (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10,
Jack, Queen, King) and suit (Clubs, Diamonds, Hearts, Spades) of the card
Here is a sample run of the program:

The card you picked is Jack of Hearts

*3.25 (Geometry: intersecting point) Two points on line 1 are given as (x1, y1) and (x2,
y2) and on line 2 as (x3, y3) and (x4, y4), as shown in Figure 3.10a–b.

(Hint: A point is in the circle if its distance to (0, 0) is less than or equal to 10. The
formula for computing the distance is Test your pro-
gram to cover all cases.) Two sample runs are shown below.

2(x2 - x1)
2 + (y2 - y1)

2.

Enter a point with two coordinates:
Point (4.0, 5.0) is in the circle

4 5

x-axis(0, 0)

(a) (b)

y-axis

(4, 5)

(9, 9)

(2, 2)
(6, 4)

x-axis

y-axis

(0, 0)

FIGURE 3.9 (a) Points inside and outside of the circle. (b) Points inside and outside of the
rectangle.

Programming Exercises 127

The intersecting point of the two lines can be found by solving the following lin-
ear equation:

This linear equation can be solved using Cramer’s rule (see Exercise 3.3). If the
equation has no solutions, the two lines are parallel (Figure 3.10c). Write a pro-
gram that prompts the user to enter four points and displays the intersecting point.
Here are sample runs:

(y3 - y4)x - (x3 - x4)y = (y3 - y4)x3 - (x3 - x4)y3

(y1 - y2)x - (x1 - x2)y = (y1 - y2)x1 - (x1 - x2)y1

(x1, y1)

(x2, y2) (x3, y3)

(x4, y4)

(a) (b) (c)

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)
(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

FIGURE 3.10 Two lines intersect in (a and b) and two lines are parallel in (c).

Enter x1, y1, x2, y2, x3, y3, x4, y4:
The intersecting point is at (2.88889, 1.1111)

2 2 5 -1.0 4.0 2.0 -1.0 -2.0

Enter x1, y1, x2, y2, x3, y3, x4, y4:
The two lines are parallel

2 2 7 6.0 4.0 2.0 -1.0 -2.0

3.26 (Use the &&, || and ^ operators) Write a program that prompts the user to enter an
integer and determines whether it is divisible by 5 and 6, whether it is divisible by
5 or 6, and whether it is divisible by 5 or 6, but not both. Here is a sample run of
this program:

Enter an integer:
Is 10 divisible by 5 and 6? false
Is 10 divisible by 5 or 6? true
Is 10 divisible by 5 or 6, but not both? true

10

**3.27 (Geometry: points in triangle?) Suppose a right triangle is placed in a plane as
shown below. The right-angle point is placed at (0, 0), and the other two points are
placed at (200, 0), and (0, 100). Write a program that prompts the user to enter a
point with x- and y-coordinates and determines whether the point is inside the tri-
angle. Here are the sample runs:

(0, 100)

(0, 0) (200, 0)

p2

p1

128 Chapter 3 Selections

Here are the sample runs:

Enter r1's center x-, y-coordinates, width, and height:

Enter r2's center x-, y-coordinates, width, and height:

r2 is inside r1

1.5 5 0.5 3

2.5 4 2.5 43

Enter r1's center x-, y-coordinates, width, and height:

Enter r2's center x-, y-coordinates, width, and height:

r2 overlaps r1

3 4 4.5 5

1 2 3 5.5

Enter r1's center x-, y-coordinates, width, and height:

Enter r2's center x-, y-coordinates, width, and height:

r2 does not overlap r1

40 45 3 2

1 2 3 3

**3.29 (Geometry: two circles) Write a program that prompts the user to enter the center
coordinates and radii of two circles and determines whether the second circle is
inside the first or overlaps with the first, as shown in Figure 3.12. (Hint: circle2 is
inside circle1 if the distance between the two centers <= |r1 - r2| and circle2
overlaps circle1 if the distance between the two centers <= r1 + r2. Test your
program to cover all cases.)

Enter a point's x- and y-coordinates:
The point is in the triangle

100.5 25.5

Enter a point's x- and y-coordinates:
The point is not in the triangle

100.5 50.5

**3.28 (Geometry: two rectangles) Write a program that prompts the user to enter the
center x-, y-coordinates, width, and height of two rectangles and determines
whether the second rectangle is inside the first or overlaps with the first, as shown
in Figure 3.11. Test your program to cover all cases.

(a)

w1

(x1, y1)
(x2, y2)

w2

h2h1

(b)

w1

(x1, y1)

(x2, y2)

w2

h2

h1

FIGURE 3.11 (a) A rectangle is inside another one. (b) A rectangle overlaps another one.

Programming Exercises 129

Here are the sample runs:

Enter circle1's center x-, y-coordinates, and radius:

Enter circle2's center x-, y-coordinates, and radius:

circle2 is inside circle1

1 1.7 4.5

0.5 5.1 13

(a) (b)

(x1, y1)

(x2, y2)

r2

r1

(x1, y1)

r1

(x2, y2)

r2

FIGURE 3.12 (a) A circle is inside another circle. (b) A circle overlaps another circle.

Enter circle1's center x-, y-coordinates, and radius:

Enter circle2's center x-, y-coordinates, and radius:

circle2 overlaps circle1

6.7 3.5 3

3.4 5.7 5.5

Enter circle1's center x-, y-coordinates, and radius:

Enter circle2's center x-, y-coordinates, and radius:

circle2 does not overlap circle1

5.5 7.2 1

3.4 5.5 1

*3.30 (Current time) Revise Programming Exercise 2.8 to display the hour using a 12-
hour clock. Here is a sample run:

Enter the time zone offset to GMT:
The current time is 4:50:34 AM

-5

*3.31 (Financials: currency exchange) Write a program that prompts the user to enter
the exchange rate from currency in U.S. dollars to Chinese RMB. Prompt the user
to enter 0 to convert from U.S. dollars to Chinese RMB and 1 to convert from
Chinese RMB and U.S. dollars. Prompt the user to enter the amount in U.S. dollars
or Chinese RMB to convert it to Chinese RMB or U.S. dollars, respectively. Here
are the sample runs:

Enter the exchange rate from dollars to RMB:

Enter 0 to convert dollars to RMB and 1 vice versa:

Enter the dollar amount:

$100.0 is 681.0 yuan

100

0

6.81

130 Chapter 3 Selections

*3.32 (Geometry: point position) Given a directed line from point p0(x0, y0) to p1(x1,
y1), you can use the following condition to decide whether a point p2(x2, y2) is on
the left of the line, on the right, or on the same line (see Figure 3.13):

(x1 - x0)*(y2 - y0) - (x2 - x0)*(y1 - y0) c 70 p2 is on the left side of the line

=0 p2 is on the same line

60 p2 is on the right side of the line

Write a program that prompts the user to enter the three points for p0, p1, and p2
and displays whether p2 is on the left of the line from p0 to p1, to the right, or on
the same line. Here are some sample runs:

Enter three points for p0, p1, and p2:
p2 is on the left side of the line

4.4 2 6.5 9.5 -5 4

Enter three points for p0, p1, and p2:
p2 is on the same line

1 1 5 5 2 2

Enter three points for p0, p1, and p2:
p2 is on the right side of the line

3.4 2 6.5 9.5 5 2.5

*3.33 (Financial: compare costs) Suppose you shop for rice in two different packages.
You would like to write a program to compare the cost. The program prompts the
user to enter the weight and price of the each package and displays the one with
the better price. Here is a sample run:

p0

p2
p1

p0

p2

p1

p0

p2

p1

(a) (b) (c)

FIGURE 3.13 (a) p2 is on the left of the line. (b) p2 is on the right of the line. (c) p2 is on
the same line.

Enter the exchange rate from dollars to RMB:

Enter 0 to convert dollars to RMB and 1 vice versa:

Enter the RMB amount:

10000.0 yuan is $1468.43

10000

1

6.81

Enter the exchange rate from dollars to RMB:

Enter 0 to convert dollars to RMB and 1 vice versa:

Incorrect input

5

6.81

Programming Exercises 131

Enter weight and price for package 1:

Enter weight and price for package 2:

Package 1 has a better price.

25 11.99

50 24.59

*3.34 (Geometry: point on line segment) Exercise 3.32 shows how to test whether a
point is on an unbounded line. Revise Exercise 3.32 to test whether a point is on a
line segment. Write a program that prompts the user to enter the three points for
p0, p1, and p2 and displays whether p2 is on the line segment from p0 to p1. Here
are some sample runs:

Enter three points for p0, p1, and p2:
(1.5, 1.5) is on the line segment from (1.0, 1.0) to (2.5, 2.5)

1 1 2.5 2.5 1.5 1.5

Enter three points for p0, p1, and p2:
(3.5, 3.5) is not on the line segment from (1.0, 1.0) to (2.0, 2.0)

1 1 2 2 3.5 3.5

*3.35 (Decimal to hex) Write a program that prompts the user to enter an integer
between 0 and 15 and displays its corresponding hex number. Here are some sam-
ple runs:

Enter a decimal value (0 to 15):
The hex value is B

11

Enter a decimal value (0 to 15):
The hex value is 5

5

Enter a decimal value (0 to 15):
Invalid input

31

This page intentionally left blank

LOOPS

Objectives
■ To write programs for executing statements repeatedly using a while

loop (§4.2).

■ To follow the loop design strategy to develop loops (§§4.2.1–4.2.3).

■ To control a loop with a sentinel value (§4.2.4).

■ To obtain large input from a file using input redirection rather than typing
from the keyboard (§4.2.5).

■ To write loops using do-while statements (§4.3).

■ To write loops using for statements (§4.4).

■ To discover the similarities and differences of three types of loop state-
ments (§4.5).

■ To write nested loops (§4.6).

■ To learn the techniques for minimizing numerical errors (§4.7).

■ To learn loops from a variety of examples (GCD, FutureTuition,
MonteCarloSimulation) (§4.8).

■ To implement program control with break and continue (§4.9).

■ To write a program that displays prime numbers (§4.10).

■ To control a loop with a confirmation dialog (§4.11).

CHAPTER

4

134 Chapter 4 Loops

Key
Point

Key
Point

4.1 Introduction
A loop can be used to tell a program to execute statements repeatedly.

Suppose that you need to display a string (e.g., Welcome to Java!) a hundred times. It
would be tedious to have to write the following statement a hundred times:

problem

loop

while loop

loop body

So, how do you solve this problem?
Java provides a powerful construct called a loop that controls how many times an operation

or a sequence of operations is performed in succession. Using a loop statement, you simply
tell the computer to display a string a hundred times without having to code the print state-
ment a hundred times, as follows:

int count = 0;
while (count < 100) {
System.out.println("Welcome to Java!");
count++;

}

The variable count is initially 0. The loop checks whether count < 100 is true. If so, it
executes the loop body to display the message Welcome to Java! and increments count
by 1. It repeatedly executes the loop body until count < 100 becomes false. When count
< 100 is false (i.e., when count reaches 100), the loop terminates and the next statement
after the loop statement is executed.

Loops are constructs that control repeated executions of a block of statements. The concept
of looping is fundamental to programming. Java provides three types of loop statements:
while loops, do-while loops, and for loops.

4.2 The while Loop
A while loop executes statements repeatedly while the condition is true.

The syntax for the while loop is:

while (loop-continuation-condition) {
// Loop body
Statement(s);

}

Figure 4.1a shows the while-loop flowchart. The part of the loop that contains the state-
ments to be repeated is called the loop body. A one-time execution of a loop body is referred
to as an iteration (or repetition) of the loop. Each loop contains a loop-continuation-
condition, a Boolean expression that controls the execution of the body. It is evaluated each
time to determine if the loop body is executed. If its evaluation is true, the loop body is exe-
cuted; if its evaluation is false, the entire loop terminates and the program control turns to
the statement that follows the while loop.

The loop for displaying Welcome to Java! a hundred times introduced in the pre-
ceding section is an example of a while loop. Its flowchart is shown in Figure 4.1b. The

iteration

loop-continuation-
condition

100 times

System.out.println("Welcome to Java!");
System.out.println("Welcome to Java!");
...
System.out.println("Welcome to Java!");

4.2 The while Loop 135

loop-continuation-condition is count < 100 and the loop body contains the fol-
lowing two statements:

int count = 0;
loop-continuation-condition

while (count < 100) {
System.out.println("Welcome to Java!"); loop body
count++;

}

In this example, you know exactly how many times the loop body needs to be executed
because the control variable count is used to count the number of executions. This type of
loop is known as a counter-controlled loop.

Note
The loop-continuation-condition must always appear inside the parentheses.
The braces enclosing the loop body can be omitted only if the loop body contains one
or no statement.

Here is another example to help understand how a loop works.

int sum = 0, i = 1;
while (i < 10) {
sum = sum + i;
i++;

}
System.out.println("sum is " + sum); // sum is 45

If i < 10 is true, the program adds i to sum. Variable i is initially set to 1, then is incre-
mented to 2, 3, and up to 10. When i is 10, i < 10 is false, so the loop exits. Therefore,
the sum is 1 + 2 + 3 + ... + 9 = 45.

What happens if the loop is mistakenly written as follows?

int sum = 0, i = 1;
while (i < 10) {
sum = sum + i;

}

counter-controlled loop

loop-
continuation-

condition?

true

false

(a)

(count < 100)?

true

false

(b)

count = 0;

System.out.println("Welcome to Java!");
count++;

Statement(s)
(loop body)

FIGURE 4.1 The while loop repeatedly executes the statements in the loop body when the
loop-continuation-condition evaluates to true.

136 Chapter 4 Loops

This loop is infinite, because i is always 1 and i < 10 will always be true.

Note
Make sure that the loop-continuation-condition eventually becomes false
so that the loop will terminate. A common programming error involves infinite loops
(i. e., the loop runs forever). If your program takes an unusually long time to run and
does not stop, it may have an infinite loop. If you are running the program from the
command window, press CTRL+C to stop it.

Caution
Programmers often make the mistake of executing a loop one more or less time. This is
commonly known as the off-by-one error. For example, the following loop displays
Welcome to Java 101 times rather than 100 times. The error lies in the condition,
which should be count < 100 rather than count <= 100.

int count = 0;
while () {
System.out.println("Welcome to Java!");
count++;

}

Recall that Listing 3.1, AdditionQuiz.java, gives a program that prompts the user to enter an
answer for a question on addition of two single digits. Using a loop, you can now rewrite the
program to let the user repeatedly enter a new answer until it is correct, as shown in Listing 4.1.

LISTING 4.1 RepeatAdditionQuiz.java
1 import java.util.Scanner;
2
3 public class RepeatAdditionQuiz {
4 public static void main(String[] args) {
5 int number1 = (int)(Math.random() % 10);
6 int number2 = (int)(Math.random() % 10);
7
8 // Create a Scanner
9 Scanner input = new Scanner(System.in);
10
11 System.out.print(
12 "What is " + number1 + " + " + number2 + "? ");
13
14
15 while () {
16 System.out.print("Wrong answer. Try again. What is "
17 + number1 + " + " + number2 + "? ");
18
19 }
20
21 System.out.println("You got it!");
22 }
23 }

answer = input.nextInt();

number1 + number2 != answer

int answer = input.nextInt();

count <= 100

infinite loop

off-by-one error

generate number1
generate number2

show question

get first answer

check answer

read an answer

What is 5 + 9?
Wrong answer. Try again. What is 5 + 9?
Wrong answer. Try again. What is 5 + 9?
You got it!

14
34

12

4.2 The while Loop 137

The loop in lines 15–19 repeatedly prompts the user to enter an answer when number1 +
number2 != answer is true. Once number1 + number2 != answer is false, the loop
exits.

4.2.1 Case Study: Guessing Numbers
The problem is to guess what number a computer has in mind. You will write a program that
randomly generates an integer between 0 and 100, inclusive. The program prompts the user to
enter a number continuously until the number matches the randomly generated number. For
each user input, the program tells the user whether the input is too low or too high, so the user
can make the next guess intelligently. Here is a sample run:

Guess a number
VideoNote

Guess a magic number between 0 and 100
Enter your guess:
Your guess is too high
Enter your guess:
Your guess is too low
Enter your guess:
Your guess is too high
Enter your guess:
Yes, the number is 39

39

42

25

50

The magic number is between 0 and 100. To minimize the number of guesses, enter 50
first. If your guess is too high, the magic number is between 0 and 49. If your guess is too low,
the magic number is between 51 and 100. So, you can eliminate half of the numbers from fur-
ther consideration after one guess.

How do you write this program? Do you immediately begin coding? No. It is important to
think before coding. Think how you would solve the problem without writing a program. You
need first to generate a random number between 0 and 100, inclusive, then to prompt the user
to enter a guess, and then to compare the guess with the random number.

It is a good practice to code incrementally one step at a time. For programs involving loops,
if you don’t know how to write a loop right away, you may first write the code for executing
the loop one time, and then figure out how to repeatedly execute the code in a loop. For this
program, you may create an initial draft, as shown in Listing 4.2.

LISTING 4.2 GuessNumberOneTime.java
1 import java.util.Scanner;
2
3 public class GuessNumberOneTime {
4 public static void main(String[] args) {
5 // Generate a random number to be guessed
6
7
8 Scanner input = new Scanner(System.in);
9 System.out.println("Guess a magic number between 0 and 100");
10
11 // Prompt the user to guess the number
12 System.out.print("\nEnter your guess: ");
13
14
15
16 System.out.println("Yes, the number is " + number);
17
18 System.out.println("Your guess is too high");
19 else

else if (guess > number)

if (guess == number)

int guess = input.nextInt();

int number = (int)(Math.random() * 101);

intelligent guess

think before coding

code incrementally

generate a number

enter a guess

correct guess?

too high?

138 Chapter 4 Loops

20 System.out.println("Your guess is too low");
21 }
22 }

When you run this program, it prompts the user to enter a guess only once. To let the user
enter a guess repeatedly, you may put the code in lines 11–20 in a loop as follows:

// Prompt the user to guess the number
System.out.print("\nEnter your guess: ");
guess = input.nextInt();

if (guess == number)
System.out.println("Yes, the number is " + number);

else if (guess > number)
System.out.println("Your guess is too high");

else

System.out.println("Your guess is too low");
// End of loop

This loop repeatedly prompts the user to enter a guess. However, this loop is not correct,
because it never terminates. When guess matches number, the loop should end. So, the loop
can be revised as follows:

// Prompt the user to guess the number
System.out.print("\nEnter your guess: ");
guess = input.nextInt();

if (guess == number)
System.out.println("Yes, the number is " + number);

else if (guess > number)
System.out.println("Your guess is too high");

else

System.out.println("Your guess is too low");
// End of loop

The complete code is given in Listing 4.3.

LISTING 4.3 GuessNumber.java
1 import java.util.Scanner;
2
3 public class GuessNumber {
4 public static void main(String[] args) {
5 // Generate a random number to be guessed
6 int number = (int)(Math.random() * 101);
7
8 Scanner input = new Scanner(System.in);
9 System.out.println("Guess a magic number between 0 and 100");
10
11
12
13 // Prompt the user to guess the number
14 System.out.print("\nEnter your guess: ");
15 guess = input.nextInt();
16
17 if (guess == number)
18 System.out.println("Yes, the number is " + number);
19 else if (guess > number)

while (guess != number) {
int guess = -1;

}

while (guess != number) {

}

while (true) {

too low?

generate a number

enter a guess

4.2 The while Loop 139

20 System.out.println("Your guess is too high");
21 else

22 System.out.println("Your guess is too low");
23 // End of loop
24 }
25 }

}

The program generates the magic number in line 6 and prompts the user to enter a guess con-
tinuously in a loop (lines 12–23). For each guess, the program checks whether the guess is
correct, too high, or too low (lines 17–22). When the guess is correct, the program exits the
loop (line 12). Note that guess is initialized to -1. Initializing it to a value between 0 and 100
would be wrong, because that could be the number to be guessed.

4.2.2 Loop Design Strategies
Writing a correct loop is not an easy task for novice programmers. Consider three steps when
writing a loop.

Step 1: Identify the statements that need to be repeated.

Step 2: Wrap these statements in a loop like this:

while (true) {
Statements;

}

Step 3: Code the loop-continuation-condition and add appropriate statements for
controlling the loop.

while (loop-continuation-condition) {
Statements;
Additional statements for controlling the loop;

}

4.2.3 Case Study: Multiple Subtraction Quiz
The Math subtraction learning tool program in Listing 3.4, SubtractionQuiz.java, generates just
one question for each run. You can use a loop to generate questions repeatedly. How do you write
the code to generate five questions? Follow the loop design strategy. First identify the statements
that need to be repeated. These are the statements for obtaining two random numbers, prompting

too high?

too low?

line# number guess output

6 39

11 -1

iteration 1
15 50

20 Your guess is too high

iteration 2
15 25

22 Your guess is too low

iteration 3
15 42

20 Your guess is too high

iteration 4
15 39

18 Yes, the number is 39

Multiple subtraction quiz
VideoNote

140 Chapter 4 Loops

the user with a subtraction question, and grading the question. Second, wrap the statements in a
loop. Third, add a loop control variable and the loop-continuation-condition to execute
the loop five times.

Listing 4.4 gives a program that generates five questions and, after a student answers all
five, reports the number of correct answers. The program also displays the time spent on the
test and lists all the questions.

LISTING 4.4 SubtractionQuizLoop.java
1 import java.util.Scanner;
2
3 public class SubtractionQuizLoop {
4 public static void main(String[] args) {
5 final int NUMBER_OF_QUESTIONS = 5; // Number of questions
6 int correctCount = 0; // Count the number of correct answers
7 int count = 0; // Count the number of questions
8
9 String output = " "; // output string is initially empty
10 Scanner input = new Scanner(System.in);
11
12
13 // 1. Generate two random single-digit integers
14 int number1 = (int)(Math.random() * 10);
15 int number2 = (int)(Math.random() * 10);
16
17 // 2. If number1 < number2, swap number1 with number2
18 if (number1 < number2) {
19 int temp = number1;
20 number1 = number2;
21 number2 = temp;
22 }
23
24 // 3. Prompt the student to answer "What is number1 – number2?"
25 System.out.print(
26 "What is " + number1 + " - " + number2 + "? ");
27 int answer = input.nextInt();
28
29 // 4. Grade the answer and display the result
30
31 System.out.println("You are correct!");
32 correctCount++; // Increase the correct answer count
33 }
34 else

35 System.out.println("Your answer is wrong.\n" + number1
36 + " - " + number2 + " should be " + (number1 - number2));
37
38 // Increase the question count
39 count++;
40
41 output += "\n" + number1 + "-" + number2 + "=" + answer +
42 ((number1 - number2 == answer) ? " correct" : " wrong");
43
44
45
46
47
48 System.out.println("Correct count is " + correctCount +
49 "\nTest time is " + testTime / 1000 + " seconds\n" + output);
50 }
51 }

long testTime = endTime - startTime;
long endTime = System.currentTimeMillis();

}

if (number1 - number2 == answer) {

while (count < NUMBER_OF_QUESTIONS) {

long startTime = System.currentTimeMillis();get start time

loop

display a question

grade an answer

increase correct count

increase control variable

prepare output

end loop

get end time
test time

display result

4.2 The while Loop 141

What is 9 - 2?
You are correct!

What is 3 - 0?
You are correct!

What is 3 - 2?
You are correct!

What is 7 - 4?
Your answer is wrong.

7 - 4 should be 3
What is 7 - 5?

Your answer is wrong.
7 - 5 should be 2

Correct count is 3
Test time is 1021 seconds

9–2=7 correct
3-0=3 correct
3-2=1 correct
7-4=4 wrong
7-5=4 wrong

4

4

1

3

7

The program uses the control variable count to control the execution of the loop. count
is initially 0 (line 7) and is increased by 1 in each iteration (line 39). A subtraction question is
displayed and processed in each iteration. The program obtains the time before the test starts
in line 8 and the time after the test ends in line 45, and computes the test time in line 46. The
test time is in milliseconds and is converted to seconds in line 49.

4.2.4 Controlling a Loop with a Sentinel Value
Another common technique for controlling a loop is to designate a special value when read-
ing and processing a set of values. This special input value, known as a sentinel value, signi-
fies the end of the input. A loop that uses a sentinel value to control its execution is called a
sentinel-controlled loop.

Listing 4.5 writes a program that reads and calculates the sum of an unspecified number of
integers. The input 0 signifies the end of the input. Do you need to declare a new variable for
each input value? No. Just use one variable named data (line 12) to store the input value and
use a variable named sum (line 15) to store the total. Whenever a value is read, assign it to
data and, if it is not zero, add it to sum (line 17).

LISTING 4.5 SentinelValue.java
1 import java.util.Scanner;
2
3 public class SentinelValue {
4 /** Main method */
5 public static void main(String[] args) {
6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8
9 // Read an initial data
10 System.out.print(
11 "Enter an integer (the input ends if it is 0): ");
12 int data = input.nextInt();

sentinel value

sentinel-controlled loop

input

142 Chapter 4 Loops

13
14 // Keep reading data until the input is 0
15 int sum = 0;
16
17 sum += data;
18
19 // Read the next data
20 System.out.print(
21 "Enter an integer (the input ends if it is 0): ");
22 data = input.nextInt();
23
24
25 System.out.println("The sum is " + sum);
26 }
27 }

}

while (data != 0) {loop

end of loop

display result

Enter an integer (the input ends if it is 0):
Enter an integer (the input ends if it is 0):
Enter an integer (the input ends if it is 0):
Enter an integer (the input ends if it is 0):
The sum is 9

0
4
3
2

If data is not 0, it is added to sum (line 17) and the next item of input data is read (lines
20–22). If data is 0, the loop body is no longer executed and the while loop terminates. The
input value 0 is the sentinel value for this loop. Note that if the first input read is 0, the loop
body never executes, and the resulting sum is 0.

Caution
Don’t use floating-point values for equality checking in a loop control. Because floating-
point values are approximations for some values, using them could result in imprecise
counter values and inaccurate results.

Consider the following code for computing 1 + 0.9 + 0.8 + ... + 0.1:

double item = 1; double sum = 0;
while () { // No guarantee item will be 0
sum += item;
item -= 0.1;

}
System.out.println(sum);

item != 0

line# data sum output

12 2

15 0

iteration 1
17 2

22 3

iteration 2
17 5

22 4

iteration 3
17 9

22 0

25 The sum is 9

4.2 The while Loop 143

Variable item starts with 1 and is reduced by 0.1 every time the loop body is exe-
cuted. The loop should terminate when item becomes 0. However, there is no guaran-
tee that item will be exactly 0, because the floating-point arithmetic is approximated.
This loop seems okay on the surface, but it is actually an infinite loop.

4.2.5 Input and Output Redirections
In the preceding example, if you have a large number of data to enter, it would be cumber-
some to type from the keyboard. You can store the data separated by whitespaces in a text file,
say input.txt, and run the program using the following command:

java SentinelValue < input.txt

This command is called input redirection. The program takes the input from the file
input.txt rather than having the user type the data from the keyboard at runtime. Suppose the
contents of the file are

2 3 4 5 6 7 8 9 12 23 32
23 45 67 89 92 12 34 35 3 1 2 4 0

The program should get sum to be 518.
Similarly, there is output redirection, which sends the output to a file rather than displaying

it on the console. The command for output redirection is:

java ClassName > output.txt

Input and output redirection can be used in the same command. For example, the following
command gets input from input.txt and sends output to output.txt:

java SentinelValue < input.txt > output.txt

Try running the program to see what contents are in output.txt.

4.1 Analyze the following code. Is count < 100 always true, always false, or some-
times true or sometimes false at Point A, Point B, and Point C?

int count = 0;
while (count < 100) {
// Point A
System.out.println("Welcome to Java!\n");
count++;
// Point B

}
// Point C

4.2 What is wrong if guess is initialized to 0 in line 11 in Listing 4.3?

4.3 How many times are the following loop bodies repeated? What is the printout of each
loop?

numeric error

input redirection

int i = 1;
while (i < 10)
if (i % 2 == 0)
System.out.println(i);

(a) (b) (c)

int i = 1;
while (i < 10)
if (i % 2 == 0)
System.out.println(i++);

int i = 1;
while (i < 10)
if ((i++) % 2 == 0)
System.out.println(i);

output redirection

✓Point✓Check

144 Chapter 4 Loops

4.4 Suppose the input is 2 3 4 5 0. What is the output of the following code?

import java.util.Scanner;

public class Test {
public static void main(String[] args) {

Scanner input = new Scanner(System.in);

int number, max;
number = input.nextInt();
max = number;

while (number != 0) {
number = input.nextInt();
if (number > max)
max = number;

}

System.out.println("max is " + max);
System.out.println("number " + number);

}
}

4.5 What is the output of the following code? Explain the reason.

int x = 80000000;

while (x > 0)
x++;

System.out.println("x is " + x);

4.3 The do-while Loop
A do-while loop is the same as a while loop except that it executes the loop body
first and then checks the loop continuation condition.

The do-while loop is a variation of the while loop. Its syntax is:

do {
// Loop body;
Statement(s);

} while (loop-continuation-condition);

Its execution flowchart is shown in Figure 4.2.
The loop body is executed first, and then the loop-continuation-condition is evalu-

ated. If the evaluation is true, the loop body is executed again; if it is false, the do-while
loop terminates. The difference between a while loop and a do-while loop is the order in
which the loop-continuation-condition is evaluated and the loop body executed. You
can write a loop using either the while loop or the do-while loop. Sometimes one is a more
convenient choice than the other. For example, you can rewrite the while loop in Listing 4.5
using a do-while loop, as shown in Listing 4.6.

LISTING 4.6 TestDoWhile.java
1 import java.util.Scanner;
2
3 public class TestDoWhile {

Key
Point

do-while loop

4.3 The do-while Loop 145

4 /** Main method */
5 public static void main(String[] args) {
6 int data;
7 int sum = 0;
8
9 // Create a Scanner
10 Scanner input = new Scanner(System.in);
11
12 // Keep reading data until the input is 0
13
14 // Read the next data
15 System.out.print(
16 "Enter an integer (the input ends if it is 0): ");
17 data = input.nextInt();
18
19 sum += data;
20
21
22 System.out.println("The sum is " + sum);
23 }
24 }

} while (data != 0);

do {

true

false

loop-
continuation-

condition?

Statement(s)
(loop body)

FIGURE 4.2 The do-while loop executes the loop body first, then checks the loop-
continuation-condition to determine whether to continue or terminate the loop.

Enter an integer (the input ends if it is 0):
Enter an integer (the input ends if it is 0):
Enter an integer (the input ends if it is 0):
Enter an integer (the input ends if it is 0):
The sum is 14

0
6
5
3

Tip
Use the do-while loop if you have statements inside the loop that must be executed
at least once, as in the case of the do-while loop in the preceding TestDoWhile
program. These statements must appear before the loop as well as inside it if you use a
while loop.

loop

end loop

146 Chapter 4 Loops

Key
Point

✓Point✓Check 4.6 Suppose the input is 2 3 4 5 0. What is the output of the following code?

import java.util.Scanner;

public class Test {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

int number, max;
number = input.nextInt();
max = number;

do {
number = input.nextInt();
if (number > max)
max = number;

} while (number != 0);

System.out.println("max is " + max);
System.out.println("number " + number);

}
}

4.7 What are the differences between a while loop and a do-while loop? Convert the
following while loop into a do-while loop.

Scanner input = new Scanner(System.in);
int sum = 0;
System.out.println("Enter an integer " +
"(the input ends if it is 0)");

int number = input.nextInt();
while (number != 0) {
sum += number;
System.out.println("Enter an integer " +
"(the input ends if it is 0)");

number = input.nextInt();
}

4.4 The for Loop
A for loop has a concise syntax for writing loops.

Often you write a loop in the following common form:

i = initialValue; // Initialize loop control variable
while (i < endValue) {
// Loop body
...
i++; // Adjust loop control variable

}

A for loop can be used to simplify the preceding loop as:

for (i = initialValue; i < endValue; i++) {
// Loop body
...

}

4.4 The for Loop 147

Statement(s)
(loop body)

(a)

Initial-Action

action-after-each-iteration

true

false
loop-

continuation-
condition?

System.out.println(
 "Welcome to Java");

(b)

i = 0

i++

true

false
(i < 100)?

FIGURE 4.3 A for loop performs an initial action once, then repeatedly executes the
statements in the loop body, and performs an action after an iteration when the loop-
continuation-condition evaluates to true.

In general, the syntax of a for loop is:

for (initial-action; loop-continuation-condition;
action-after-each-iteration) {

// Loop body;
Statement(s);

}

The flowchart of the for loop is shown in Figure 4.3a.

The for loop statement starts with the keyword for, followed by a pair of parentheses
enclosing the control structure of the loop. This structure consists of initial-action,
loop-continuation-condition, and action-after-each-iteration. The control
structure is followed by the loop body enclosed inside braces. The initial-action, loop-
continuation-condition, and action-after-each-iteration are separated by
semicolons.

A for loop generally uses a variable to control how many times the loop body is executed
and when the loop terminates. This variable is referred to as a control variable. The initial-
action often initializes a control variable, the action-after-each-iteration usually
increments or decrements the control variable, and the loop-continuation-condition
tests whether the control variable has reached a termination value. For example, the following
for loop prints Welcome to Java! a hundred times:

int i;
for (i = 0; i < 100; i++) {
System.out.println("Welcome to Java!");

}

for loop

control variable

148 Chapter 4 Loops

The flowchart of the statement is shown in Figure 4.3b. The for loop initializes i to 0, then
repeatedly executes the println statement and evaluates i++ while i is less than 100.

The initial-action, i = 0, initializes the control variable, i. The loop-
continuation-condition, i < 100, is a Boolean expression. The expression is evaluated
right after the initialization and at the beginning of each iteration. If this condition is true,
the loop body is executed. If it is false, the loop terminates and the program control turns to
the line following the loop.

The action-after-each-iteration, i++, is a statement that adjusts the control vari-
able. This statement is executed after each iteration and increments the control variable. Even-
tually, the value of the control variable should force the loop-continuation-condition
to become false; otherwise, the loop is infinite.

The loop control variable can be declared and initialized in the for loop. Here is an example:

for (; i < 100; i++) {
System.out.println("Welcome to Java!");

}

If there is only one statement in the loop body, as in this example, the braces can be omitted.

Tip
The control variable must be declared inside the control structure of the loop or before
the loop. If the loop control variable is used only in the loop, and not elsewhere, it is
good programming practice to declare it in the initial-action of the for loop. If
the variable is declared inside the loop control structure, it cannot be referenced outside
the loop. In the preceding code, for example, you cannot reference i outside the for
loop, because it is declared inside the for loop.

Note
The initial-action in a for loop can be a list of zero or more comma-separated
variable declaration statements or assignment expressions. For example:

for (; (i + j < 10); i++, j++) {
// Do something

}

The action-after-each-iteration in a for loop can be a list of zero or more
comma-separated statements. For example:

for (int i = 1; i < 100;);

This example is correct, but it is a bad example, because it makes the code difficult to
read. Normally, you declare and initialize a control variable as an initial action and incre-
ment or decrement the control variable as an action after each iteration.

Note
If the loop-continuation-condition in a for loop is omitted, it is implicitly
true. Thus the statement given below in (a), which is an infinite loop, is the same
as in (b). To avoid confusion, though, it is better to use the equivalent loop in (c).

System.out.println(i), i++

int i = 0, j = 0

int i = 0

initial-action

action-after-each-iteration

omitting braces

declare control variable

for loop variations

for (; ;) {
// Do something

}

(a) (b)

Equivalent

(c)

Equivalent

This is better

for (; true;) {
// Do something

}

while (true) {
// Do something

}

4.4 The for Loop 149

✓Point✓Check
4.8 Do the following two loops result in the same value in sum?

4.9 What are the three parts of a for loop control? Write a for loop that prints the num-
bers from 1 to 100.

4.10 Suppose the input is 2 3 4 5 0. What is the output of the following code?

import java.util.Scanner;

public class Test {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

int number, sum = 0, count;

for (count = 0; count < 5; count++) {
number = input.nextInt();
sum += number;

}

System.out.println("sum is " + sum);
System.out.println("count is " + count);

}
}

4.11 What does the following statement do?

for (; ;) {
// Do something

}

4.12 If a variable is declared in the for loop control, can it be used after the loop exits?

4.13 Convert the following for loop statement to a while loop and to a do-while loop:

long sum = 0;
for (int i = 0; i <= 1000; i++)
sum = sum + i;

4.14 Count the number of iterations in the following loops.

for (int i = 0; i < 10;) {
sum += i;

}

++i

(a) (b)

for (int i = 0; i < 10;) {
sum += i;

}

i++

int count = 0;
while (count < n) {
count++;

}

(a) (b)

for (int count = 0;
count <= n; count++) {

}

int count = 5;
while (count < n) {
count++;

}

(c) (d)

int count = 5;
while (count < n) {
count = count + 3;

}

150 Chapter 4 Loops

Key
Point

4.5 Which Loop to Use?
You can use a for loop, a while loop, or a do-while loop, whichever is convenient.

The while loop and for loop are called pretest loops because the continuation condition is
checked before the loop body is executed. The do-while loop is called a posttest loop
because the condition is checked after the loop body is executed. The three forms of loop
statements—while, do-while, and for—are expressively equivalent; that is, you can write
a loop in any of these three forms. For example, a while loop in (a) in the following figure
can always be converted into the for loop in (b).

A for loop in (a) in the next figure can generally be converted into the while loop in (b)
except in certain special cases (see Checkpoint Question 4.23 for such a case).

pretest loop

posttest loop

while (loop-continuation-condition) {
// Loop body

}

(a) (b)

for (; loop-continuation-condition;) {
// Loop body

}

Equivalent

for (initial-action;
loop-continuation-condition;
action-after-each-iteration) {

// Loop body;
}

(a) (b)

initial-action;
while (loop-continuation-condition) {
// Loop body;
action-after-each-iteration;

}

Equivalent

Use the loop statement that is most intuitive and comfortable for you. In general, a for
loop may be used if the number of repetitions is known in advance, as, for example, when you
need to display a message a hundred times. A while loop may be used if the number of rep-
etitions is not fixed, as in the case of reading the numbers until the input is 0. A do-while
loop can be used to replace a while loop if the loop body has to be executed before the con-
tinuation condition is tested.

Caution
Adding a semicolon at the end of the for clause before the loop body is a common mistake,
as shown below in (a). In (a), the semicolon signifies the end of the loop prematurely. The
loop body is actually empty, as shown in (b). (a) and (b) are equivalent. Both are incorrect.

for (int i = 0; i < 10; i++)
{
System.out.println("i is " + i);

}

;

(a) (b)

for (int i = 0; i < 10; i++)
{
System.out.println("i is " + i);

}

{ };

Error Empty body

int i = 0;
while (i < 10)
{
System.out.println("i is " + i);
i++;

}

;

(c) (d)

int i = 0;
while (i < 10)
{
System.out.println("i is " + i);
i++;

}

{ };

Error Empty body

Similarly, the loop in (c) is also wrong. (c) is equivalent to (d). Both are incorrect.

4.5 Which Loop to Use? 151

These errors often occur when you use the next-line block style. Using the end-of-line
block style can avoid errors of this type.

In the case of the do-while loop, the semicolon is needed to end the loop.

4.15 Can you convert a for loop to a while loop? List the advantages of using for loops.

4.16 Can you always convert a while loop into a for loop? Convert the following while
loop into a for loop.

int i = 1;
int sum = 0;
while (sum < 10000) {
sum = sum + i;
i++;

}

4.17 Identify and fix the errors in the following code:

1 public class Test {
2 public void main(String[] args) {
3 for (int i = 0; i < 10; i++);
4 sum += i;
5
6 if (i < j);
7 System.out.println(i)
8 else

9 System.out.println(j);
10
11 while (j < 10);
12 {
13 j++;
14 }
15
16 do {
17 j++;
18 } while (j < 10)
19 }
20 }

4.18 What is wrong with the following programs?

int i = 0;
do {
System.out.println("i is " + i);
i++;

} while (i < 10);

1 public class ShowErrors {
2 public static void main(String[] args) {
3 int i;
4 int j = 5;
5
6 if (j > 3)
7 System.out.println(i + 4);
8 }
9 }

(a) (b)

1 public class ShowErrors {
2 public static void main(String[] args) {
3 for (int i = 0; i < 10; i++);
4 System.out.println(i + 4);
5 }
6 }

✓Point✓Check

Correct

152 Chapter 4 Loops

Key
Point

nested loop

table title

outer loop

inner loop

Multiplication Table
1 2 3 4 5 6 7 8 9

———————————————————————————————————————-
1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18
3 | 3 6 9 12 15 18 21 24 27
4 | 4 8 12 16 20 24 28 32 36
5 | 5 10 15 20 25 30 35 40 45
6 | 6 12 18 24 30 36 42 48 54
7 | 7 14 21 28 35 42 49 56 63
8 | 8 16 24 32 40 48 56 64 72
9 | 9 18 27 36 45 54 63 72 81

4.6 Nested Loops
A loop can be nested inside another loop.

Nested loops consist of an outer loop and one or more inner loops. Each time the outer loop is
repeated, the inner loops are reentered, and started anew.

Listing 4.7 presents a program that uses nested for loops to display a multiplication table.

LISTING 4.7 MultiplicationTable.java
1 public class MultiplicationTable {
2 /** Main method */
3 public static void main(String[] args) {
4 // Display the table heading
5 System.out.println(" Multiplication Table");
6
7 // Display the number title
8 System.out.print(" ");
9 for (int j = 1; j <= 9; j++)
10 System.out.print(" " + j);
11
12 System.out.println("\n———————————————————————————————————————");
13
14 // Display table body
15
16 System.out.print(i + " | ");
17
18 // Display the product and align properly
19 System.out.printf("%4d", i * j);
20 }
21 System.out.println();
22 }
23 }
24 }

for (int j = 1; j <= 9; j++) {

for (int i = 1; i <= 9; i++) {

The program displays a title (line 5) on the first line in the output. The first for loop (lines
9–10) displays the numbers 1 through 9 on the second line. A dashed (-) line is displayed on
the third line (line 12).

The next loop (lines 15–22) is a nested for loop with the control variable i in the outer
loop and j in the inner loop. For each i, the product i * j is displayed on a line in the inner
loop, with j being 1, 2, 3, ..., 9.

4.6 Nested Loops 153

Note
Be aware that a nested loop may take a long time to run. Consider the following loop
nested in three levels:

for (int i = 0; i < 10000; i++)
for (int j = 0; j < 10000; j++)
for (int k = 0; k < 10000; k++)
Perform an action

The action is performed one trillion times. If it takes 1 microsecond to perform the action,
the total time to run the loop would be more than 277 hours. Note that 1 microsecond is
one millionth (10– 6) of a second.

4.19 How many times is the println statement executed?

for (int i = 0; i < 10; i++)
for (int j = 0; j < i; j++)
System.out.println(i * j)

4.20 Show the output of the following programs. (Hint: Draw a table and list the variables
in the columns to trace these programs.)

public class Test {
public static void main(String[] args) {
int i = 5;
while (i >= 1) {
int num = 1;
for (int j = 1; j <= i; j++) {
System.out.print(num + "xxx");
num *= 2;

}

System.out.println();
i——;

}
}

}

(c) (d)

public class Test {
public static void main(String[] args) {
int i = 1;
do {
int num = 1;
for (int j = 1; j <= i; j++) {
System.out.print(num + "G");
num += 2;

}

System.out.println();
i++;

} while (i <= 5);
}

}

public class Test {
/** Main method */
public static void main(String[] args) {
for (int i = 1; i < 5; i++) {
int j = 0;
while (j < i) {
System.out.print(j + " ");
j++;

}
}

}
}

(a) (b)

public class Test {
/** Main method */
public static void main(String[] args) {
int i = 0;
while (i < 5) {
for (int j = i; j > 1; j——)
System.out.print(j + " ");

System.out.println("****");
i++;

}
}

}

✓Point✓Check

154 Chapter 4 Loops

4.7 Minimizing Numeric Errors
Using floating-point numbers in the loop continuation condition may cause numeric errors.

Numeric errors involving floating-point numbers are inevitable. This section discusses how to
minimize such errors through an example.

Listing 4.8 presents an example summing a series that starts with 0.01 and ends with 1.0.
The numbers in the series will increment by 0.01, as follows: 0.01 + 0.02 + 0.03, and so on.

LISTING 4.8 TestSum.java
1 public class TestSum {
2 public static void main(String[] args) {
3 // Initialize sum
4 float sum = 0;
5
6 // Add 0.01, 0.02, ..., 0.99, 1 to sum
7
8 sum += i;
9
10 // Display result
11 System.out.println("The sum is " + sum);
12 }
13 }

for (float i = 0.01f; i <= 1.0f; i = i + 0.01f)

Key
Point

Minimize numeric errors
VideoNote

loop

The sum is 50.499985

The for loop (lines 7–8) repeatedly adds the control variable i to sum. This variable, which
begins with 0.01, is incremented by 0.01 after each iteration. The loop terminates when i
exceeds 1.0.

The for loop initial action can be any statement, but it is often used to initialize a control
variable. From this example, you can see that a control variable can be a float type. In fact,
it can be any data type.

The exact sum should be 50.50, but the answer is 50.499985. The result is imprecise
because computers use a fixed number of bits to represent floating-point numbers, and thus
they cannot represent some floating-point numbers exactly. If you change float in the pro-
gram to double, as follows, you should see a slight improvement in precision, because a
double variable holds 64 bits, whereas a float variable holds 32 bits.

// Initialize sum
sum = 0;

// Add 0.01, 0.02, ..., 0.99, 1 to sum
for (i = 0.01; i <= 1.0; i = i + 0.01)
sum += i;

However, you will be stunned to see that the result is actually 49.50000000000003. What
went wrong? If you display i for each iteration in the loop, you will see that the last i is
slightly larger than 1 (not exactly 1). This causes the last i not to be added into sum. The
fundamental problem is that the floating-point numbers are represented by approximation. To
fix the problem, use an integer count to ensure that all the numbers are added to sum. Here is
the new loop:

double currentValue = 0.01;

for {(int count = 0; count < 100; count++)

double

double

double precision

numeric error

4.8 Case Studies 155

Key
Point

sum += currentValue;
currentValue += 0.01;

}

After this loop, sum is 50.50000000000003. This loop adds the numbers from smallest to
biggest. What happens if you add numbers from biggest to smallest (i.e., 1.0, 0.99, 0.98,
. . . , 0.02, 0.01 in this order) as follows:

double currentValue = 1.0;

for {
sum += currentValue;
currentValue -= 0.01;

}

After this loop, sum is 50.49999999999995. Adding from biggest to smallest is less
accurate than adding from smallest to biggest. This phenomenon is an artifact of the finite-
precision arithmetic. Adding a very small number to a very big number can have no effect
if the result requires more precision than the variable can store. For example, the inaccu-
rate result of 100000000.0 + 0.000000001 is 100000000.0. To obtain more accurate
results, carefully select the order of computation. Adding smaller numbers before bigger
numbers is one way to minimize errors.

4.8 Case Studies
Loops are fundamental in programming. The ability to write loops is essential in
learning Java programming.

If you can write programs using loops, you know how to program! For this reason, this section
presents three additional examples of solving problems using loops.

4.8.1 Case Study: Finding the Greatest Common Divisor
The greatest common divisor (gcd) of the two integers 4 and 2 is 2. The greatest common
divisor of the two integers 16 and 24 is 8. How do you find the greatest common divisor? Let
the two input integers be n1 and n2. You know that number 1 is a common divisor, but it may
not be the greatest common divisor. So, you can check whether k (for k 2, 3, 4, and so on)
is a common divisor for n1 and n2, until k is greater than n1 or n2. Store the common divisor
in a variable named gcd. Initially, gcd is 1. Whenever a new common divisor is found, it
becomes the new gcd. When you have checked all the possible common divisors from 2 up to
n1 or n2, the value in variable gcd is the greatest common divisor. The idea can be translated
into the following loop:

int gcd = 1; // Initial gcd is 1
int k = 2; // Possible gcd

while (k <= n1 && k <= n2) {
if (n1 % k == 0 && n2 % k == 0)
gcd = k; // Update gcd

k++; // Next possible gcd
}

// After the loop, gcd is the greatest common divisor for n1 and n2

Listing 4.9 presents the program that prompts the user to enter two positive integers and
finds their greatest common divisor.

=

(int count = 0; count < 100; count++)

avoiding numeric error

gcd

156 Chapter 4 Loops

erroneous solutions

LISTING 4.9 GreatestCommonDivisor.java
1 import java.util.Scanner;
2
3 public class GreatestCommonDivisor {
4 /** Main method */
5 public static void main(String[] args) {
6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8
9 // Prompt the user to enter two integers
10 System.out.print("Enter first integer: ");
11
12 System.out.print("Enter second integer: ");
13
14
15 // Initial gcd is 1
16 int k = 2; // Possible gcd
17 while (k <= n1 && k <= n2) {
18
19 gcd = k; // Update gcd
20 k++;
21 }
22
23 System.out.println("The greatest common divisor for " + n1 +
24 " and " + n2 + " is " + gcd);
25 }
26 }

if (n1 % k == 0 && n2 % k == 0)

int gcd = 1;

int n2 = input.nextInt();

int n1 = input.nextInt();input

input

gcd

check divisor

output

Enter first integer:
Enter second integer:
The greatest common divisor for 125 and 2525 is 25

2525
125

How would you write this program? Would you immediately begin to write the code? No.
It is important to think before you type. Thinking enables you to generate a logical solution for
the problem without concern about how to write the code. Once you have a logical solution,
type the code to translate the solution into a Java program. The translation is not unique. For
example, you could use a for loop to rewrite the code as follows:

for (int k = 2; k <= n1 && k <= n2; k++) {
if (n1 % k == 0 && n2 % k == 0)
gcd = k;

}

A problem often has multiple solutions, and the gcd problem can be solved in many ways.
Programming Exercise 4.14 suggests another solution. A more efficient solution is to use the
classic Euclidean algorithm (see www.cut-the-knot.org/blue/Euclid.shtml for more information).

You might think that a divisor for a number n1 cannot be greater than n1 / 2 and would
attempt to improve the program using the following loop:

for (int k = 2; k <= && k <= ; k++) {
if (n1 % k == 0 && n2 % k == 0)
gcd = k;

}

n2 / 2n1 / 2

think before you type

multiple solutions

www.cut-the-knot.org/blue/Euclid.shtml

4.8 Case Studies 157

This revision is wrong. Can you find the reason? See Checkpoint Question 4.21 for the
answer.

4.8.2 Case Study: Predicting the Future Tuition
Suppose that the tuition for a university is $10,000 this year and tuition increases 7% every
year. In how many years will the tuition be doubled?

Before you can write a program to solve this problem, first consider how to solve it by
hand. The tuition for the second year is the tuition for the first year * 1.07. The tuition for a
future year is the tuition of its preceding year * 1.07. Thus, the tuition for each year can be
computed as follows:

double tuition = 10000; int year = 0; // Year 0
tuition = tuition * 1.07; year++; // Year 1
tuition = tuition * 1.07; year++; // Year 2
tuition = tuition * 1.07; year++; // Year 3
...

Keep computing the tuition for a new year until it is at least 20000. By then you will know
how many years it will take for the tuition to be doubled. You can now translate the logic into
the following loop:

double tuition = 10000; // Year 0
int year = 0;
while (tuition < 20000) {
tuition = tuition * 1.07;
year++;

}

The complete program is shown in Listing 4.10.

LISTING 4.10 FutureTuition.java
1 public class FutureTuition {
2 public static void main(String[] args) {
3 double tuition = 10000; // Year 0
4 int year = 0;
5
6 tuition = tuition * 1.07;
7 year++;
8 }
9
10 System.out.println("Tuition will be doubled in "
11 + year + " years");
12 System.out.printf("Tuition will be $%.2f in %1d years",
13 tuition, year);
14 }
15 }

while (tuition < 20000) { loop
next year’s tuition

Tuition will be doubled in 11 years
Tuition will be $21048.52 in 11 years

The while loop (lines 5–8) is used to repeatedly compute the tuition for a new year. The
loop terminates when the tuition is greater than or equal to 20000.

158 Chapter 4 Loops

4.8.3 Case Study: Monte Carlo Simulation
Monte Carlo simulation uses random numbers and probability to solve problems. This
method has a wide range of applications in computational mathematics, physics, chemistry,
and finance. This section gives an example of using Monte Carlo simulation for estimating

To estimate using the Monte Carlo method, draw a circle with its bounding square as
shown below.

p

p.

The program repeatedly generates a random point (x, y) in the square in lines 7–8:

double x = Math.random() * 2.0 - 1;
double y = Math.random() * 2.0 - 1;

If the point is inside the circle and numberOfHits is incremented by 1.
is approximately 4 * numberOfHits / NUMBER_OF_TRIALS (line 13).

px2 + y2 … 1,

generate random points

check inside circle

estimate pi

PI is 3.14124

1

–1

–1

1
x

y

Assume the radius of the circle is 1. Therefore, the circle area is and the square area is 4.
Randomly generate a point in the square. The probability for the point to fall in the circle is
circleArea / squareArea = π / 4.

Write a program that randomly generates 1,000,000 points in the square and let
numberOfHits denote the number of points that fall in the circle. Thus, numberOfHits is
approximately 1000000 * (π / 4). π can be approximated as 4 * numberOfHits /
1000000. The complete program is shown in Listing 4.11.

LISTING 4.11 MonteCarloSimulation.java
1 public class MonteCarloSimulation {
2 public static void main(String[] args) {
3 final int NUMBER_OF_TRIALS = 10000000;
4 int numberOfHits = 0;
5
6 for (int i = 0; i < NUMBER_OF_TRIALS; i++) {
7
8 double y = Math.random() * 2.0 - 1;
9 if (x * x + y * y <= 1)
10
11 }
12
13
14 System.out.println("PI is " + pi);
15 }
16 }

double pi = 4.0 * numberOfHits / NUMBER_OF_TRIALS;

numberOfHits++;

double x = Math.random() * 2.0 - 1;

p

4.9 Keywords break and continue 159

4.21 Will the program work if n1 and n2 are replaced by n1 / 2 and n2 / 2 in line 17
in Listing 4.9?

4.9 Keywords break and continue
The break and continue keywords provide additional controls in a loop.

Pedagogical Note
Two keywords, break and continue, can be used in loop statements to provide addi-
tional controls. Using break and continue can simplify programming in some cases.
Overusing or improperly using them, however, can make programs difficult to read and
debug. (Note to instructors: You may skip this section without affecting students’ under-
standing of the rest of the book.)

You have used the keyword break in a switch statement. You can also use break in a loop
to immediately terminate the loop. Listing 4.12 presents a program to demonstrate the effect
of using break in a loop.

LISTING 4.12 TestBreak.java
1 public class TestBreak {
2 public static void main(String[] args) {
3 int sum = 0;
4 int number = 0;
5
6 while (number < 20) {
7 number++;
8 sum += number;
9 if (sum >= 100)
10 ;
11 }
12
13 System.out.println("The number is " + number);
14 System.out.println("The sum is " + sum);
15 }
16 }

break

✓Point✓Check

Key
Point

break statement

break

The number is 14
The sum is 105

The program in Listing 4.12 adds integers from 1 to 20 in this order to sum until sum is
greater than or equal to 100. Without the if statement (line 9), the program calculates the
sum of the numbers from 1 to 20. But with the if statement, the loop terminates when sum
becomes greater than or equal to 100. Without the if statement, the output would be:

The number is 20
The sum is 210

You can also use the continue keyword in a loop. When it is encountered, it ends the cur-
rent iteration and program control goes to the end of the loop body. In other words, continue
breaks out of an iteration while the break keyword breaks out of a loop. Listing 4.13 presents
a program to demonstrate the effect of using continue in a loop.

continue statement

160 Chapter 4 Loops

LISTING 4.13 TestContinue.java
1 public class TestContinue {
2 public static void main(String[] args) {
3 int sum = 0;
4 int number = 0;
5
6 while (number < 20) {
7 number++;
8 if (number == 10 || number == 11)
9 continue;
10 sum += number;
11 }
12
13 System.out.println("The sum is " + sum);
14 }
15 }

continue

The sum is 189

The program in Listing 4.13 adds integers from 1 to 20 except 10 and 11 to sum. With the
if statement in the program (line 8), the continue statement is executed when number
becomes 10 or 11. The continue statement ends the current iteration so that the rest of the
statement in the loop body is not executed; therefore, number is not added to sum when it is
10 or 11. Without the if statement in the program, the output would be as follows:

The sum is 210

In this case, all of the numbers are added to sum, even when number is 10 or 11. Therefore,
the result is 210, which is 21 more than it was with the if statement.

Note
The continue statement is always inside a loop. In the while and do-while loops,
the loop-continuation-condition is evaluated immediately after the continue
statement. In the for loop, the action-after-each-iteration is performed,
then the loop-continuation-condition is evaluated, immediately after the
continue statement.

You can always write a program without using break or continue in a loop (see Check-
point Question 4.24). In general, though, using break and continue is appropriate if it sim-
plifies coding and makes programs easier to read.

Suppose you need to write a program to find the smallest factor other than 1 for an integer
n (assume n >= 2). You can write a simple and intuitive code using the break statement as
follows:

int factor = 2;
while (factor <= n) {
if (n % factor == 0)

factor++;
}

break;

4.9 Keywords break and continue 161

✓Point✓Check

System.out.println("The smallest factor other than 1 for "
+ n + " is " + factor);

You may rewrite the code without using break as follows:

int factor = 2;
while (factor <= n &&) {
if (n % factor == 0)

else

factor++;
}
System.out.println("The smallest factor other than 1 for "
+ n + " is " + factor);

Obviously, the break statement makes this program simpler and easier to read in this case.
However, you should use break and continue with caution. Too many break and
continue statements will produce a loop with many exit points and make the program diffi-
cult to read.

Note
Some programming languages have a goto statement. The goto statement indiscrimi-
nately transfers control to any statement in the program and executes it. This makes
your program vulnerable to errors. The break and continue statements in Java are
different from goto statements. They operate only in a loop or a switch statement.
The break statement breaks out of the loop, and the continue statement breaks out
of the current iteration in the loop.

4.22 What is the keyword break for? What is the keyword continue for? Will the fol-
lowing programs terminate? If so, give the output.

found = true;

!found

boolean found = false;

goto

int balance = 10;
while (true) {
if (balance < 9)
break;

balance = balance - 9;
}

System.out.println("Balance is "
+ balance);

(a) (b)

int balance = 10;
while (true) {
if (balance < 9)
continue;

balance = balance - 9;
}

System.out.println("Balance is "
+ balance);

4.23 The for loop on the left is converted into the while loop on the right. What is
wrong? Correct it.

for (int i = 0; i < 4; i++) {
if (i % 3 == 0) continue;
sum += i;

}

Converted

Wrong conversion

int i = 0;
while (i < 4) {
if (i % 3 == 0) continue;
sum += i;
i++;

}

162 Chapter 4 Loops

Key
Point

4.24 Rewrite the programs TestBreak and TestContinue in Listings 4.12 and 4.13
without using break and continue.

4.25 After the break statement in (a) is executed in the following loop, which statement is
executed? Show the output. After the continue statement in (b) is executed in the
following loop, which statement is executed? Show the output.

4.10 Case Study: Displaying Prime Numbers
This section presents a program that displays the first fifty prime numbers in five lines,
each containing ten numbers.

An integer greater than 1 is prime if its only positive divisor is 1 or itself. For example, 2, 3,
5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.

The problem is to display the first 50 prime numbers in five lines, each of which contains
ten numbers. The problem can be broken into the following tasks:

■ Determine whether a given number is prime.

■ For number = 2, 3, 4, 5, 6, ..., test whether it is prime.

■ Count the prime numbers.

■ Display each prime number, and display ten numbers per line.

Obviously, you need to write a loop and repeatedly test whether a new number is prime. If
the number is prime, increase the count by 1. The count is 0 initially. When it reaches 50,
the loop terminates.

Here is the algorithm for the problem:

Set the number of prime numbers to be printed as
a constant NUMBER_OF_PRIMES;

Use count to track the number of prime numbers and
set an initial count to 0;

Set an initial number to 2;

Test whether number is prime;

if number is prime {
Display the prime number and increase the count;

}

Increment number by 1;
}

while (count < NUMBER_OF_PRIMES) {

for (int i = 1; i < 4; i++) {
for (int j = 1; j < 4; j++) {
if (i * j > 2)
break;

System.out.println(i * j);
}

System.out.println(i);
}

(a) (b)

for (int i = 1; i < 4; i++) {
for (int j = 1; j < 4; j++) {
if (i * j > 2)
continue;

System.out.println(i * j);
}

System.out.println(i);
}

4.10 Case Study: Displaying Prime Numbers 163

To test whether a number is prime, check whether it is divisible by 2, 3, 4, and so on up to
number/2. If a divisor is found, the number is not a prime. The algorithm can be described as
follows:

Use a boolean variable isPrime to denote whether
the number is prime; Set isPrime to true initially;

for (int divisor = 2; divisor <= number / 2; divisor++) {
if (number % divisor == 0) {
Set isPrime to false
Exit the loop;

}
}

The complete program is given in Listing 4.14.

LISTING 4.14 PrimeNumber.java
1 public class PrimeNumber {
2 public static void main(String[] args) {
3 final int NUMBER_OF_PRIMES = 50; // Number of primes to display
4 final int NUMBER_OF_PRIMES_PER_LINE = 10; // Display 10 per line
5 int count = 0; // Count the number of prime numbers
6 int number = 2; // A number to be tested for primeness
7
8 System.out.println("The first 50 prime numbers are \n");
9
10 // Repeatedly find prime numbers
11
12 // Assume the number is prime
13 boolean isPrime = true; // Is the current number prime?
14
15 // Test whether number is prime
16
17 if (number % divisor == 0) { // If true, number is not prime
18 isPrime = false; // Set isPrime to false
19 break; // Exit the for loop
20 }
21
22
23 // Display the prime number and increase the count
24 if (isPrime) {
25 count++; // Increase the count
26
27 if (count % NUMBER_OF_PRIMES_PER_LINE == 0) {
28 // Display the number and advance to the new line
29 System.out.println(number);
30 }
31 else

32 System.out.print(number + " ");
33 }
34
35 // Check if the next number is prime
36 number++;
37
38 }
39 }

}

}

for (int divisor = 2; divisor <= number / 2; divisor++) {

while (count < NUMBER_OF_PRIMES) { count prime numbers

check primeness

exit loop

display if prime

164 Chapter 4 Loops

The first 50 prime numbers are
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

This is a complex program for novice programmers. The key to developing a program-
matic solution for this problem, and for many other problems, is to break it into
subproblems and develop solutions for each of them in turn. Do not attempt to develop a
complete solution in the first trial. Instead, begin by writing the code to determine whether
a given number is prime, then expand the program to test whether other numbers are prime
in a loop.

To determine whether a number is prime, check whether it is divisible by a number
between 2 and number/2 inclusive (lines 16–21). If so, it is not a prime number (line 18);
otherwise, it is a prime number. For a prime number, display it. If the count is divisible by 10
(lines 27–30), advance to a new line. The program ends when the count reaches 50.

The program uses the break statement in line 19 to exit the for loop as soon as the num-
ber is found to be a nonprime. You can rewrite the loop (lines 16–21) without using the break
statement, as follows:

for (int divisor = 2;
divisor++) {

// If true, the number is not prime
if (number % divisor == 0) {
// Set isPrime to false, if the number is not prime
isPrime = false;

}
}

However, using the break statement makes the program simpler and easier to read in this case.

4.11 Controlling a Loop with a Confirmation Dialog
You can use a confirmation dialog to prompt the user to confirm whether to continue
or exit a loop.

A sentinel-controlled loop can be implemented using a confirmation dialog. The answers Yes
or No continue or terminate the loop. The template of the loop may look as follows:

int option = JOptionPane.YES_OPTION;
while (option == JOptionPane.YES_OPTION) {
System.out.println("continue loop");
option = JOptionPane.showConfirmDialog(null, "Continue?");

}

Listing 4.15 rewrites Listing 4.5, SentinelValue.java, using a confirmation dialog box. A
sample run is shown in Figure 4.4.

LISTING 4.15 SentinelValueUsingConfirmationDialog.java
1 import javax.swing.JOptionPane;
2
3 public class SentinelValueUsingConfirmationDialog {
4 public static void main(String[] args) {
5 int sum = 0;

divisor <= number / 2 && isPrime;

subproblem

Key
Point

confirmation dialog

Key Terms 165

6
7 // Keep reading data until the user answers No
8 int option = JOptionPane.YES_OPTION;
9 while (option == JOptionPane.YES_OPTION) {
10 // Read the next data
11 String dataString = JOptionPane.showInputDialog(
12 "Enter an integer: ");
13 int data = Integer.parseInt(dataString);
14
15 sum += data;
16
17 option = JOptionPane.showConfirmDialog(null, "Continue?");
18 }
19
20 JOptionPane.showMessageDialog(null, "The sum is " + sum);
21 }
22 }

(a) (b)

(c) (d) (e)

FIGURE 4.4 The user enters 3 in (a), clicks Yes in (b), enters 5 in (c), clicks No in (d), and the result is shown in (e).

confirmation option
check option

input dialog

confirmation dialog

message dialog

The program displays an input dialog to prompt the user to enter an integer (line 11) and
adds it to sum (line 15). Line 17 displays a confirmation dialog to let the user decide whether
to continue the input. If the user clicks Yes, the loop continues; otherwise, the loop exits.
Finally, the program displays the result in a message dialog box (line 20).

The showConfirmDialog method (line 17) returns an integer JOptionPane.YES_OPTION,
JOptionPane.NO_OPTION, or JOptionPane.CANCEL_OPTION, if the user clicks Yes,
No, or Cancel. The return value is assigned to the variable option (line 17). If this value is
JOptionPane.YES_OPTION, the loop continues (line 9).

KEY TERMS

break statement 159
continue statement 159
do-while loop 144
for loop 147
infinite loop 136
input redirection 143
iteration 134
loop 134

loop body 134
nested loop 152
off-by-one error 136
output redirection 143
posttest loop 150
pretest loop 150
sentinel value 141
while loop 134

166 Chapter 4 Loops

CHAPTER SUMMARY

1. There are three types of repetition statements: the while loop, the do-while loop,
and the for loop.

2. The part of the loop that contains the statements to be repeated is called the loop body.

3. A one-time execution of a loop body is referred to as an iteration of the loop.

4. An infinite loop is a loop statement that executes infinitely.

5. In designing loops, you need to consider both the loop control structure and the loop body.

6. The while loop checks the loop-continuation-condition first. If the condition
is true, the loop body is executed; if it is false, the loop terminates.

7. The do-while loop is similar to the while loop, except that the do-while loop exe-
cutes the loop body first and then checks the loop-continuation-condition to
decide whether to continue or to terminate.

8. The while loop and the do-while loop often are used when the number of repetitions
is not predetermined.

9. A sentinel value is a special value that signifies the end of the loop.

10. The for loop generally is used to execute a loop body a predictable number of times;
this number is not determined by the loop body.

11. The for loop control has three parts. The first part is an initial action that often initial-
izes a control variable. The second part, the loop-continuation-condition,
determines whether the loop body is to be executed. The third part is executed after
each iteration and is often used to adjust the control variable. Usually, the loop control
variables are initialized and changed in the control structure.

12. The while loop and for loop are called pretest loops because the continuation condi-
tion is checked before the loop body is executed.

13. The do-while loop is called a posttest loop because the condition is checked after the
loop body is executed.

14. Two keywords, break and continue, can be used in a loop.

15. The break keyword immediately ends the innermost loop, which contains the break.

16. The continue keyword only ends the current iteration.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Pedagogical Note
Read each problem several times until you understand it. Think how to solve the prob-
lem before starting to write code. Translate your logic into a program.

A problem often can be solved in many different ways. Students are encouraged to
explore various solutions.

read and think before coding

explore solutions

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 167

Sections 4.2–4.7
*4.1 (Count positive and negative numbers and compute the average of numbers) Write

a program that reads an unspecified number of integers, determines how many
positive and negative values have been read, and computes the total and average of
the input values (not counting zeros). Your program ends with the input 0. Display
the average as a floating-point number. Here is a sample run:

Enter an integer, the input ends if it is 0:
The number of positives is 3
The number of negatives is 1
The total is 5
The average is 1.25

1 2 -1 3 0

Enter an integer, the input ends if it is 0:
No numbers are entered except 0

0

4.2 (Repeat additions) Listing 4.4, SubtractionQuizLoop.java, generates five ran-
dom subtraction questions. Revise the program to generate ten random addition
questions for two integers between 1 and 15. Display the correct count and test
time.

4.3 (Conversion from kilograms to pounds) Write a program that displays the follow-
ing table (note that 1 kilogram is 2.2 pounds):

Kilograms Pounds
1 2.2
3 6.6
...

197 433.4
199 437.8

4.4 (Conversion from miles to kilometers) Write a program that displays the following
table (note that 1 mile is 1.609 kilometers):

Miles Kilometers
1 1.609
2 3.218
...

9 14.481
10 16.090

4.5 (Conversion from kilograms to pounds and pounds to kilograms) Write a program
that displays the following two tables side by side (note that 1 kilogram is 2.2
pounds and that 1 pound is .453 kilograms):

Kilograms Pounds | Pounds Kilograms
1 2.2 | 20 9.09
3 6.6 | 25 11.36
...

197 433.4 | 510 231.82
199 437.8 | 515 234.09

168 Chapter 4 Loops

4.6 (Conversion from miles to kilometers) Write a program that displays the following
two tables side by side (note that 1 mile is 1.609 kilometers and that 1 kilometer is
.621 miles):

Miles Kilometers | Kilometers Miles
1 1.609 | 20 12.430
2 3.218 | 25 15.538
...

9 14.481 | 60 37.290
10 16.090 | 65 40.398

**4.7 (Financial application: compute future tuition) Suppose that the tuition for a uni-
versity is $10,000 this year and increases 5% every year. Write a program that
computes the tuition in ten years and the total cost of four years’ worth of tuition
starting ten years from now.

4.8 (Find the highest score) Write a program that prompts the user to enter the number
of students and each student’s name and score, and finally displays the name of the
student with the highest score.

*4.9 (Find the two highest scores) Write a program that prompts the user to enter
the number of students and each student’s name and score, and finally displays the
student with the highest score and the student with the second-highest score.

4.10 (Find numbers divisible by 5 and 6) Write a program that displays all the numbers
from 100 to 1,000, ten per line, that are divisible by 5 and 6. Numbers are sepa-
rated by exactly one space.

4.11 (Find numbers divisible by 5 or 6, but not both) Write a program that displays all
the numbers from 100 to 200, ten per line, that are divisible by 5 or 6, but not both.
Numbers are separated by exactly one space.

4.12 (Find the smallest n such that n2 12,000) Use a while loop to find the smallest
integer n such that n2 is greater than 12,000.

4.13 (Find the largest n such that n3 12,000) Use a while loop to find the largest
integer n such that n3 is less than 12,000.

Sections 4.8–4.10
*4.14 (Compute the greatest common divisor) Another solution for Listing 4.9 to find

the greatest common divisor of two integers n1 and n2 is as follows: First find d to
be the minimum of n1 and n2, then check whether d, d-1, d-2, ..., 2, or 1 is a
divisor for both n1 and n2 in this order. The first such common divisor is the great-
est common divisor for n1 and n2. Write a program that prompts the user to enter
two positive integers and displays the gcd.

*4.15 (Display the ASCII character table) Write a program that prints the characters in
the ASCII character table from ! to ~. Display ten characters per line. The ASCII
table is shown in Appendix B. Characters are separated by exactly one space.

*4.16 (Find the factors of an integer) Write a program that reads an integer and displays
all its smallest factors in increasing order. For example, if the input integer is 120,
the output should be as follows: 2, 2, 2, 3, 5.

**4.17 (Display pyramid) Write a program that prompts the user to enter an integer from
1 to 15 and displays a pyramid, as shown in the following sample run:

6

7

Programming Exercises 169

Enter the number of lines:
1

2 1 2
3 2 1 2 3

4 3 2 1 2 3 4
5 4 3 2 1 2 3 4 5

6 5 4 3 2 1 2 3 4 5 6
7 6 5 4 3 2 1 2 3 4 5 6 7

7

*4.18 (Display four patterns using loops) Use nested loops that display the following
patterns in four separate programs:

Pattern A Pattern B Pattern C Pattern D

1 1 2 3 4 5 6 1 1 2 3 4 5 6

1 2 1 2 3 4 5 2 1 1 2 3 4 5

1 2 3 1 2 3 4 3 2 1 1 2 3 4

1 2 3 4 1 2 3 4 3 2 1 1 2 3

1 2 3 4 5 1 2 5 4 3 2 1 1 2

1 2 3 4 5 6 1 6 5 4 3 2 1 1

**4.19 (Display numbers in a pyramid pattern) Write a nested for loop that prints the
following output:

1

1 2 1

1 2 4 2 1

1 2 4 8 4 2 1

1 2 4 8 16 8 4 2 1

1 2 4 8 16 32 16 8 4 2 1

1 2 4 8 16 32 64 32 16 8 4 2 1

1 2 4 8 16 32 64 128 64 32 16 8 4 2 1

*4.20 (Display prime numbers between 2 and 1,000) Modify Listing 4.14 to display all
the prime numbers between 2 and 1,000, inclusive. Display eight prime numbers
per line. Numbers are separated by exactly one space.

Comprehensive
**4.21 (Financial application: compare loans with various interest rates) Write a pro-

gram that lets the user enter the loan amount and loan period in number of years
and displays the monthly and total payments for each interest rate starting from
5% to 8%, with an increment of 1/8. Here is a sample run:

Loan Amount:
Number of Years:
Interest Rate Monthly Payment Total Payment

5.000% 188.71 11322.74
5.125% 189.28 11357.13
5.250% 189.85 11391.59
...

7.875% 202.17 12129.97
8.000% 202.76 12165.83

5
10000

For the formula to compute monthly payment, see Listing 2.8, ComputeLoan.java.

170 Chapter 4 Loops

Display loan schedule
VideoNote

Loan Amount: 10000
Number of Years: 1
Annual Interest Rate: 7

Monthly Payment: 865.26
Total Payment: 10383.21

Payment# Interest Principal Balance
1 58.33 806.93 9193.07
2 53.62 811.64 8381.43
...

11 10.0 855.26 860.27
12 5.01 860.25 0.01

Note
The balance after the last payment may not be zero. If so, the last payment should be
the normal monthly payment plus the final balance.

Hint: Write a loop to display the table. Since the monthly payment is the same for
each month, it should be computed before the loop. The balance is initially the
loan amount. For each iteration in the loop, compute the interest and principal, and
update the balance. The loop may look like this:

for (i = 1; i <= numberOfYears * 12; i++) {
interest = monthlyInterestRate * balance;
principal = monthlyPayment - interest;
balance = balance - principal;
System.out.println(i + "\t\t" + interest
+ "\t\t" + principal + "\t\t" + balance);

}

*4.23 (Obtain more accurate results) In computing the following series, you will obtain
more accurate results by computing from right to left rather than from left to right:

Write a program that computes the results of the summation of the preceding
series from left to right and from right to left with n = 50000.

*4.24 (Sum a series) Write a program to sum the following series:

1

3
+

3

5
+

5

7
+

7

9
+

9

11
+

11

13
+ c +

95

97
+

97

99

1 +
1

2
+

1

3
+ c +

1
n

Sum a series
VideoNote

**4.22 (Financial application: loan amortization schedule) The monthly payment for a
given loan pays the principal and the interest. The monthly interest is computed by
multiplying the monthly interest rate and the balance (the remaining principal).
The principal paid for the month is therefore the monthly payment minus the
monthly interest. Write a program that lets the user enter the loan amount, number
of years, and interest rate and displays the amortization schedule for the loan. Here
is a sample run:

Programming Exercises 171

**4.25 (Compute) You can approximate by using the following series:

Write a program that displays the value for i = 10000, 20000, ..., and
100000.

**4.26 (Compute e) You can approximate e using the following series:

Write a program that displays the e value for i = 10000, 20000, ..., and

100000. (Hint: Because then

Initialize e and item to be 1 and keep adding a new item to e. The new item is
the previous item divided by i for i = 2, 3, 4,)

**4.27 (Display leap years) Write a program that displays all the leap years, ten per line,
in the twenty-first century (from 2001 to 2100), separated by exactly one space.

**4.28 (Display the first days of each month) Write a program that prompts the user to
enter the year and first day of the year, and displays the first day of each month in
the year on the console. For example, if the user entered the year 2013, and 2 for
Tuesday, January 1, 2013, your program should display the following output:

January 1, 2013 is Tuesday
...
December 1, 2013 is Sunday

**4.29 (Display calendars) Write a program that prompts the user to enter the year and
first day of the year and displays the calendar table for the year on the console. For
example, if the user entered the year 2013, and 2 for Tuesday, January 1, 2013,
your program should display the calendar for each month in the year, as follows:

1

i!
 is

1

i(i - 1)!

i! = i * (i - 1) * c * 2 * 1,

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ c +

1

i!

p

p = 4¢1 -
1

3
+

1

5
-

1

7
+

1

9
-

1

11
+ c +

(- ˛1)i+1

2i - 1
≤

pp

January 2013

Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5

6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

December 2013

Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

.

.

.

172 Chapter 4 Loops

*4.30 (Financial application: compound value) Suppose you save $100 each month into
a savings account with the annual interest rate 5%. So, the monthly interest rate is
0.05 / 12 = 0.00417. After the first month, the value in the account becomes

100 * (1 + 0.00417) = 100.417

After the second month, the value in the account becomes

(100 + 100.417) * (1 + 0.00417) = 201.252

After the third month, the value in the account becomes

(100 + 201.252) * (1 + 0.00417) = 302.507

and so on.

Write a program that prompts the user to enter an amount (e.g., 100), the annual
interest rate (e.g., 5), and the number of months (e.g., 6) and displays the amount
in the savings account after the given month.

*4.31 (Financial application: compute CD value) Suppose you put $10,000 into a CD
with an annual percentage yield of 5.75%. After one month, the CD is worth

10000 + 10000 * 5.75 / 1200 = 10047.91

After two months, the CD is worth

10047.91 + 10047.91 * 5.75 / 1200 = 10096.06

After three months, the CD is worth

10096.06 + 10096.06 * 5.75 / 1200 = 10144.43

and so on.

Write a program that prompts the user to enter an amount (e.g., 10000), the annual
percentage yield (e.g., 5.75), and the number of months (e.g., 18) and displays a
table as shown in the sample run.

Enter the initial deposit amount:
Enter annual percentage yield:
Enter maturity period (number of months):

Month CD Value
1 10047.91
2 10096.06
...

17 10846.56
18 10898.54

18
5.75

10000

**4.32 (Game: lottery) Revise Listing 3.9, Lottery.java, to generate a lottery of a two-
digit number. The two digits in the number are distinct. (Hint: Generate the first
digit. Use a loop to continuously generate the second digit until it is different from
the first digit.)

Programming Exercises 173

**4.33 (Perfect number) A positive integer is called a perfect number if it is equal to the
sum of all of its positive divisors, excluding itself. For example, 6 is the first per-
fect number because 6 = 3 + 2 + 1. The next is 28 = 14 + 7 + 4 + 2 +
1. There are four perfect numbers less than 10,000. Write a program to find all
these four numbers.

***4.34 (Game: scissor, rock, paper) Exercise 3.17 gives a program that plays the scissor-
rock-paper game. Revise the program to let the user continuously play until
either the user or the computer wins more than two times.

*4.35 (Summation) Write a program to compute the following summation.

**4.36 (Business application: checking ISBN) Use loops to simplify Exercise 3.9.

**4.37 (Decimal to binary) Write a program that prompts the user to enter a decimal
integer and displays its corresponding binary value. Don’t use Java’s
Integer.toBinaryString(int) in this program.

**4.38 (Decimal to hex) Write a program that prompts the user to enter a decimal inte-
ger and displays its corresponding hexadecimal value. Don’t use Java’s
Integer.toHexString(int) in this program.

*4.39 (Financial application: find the sales amount) You have just started a sales job in
a department store. Your pay consists of a base salary and a commission. The
base salary is $5,000. The scheme shown below is used to determine the com-
mission rate.

1

1 + 22
+

122 + 23
+

123 + 24
+ c +

12624 + 2625

Sales Amount Commission Rate

$0.01–$5,000 8 percent
$5,000.01–$10,000 10 percent
$10,000.01 and above 12 percent

Your goal is to earn $30,000 a year. Write a program that finds out the minimum
number of sales you have to generate in order to make $30,000.

4.40 (Simulation: heads or tails) Write a program that simulates flipping a coin one
million times and displays the number of heads and tails.

**4.41 (Occurrence of max numbers) Write a program that reads integers, finds the
largest of them, and counts its occurrences. Assume that the input ends with
number 0. Suppose that you entered 3 5 2 5 5 5 0; the program finds that the
largest is 5 and the occurrence count for 5 is 4.

(Hint: Maintain two variables, max and count. max stores the current max num-
ber, and count stores its occurrences. Initially, assign the first number to max
and 1 to count. Compare each subsequent number with max. If the number is
greater than max, assign it to max and reset count to 1. If the number is equal to
max, increment count by 1.)

Enter numbers:
The largest number is 5
The occurrence count of the largest number is 4

3 5 2 5 5 5 0

174 Chapter 4 Loops

*4.42 (Financial application: find the sales amount) Rewrite Exercise 4.39 as follows:

■ Use a for loop instead of a do-while loop.
■ Let the user enter COMMISSION_SOUGHT instead of fixing it as a constant.

*4.43 (Simulation: clock countdown) Write a program that prompts the user to enter the
number of seconds, displays a message at every second, and terminates when the
time expires. Here is a sample run:

Enter the number of seconds:
2 seconds remaining
1 second remaining
Stopped

3

**4.44 (Monte Carlo simulation) A square is divided into four smaller regions as shown
below in (a). If you throw a dart into the square 1,000,000 times, what is the prob-
ability for a dart to fall into an odd-numbered region? Write a program to simulate
the process and display the result.

(Hint: Place the center of the square in the center of a coordinate system, as shown
in (b). Randomly generate a point in the square and count the number of times for
a point to fall into an odd-numbered region.)

1

4

3
2

(a)

1
4

3
2

(b)

*4.45 (Math: combinations) Write a program that displays all possible combinations for
picking two numbers from integers 1 to 7. Also display the total number of all
combinations.

1 2
1 3
...
...

The total number of all combinations is 21

*4.46 (Computer architecture: bit-level operations) A short value is stored in 16 bits.
Write a program that prompts the user to enter a short integer and displays the 16
bits for the integer. Here are sample runs:

Enter an integer:
The bits are 0000000000000101

5

Programming Exercises 175

Enter an integer:
The bits are 1111111111111011

-5

(Hint: You need to use the bitwise right shift operator (>>) and the bitwise AND
operator (&), which are covered in Appendix G, Bitwise Operations.)

**4.47 (Statistics: compute mean and standard deviation) In business applications, you
are often asked to compute the mean and standard deviation of data. The mean is
simply the average of the numbers. The standard deviation is a statistic that tells
you how tightly all the various data are clustered around the mean in a set of data.
For example, what is the average age of the students in a class? How close are the
ages? If all the students are the same age, the deviation is 0.

Write a program that prompts the user to enter ten numbers, and displays the mean
and standard deviations of these numbers using the following formula:

Here is a sample run:

mean =
a

n

i=1
x i

n
=

x1 + x2 + . . . + xn

n
 deviation = ca

n

i=1
x i

2 -
¢an

i=1
x i≤2

n

n - 1

Enter ten numbers:
The mean is 5.61
The standard deviation is 2.99794

1 2 3 4.5 5.6 6 7 8 9 10

This page intentionally left blank

METHODS

Objectives
■ To define methods with formal parameters (§5.2).

■ To invoke methods with actual parameters (i.e., arguments) (§5.2).

■ To define methods with a return value (§5.3).

■ To define methods without a return value (§5.4).

■ To pass arguments by value (§5.5).

■ To develop reusable code that is modular, easy to read, easy to debug, and
easy to maintain (§5.6).

■ To write a method that converts decimals to hexadecimals (§5.7).

■ To use method overloading and understand ambiguous overloading (§5.8).

■ To determine the scope of variables (§5.9).

■ To solve mathematics problems using the methods in the Math class
(§§5.10–5.11).

■ To apply the concept of method abstraction in software development (§5.12).

■ To design and implement methods using stepwise refinement (§5.12).

CHAPTER

5

178 Chapter 5 Methods

Key
Point

Key
Point

5.1 Introduction
Methods can be used to define reusable code and organize and simplify code.

Suppose that you need to find the sum of integers from 1 to 10, from 20 to 37, and from 35
to 49, respectively. You may write the code as follows:

int sum = 0;
for (int i = 1; i <= 10; i++)
sum += i;

System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;
for (int i = 20; i <= 37; i++)
sum += i;

System.out.println("Sum from 20 to 37 is " + sum);

sum = 0;
for (int i = 35; i <= 49; i++)
sum += i;

System.out.println("Sum from 35 to 49 is " + sum);

You may have observed that computing these sums from 1 to 10, from 20 to 37, and from
35 to 49 are very similar except that the starting and ending integers are different. Wouldn’t it
be nice if we could write the common code once and reuse it? We can do so by defining a
method and invoking it.

The preceding code can be simplified as follows:

1 public static int {
2 int result = 0;
3 for (int i = i1; i <= i2; i++)
4 result += i;
5
6
7 }
8
9 public static void main(String[] args) {

10 System.out.println("Sum from 1 to 10 is " +);
11 System.out.println("Sum from 20 to 37 is " +);
12 System.out.println("Sum from 35 to 49 is " +);
13 }

Lines 1–7 define the method named sum with two parameters i1 and i2. The statements in
the main method invoke sum(1, 10) to compute the sum from 1 to 10, sum(20, 37) to
compute the sum from 20 to 37, and sum(35, 49) to compute the sum from 35 to 49.

A method is a collection of statements grouped together to perform an operation. In earlier
chapters you have used predefined methods such as System.out.println,
JOptionPane.showMessageDialog, System.exit, Math.pow, and Math.random.
These methods are defined in the Java library. In this chapter, you will learn how to define
your own methods and apply method abstraction to solve complex problems.

5.2 Defining a Method
A method definition consists of its method name, parameters, return value type, and body.

The syntax for defining a method is:

modifier returnValueType methodName(list of parameters) {
// Method body;

}

sum(35, 49)
sum(20, 37)
sum(1, 10)

return result;

sum(int i1, int i2)

problem

why methods?

define sum method

main method
invoke sum

method

Mujahid
Highlight

Mujahid
Highlight

5.2 Defining a Method 179

Let’s look at a method defined to find the larger between two integers. This method, named
max, has two int parameters, num1 and num2, the larger of which is returned by the method.
Figure 5.1 illustrates the components of this method.

The method header specifies the modifiers, return value type, method name, and
parameters of the method. The static modifier is used for all the methods in this chapter.
The reason for using it will be discussed in Chapter 8, Objects and Classes.

A method may return a value. The returnValueType is the data type of the value the
method returns. Some methods perform desired operations without returning a value. In this
case, the returnValueType is the keyword void. For example, the returnValueType is
void in the main method, as well as in System.exit, System.out.println, and
JOptionPane.showMessageDialog. If a method returns a value, it is called a value-
returning method, otherwise it is called a void method.

The variables defined in the method header are known as formal parameters or simply
parameters. A parameter is like a placeholder: When a method is invoked, you pass a value to
the parameter. This value is referred to as an actual parameter or argument. The parameter
list refers to the method’s type, order, and number of the parameters. The method name and
the parameter list together constitute the method signature. Parameters are optional; that is, a
method doesn’t have to contain any parameters. For example, the Math.random() method
has no parameters.

The method body contains a collection of statements that implement the method. The
method body of the max method uses an if statement to determine which number is larger
and return the value of that number. In order for a value-returning method to return a result, a
return statement using the keyword return is required. The method terminates when a return
statement is executed.

Note
Some programming languages refer to methods as procedures and functions. In those
languages, a value-returning method is called a function and a void method is called a
procedure.

Caution
In the method header, you need to declare each parameter separately. For instance,
max(int num1, int num2) is correct, but max(int num1, num2) is wrong.

method header
modifier

value-returning method

void method

formal parameter

parameter

actual parameter

argument

parameter list

method signature

Define a method Invoke a method

int z = max(x, y);

actual parameters
(arguments)

public static int max(int num1, int num2) {

int result;

if (num1 > num2)
result = num1;

else

result = num2;

return result;

}

modifier
return value

type
method
name

formal
parameters

return value

method
body

method
header

parameter list method
signature

FIGURE 5.1 A method definition consists of a method header and a method body.

Mujahid
Highlight

Mujahid
Highlight

Mujahid
Highlight

Mujahid
Highlight

Mujahid
Highlight

Mujahid
Highlight

Mujahid
Highlight

180 Chapter 5 Methods

Note
We say “define a method” and “declare a variable.” We are making a subtle distinction
here. A definition defines what the defined item is, but a declaration usually involves
allocating memory to store data for the declared item.

5.3 Calling a Method
Calling a method executes the code in the method.

In a method definition, you define what the method is to do. To execute the method, you have
to call or invoke it. There are two ways to call a method, depending on whether the method
returns a value or not.

If a method returns a value, a call to the method is usually treated as a value. For example,

int larger = max(3, 4);

calls max(3, 4) and assigns the result of the method to the variable larger. Another exam-
ple of a call that is treated as a value is

System.out.println(max(3, 4));

which prints the return value of the method call max(3, 4).
If a method returns void, a call to the method must be a statement. For example, the

method println returns void. The following call is a statement:

System.out.println("Welcome to Java!");

Note
A value-returning method can also be invoked as a statement in Java. In this case, the
caller simply ignores the return value. This is not often done, but it is permissible if the
caller is not interested in the return value.

When a program calls a method, program control is transferred to the called method. A called
method returns control to the caller when its return statement is executed or when its method-
ending closing brace is reached.

Listing 5.1 shows a complete program that is used to test the max method.

LISTING 5.1 TestMax.java
1 public class TestMax {
2 /** Main method */
3 public static void main(String[] args) {
4 int i = 5;
5 int j = 2;
6 int k = ;
7 System.out.println("The maximum of " + i +
8 " and " + j + " is " + k);
9 }
10
11 /** Return the max of two numbers */
12 {
13 int result;
14
15 if (num1 > num2)
16 result = num1;
17 else

18 result = num2;
19
20
21 }
22 }

return result;

public static int max(int num1, int num2)

max(i, j)

define vs. declare

Key
Point

Define/invoke max method

main method

invoke max

define method

VideoNote

5.3 Calling a Method 181

The maximum of 5 and 2 is 5

This program contains the main method and the max method. The main method is just like
any other method except that it is invoked by the JVM to start the program.

The main method’s header is always the same. Like the one in this example, it includes the
modifiers public and static, return value type void, method name main, and a parameter
of the String[] type. String[] indicates that the parameter is an array of String, a sub-
ject addressed in Chapter 6.

The statements in main may invoke other methods that are defined in the class that con-
tains the main method or in other classes. In this example, the main method invokes max(i,
j), which is defined in the same class with the main method.

When the max method is invoked (line 6), variable i’s value 5 is passed to num1, and vari-
able j’s value 2 is passed to num2 in the max method. The flow of control transfers to the max
method, and the max method is executed. When the return statement in the max method is
executed, the max method returns the control to its caller (in this case the caller is the main
method). This process is illustrated in Figure 5.2.

main method

max method

line# i j k num1 num2 result

4 5

5 2

Invoking max

12 5 2

13 undefined

16 5

6 5

public static void main(String[] args) {
int i = 5;
int j = 2;
int k = max(i, j);

 System.out.println(
"The maximum of " + i +
" and " + j + " is " + k);

}

pass the value j

pass the value i

public static int max(int num1, int num2) {
int result;

if (num1 > num2)
 result = num1;
else

 result = num2;

return result;
}

FIGURE 5.2 When the max method is invoked, the flow of control transfers to it. Once the max method is finished, it
returns control back to the caller.

Caution
A return statement is required for a value-returning method. The method shown
below in (a) is logically correct, but it has a compile error because the Java compiler
thinks that this method might not return a value.

182 Chapter 5 Methods

reusing method

activation record

call stack

Space required for
the main method

Space required for
the max method

k:
j: 2
i: 5

num2: 2
num1: 5

(a) The main
method is invoked.

Space required for
the main method

k:
j: 2
i: 5

(d) The max method is
finished and the return
value is sent to k.

Space required for
the main method

k: 5
j: 2
i: 5

Stack is empty

(b) The max
method is invoked.

(e) The main
method is finished.

Space required for
the main method

Space required for
the max method

k:
j: 2
i: 5

result: 5
num2: 2
num1: 5

(c) The max method
is being executed.

FIGURE 5.3 When the max method is invoked, the flow of control transfers to the max method. Once the max method is
finished, it returns control back to the caller.

public static int sign(int n) {
if (n > 0)

return 1;
else if (n == 0)

return 0;
else

return –1;
}

if (n < 0)

(a)

public static int sign(int n) {
if (n > 0)

return 1;
else if (n == 0)

return 0;
else

return –1;
}

(b)

Should be

To fix this problem, delete if (n < 0) in (a), so the compiler will see a return state-
ment to be reached regardless of how the if statement is evaluated.

Note
Methods enable code sharing and reuse. The max method can be invoked from any
class, not just TestMax. If you create a new class, you can invoke the max method
using ClassName.methodName (i.e., TestMax.max).

Each time a method is invoked, the system creates an activation record (also called an
activation frame) that stores parameters and variables for the method and places the activation
record in an area of memory known as a call stack. A call stack is also known as an execution
stack, runtime stack, or machine stack, and it is often shortened to just “the stack.” When a
method calls another method, the caller’s activation record is kept intact, and a new activation
record is created for the new method called. When a method finishes its work and returns to
its caller, its activation record is removed from the call stack.

A call stack stores the activation records in a last-in, first-out fashion: The activation record
for the method that is invoked last is removed first from the stack. For example, suppose
method m1 calls method m2, and then m3. The runtime system pushes m1’s activation record
into the stack, then m2’s, and then m3’s. After m3 is finished, its activation record is removed
from the stack. After m2 is finished, its activation record is removed from the stack. After m1
is finished, its activation record is removed from the stack.

Understanding call stacks helps you to comprehend how methods are invoked. The
variables defined in the main method in Listing 5.1 are i, j, and k. The variables defined
in the max method are num1, num2, and result. The variables num1 and num2 are defined
in the method signature and are parameters of the max method. Their values are passed
through method invocation. Figure 5.3 illustrates the activation records for method calls in
the stack.

5.4 void Method Example 183

Key
Point

5.4 void Method Example
A void method does not return a value.

The preceding section gives an example of a value-returning method. This section shows how
to define and invoke a void method. Listing 5.2 gives a program that defines a method named
printGrade and invokes it to print the grade for a given score.

LISTING 5.2 TestVoidMethod.java
1 public class TestVoidMethod {
2 public static void main(String[] args) {
3 System.out.print("The grade is ");
4
5
6 System.out.print("The grade is ");
7
8 }
9
10
11 if (score >= 90.0) {
12 System.out.println('A');
13 }
14 else if (score >= 80.0) {
15 System.out.println('B');
16 }
17 else if (score >= 70.0) {
18 System.out.println('C');
19 }
20 else if (score >= 60.0) {
21 System.out.println('D');
22 }
23 else {
24 System.out.println('F');
25 }
26 }
27 }

public static void printGrade(double score) {

printGrade(59.5);

printGrade(78.5);

Use void method

main method

invoke printGrade

printGrade method

The grade is C
The grade is F

The printGrade method is a void method because it does not return any value. A call to a
void method must be a statement. Therefore, it is invoked as a statement in line 4 in the main
method. Like any Java statement, it is terminated with a semicolon.

To see the differences between a void and value-returning method, let’s redesign the
printGrade method to return a value. The new method, which we call getGrade, returns
the grade as shown in Listing 5.3.

LISTING 5.3 TestReturnGradeMethod.java
1 public class TestReturnGradeMethod {
2 public static void main(String[] args) {
3 System.out.print("The grade is " +);
4 System.out.print("\nThe grade is " +);
5 }
6

getGrade(59.5)
getGrade(78.5)

VideoNote

invoke void method

void vs. value-returned

main method

invoke getGrade

184 Chapter 5 Methods

getGrade method

The grade is C
The grade is F

The getGrade method defined in lines 7–18 returns a character grade based on the numeric
score value. The caller invokes this method in lines 3–4.

The getGrade method can be invoked by a caller wherever a character may appear. The
printGrade method does not return any value, so it must be invoked as a statement.

Note
A return statement is not needed for a void method, but it can be used for terminat-
ing the method and returning to the method’s caller. The syntax is simply

return;

This is not often done, but sometimes it is useful for circumventing the normal flow of
control in a void method. For example, the following code has a return statement to
terminate the method when the score is invalid.

public static void printGrade(double score) {
if (score < 0 || score > 100) {
System.out.println("Invalid score");
return;

}

if (score >= 90.0) {
System.out.println('A');

}
else if (score >= 80.0) {
System.out.println('B');

}
else if (score >= 70.0) {
System.out.println('C');

}
else if (score >= 60.0) {
System.out.println('D');

}
else {
System.out.println('F');

}
}

return in void method

7
8 if (score >= 90.0)
9 return 'A';
10 else if (score >= 80.0)
11 return 'B';
12 else if (score >= 70.0)
13 return 'C';
14 else if (score >= 60.0)
15 return 'D';
16 else

17 return 'F';
18 }
19 }

public static char getGrade(double score) {

5.4 void Method Example 185

5.1 What are the benefits of using a method?

5.2 How do you define a method? How do you invoke a method?

5.3 How do you simplify the max method in Listing 5.1 using the conditional operator?

5.4 True or false? A call to a method with a void return type is always a statement itself,
but a call to a value-returning method cannot be a statement by itself.

5.5 What is the return type of a main method?

5.6 What would be wrong with not writing a return statement in a value-returning
method? Can you have a return statement in a void method? Does the return
statement in the following method cause syntax errors?

public static void xMethod(double x, double y) {
System.out.println(x + y);

}

5.7 Define the terms parameter, argument, and method signature.

5.8 Write method headers (not the bodies) for the following methods:

a. Compute a sales commission, given the sales amount and the commission rate.

b. Display the calendar for a month, given the month and year.

c. Compute a square root of a number.

d. Test whether a number is even, and returning true if it is.

e. Display a message a specified number of times.

f. Compute the monthly payment, given the loan amount, number of years, and
annual interest rate.

g. Find the corresponding uppercase letter, given a lowercase letter.

5.9 Identify and correct the errors in the following program:

1 public class Test {
2 public static method1(int n, m) {
3 n += m;
4 method2(3.4);
5 }
6
7 public static int method2(int n) {
8 if (n > 0) return 1;
9 else if (n == 0) return 0;
10 else if (n < 0) return –1;
11 }
12 }

5.10 Reformat the following program according to the programming style and documenta-
tion guidelines proposed in Section 1.10, Programming Style and Documentation.
Use the next-line brace style.

public class Test {
public static double method1(double i, double j)
{
while (i < j) {
j--;

}

return j;
}

}

return x + y;

✓Point✓Check

186 Chapter 5 Methods

5.5 Passing Parameters by Values
The arguments are passed by value to parameters when invoking a method.

The power of a method is its ability to work with parameters. You can use println to print
any string and max to find the maximum of any two int values. When calling a method, you
need to provide arguments, which must be given in the same order as their respective parame-
ters in the method signature. This is known as parameter order association. For example, the
following method prints a message n times:

public static void nPrintln(String message, int n) {
for (int i = 0; i < n; i++)
System.out.println(message);

}

You can use nPrintln("Hello", 3) to print Hello three times. The nPrintln("Hello",
3) statement passes the actual string parameter Hello to the parameter message, passes 3 to n,
and prints Hello three times. However, the statement nPrintln(3, "Hello") would be
wrong. The data type of 3 does not match the data type for the first parameter, message, nor
does the second argument, Hello, match the second parameter, n.

Caution
The arguments must match the parameters in order, number, and compatible type, as
defined in the method signature. Compatible type means that you can pass an argument
to a parameter without explicit casting, such as passing an int value argument to a
double value parameter.

When you invoke a method with an argument, the value of the argument is passed to the para-
meter. This is referred to as pass-by-value. If the argument is a variable rather than a literal
value, the value of the variable is passed to the parameter. The variable is not affected, regard-
less of the changes made to the parameter inside the method. As shown in Listing 5.4, the
value of x (1) is passed to the parameter n to invoke the increment method (line 5). The
parameter n is incremented by 1 in the method (line 10), but x is not changed no matter what
the method does.

LISTING 5.4 Increment.java
1 public class Increment {
2 public static void main(String[] args) {
3 int x = 1;
4 System.out.println("Before the call, x is " + x);
5
6 System.out.println("After the call, x is " + x);
7 }
8
9 public static void increment(int n) {
10
11 System.out.println("n inside the method is " + n);
12 }
13 }

n++;

increment(x);

Key
Point

parameter order association

pass-by-value

invoke increment

increment n

Before the call, x is 1
n inside the method is 2?
After the call, x is 1

Mujahid
Highlight

5.5 Passing Parameters by Values 187

Listing 5.5 gives another program that demonstrates the effect of passing by value. The pro-
gram creates a method for swapping two variables. The swap method is invoked by passing
two arguments. Interestingly, the values of the arguments are not changed after the method is
invoked.

LISTING 5.5 TestPassByValue.java
1 public class TestPassByValue {
2 /** Main method */
3 public static void main(String[] args) {
4 // Declare and initialize variables
5 int num1 = 1;
6 int num2 = 2;
7
8 System.out.println("Before invoking the swap method, num1 is " +
9 num1 + " and num2 is " + num2);
10
11 // Invoke the swap method to attempt to swap two variables
12
13
14 System.out.println("After invoking the swap method, num1 is " +
15 num1 + " and num2 is " + num2);
16 }
17
18 /** Swap two variables */
19 {
20 System.out.println("\tInside the swap method");
21 System.out.println("\t\tBefore swapping, n1 is " + n1
22 + " and n2 is " + n2);
23
24 // Swap n1 with n2
25 int temp = n1;
26 n1 = n2;
27 n2 = temp;
28
29 System.out.println("\t\tAfter swapping, n1 is " + n1
30 + " and n2 is " + n2);
31 }
32 }

public static void swap(int n1, int n2)

swap(num1, num2); false swap

Before invoking the swap method, num1 is 1 and num2 is 2
Inside the swap method
Before swapping, n1 is 1 and n2 is 2
After swapping, n1 is 2 and n2 is 1

After invoking the swap method, num1 is 1 and num2 is 2

Before the swap method is invoked (line 12), num1 is 1 and num2 is 2. After the swap method
is invoked, num1 is still 1 and num2 is still 2. Their values have not been swapped. As shown
in Figure 5.4, the values of the arguments num1 and num2 are passed to n1 and n2, but n1 and
n2 have their own memory locations independent of num1 and num2. Therefore, changes in
n1 and n2 do not affect the contents of num1 and num2.

Another twist is to change the parameter name n1 in swap to num1. What effect does this
have? No change occurs, because it makes no difference whether the parameter and the argu-
ment have the same name. The parameter is a variable in the method with its own memory
space. The variable is allocated when the method is invoked, and it disappears when the
method is returned to its caller.

188 Chapter 5 Methods

Note
For simplicity, Java programmers often say passing x to y, which actually means passing
the value of argument x to parameter y.

5.11 How is an argument passed to a method? Can the argument have the same name as its
parameter?

5.12 Identify and correct the errors in the following program:
1 public class Test {
2 public static void main(String[] args) {
3 nPrintln(5, "Welcome to Java!");
4 }
5
6 public static void nPrintln(String message, int n) {
7 int n = 1;
8 for (int i = 0; i < n; i++)
9 System.out.println(message);
10 }
11 }

5.13 What is pass-by-value? Show the result of the following programs.

✓Point✓Check

Space required for the
main method

Space required for the
swap method

The main method
is invoked.

Space required for the
main method

Space required for the
main method

num2: 2
num1: 1

num2: 2
num1: 1

Space required for the
swap method

num2: 2
num1: 1

The swap method
is invoked.

The swap method
is executed.

Space required for the
main method

num2: 2
num1: 1

The swap method
is finished.

Stack is empty

The main method
is finished.

The values of num1 and num2 are
passed to n1 and n2.

The values for n1 and n2 are
swapped, but it does not affect
num1 and num2.

n2: 2
n1: 1

temp:
n2: 1
n1: 2

temp:

FIGURE 5.4 The values of the variables are passed to the method’s parameters.

public class Test {
public static void main(String[] args) {

int max = 0;
max(1, 2, max);
System.out.println(max);

}

public static void max(
int value1, int value2, int max) {

if (value1 > value2)
max = value1;

else

max = value2;
}

}

(a)

public class Test {
public static void main(String[] args) {

int i = 1;
while (i <= 6) {
method1(i, 2);
i++;

}
}

public static void method1(
int i, int num) {

for (int j = 1; j <= i; j++) {
System.out.print(num + " ");
num *= 2;

}

System.out.println();
}

}

(b)

5.6 Modularizing Code 189

5.14 For (a) in the preceding question, show the contents of the activation records in the
call stack just before the method max is invoked, just as max is entered, just before
max is returned, and right after max is returned.

5.6 Modularizing Code
Modularizing makes the code easy to maintain and debug and enables the code to be
reused.

Methods can be used to reduce redundant code and enable code reuse. Methods can also be
used to modularize code and improve the quality of the program.

Listing 4.9 gives a program that prompts the user to enter two integers and displays
their greatest common divisor. You can rewrite the program using a method, as shown in
Listing 5.6.

LISTING 5.6 GreatestCommonDivisorMethod.java
1 import java.util.Scanner;
2
3 public class GreatestCommonDivisorMethod {
4 /** Main method */
5 public static void main(String[] args) {
6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8
9 // Prompt the user to enter two integers
10 System.out.print("Enter first integer: ");
11 int n1 = input.nextInt();
12 System.out.print("Enter second integer: ");
13 int n2 = input.nextInt();
14

public class Test {
public static void main(String[] args) {

// Initialize times
int times = 3;
System.out.println("Before the call,"
+ " variable times is " + times);

// Invoke nPrintln and display times
nPrintln("Welcome to Java!", times);
System.out.println("After the call,"
+ " variable times is " + times);

}

// Print the message n times
public static void nPrintln(

String message, int n) {
while (n > 0) {
System.out.println("n = " + n);
System.out.println(message);
n--;

}
}

}

(c)

public class Test {
public static void main(String[] args) {

int i = 0;
while (i <= 4) {
method1(i);
i++;

}

System.out.println("i is " + i);
}

public static void method1(int i) {
do {

if (i % 3 != 0)
System.out.print(i + " ");

i--;
}
while (i >= 1);

System.out.println();
}

}

(d)

Key
Point

Modularize code

VideoNote

190 Chapter 5 Methods

15 System.out.println("The greatest common divisor for " + n1 +
16 " and " + n2 + " is " +);
17 }
18
19 /** Return the gcd of two integers */
20
21 int gcd = 1; // Initial gcd is 1
22 int k = 2; // Possible gcd
23
24 while (k <= n1 && k <= n2) {
25 if (n1 % k == 0 && n2 % k == 0)
26 gcd = k; // Update gcd
27 k++;
28 }
29
30 // Return gcd
31 }
32 }

return gcd;

public static int gcd(int n1, int n2) {

gcd(n1, n2)invoke gcd

compute gcd

return gcd

Enter first integer:

Enter second integer:

The greatest common divisor for 45 and 75 is 15

75

45

By encapsulating the code for obtaining the gcd in a method, this program has several
advantages:

1. It isolates the problem for computing the gcd from the rest of the code in the main
method. Thus, the logic becomes clear and the program is easier to read.

2. The errors on computing the gcd are confined in the gcd method, which narrows the
scope of debugging.

3. The gcd method now can be reused by other programs.

Listing 5.7 applies the concept of code modularization to improve Listing 4.14, PrimeNum-
ber.java.

LISTING 5.7 PrimeNumberMethod.java
1 public class PrimeNumberMethod {
2 public static void main(String[] args) {
3 System.out.println("The first 50 prime numbers are \n");
4 printPrimeNumbers(50);
5 }
6
7 public static void printPrimeNumbers(int numberOfPrimes) {
8 final int NUMBER_OF_PRIMES_PER_LINE = 10; // Display 10 per line
9 int count = 0; // Count the number of prime numbers
10 int number = 2; // A number to be tested for primeness
11
12 // Repeatedly find prime numbers
13 while (count < numberOfPrimes) {
14 // Print the prime number and increase the count
15 if () {
16 count++; // Increase the count
17

isPrime(number)

invoke printPrimeNumbers

printPrimeNumbers
method

invoke isPrime

5.7 Case Study: Converting Decimals to Hexadecimals 191

18 if (count % NUMBER_OF_PRIMES_PER_LINE == 0) {
19 // Print the number and advance to the new line
20 System.out.printf("%-5s\n", number);
21 }
22 else

23 System.out.printf("%-5s", number);
24 }
25
26 // Check whether the next number is prime
27 number++;
28 }
29 }
30
31 /** Check whether number is prime */
32
33 for (int divisor = 2; divisor <= number / 2; divisor++) {
34 if (number % divisor == 0) { // If true, number is not prime
35 return false; // Number is not a prime
36 }
37 }
38
39 return true; // Number is prime
40 }
41 }

public static boolean isPrime(int number) {

The first 50 prime numbers are

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

We divided a large problem into two subproblems: determining whether a number is a prime
and printing the prime numbers. As a result, the new program is easier to read and easier to
debug. Moreover, the methods printPrimeNumbers and isPrime can be reused by other
programs.

5.7 Case Study: Converting Decimals to Hexadecimals
This section presents a program that converts a decimal number to a hexadecimal
number.

Hexadecimals are often used in computer systems programming (see Appendix F for an intro-
duction to number systems). To convert a decimal number d to a hexadecimal number is to
find the hexadecimal digits and such that

These hexadecimal digits can be found by successively dividing d by 16 until the quotient is
0. The remainders are and The hexadecimal digits include the
decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, plus A, which is the decimal value 10; B, which is
the decimal value 11; C, which is 12; D, which is 13; E, which is 14; and F, which is 15.

hn.h0, h1, h2, c , hn-2, hn-1,

+ h2 * 162 + h1 * 161 + h0 * 160

d = hn * 16n + hn-1 * 16n-1 + hn-2 * 16n-2 + c

h0hn, hn-1, hn-2, c , h2, h1,

isPrime method

Key
Point

192 Chapter 5 Methods

For example, the decimal number 123 is 7B in hexadecimal. The conversion is done as
follows. Divide 123 by 16. The remainder is 11 (B in hexadecimal) and the quotient is 7.
Continue to divide 7 by 16. The remainder is 7 and the quotient is 0. Therefore 7B is the hexa-
decimal number for 123.

Listing 5.8 gives a program that prompts the user to enter a decimal number and converts
it into a hex number as a string.

LISTING 5.8 Decimal2HexConversion.java
1 import java.util.Scanner;
2
3 public class Decimal2HexConversion {
4 /** Main method */
5 public static void main(String[] args) {
6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8
9 // Prompt the user to enter a decimal integer
10 System.out.print("Enter a decimal number: ");
11 int decimal = input.nextInt();
12
13 System.out.println("The hex number for decimal " +
14 decimal + " is " + decimalToHex(decimal));
15 }
16
17 /** Convert a decimal to a hex as a string */
18
19 String hex = "";
20
21 while (decimal != 0) {
22 int hexValue = decimal % 16;
23 hex = + hex;
24 decimal = decimal / 16;
25 }
26
27 return hex;
28 }
29
30 /** Convert an integer to a single hex digit in a character */
31
32 if (hexValue <= 9 && hexValue >= 0)
33 return ;
34 else // hexValue <= 15 && hexValue >= 10
35 return ;
36 }
37 }

(char)(hexValue - 10 + 'A')

(char)(hexValue + '0')

public static char toHexChar(int hexValue) {

toHexChar(hexValue)

public static String decimalToHex(int decimal) {

input decimal

decimal to hex

get a hex char

get a letter

Remainder

h0

Quotient

16 123

112
11

7

h1

16 7

0
7

0

5.8 Overloading Methods 193

Enter a decimal number:
The hex number for decimal 1234 is 4D2

1234

line# decimal hex hexValue toHexChar(hexValue)

19 1234 ""

22 2

iteration 1 23 "2" 2

24 77

22 13

iteration 2 23 "D2" D

24 4

22 4

iteration 3 23 "4D2" 4

24 0

The program uses the decimalToHex method (lines 18–28) to convert a decimal integer to a
hex number as a string. The method gets the remainder of the division of the decimal integer
by 16 (line 22). The remainder is converted into a character by invoking the toHexChar
method (line 23). The character is then appended to the hex string (line 23). The hex string is
initially empty (line 19). Divide the decimal number by 16 to remove a hex digit from the
number (line 24). The decimalToHex method repeatedly performs these operations in a loop
until quotient becomes 0 (lines 21–25).

The toHexChar method (lines 31–36) converts a hexValue between 0 and 15 into a hex
character. If hexValue is between 0 and 9, it is converted to (char)(hexValue + '0')
(line 33). Recall that when adding a character with an integer, the character’s Unicode is used in
the evaluation. For example, if hexValue is 5, (char)(hexValue + '0') returns 5. Simi-
larly, if hexValue is between 10 and 15, it is converted to (char)(hexValue - 10 +
'A') (line 35). For instance, if hexValue is 11, (char)(hexValue - 10 + 'A') returns B.

5.15 What is the return value from invoking toHexChar(5)? What is the return value
from invoking toHexChar(15)?

5.16 What is the return value from invoking decimalToHex(245)? What is the return
value from invoking decimalToHex(3245)?

5.8 Overloading Methods
Overloading methods enables you to define the methods with the same name as long
as their signatures are different.

The max method that was used earlier works only with the int data type. But what if you need to
determine which of two floating-point numbers has the maximum value? The solution is to cre-
ate another method with the same name but different parameters, as shown in the following code:

public static double max(double num1, double num2) {
if (num1 > num2)
return num1;

else

return num2;
}

✓Point✓Check

Key
Point

194 Chapter 5 Methods

method overloading

overloaded max

overloaded max

overloaded max

The maximum of 3 and 4 is 4
The maximum of 3.0 and 5.4 is 5.4
The maximum of 3.0, 5.4, and 10.14 is 10.14

If you call max with int parameters, the max method that expects int parameters will be
invoked; if you call max with double parameters, the max method that expects double para-
meters will be invoked. This is referred to as method overloading; that is, two methods have
the same name but different parameter lists within one class. The Java compiler determines
which method to use based on the method signature.

Listing 5.9 is a program that creates three methods. The first finds the maximum integer,
the second finds the maximum double, and the third finds the maximum among three double
values. All three methods are named max.

LISTING 5.9 TestMethodOverloading.java
1 public class TestMethodOverloading {
2 /** Main method */
3 public static void main(String[] args) {
4 // Invoke the max method with int parameters
5 System.out.println("The maximum of 3 and 4 is "
6 +);
7
8 // Invoke the max method with the double parameters
9 System.out.println("The maximum of 3.0 and 5.4 is "
10 +);
11
12 // Invoke the max method with three double parameters
13 System.out.println("The maximum of 3.0, 5.4, and 10.14 is "
14 +);
15 }
16
17 /** Return the max of two int values */
18 {
19 if (num1 > num2)
20 return num1;
21 else

22 return num2;
23 }
24
25 /** Find the max of two double values */
26 {
27 if (num1 > num2)
28 return num1;
29 else

30 return num2;
31 }
32
33 /** Return the max of three double values */
34 {
35 return max(max(num1, num2), num3);
36 }
37 }

public static double max(double num1, double num2, double num3)

public static double max(double num1, double num2)

public static int max(int num1, int num2)

max(3.0, 5.4, 10.14)

max(3.0, 5.4)

max(3, 4)

When calling max(3, 4) (line 6), the max method for finding the maximum of two integers
is invoked. When calling max(3.0, 5.4) (line 10), the max method for finding the maxi-
mum of two doubles is invoked. When calling max(3.0, 5.4, 10.14) (line 14), the max
method for finding the maximum of three double values is invoked.

5.8 Overloading Methods 195

Can you invoke the max method with an int value and a double value, such as max(2,
2.5)? If so, which of the max methods is invoked? The answer to the first question is yes. The
answer to the second question is that the max method for finding the maximum of two
double values is invoked. The argument value 2 is automatically converted into a double
value and passed to this method.

You may be wondering why the method max(double, double) is not invoked for the
call max(3, 4). Both max(double, double) and max(int, int) are possible matches
for max(3, 4). The Java compiler finds the most specific method for a method invocation.
Since the method max(int, int) is more specific than max(double, double),
max(int, int) is used to invoke max(3, 4).

Tip
Overloading methods can make programs clearer and more readable. Methods that perform
the same function with different types of parameters should be given the same name.

Note
Overloaded methods must have different parameter lists. You cannot overload methods
based on different modifiers or return types.

Note
Sometimes there are two or more possible matches for an invocation of a method, but
the compiler cannot determine the most specific match. This is referred to as ambiguous
invocation. Ambiguous invocation causes a compile error. Consider the following code:

public class AmbiguousOverloading {
public static void main(String[] args) {
System.out.println();

}

public static double {
if (num1 > num2)
return num1;

else
return num2;

}

public static double {
if (num1 > num2)
return num1;

else
return num2;

}
}

Both max(int, double) and max(double, int) are possible candidates to match
max(1, 2). Because neither is more specific than the other, the invocation is ambigu-
ous, resulting in a compile error.

5.17 What is method overloading? Is it permissible to define two methods that have the
same name but different parameter types? Is it permissible to define two methods in a
class that have identical method names and parameter lists but different return value
types or different modifiers?

5.18 What is wrong in the following program?

public class Test {
public static void method(int x) {
}

max(double num1, int num2)

max(int num1, double num2)

max(1, 2)

ambiguous invocation

✓Point✓Check

196 Chapter 5 Methods

Key
Point

The scope of j

The scope of i

public static void method1() {

.

.

.

.

.

.

.

for (int i = 1; i < 10; i++) {

int j;

}
}

FIGURE 5.5 A variable declared in the initial action part of a for-loop header has its scope
in the entire loop.

public static int method(int y) {
return y;

}
}

5.19 Given two method definitions,

public static double m(double x, double y)

public static double m(int x, double y)

tell which of the two methods is invoked for:

a. double z = m(4, 5);

b. double z = m(4, 5.4);

c. double z = m(4.5, 5.4);

5.9 The Scope of Variables
The scope of a variable is the part of the program where the variable can be
referenced.

Section 2.5 introduced the scope of a variable. This section discusses the scope of vari-
ables in more details. A variable defined inside a method is referred to as a local variable.
The scope of a local variable starts from its declaration and continues to the end of the
block that contains the variable. A local variable must be declared and assigned a value
before it can be used.

A parameter is actually a local variable. The scope of a method parameter covers the entire
method. A variable declared in the initial-action part of a for-loop header has its scope in
the entire loop. However, a variable declared inside a for-loop body has its scope limited
in the loop body from its declaration to the end of the block that contains the variable, as
shown in Figure 5.5.

scope of a variable

local variable

You can declare a local variable with the same name in different blocks in a method, but
you cannot declare a local variable twice in the same block or in nested blocks, as shown in
Figure 5.6.

5.10 The Math Class 197

Caution
Do not declare a variable inside a block and then attempt to use it outside the block.
Here is an example of a common mistake:

for (int i = 0; i < 10; i++) {
}

System.out.println(i);

The last statement would cause a syntax error, because variable i is not defined outside
of the for loop.

5.20 What is a local variable?

5.21 What is the scope of a local variable?

5.10 The Math Class
The Math class contains the methods needed to perform basic mathematical functions.

You have already used the pow(a, b) method to compute in Section 2.9.3, Exponent Oper-
ations, and the Math.random() method in Section 3.8, Generating Random Numbers. This
section introduces other useful methods in the Math class. They can be categorized as
trigonometric methods, exponent methods, and service methods. Service methods include the
rounding, min, max, absolute, and random methods. In addition to methods, the Math class pro-
vides two useful double constants, PI and E (the base of natural logarithms). You can use these
constants as Math.PI and Math.E in any program.

5.10.1 Trigonometric Methods
The Math class contains the following trigonometric methods:

/** Return the trigonometric sine of an angle in radians */
public static double sin(double radians)

/** Return the trigonometric cosine of an angle in radians */
public static double cos(double radians)

/** Return the trigonometric tangent of an angle in radians */
public static double tan(double radians)

ab

✓Point✓Check

Key
Point

It is fine to declare i in two
nonnested blocks.

It is wrong to declare i in two
nested blocks.

public static void method1() {
int x = 1;
int y = 1;

for (int i = 1; i < 10; i++) {
x += i;

}

for (int i = 1; i < 10; i++) {
y += i;

}
}

public static void method2() {

int i = 1;
int sum = 0;

for (int i = 1; i < 10; i++)
sum += i;

}

}

FIGURE 5.6 A variable can be declared multiple times in nonnested blocks, but only once in nested blocks.

198 Chapter 5 Methods

/** Convert the angle in degrees to an angle in radians */
public static double toRadians(double degree)

/** Convert the angle in radians to an angle in degrees */
public static double toDegrees(double radians)

/** Return the angle in radians for the inverse of sin */
public static double asin(double a)

/** Return the angle in radians for the inverse of cos */
public static double acos(double a)

/** Return the angle in radians for the inverse of tan */
public static double atan(double a)

The parameter for sin, cos, and tan is an angle in radians. The return value for asin, acos, and
atan is a degree in radians in the range between and One degree is equal to
in radians, 90 degrees is equal to in radians, and 30 degrees is equal to in radians.

For example,

Math.toDegrees(Math.PI / 2) returns 90.0

Math.toRadians(30) returns 0.5236 (same as π/6)
Math.sin(0) returns 0.0
Math.sin(Math.toRadians(270)) returns -1.0

Math.sin(Math.PI / 6) returns 0.5

Math.sin(Math.PI / 2) returns 1.0

Math.cos(0) returns 1.0

Math.cos(Math.PI / 6) returns 0.866

Math.cos(Math.PI / 2) returns 0

Math.asin(0.5) returns 0.523598333 (same as π/6)

5.10.2 Exponent Methods
There are five methods related to exponents in the Math class:

/** Return e raised to the power of x (ex) */
public static double exp(double x)

/** Return the natural logarithm of x (ln(x) = loge(x)) */
public static double log(double x)

/** Return the base 10 logarithm of x (log10(x)) */
public static double log10(double x)

/** Return a raised to the power of b (ab) */
public static double pow(double a, double b)

/** Return the square root of x for x >= 0 */
public static double sqrt(double x)

For example,

Math.exp(1) returns 2.71828

Math.log(Math.E) returns 1.0

Math.log10(10) returns 1.0

Math.pow(2, 3) returns 8.0

Math.pow(3, 2) returns 9.0

Math.pow(3.5, 2.5) returns 22.91765

2x

p/6p/2
p/180p/2.- ˛p/2

5.10 The Math Class 199

Math.sqrt(4) returns 2.0

Math.sqrt(10.5) returns 3.24

5.10.3 The Rounding Methods
The Math class contains five rounding methods:

/** x is rounded up to its nearest integer. This integer is
* returned as a double value. */

public static double ceil(double x)

/** x is rounded down to its nearest integer. This integer is
* returned as a double value. */

public static double floor(double x)

/** x is rounded to its nearest integer. If x is equally close
* to two integers, the even one is returned as a double. */

public static double rint(double x)

/** Return (int)Math.floor(x + 0.5). */
public static int round(float x)

/** Return (long)Math.floor(x + 0.5). */
public static long round(double x)

For example,

Math.ceil(2.1) returns 3.0

Math.ceil(2.0) returns 2.0

Math.ceil(-2.0) returns -2.0

Math.ceil(-2.1) returns -2.0

Math.floor(2.1) returns 2.0

Math.floor(2.0) returns 2.0

Math.floor(-2.0) returns -2.0

Math.floor(-2.1) returns -3.0

Math.rint(2.1) returns 2.0

Math.rint(-2.0) returns -2.0

Math.rint(-2.1) returns -2.0

Math.rint(2.5) returns 2.0

Math.rint(3.5) returns 4.0

Math.rint(-2.5) returns -2.0

Math.round(2.6f) returns 3 // Returns int
Math.round(2.0) returns 2 // Returns long
Math.round(-2.0f) returns -2 // Returns int
Math.round(-2.6) returns -3 // Returns long
Math.round(-2.4) returns -2 // Returns long

5.10.4 The min, max, and abs Methods
The min and max methods are overloaded to return the minimum and maximum numbers of
two numbers (int, long, float, or double). For example, max(3.4, 5.0) returns 5.0,
and min(3, 2) returns 2.

The abs method is overloaded to return the absolute value of the number (int, long,
float, or double). For example,

Math.max(2, 3) returns 3

Math.max(2.5, 3) returns 3.0

Math.min(2.5, 3.6) returns 2.5

200 Chapter 5 Methods

FIGURE 5.7 You can view the documentation for the Java API online.

Math.abs(-2) returns 2

Math.abs(-2.1) returns 2.1

5.10.5 The random Method
You have used the random() method to generate a random double value greater than or
equal to 0.0 and less than 1.0 (0 <= Math.random() < 1.0). This method is very useful.
You can use it to write a simple expression to generate random numbers in any range. For
example,

In general,

a + Math.random() * b Returns a random number between
a and a + b, excluding a + b

Tip
You can view the complete documentation for the Math class online at download
.oracle.com/javase/7/docs/api, as shown in Figure 5.7.

Note
Not all classes need a main method. The Math class and the JOptionPane class do
not have main methods. These classes contain methods for other classes to use.

(int) (Math.random() * 10)
Returns a random integer
between 0 and 9

50 + (int) (Math.random() * 50)
Returns a random integer
between 50 and 99

5.11 Case Study: Generating Random Characters 201

✓Point✓Check

Key
Point

5.22 True or false? The argument for trigonometric methods is an angle in radians.

5.23 Write an expression that obtains a random integer between 34 and 55. Write an
expression that obtains a random integer between 0 and 999. Write an expression that
obtains a random number between 5.5 and 55.5. Write an expression that obtains a
random lowercase letter.

5.24 Evaluate the following method calls:

a. Math.sqrt(4)

b. Math.sin(2 * Math.PI)

c. Math.cos(2 * Math.PI)

d. Math.pow(2, 2)

e. Math.log(Math.E)

f. Math.exp(1)

g. Math.max(2, Math.min(3, 4))

h. Math.rint(-2.5)

i. Math.ceil(-2.5)

j. Math.floor(-2.5)

k. Math.round(-2.5f)

l. Math.round(-2.5)

m. Math.rint(2.5)

n. Math.ceil(2.5)

o. Math.floor(2.5)

p. Math.round(2.5f)

q. Math.round(2.5)

r. Math.round(Math.abs(-2.5))

5.11 Case Study: Generating Random Characters
A character is coded using an integer. Generating a random character is to generate
an integer.

Computer programs process numerical data and characters. You have seen many examples
that involve numerical data. It is also important to understand characters and how to process
them. This section presents an example of generating random characters.

As introduced in Section 2.17, every character has a unique Unicode between 0 and FFFF in
hexadecimal (65535 in decimal). To generate a random character is to generate a random integer
between 0 and 65535 using the following expression (note that since 0 <= Math.random() <
1.0, you have to add 1 to 65535):

(int)(Math.random() * (65535 + 1))

Now let’s consider how to generate a random lowercase letter. The Unicodes for lowercase
letters are consecutive integers starting from the Unicode for a, then that for b, c, . . . , and
z. The Unicode for a is

(int)'a'

Thus, a random integer between (int)'a' and (int)'z' is

(int)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1))

As discussed in Section 2.17.3, all numeric operators can be applied to the char operands.
The char operand is cast into a number if the other operand is a number or a character. There-
fore, the preceding expression can be simplified as follows:

'a' + Math.random() * ('z' - 'a' + 1)

and a random lowercase letter is

(char)('a' + Math.random() * ('z' - 'a' + 1))

202 Chapter 5 Methods

Hence, a random character between any two characters ch1 and ch2 with ch1 < ch2 can be
generated as follows:

(char)(ch1 + Math.random() * (ch2 – ch1 + 1))

This is a simple but useful discovery. Listing 5.10 creates a class named RandomCharacter
with five overloaded methods to get a certain type of character randomly. You can use these
methods in your future projects.

LISTING 5.10 RandomCharacter.java
1 public class RandomCharacter {
2 /** Generate a random character between ch1 and ch2 */
3 {
4 return (char)(ch1 + Math.random() * (ch2 - ch1 + 1));
5 }
6
7 /** Generate a random lowercase letter */
8 {
9 return getRandomCharacter('a', 'z');

10 }
11
12 /** Generate a random uppercase letter */
13 {
14 return getRandomCharacter('A', 'Z');
15 }
16
17 /** Generate a random digit character */
18 {
19 return getRandomCharacter('0', '9');
20 }
21
22 /** Generate a random character */
23 {
24 return getRandomCharacter('\u0000', '\uFFFF');
25 }
26 }

Listing 5.11 gives a test program that displays 175 random lowercase letters.

LISTING 5.11 TestRandomCharacter.java
1 public class TestRandomCharacter {
2 /** Main method */
3 public static void main(String[] args) {
4 final int NUMBER_OF_CHARS = 175;
5 final int CHARS_PER_LINE = 25;
6
7 // Print random characters between 'a' and 'z', 25 chars per line
8 for (int i = 0; i < NUMBER_OF_CHARS; i++) {
9 char ch = ;
10 if ((i + 1) % CHARS_PER_LINE == 0)
11 System.out.println(ch);
12 else

13 System.out.print(ch);
14 }
15 }
16 }

RandomCharacter.getRandomLowerCaseLetter()

public static char getRandomCharacter()

public static char getRandomDigitCharacter()

public static char getRandomUpperCaseLetter()

public static char getRandomLowerCaseLetter()

public static char getRandomCharacter(char ch1, char ch2)getRandomCharacter

getRandomLower
CaseLetter()

getRandomUpper
CaseLetter()

getRandomDigit
Character()

getRandomCharacter()

constants

lower-case letter

5.12 Method Abstraction and Stepwise Refinement 203

gmjsohezfkgtazqgmswfclrao
pnrunulnwmaztlfjedmpchcif
lalqdgivxkxpbzulrmqmbhikr
lbnrjlsopfxahssqhwuuljvbe
xbhdotzhpehbqmuwsfktwsoli
cbuwkzgxpmtzihgatdslvbwbz
bfesoklwbhnooygiigzdxuqni

Line 9 invokes getRandomLowerCaseLetter() defined in the RandomCharacter class.
Note that getRandomLowerCaseLetter() does not have any parameters, but you still have
to use the parentheses when defining and invoking the method.

5.12 Method Abstraction and Stepwise Refinement
The key to developing software is to apply the concept of abstraction.

You will learn many levels of abstraction from this book. Method abstraction is achieved
by separating the use of a method from its implementation. The client can use a method
without knowing how it is implemented. The details of the implementation are encapsu-
lated in the method and hidden from the client who invokes the method. This is also
known as information hiding or encapsulation. If you decide to change the implementa-
tion, the client program will not be affected, provided that you do not change the method
signature. The implementation of the method is hidden from the client in a “black box,” as
shown in Figure 5.8.

You have already used the System.out.print method to display a string and the max
method to find the maximum number. You know how to write the code to invoke these meth-
ods in your program, but as a user of these methods, you are not required to know how they
are implemented.

The concept of method abstraction can be applied to the process of developing programs.
When writing a large program, you can use the divide-and-conquer strategy, also known as
stepwise refinement, to decompose it into subproblems. The subproblems can be further
decomposed into smaller, more manageable problems.

Suppose you write a program that displays the calendar for a given month of the year. The
program prompts the user to enter the year and the month, then displays the entire calendar for
the month, as shown in the following sample run.

parentheses required

Key
Point

Stepwise refinement

method abstraction

information hiding

Method Header

Black box

Optional arguments
for input

Optional return
value

Method Body

FIGURE 5.8 The method body can be thought of as a black box that contains the detailed
implementation for the method.

VideoNote

stepwise refinement
divide and conquer

204 Chapter 5 Methods

Enter full year (e.g., 2012):

Enter month as a number between 1 and 12:

March 2012
————————————————————————————-
Sun Mon Tue Wed Thu Fri Sat

1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

3

2012

Let us use this example to demonstrate the divide-and-conquer approach.

5.12.1 Top-Down Design
How would you get started on such a program? Would you immediately start coding? Begin-
ning programmers often start by trying to work out the solution to every detail. Although
details are important in the final program, concern for detail in the early stages may block the
problem-solving process. To make problem solving flow as smoothly as possible, this exam-
ple begins by using method abstraction to isolate details from design and only later imple-
ments the details.

For this example, the problem is first broken into two subproblems: get input from the
user, and print the calendar for the month. At this stage, you should be concerned with what
the subproblems will achieve, not with how to get input and print the calendar for the
month. You can draw a structure chart to help visualize the decomposition of the problem
(see Figure 5.9a).

You can use Scanner to read input for the year and the month. The problem of printing the
calendar for a given month can be broken into two subproblems: print the month title, and
print the month body, as shown in Figure 5.9b. The month title consists of three lines: month
and year, a dashed line, and the names of the seven days of the week. You need to get the
month name (e.g., January) from the numeric month (e.g., 1). This is accomplished in
getMonthName (see Figure 5.10a).

In order to print the month body, you need to know which day of the week is the first day of
the month (getStartDay) and how many days the month has (getNumberOfDaysInMonth),

printCalendar
(main)

(a) (b)

printMonthBodyprintMonthTitlereadInput printMonth

printMonth

FIGURE 5.9 The structure chart shows that the printCalendar problem is divided into two subproblems, readInput
and printMonth in (a), and that printMonth is divided into two smaller subproblems, printMonthTitle and
printMonthBody in (b).

5.12 Method Abstraction and Stepwise Refinement 205

as shown in Figure 5.10b. For example, December 2013 has 31 days, and December 1, 2013, is
a Sunday.

How would you get the start day for the first date in a month? There are several ways to do
so. For now, we’ll use an alternative approach. Assume you know that the start day for January
1, 1800, was a Wednesday (START_DAY_FOR_JAN_1_1800 = 3). You could compute the
total number of days (totalNumberOfDays) between January 1, 1800, and the first date
of the calendar month. The start day for the calendar month is (totalNumberOfDays +

startDay1800) % 7, since every week has seven days. Thus, the getStartDay problem
can be further refined as getTotalNumberOfDays, as shown in Figure 5.11a.

To get the total number of days, you need to know whether the year is a leap year and the
number of days in each month. Thus, getTotalNumberOfDays can be further refined into
two subproblems: isLeapYear and getNumberOfDaysInMonth, as shown in Figure 5.11b.
The complete structure chart is shown in Figure 5.12.

5.12.2 Top-Down and/or Bottom-Up Implementation
Now we turn our attention to implementation. In general, a subproblem corresponds to a
method in the implementation, although some are so simple that this is unnecessary. You
would need to decide which modules to implement as methods and which to combine in other
methods. Decisions of this kind should be based on whether the overall program will be easier
to read as a result of your choice. In this example, the subproblem readInput can be simply
implemented in the main method.

You can use either a “top-down” or a “bottom-up” approach. The top-down approach
implements one method in the structure chart at a time from the top to the bottom. Stubs—a
simple but incomplete version of a method—can be used for the methods waiting to be
implemented. The use of stubs enables you to quickly build the framework of the program.
Implement the main method first, then use a stub for the printMonth method. For example,

top-down approach

stub

(b)(a)

getNumberOfDaysInMonthgetStartDaygetMonthName

printMonthTitle

printMonthBody

FIGURE 5.10 (a) To printMonthTitle, you need getMonthName. (b) The printMonthBody
problem is refined into several smaller problems.

getTotalNumberOfDays

getStartDay

isLeapYear

(a) (b)

getNumberOfDaysInMonth

getTotalNumberOfDays

FIGURE 5.11 (a) To getStartDay, you need getTotalNumberOfDays. (b) The
getTotalNumberOfDays problem is refined into two smaller problems.

206 Chapter 5 Methods

printCalendar
(main)

getTotalNumberOfDays

getNumberOfDaysInMonth

isLeapYear

printMonthreadInput

printMonthTitle

getMonthName

printMonthBody

getStartDay

FIGURE 5.12 The structure chart shows the hierarchical relationship of the subproblems in
the program.

let printMonth display the year and the month in the stub. Thus, your program may begin
like this:

public class PrintCalendar {
/** Main method */
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

// Prompt the user to enter year
System.out.print("Enter full year (e.g., 2012): ");
int year = input.nextInt();

// Prompt the user to enter month
System.out.print("Enter month as a number between 1 and 12: ");
int month = input.nextInt();

// Print calendar for the month of the year

}

/** A stub for printMonth may look like this */
{

System.out.print(month + " " + year);
}

/** A stub for printMonthTitle may look like this */
{

}

/** A stub for getMonthBody may look like this */
{

}
public static void printMonthBody(int year, int month)

public static void printMonthTitle(int year, int month)

public static void printMonth(int year, int month)

printMonth(year, month);

5.12 Method Abstraction and Stepwise Refinement 207

/** A stub for getMonthName may look like this */
{

"January"; // A dummy value
}

/** A stub for getStartDay may look like this */
{

return 1; // A dummy value
}

/** A stub for getTotalNumberOfDays may look like this */
{

return 10000; // A dummy value
}

/** A stub for getNumberOfDaysInMonth may look like this */
{

return 31; // A dummy value
}

/** A stub for isLeapYear may look like this */
{

return true; // A dummy value
}

}

Compile and test the program, and fix any errors. You can now implement the printMonth
method. For methods invoked from the printMonth method, you can again use stubs.

The bottom-up approach implements one method in the structure chart at a time from the
bottom to the top. For each method implemented, write a test program, known as the driver,
to test it. The top-down and bottom-up approaches are equally good: Both approaches imple-
ment methods incrementally, help to isolate programming errors, and make debugging easy.
They can be used together.

5.12.3 Implementation Details
The isLeapYear(int year) method can be implemented using the following code from
Section 3.12:

return (year % 400 == 0 || (year % 4 == 0 && year % 100 != 0));

Use the following facts to implement getTotalNumberOfDaysInMonth(int year, int
month):

■ January, March, May, July, August, October, and December have 31 days.

■ April, June, September, and November have 30 days.

■ February has 28 days during a regular year and 29 days during a leap year. A regular
year, therefore, has 365 days, a leap year 366 days.

To implement getTotalNumberOfDays(int year, int month), you need to compute
the total number of days (totalNumberOfDays) between January 1, 1800, and the first day
of the calendar month. You could find the total number of days between the year 1800 and the
calendar year and then figure out the total number of days prior to the calendar month in the
calendar year. The sum of these two totals is totalNumberOfDays.

To print a body, first pad some space before the start day and then print the lines for every
week.

The complete program is given in Listing 5.12.

public static Boolean isLeapYear(int year)

public static int getNumberOfDaysInMonth(int year, int month)

public static int getTotalNumberOfDays(int year, int month)

public static int getStartDay(int year, int month)

return

public static String getMonthName(int month)

bottom-up approach

driver

208 Chapter 5 Methods

LISTING 5.12 PrintCalendar.java
1 import java.util.Scanner;
2
3 public class PrintCalendar {
4 /** Main method */
5 public static void main(String[] args) {
6 Scanner input = new Scanner(System.in);
7
8 // Prompt the user to enter year
9 System.out.print("Enter full year (e.g., 2012): ");
10 int year = input.nextInt();
11
12 // Prompt the user to enter month
13 System.out.print("Enter month as a number between 1 and 12: ");
14 int month = input.nextInt();
15
16 // Print calendar for the month of the year
17
18 }
19
20 /** Print the calendar for a month in a year */
21 {
22 // Print the headings of the calendar
23
24
25 // Print the body of the calendar
26
27 }
28
29 /** Print the month title, e.g., March 2012 */
30 {
31 System.out.println(" " + getMonthName(month)
32 + " " + year);
33 System.out.println("—————————————————————————————");
34 System.out.println(" Sun Mon Tue Wed Thu Fri Sat");
35 }
36
37 /** Get the English name for the month */
38 {
39 String monthName = "";
40 switch (month) {
41 case 1: monthName = "January"; break;
42 case 2: monthName = "February"; break;
43 case 3: monthName = "March"; break;
44 case 4: monthName = "April"; break;
45 case 5: monthName = "May"; break;
46 case 6: monthName = "June"; break;
47 case 7: monthName = "July"; break;
48 case 8: monthName = "August"; break;
49 case 9: monthName = "September"; break;
50 case 10: monthName = "October"; break;
51 case 11: monthName = "November"; break;
52 case 12: monthName = "December";
53 }
54
55 return monthName;
56 }
57
58 /** Print month body */

public static String getMonthName(int month)

public static void printMonthTitle(int year, int month)

printMonthBody(year, month);

printMonthTitle(year, month);

public static void printMonth(int year, int month)

printMonth(year, month);

printMonth

printMonthTitle

getMonthName

5.12 Method Abstraction and Stepwise Refinement 209

59 {
60 // Get start day of the week for the first date in the month
61 int startDay =
62
63 // Get number of days in the month
64 int numberOfDaysInMonth = ;
65
66 // Pad space before the first day of the month
67 int i = 0;
68 for (i = 0; i < startDay; i++)
69 System.out.print(" ");
70
71 for (i = 1; i <= numberOfDaysInMonth; i++) {
72 System.out.printf("%4d", i);
73
74 if ((i + startDay) % 7 == 0)
75 System.out.println();
76 }
77
78 System.out.println();
79 }
80
81 /** Get the start day of month/1/year */
82
83 final int START_DAY_FOR_JAN_1_1800 = 3;
84 // Get total number of days from 1/1/1800 to month/1/year
85 int totalNumberOfDays = getTotalNumberOfDays(year, month);
86
87 // Return the start day for month/1/year
88 return (totalNumberOfDays + START_DAY_FOR_JAN_1_1800) % 7;
89 }
90
91 /** Get the total number of days since January 1, 1800 */
92 {
93 int total = 0;
94
95 // Get the total days from 1800 to 1/1/year
96 for (int i = 1800; i < year; i++)
97 if (isLeapYear(i))
98 total = total + 366;
99 else

100 total = total + 365;
101
102 // Add days from Jan to the month prior to the calendar month
103 for (int i = 1; i < month; i++)
104 total = total + getNumberOfDaysInMonth(year, i);
105
106 return total;
107 }
108
109 /** Get the number of days in a month */
110 {
111 if (month == 1 || month == 3 || month == 5 || month == 7 ||
112 month == 8 || month == 10 || month == 12)
113 return 31;
114
115 if (month == 4 || month == 6 || month == 9 || month == 11)
116 return 30;
117
118 if (month == 2) return isLeapYear(year) ? 29 : 28;

public static int getNumberOfDaysInMonth(int year, int month)

public static int getTotalNumberOfDays(int year, int month)

public static int getStartDay(int year, int month) {

getNumberOfDaysInMonth(year, month)

getStartDay(year, month);

public static void printMonthBody(int year, int month) printMonthBody

getStartDay

getTotalNumberOfDays

getNumberOfDaysInMonth

210 Chapter 5 Methods

119
120 return 0; // If month is incorrect
121 }
122
123 /** Determine if it is a leap year */
124 {
125 return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);
126 }
127 }

The program does not validate user input. For instance, if the user enters either a month not in
the range between 1 and 12 or a year before 1800, the program displays an erroneous calen-
dar. To avoid this error, add an if statement to check the input before printing the calendar.

This program prints calendars for a month but could easily be modified to print calendars
for a whole year. Although it can print months only after January 1800, it could be modified
to print months before 1800.

5.12.4 Benefits of Stepwise Refinement
Stepwise refinement breaks a large problem into smaller manageable subproblems. Each sub-
problem can be implemented using a method. This approach makes the program easier to
write, reuse, debug, test, modify, and maintain.

Simpler Program
The print calendar program is long. Rather than writing a long sequence of statements in one
method, stepwise refinement breaks it into smaller methods. This simplifies the program and
makes the whole program easier to read and understand.

Reusing Methods
Stepwise refinement promotes code reuse within a program. The isLeapYearmethod is defined
once and invoked from the getTotalNumberOfDays and getNumberOfDayInMonth meth-
ods. This reduces redundant code.

Easier Developing, Debugging, and Testing
Since each subproblem is solved in a method, a method can be developed, debugged, and tested
individually. This isolates the errors and makes developing, debugging, and testing easier.

When implementing a large program, use the top-down and/or bottom-up approach. Do
not write the entire program at once. Using these approaches seems to take more development
time (because you repeatedly compile and run the program), but it actually saves time and
makes debugging easier.

Better Facilitating Teamwork
When a large problem is divided into subprograms, subproblems can be assigned to different
programmers. This makes it easier for programmers to work in teams.

KEY TERMS

public static boolean isLeapYear(int year)isLeapYear

incremental development and
testing

actual parameter 179
ambiguous invocation 195
argument 179
divide and conquer 203
formal parameter (i.e., parameter) 179
information hiding 203
method 178
method abstraction 203

method overloading 194
method signature 179
modifier 179
parameter 179
pass-by-value 186
scope of a variable 196
stepwise refinement 203
stub 205

Test Questions 211

CHAPTER SUMMARY

1. Making programs modular and reusable is one of the central goals in software engi-
neering. Java provides many powerful constructs that help to achieve this goal.
Methods are one such construct.

2. The method header specifies the modifiers, return value type, method name, and
parameters of the method. The static modifier is used for all the methods in this
chapter.

3. A method may return a value. The returnValueType is the data type of the value
the method returns. If the method does not return a value, the returnValueType is
the keyword void.

4. The parameter list refers to the type, order, and number of a method’s parameters. The
method name and the parameter list together constitute the method signature. Parame-
ters are optional; that is, a method doesn’t need to contain any parameters.

5. A return statement can also be used in a void method for terminating the method
and returning to the method’s caller. This is useful occasionally for circumventing the
normal flow of control in a method.

6. The arguments that are passed to a method should have the same number, type, and
order as the parameters in the method signature.

7. When a program calls a method, program control is transferred to the called method.
A called method returns control to the caller when its return statement is executed or
when its method-ending closing brace is reached.

8. A value-returning method can also be invoked as a statement in Java. In this case, the
caller simply ignores the return value.

9. A method can be overloaded. This means that two methods can have the same name,
as long as their method parameter lists differ.

10. A variable declared in a method is called a local variable. The scope of a local vari-
able starts from its declaration and continues to the end of the block that contains the
variable. A local variable must be declared and initialized before it is used.

11. Method abstraction is achieved by separating the use of a method from its implementa-
tion. The client can use a method without knowing how it is implemented. The details
of the implementation are encapsulated in the method and hidden from the client who
invokes the method. This is known as information hiding or encapsulation.

12. Method abstraction modularizes programs in a neat, hierarchical manner. Programs
written as collections of concise methods are easier to write, debug, maintain, and
modify than would otherwise be the case. This writing style also promotes method
reusability.

13. When implementing a large program, use the top-down and/or bottom-up coding
approach. Do not write the entire program at once. This approach may seem to take
more time for coding (because you are repeatedly compiling and running the pro-
gram), but it actually saves time and makes debugging easier.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

www.cs.armstrong.edu/liang/intro9e/test.html

212 Chapter 5 Methods

PROGRAMMING EXERCISES

Sections 5.2–5.9
5.1 (Math: pentagonal numbers) A pentagonal number is defined as n(3n–1)/2 for

. . ., and so on. Therefore, the first few numbers are 1, 5, 12, 22,
Write a method with the following header that returns a pentagonal number:

public static int getPentagonalNumber(int n)

Write a test program that uses this method to display the first 100 pentagonal num-
bers with 10 numbers on each line.

*5.2 (Sum the digits in an integer) Write a method that computes the sum of the digits
in an integer. Use the following method header:

public static int sumDigits(long n)

For example, sumDigits(234) returns 9 (Hint: Use the % operator
to extract digits, and the / operator to remove the extracted digit. For instance, to
extract 4 from 234, use 234 % 10 To remove 4 from 234, use 234 / 10

Use a loop to repeatedly extract and remove the digit until all the digits are
extracted. Write a test program that prompts the user to enter an integer and dis-
plays the sum of all its digits.

**5.3 (Palindrome integer) Write the methods with the following headers

// Return the reversal of an integer, i.e., reverse(456) returns 654
public static int reverse(int number)

// Return true if number is a palindrome
public static boolean isPalindrome(int number)

Use the reverse method to implement isPalindrome. A number is a palin-
drome if its reversal is the same as itself. Write a test program that prompts the
user to enter an integer and reports whether the integer is a palindrome.

*5.4 (Display an integer reversed) Write a method with the following header to display
an integer in reverse order:

public static void reverse(int number)

For example, reverse(3456) displays 6543. Write a test program that prompts
the user to enter an integer and displays its reversal.

*5.5 (Sort three numbers) Write a method with the following header to display three
numbers in increasing order:

public static void displaySortedNumbers(
double num1, double num2, double num3)

Write a test program that prompts the user to enter three numbers and invokes the
method to display them in increasing order.

*5.6 (Display patterns) Write a method to display a pattern as follows:

1
2 1

3 2 1
...
n n-1 ... 3 2 1

(= 23).
(= 4).

(2 + 3 + 4).

n = 1, 2,

Reverse an integer

VideoNote

Programming Exercises 213

The method header is

public static void displayPattern(int n)

*5.7 (Financial application: compute the future investment value) Write a method that
computes future investment value at a given interest rate for a specified number of
years. The future investment is determined using the formula in Programming
Exercise 2.21.

Use the following method header:

public static double futureInvestmentValue(
double investmentAmount, double monthlyInterestRate, int years)

For example, futureInvestmentValue(10000, 0.05/12, 5) returns
12833.59.

Write a test program that prompts the user to enter the investment amount (e.g.,
1000) and the interest rate (e.g., 9%) and prints a table that displays future value
for the years from 1 to 30, as shown below:

The amount invested:
Annual interest rate:
Years Future Value
1 1093.80
2 1196.41
...
29 13467.25
30 14730.57

9
1000

5.8 (Conversions between Celsius and Fahrenheit) Write a class that contains the fol-
lowing two methods:

/** Convert from Celsius to Fahrenheit */
public static double celsiusToFahrenheit(double celsius)

/** Convert from Fahrenheit to Celsius */
public static double fahrenheitToCelsius(double fahrenheit)

The formula for the conversion is:

fahrenheit = (9.0 / 5) * celsius + 32
celsius = (5.0 / 9) * (fahrenheit – 32)

Write a test program that invokes these methods to display the following tables:

Celsius Fahrenheit | Fahrenheit Celsius

40.0 104.0 | 120.0 48.89
39.0 102.2 | 110.0 43.33
...
32.0 89.6 | 40.0 4.44
31.0 87.8 | 30.0 -1.11

5.9 (Conversions between feet and meters) Write a class that contains the following
two methods:

/** Convert from feet to meters */
public static double footToMeter(double foot)

214 Chapter 5 Methods

/** Convert from meters to feet */
public static double meterToFoot(double meter)

The formula for the conversion is:

meter = 0.305 * foot
foot = 3.279 * meter

Write a test program that invokes these methods to display the following tables:

Feet Meters | Meters Feet

1.0 0.305 | 20.0 65.574
2.0 0.610 | 25.0 81.967
...
9.0 2.745 | 60.0 196.721
10.0 3.050 | 65.0 213.115

5.10 (Use the isPrime Method) Listing 5.7, PrimeNumberMethod.java, provides the
isPrime(int number) method for testing whether a number is prime. Use this
method to find the number of prime numbers less than 10000.

5.11 (Financial application: compute commissions) Write a method that computes the
commission, using the scheme in Programming Exercise 4.39. The header of the
method is as follows:

public static double computeCommission(double salesAmount)

Write a test program that displays the following table:

Sales Amount Commission

10000 900.0
15000 1500.0
...
95000 11100.0
100000 11700.0

5.12 (Display characters) Write a method that prints characters using the following
header:

public static void printChars(char ch1, char ch2, int

numberPerLine)

This method prints the characters between ch1 and ch2 with the specified num-
bers per line. Write a test program that prints ten characters per line from 1 to Z.
Characters are separated by exactly one space.

*5.13 (Sum series) Write a method to compute the following series:

Write a test program that displays the following table:

i m(i)

1 0.5000
2 1.1667
...
19 16.4023
20 17.3546

m(i) =
1

2
+

2

3
+ c +

i

i + 1

Programming Exercises 215

*5.14 (Estimate) can be computed using the following series:

Write a method that returns m(i) for a given i and write a test program that dis-
plays the following table:

i m(i)

1 4.0000
101 3.1515
201 3.1466
301 3.1449
401 3.1441
501 3.1436
601 3.1433
701 3.1430
801 3.1428
901 3.1427

*5.15 (Financial application: print a tax table) Listing 3.6 gives a program to compute
tax. Write a method for computing tax using the following header:

public static double computetax(int status, double taxableIncome)

Use this method to write a program that prints a tax table for taxable income from
$50,000 to $60,000 with intervals of $50 for all the following statuses:

Taxable Single Married Joint Married Head of
Income or Qualifying Separate a House

Widow(er)

50000 8688 6665 8688 7352
50050 8700 6673 8700 7365

...
59950 11175 8158 11175 9840
60000 11188 8165 11188 9852

*5.16 (Number of days in a year) Write a method that returns the number of days in a
year using the following header:

public static int numberOfDaysInAYear(int year)

Write a test program that displays the number of days in year from 2000 to 2020.

Sections 5.10–5.11
*5.17 (Display matrix of 0s and 1s) Write a method that displays an n-by-n matrix using

the following header:

public static void printMatrix(int n)

Each element is 0 or 1, which is generated randomly. Write a test program that
prompts the user to enter n and displays an n-by-n matrix. Here is a sample run:

m(i) = 4¢1 -
1

3
+

1

5
-

1

7
+

1

9
-

1

11
+ c +

(- ˛1)i+1

2i - 1
≤

pp

Estimate p

Enter n:
0 1 0
0 0 0
1 1 1

3

VideoNote

216 Chapter 5 Methods

5.18 (Use the Math.sqrt method) Write a program that prints the following table
using the sqrt method in the Math class.

Number SquareRoot

0 0.0000
2 1.4142
...
18 4.2426
20 4.4721

*5.19 (The MyTriangle class) Create a class named MyTriangle that contains the
following two methods:

/** Return true if the sum of any two sides is
* greater than the third side. */
public static boolean isValid(
double side1, double side2, double side3)

/** Return the area of the triangle. */
public static double area(
double side1, double side2, double side3)

Write a test program that reads three sides for a triangle and computes the area if
the input is valid. Otherwise, it displays that the input is invalid. The formula for
computing the area of a triangle is given in Programming Exercise 2.15.

5.20 (Use trigonometric methods) Print the following table to display the sin value and
cos value of degrees from 0 to 360 with increments of 10 degrees. Round the
value to keep four digits after the decimal point.

Degree Sin Cos

0 0.0000 1.0000
10 0.1736 0.9848
...
350 -0.1736 0.9848
360 0.0000 1.0000

*5.21 (Geometry: great circle distance) The great circle distance is the distance between
two points on the surface of a sphere. Let (x1, y1) and (x2, y2) be the geographical
latitude and longitude of two points. The great circle distance between the two
points can be computed using the following formula:

Write a program that prompts the user to enter the latitude and longitude of two
points on the earth in degrees and displays its great circle distance. The average
earth radius is 6,371.01 km. Note that you need to convert the degrees into radians
using the Math.toRadians method since the Java trigonometric methods use
radians. The latitude and longitude degrees in the formula are for North and West.
Use negative to indicate South and East degrees. Here is a sample run:

d = radius * arccos(sin(x1) * sin(x2) + cos(x1) * cos(x2) * cos(y1 - y2))

Enter point 1 (latitude and longitude) in degrees:

Enter point 2 (latitude and longitude) in degrees:

The distance between the two points is 10691.79183231593 km
41.5 87.37

39.55 -116.25

Programming Exercises 217

**5.22 (Math: approximate the square root) There are several techniques for implement-
ing the sqrt method in the Math class. One such technique is known as the
Babylonian method. It approximates the square root of a number, n, by repeatedly
performing a calculation using the following formula:

nextGuess = (lastGuess + n / lastGuess) / 2

When nextGuess and lastGuess are almost identical, nextGuess is the
approximated square root. The initial guess can be any positive value (e.g., 1).
This value will be the starting value for lastGuess. If the difference between
nextGuess and lastGuess is less than a very small number, such as 0.0001,
you can claim that nextGuess is the approximated square root of n. If not,
nextGuess becomes lastGuess and the approximation process continues.
Implement the following method that returns the square root of n.

public static double sqrt(long n)

*5.23 (Geometry: display angles) Write a program that prompts the user to enter three
points of a triangle and displays the angles in degrees. Round the value to keep
two digits after the decimal point. The formula to compute angles A, B, and C are
as follows:

A

B

C

a

b

c

x1, y1

x2, y2

x3, y3

Here is a sample run of the program:

Enter three points:
The three angles are 15.26 90.0 74.74

1 1 6.5 1 6.5 2.5

Sections 5.10–5.12
**5.24 (Display current date and time) Listing 2.6, ShowCurrentTime.java, displays the

current time. Improve this example to display the current date and time. The cal-
endar example in Listing 5.12, PrintCalendar.java, should give you some ideas on
how to find the year, month, and day.

**5.25 (Convert milliseconds to hours, minutes, and seconds) Write a method that
converts milliseconds to hours, minutes, and seconds using the following
header:

public static String convertMillis(long millis)

The method returns a string as hours:minutes:seconds. For example,
convertMillis(5500) returns a string 0:0:5, convertMillis(100000)
returns a string 0:1:40, and convertMillis(555550000) returns a string
154:19:10.

A = arccos((a * a - b * b - c * c) / (-2 * b * c))
B = arccos((b * b - a * a - c * c) / (-2 * a * c))
C = arccos((c * c - b * b - a * a) / (-2 * a * b))

218 Chapter 5 Methods

Comprehensive

**5.26 (Palindromic prime) A palindromic prime is a prime number and also palin-
dromic. For example, 131 is a prime and also a palindromic prime, as are 313 and
757. Write a program that displays the first 100 palindromic prime numbers. Dis-
play 10 numbers per line, separated by exactly one space, as follows:

2 3 5 7 11 101 131 151 181 191
313 353 373 383 727 757 787 797 919 929
...

**5.27 (Emirp) An emirp (prime spelled backward) is a nonpalindromic prime number
whose reversal is also a prime. For example, 17 is a prime and 71 is a prime, so 17
and 71 are emirps. Write a program that displays the first 100 emirps. Display 10
numbers per line, separated by exactly one space, as follows:

13 17 31 37 71 73 79 97 107 113
149 157 167 179 199 311 337 347 359 389
...

**5.28 (Mersenne prime) A prime number is called a Mersenne prime if it can be written
in the form for some positive integer p. Write a program that finds all
Mersenne primes with and displays the output as follows:

p 2^p – 1

2 3
3 7
5 31

...

**5.29 (Twin primes) Twin primes are a pair of prime numbers that differ by 2. For exam-
ple, 3 and 5 are twin primes, 5 and 7 are twin primes, and 11 and 13 are twin
primes. Write a program to find all twin primes less than 1,000. Display the output
as follows:

(3, 5)
(5, 7)
...

**5.30 (Game: craps) Craps is a popular dice game played in casinos. Write a program to
play a variation of the game, as follows:

Roll two dice. Each die has six faces representing values 1, 2, . . ., and 6, respec-
tively. Check the sum of the two dice. If the sum is 2, 3, or 12 (called craps), you
lose; if the sum is 7 or 11 (called natural), you win; if the sum is another value
(i.e., 4, 5, 6, 8, 9, or 10), a point is established. Continue to roll the dice until either
a 7 or the same point value is rolled. If 7 is rolled, you lose. Otherwise, you win.

Your program acts as a single player. Here are some sample runs.

p … 31
2p - 1

You rolled 5 + 6 = 11
You win

Programming Exercises 219

You rolled 1 + 2 = 3
You lose

You rolled 4 + 4 = 8
point is 8
You rolled 6 + 2 = 8
You win

You rolled 3 + 2 = 5
point is 5
You rolled 2 + 5 = 7
You lose

**5.31 (Financial: credit card number validation) Credit card numbers follow certain pat-
terns. A credit card number must have between 13 and 16 digits. It must start with:

■ 4 for Visa cards
■ 5 for Master cards
■ 37 for American Express cards
■ 6 for Discover cards

In 1954, Hans Luhn of IBM proposed an algorithm for validating credit card num-
bers. The algorithm is useful to determine whether a card number is entered cor-
rectly or whether a credit card is scanned correctly by a scanner. Credit card
numbers are generated following this validity check, commonly known as the
Luhn check or the Mod 10 check, which can be described as follows (for illustra-
tion, consider the card number 4388576018402626):

1. Double every second digit from right to left. If doubling of a digit results in a
two-digit number, add up the two digits to get a single-digit number.

4388576018402626

2 * 2 = 4
2 * 2 = 4
4 * 2 = 8
1 * 2 = 2
6 * 2 = 12 (1 + 2 = 3)
5 * 2 = 10 (1 + 0 = 1)
8 * 2 = 16 (1 + 6 = 7)
4 * 2 = 8

2. Now add all single-digit numbers from Step 1.

3. Add all digits in the odd places from right to left in the card number.

4. Sum the results from Step 2 and Step 3.

37 + 38 = 75

6 + 6 + 0 + 8 + 0 + 7 + 8 + 3 = 38

4 + 4 + 8 + 2 + 3 + 1 + 7 + 8 = 37

220 Chapter 5 Methods

5. If the result from Step 4 is divisible by 10, the card number is valid; otherwise,
it is invalid. For example, the number 4388576018402626 is invalid, but the
number 4388576018410707 is valid.

Write a program that prompts the user to enter a credit card number as a long
integer. Display whether the number is valid or invalid. Design your program to
use the following methods:

/** Return true if the card number is valid */
public static boolean isValid(long number)

/** Get the result from Step 2 */
public static int sumOfDoubleEvenPlace(long number)

/** Return this number if it is a single digit, otherwise,
* return the sum of the two digits */
public static int getDigit(int number)

/** Return sum of odd-place digits in number */
public static int sumOfOddPlace(long number)

/** Return true if the digit d is a prefix for number */
public static boolean prefixMatched(long number, int d)

/** Return the number of digits in d */
public static int getSize(long d)

/** Return the first k number of digits from number. If the
* number of digits in number is less than k, return number. */
public static long getPrefix(long number, int k)

Here are sample runs of the program:

Enter a credit card number as a long integer:

4388576018410707 is valid
4388576018410707

Enter a credit card number as a long integer:

4388576018402626 is invalid
4388576018402626

**5.32 (Game: chance of winning at craps) Revise Exercise 5.30 to run it 10,000 times
and display the number of winning games.

**5.33 (Current date and time) Invoking System.currentTimeMillis() returns the
elapsed time in milliseconds since midnight of January 1, 1970. Write a program
that displays the date and time. Here is a sample run:

Current date and time is May 16, 2012 10:34:23

Programming Exercises 221

**5.34 (Print calendar) Programming Exercise 3.21 uses Zeller’s congruence to calculate
the day of the week. Simplify Listing 5.12, PrintCalendar.java, using Zeller’s algo-
rithm to get the start day of the month.

5.35 (Geometry: area of a pentagon) The area of a pentagon can be computed using the
following formula:

Write a program that prompts the user to enter the side of a pentagon and displays
the area. Here is a sample run:

Area =
5 * s2

4 * tan¢p
5
≤

Enter the side:
The area of the pentagon is 52.04444136781625

5.5

*5.36 (Geometry: area of a regular polygon) A regular polygon is an n-sided polygon in
which all sides are of the same length and all angles have the same degree (i.e., the
polygon is both equilateral and equiangular). The formula for computing the area
of a regular polygon is

Write a method that returns the area of a regular polygon using the following
header:

public static double area(int n, double side)

Write a main method that prompts the user to enter the number of sides and the
side of a regular polygon and displays its area. Here is a sample run:

Area =
n * s2

4 * tan¢p
n
≤

Enter the number of sides:
Enter the side:
The area of the polygon is 72.69017017488385

6.5
5

5.37 (Format an integer) Write a method with the following header to format the inte-
ger with the specified width.

public static String format(int number, int width)

The method returns a string for the number with one or more prefix 0s. The size of
the string is the width. For example, format(34, 4) returns 0034 and
format(34, 5) returns 00034. If the number is longer than the width, the
method returns the string representation for the number. For example,
format(34, 1) returns 34.

222 Chapter 5 Methods

Write a test program that prompts the user to enter a number and its width and dis-
plays a string returned by invoking format(number, width).

*5.38 (Generate random characters) Use the methods in RandomCharacter in Listing
5.10 to print 100 uppercase letters and then 100 single digits, printing ten per line.

5.39 (Geometry: point position) Programming Exercise 3.32 shows how to test whether
a point is on the left side of a directed line, on the right, or on the same line. Write
the methods with the following headers:

/** Return true if point (x2, y2) is on the left side of the
* directed line from (x0, y0) to (x1, y1) */
public static boolean leftOfTheLine(double x0, double y0,
double x1, double y1, double x2, double y2)

/** Return true if point (x2, y2) is on the same
* line from (x0, y0) to (x1, y1) */
public static boolean onTheSameLine(double x0, double y0,
double x1, double y1, double x2, double y2)

/** Return true if point (x2, y2) is on the
* line segment from (x0, y0) to (x1, y1) */
public static boolean onTheLineSegment(double x0, double y0,
double x1, double y1, double x2, double y2)

Write a program that prompts the user to enter the three points for p0, p1, and p2
and displays whether p2 is on the left of the line from p0 to p1, right, the same
line, or on the line segment. Here are some sample runs:

Enter three points for p0, p1, and p2:
(1.5, 1.5) is on the line segment from (1.0, 1.0) to (2.0, 2.0)

1 1 2 2 1.5 1.5

Enter three points for p0, p1, and p2:
(3.0, 3.0) is on the same line from (1.0, 1.0) to (2.0, 2.0)

1 1 2 2 3 3

Enter three points for p0, p1, and p2:
(1.0, 1.5) is on the left side of the line
from (1.0, 1.0) to (2.0, 2.0)

1 1 2 2 1 1.5

Enter three points for p0, p1, and p2:
(1.0, -1.0) is on the right side of the line
from (1.0, 1.0) to (2.0, 2.0)

1 1 2 2 1 -1

SINGLE-DIMENSIONAL
ARRAYS

CHAPTER

6

Objectives
■ To describe why arrays are necessary in programming (§6.1).

■ To declare array reference variables and create arrays (§§6.2.1–6.2.2).

■ To obtain array size using arrayRefVar.length and know default values
in an array (§6.2.3).

■ To access array elements using indexed variables (§6.2.4).

■ To declare, create, and initialize an array using an array initializer (§6.2.5).

■ To program common array operations (displaying arrays, summing all
elements, finding the minimum and maximum elements, random shuffling,
and shifting elements) (§6.2.6).

■ To simplify programming using the for-each loops (§6.2.7).

■ To apply arrays in application development (LottoNumbers,
DeckOfCards) (§§6.3–6.4).

■ To copy contents from one array to another (§6.5).

■ To develop and invoke methods with array arguments and return values
(§§6.6–6.8).

■ To define a method with a variable-length argument list (§6.9).

■ To search elements using the linear (§6.10.1) or binary (§6.10.2) search
algorithm.

■ To sort an array using the selection sort approach (§6.11.1).

■ To sort an array using the insertion sort approach (§6.11.2).

■ To use the methods in the java.util.Arrays class (§6.12).

224 Chapter 6 Single-Dimensional Arrays

6.1 Introduction
A single array variable can reference a large collection of data.

Often you will have to store a large number of values during the execution of a program.
Suppose, for instance, that you need to read 100 numbers, compute their average, and find out
how many numbers are above the average. Your program first reads the numbers and computes
their average, then compares each number with the average to determine whether it is above
the average. In order to accomplish this task, the numbers must all be stored in variables. You
have to declare 100 variables and repeatedly write almost identical code 100 times. Writing a
program this way would be impractical. So, how do you solve this problem?

An efficient, organized approach is needed. Java and most other high-level languages
provide a data structure, the array, which stores a fixed-size sequential collection of elements
of the same type. In the present case, you can store all 100 numbers into an array and access
them through a single array variable. The solution may look like this:

1 public class AnalyzeNumbers {
2 public static void main(String[] args) {
3 final int NUMBER_OF_ELEMENTS = 100;
4
5 double sum = 0;
6
7 java.util.Scanner input = new java.util.Scanner(System.in);
8 for (int i = 0; i < NUMBER_OF_ELEMENTS; i++) {
9 System.out.print("Enter a new number: ");
10
11 sum += numbers[i];
12 }
13
14 double average = sum / NUMBER_OF_ELEMENTS;
15
16 int count = 0; // The number of elements above average
17 for (int i = 0; i < NUMBER_OF_ELEMENTS; i++)
18 if (numbers[i] > average)
19 count++;
20
21 System.out.println("Average is " + average);
22 System.out.println("Number of elements above the average "
23 + count);
24 }
25 }

numbers[i] = input.nextDouble();

double[] numbers = new double[NUMBER_OF_ELEMENTS];

Key
Point

problem

why array?

what is array?

create array

store number in array

get average

above average?

Key
Point

index

numbers array

numbers[0]:
numbers[1]:
numbers[2]:

.
numbers[i] .

.
numbers[97]:
numbers[98]:
numbers[99]:

The program creates an array of 100 elements in line 4, stores numbers into the array in line
10, adds each number to sum in line 11, and obtains the average in line 14. It then compares
each number in the array with the average to count the number of values above the average
(lines 16–19).

This chapter introduces single-dimensional arrays. The next chapter will introduce two-
dimensional and multidimensional arrays.

6.2 Array Basics
Once an array is created, its size is fixed. An array reference variable is used to access
the elements in an array using an index.

An array is used to store a collection of data, but often we find it more useful to think of an array
as a collection of variables of the same type. Instead of declaring individual variables, such as
number0, number1, . . . , and number99, you declare one array variable such as numbers and
use numbers[0], numbers[1], . . . , and numbers[99] to represent individual variables.

6.2 Array Basics 225

This section introduces how to declare array variables, create arrays, and process arrays using
indexed variables.

6.2.1 Declaring Array Variables
To use an array in a program, you must declare a variable to reference the array and specify
the array’s element type. Here is the syntax for declaring an array variable:

elementType[] arrayRefVar;

The elementType can be any data type, and all elements in the array will have the same
data type. For example, the following code declares a variable myList that references an
array of double elements.

double[] myList;

Note
You can also use elementType arrayRefVar[] to declare an array variable. This
style comes from the C language and was adopted in Java to accommodate C program-
mers. The style elementType[] arrayRefVar is preferred.

6.2.2 Creating Arrays
Unlike declarations for primitive data type variables, the declaration of an array variable does not
allocate any space in memory for the array. It creates only a storage location for the reference to
an array. If a variable does not contain a reference to an array, the value of the variable is null.
You cannot assign elements to an array unless it has already been created. After an array variable
is declared, you can create an array by using the new operator with the following syntax:

arrayRefVar = new elementType[arraySize];

This statement does two things: (1) it creates an array using new elementType[array-
Size]; (2) it assigns the reference of the newly created array to the variable arrayRefVar.

Declaring an array variable, creating an array, and assigning the reference of the array to
the variable can be combined in one statement as:

elementType[] arrayRefVar = new elementType[arraySize];

or

elementType arrayRefVar[] = new elementType[arraySize];

Here is an example of such a statement:

double[] myList = new double[10];

This statement declares an array variable, myList, creates an array of ten elements of double
type, and assigns its reference to myList. To assign values to the elements, use the syntax:

arrayRefVar[index] = value;

For example, the following code initializes the array.

myList[0] = 5.6;
myList[1] = 4.5;
myList[2] = 3.3;
myList[3] = 13.2;

element type

preferred syntax

null

new operator

226 Chapter 6 Single-Dimensional Arrays

myList[4] = 4.0;
myList[5] = 34.33;
myList[6] = 34.0;
myList[7] = 45.45;
myList[8] = 99.993;
myList[9] = 11123;

This array is illustrated in Figure 6.1.

Note
An array variable that appears to hold an array actually contains a reference to that array.
Strictly speaking, an array variable and an array are different, but most of the time the
distinction can be ignored. Thus it is all right to say, for simplicity, that myList is an
array, instead of stating, at greater length, that myList is a variable that contains a ref-
erence to an array of ten double elements.

6.2.3 Array Size and Default Values
When space for an array is allocated, the array size must be given, specifying the number of ele-
ments that can be stored in it. The size of an array cannot be changed after the array is created.
Size can be obtained using arrayRefVar.length. For example, myList.length is 10.

When an array is created, its elements are assigned the default value of 0 for the numeric
primitive data types, \u0000 for char types, and false for boolean types.

6.2.4 Array Indexed Variables
The array elements are accessed through the index. Array indices are 0 based; that is, they
range from 0 to arrayRefVar.length-1. In the example in Figure 6.1, myList holds ten
double values, and the indices are from 0 to 9.

Each element in the array is represented using the following syntax, known as an indexed
variable:

arrayRefVar[index];

For example, myList[9] represents the last element in the array myList.

Caution
Some programming languages use parentheses to reference an array element, as in
myList(9), but Java uses brackets, as in myList[9].

array vs. array variable

array length

default values

double[] myList = new double[10];

myList reference
myList[0]

myList[1]

myList[2]

myList[3]

myList[4]

myList[6]

myList[5]

myList[7]

myList[8]

myList[9]

Array reference
variable

Array element at
index 5

5.6

4.5

3.3

13.2

4.0

34.33

34.0

45.45

99.993

11123

Element value

FIGURE 6.1 The array myList has ten elements of double type and int indices from 0 to 9.

0 based

indexed variable

6.2 Array Basics 227

After an array is created, an indexed variable can be used in the same way as a regular
variable. For example, the following code adds the values in myList[0] and
myList[1] to myList[2].

myList[2] = myList[0] + myList[1];

The following loop assigns 0 to myList[0], 1 to myList[1], . . . , and 9 to myList[9]:

for (int i = 0; i < myList.length; i++) {
myList[i] = i;

}

6.2.5 Array Initializers
Java has a shorthand notation, known as the array initializer, which combines the declaration,
creation, and initialization of an array in one statement using the following syntax:

elementType[] arrayRefVar = {value0, value1, ..., valuek};

For example, the statement

double[] myList = {1.9, 2.9, 3.4, 3.5};

declares, creates, and initializes the array myList with four elements, which is equivalent to
the following statements:

double[] myList = new double[4];
myList[0] = 1.9;
myList[1] = 2.9;
myList[2] = 3.4;
myList[3] = 3.5;

Caution
The new operator is not used in the array-initializer syntax. Using an array initializer, you
have to declare, create, and initialize the array all in one statement. Splitting it would
cause a syntax error. Thus, the next statement is wrong:

double[] myList;
myList = {1.9, 2.9, 3.4, 3.5};

6.2.6 Processing Arrays
When processing array elements, you will often use a for loop—for two reasons:

■ All of the elements in an array are of the same type. They are evenly processed in the
same fashion repeatedly using a loop.

■ Since the size of the array is known, it is natural to use a for loop.

Assume the array is created as follows:

double[] myList = new double[10];

The following are some examples of processing arrays.

1. Initializing arrays with input values: The following loop initializes the array myList
with user input values.

java.util.Scanner input = new java.util.Scanner(System.in);
System.out.print("Enter " + myList.length + " values: ");
for (int i = 0; i < myList.length; i++)
myList[i] = input.nextDouble();

array initializer

228 Chapter 6 Single-Dimensional Arrays

2. Initializing arrays with random values: The following loop initializes the array
myList with random values between 0.0 and 100.0, but less than 100.0.

for (int i = 0; i < myList.length; i++) {
myList[i] = Math.random() * 100;

}

3. Displaying arrays: To print an array, you have to print each element in the array using
a loop like the following:

for (int i = 0; i < myList.length; i++) {
System.out.print(myList[i] + " ");

}

Tip
For an array of the char[] type, it can be printed using one print statement. For exam-
ple, the following code displays Dallas:

char[] city = {'D', 'a', 'l', 'l', 'a', 's'};
System.out.println(city);

4. Summing all elements: Use a variable named total to store the sum. Initially total
is 0. Add each element in the array to total using a loop like this:

double total = 0;
for (int i = 0; i < myList.length; i++) {
total += myList[i];

}

5. Finding the largest element: Use a variable named max to store the largest element. Ini-
tially max is myList[0]. To find the largest element in the array myList, compare
each element with max, and update max if the element is greater than max.

double max = myList[0];
for (int i = 1; i < myList.length; i++) {
if (myList[i] > max) max = myList[i];

}

6. Finding the smallest index of the largest element: Often you need to locate the
largest element in an array. If an array has more than one largest element, find the
smallest index of such an element. Suppose the array myList is {1, 5, 3, 4, 5, 5}.
The largest element is 5 and the smallest index for 5 is 1. Use a variable named max
to store the largest element and a variable named indexOfMax to denote the index
of the largest element. Initially max is myList[0], and indexOfMax is 0. Compare
each element in myList with max, and update max and indexOfMax if the element
is greater than max.

double max = myList[0];
int indexOfMax = 0;
for (int i = 1; i < myList.length; i++) {
if {
max = myList[i];
indexOfMax = i;

}
}

7. Random shuffling: In many applications, you need to randomly reorder the ele-
ments in an array. This is called shuffling. To accomplish this, for each element

(myList[i] > max)

print character array

VideoNote

Random shuffling

6.2 Array Basics 229

8. Shifting elements: Sometimes you need to shift the elements left or right. Here is an
example of shifting the elements one position to the left and filling the last element with
the first element:

double temp = myList[0]; // Retain the first element

// Shift elements left
for (int i = 1; i < myList.length; i++) {
 myList[i - 1] = myList[i];
}

// Move the first element to fill in the last position
myList[myList.length - 1] = temp;

myList

myList[i], randomly generate an index j and swap myList[i] with myList[j],
as follows:

swap

myList

i
[1]

for (int i = 0; i < myList.length; i++) {
// Generate an index j randomly
int j = (int) (Math.random()

 * mylist.length);

// Swap myList[i] with myList[j]
double temp = myList[i];

 myList[i] = myList[j]
 myList[j] = temp;
}

.

.

.

[0]

A random index [j]

9. Simplifying coding: Arrays can be used to greatly simplify coding for certain tasks. For
example, suppose you wish to obtain the English name of a given month by its number.
If the month names are stored in an array, the month name for a given month can be
accessed simply via the index. The following code prompts the user to enter a month
number and displays its month name:

String[] months = {"January", "February", ..., "December"};
System.out.print("Enter a month number (1 to 12): ");
int monthNumber = input.nextInt();
System.out.println("The month is " + months[monthNumber - 1]);

If you didn’t use the months array, you would have to determine the month name using
a lengthy multi-way if-else statement as follows:

if (monthNumber == 1)
System.out.println("The month is January");

else if (monthNumber == 2)
System.out.println("The month is February");

...
else
System.out.println("The month is December");

6.2.7 for-each Loops
Java supports a convenient for loop, known as a for-each loop or enhanced for loop, which
enables you to traverse the array sequentially without using an index variable. For example,
the following code displays all the elements in the array myList:

for (double u: myList) {
System.out.println(u);

}

230 Chapter 6 Single-Dimensional Arrays

You can read the code as “for each element u in myList, do the following.” Note that the vari-
able, u, must be declared as the same type as the elements in myList.

In general, the syntax for a for-each loop is

for (elementType element: arrayRefVar) {
// Process the element

}

You still have to use an index variable if you wish to traverse the array in a different order or
change the elements in the array.

Caution
Accessing an array out of bounds is a common programming error that throws a runtime
ArrayIndexOutOfBoundsException. To avoid it, make sure that you do not use
an index beyond arrayRefVar.length – 1.

Programmers often mistakenly reference the first element in an array with index 1, but it
should be 0. This is called the off-by-one error. Another common error in a loop is using
<= where < should be used. For example, the following loop is wrong.

for (int i = 0; i list.length; i++)
System.out.print(list[i] + " ");

The <= should be replaced by <.

6.1 How do you declare an array reference variable and how do you create an array?

6.2 When is the memory allocated for an array?

6.3 What is the printout of the following code?

int x = 30;
int[] numbers = new int[x];
x = 60;
System.out.println("x is " + x);
System.out.println("The size of numbers is " + numbers.length);

6.4 Indicate true or false for the following statements:

■ Every element in an array has the same type.

■ The array size is fixed after an array reference variable is declared.

■ The array size is fixed after it is created.

■ The elements in an array must be a primitive data type.

6.5 Which of the following statements are valid?

int i = new int(30);
double d[] = new double[30];
char[] r = new char(1..30);
int i[] = (3, 4, 3, 2);
float f[] = {2.3, 4.5, 6.6};
char[] c = new char();

6.6 How do you access elements in an array? What is an array indexed variable?

6.7 What is the array index type? What is the lowest index? What is the representation of
the third element in an array named a?

6.8 Write statements to do the following:

a. Create an array to hold 10 double values.

b. Assign the value 5.5 to the last element in the array.

c. Display the sum of the first two elements.

d. Write a loop that computes the sum of all elements in the array.

<=

ArrayIndexOutOfBounds-
Exception

off-by-one error

✓Point✓Check

6.3 Case Study: Lotto Numbers 231

e. Write a loop that finds the minimum element in the array.

f. Randomly generate an index and display the element of this index in the array.

g. Use an array initializer to create another array with the initial values 3.5, 5.5,
4.52, and 5.6.

6.9 What happens when your program attempts to access an array element with an
invalid index?

6.10 Identify and fix the errors in the following code:

1 public class Test {
2 public static void main(String[] args) {
3 double[100] r;
4
5 for (int i = 0; i < r.length(); i++);
6 r(i) = Math.random * 100;
7 }
8 }

6.11 What is the output of the following code?

1 public class Test {
2 public static void main(String[] args) {
3 int list[] = {1, 2, 3, 4, 5, 6};
4 for (int i = 1; i < list.length; i++)
5 list[i] = list[i - 1];
6
7 for (int i = 0; i < list.length; i++)
8 System.out.print(list[i] + " ");
9 }
10 }

6.3 Case Study: Lotto Numbers
The problem is to write a program that checks if all the input numbers cover 1 to 99.

Each ticket for the Pick-10 lotto has 10 unique numbers ranging from 1 to 99. Suppose you
buy a lot of tickets and like to have them cover all numbers from 1 to 99. Write a program that
reads the ticket numbers from a file and checks whether all numbers are covered. Assume the
last number in the file is 0. Suppose the file contains the numbers

80 3 87 62 30 90 10 21 46 27
12 40 83 9 39 88 95 59 20 37
80 40 87 67 31 90 11 24 56 77
11 48 51 42 8 74 1 41 36 53
52 82 16 72 19 70 44 56 29 33
54 64 99 14 23 22 94 79 55 2
60 86 34 4 31 63 84 89 7 78
43 93 97 45 25 38 28 26 85 49
47 65 57 67 73 69 32 71 24 66
92 98 96 77 6 75 17 61 58 13
35 81 18 15 5 68 91 50 76
0

Your program should display

The tickets cover all numbers

Suppose the file contains the numbers

11 48 51 42 8 74 1 41 36 53
52 82 16 72 19 70 44 56 29 33
0

Key
Point

VideoNote

Lotto numbers

232 Chapter 6 Single-Dimensional Arrays

The algorithm for the program can be described as follows:

for each number k read from the file,
mark number k as covered by setting isCovered[k – 1] true;

if every isCovered[i] is true
The tickets cover all numbers

else
The tickets don't cover all numbers

The complete program is given in Listing 6.1.

LISTING 6.1 LottoNumbers.java
1 import java.util.Scanner;
2
3 public class LottoNumbers {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6 boolean[] isCovered = new boolean[99]; // Default is false
7
8 // Read each number and mark its corresponding element covered
9 int number = input.nextInt();
10 while (number != 0) {
11 isCovered[number - 1] = true;
12 number = input.nextInt();
13 }
14

Your program should display

The tickets don't cover all numbers

How do you mark a number as covered? You can create an array with 99 boolean elements.
Each element in the array can be used to mark whether a number is covered. Let the array be
isCovered. Initially, each element is false, as shown in Figure 6.2a. Whenever a number is
read, its corresponding element is set to true. Suppose the numbers entered are 1, 2, 3, 99,
0. When number 1 is read, isCovered[0] is set to true (see Figure 6.2b). When
number 2 is read, isCovered[2 - 1] is set to true (see Figure 6.2c). When number 3 is read,
isCovered[3 - 1] is set to true (see Figure 6.2d). When number 99 is read, isCovered[98]
is set to true (see Figure 6.2e).

create and initialize array

read number

mark number covered
read number

false

false

false

false

.

.

.

false

false

isCovered

[0]

[1]

[2]

[3]

(a)

[97]

[98]

false

false

false

.

.

.

false

false

isCovered

[0]

[1]

[2]

[3]

(b)

[97]

[98]

true true true

true

truefalse

false

.

.

.

false

false

isCovered

[0]

[1]

[2]

[3]

(c)

[97]

[98]

true

false

.

.

.

false

false

isCovered

[0]

[1]

[2]

[3]

(d)

[97]

[98]

false

.

.

.

false

isCovered

[0]

[1]

[2]

[3]

(e)

[97]

[98]

true

true

true

true

FIGURE 6.2 If number i appears in a Lotto ticket, isCovered[i-1] is set to true.

6.3 Case Study: Lotto Numbers 233

15 // Check whether all covered
16 boolean allCovered = true; // Assume all covered initially
17 for (int i = 0; i < isCovered.length; i++)
18 if (!isCovered[i]) {
19 allCovered = false; // Find one number not covered
20 break;
21 }
22
23 // Display result
24 if (allCovered)
25 System.out.println("The tickets cover all numbers");
26 else
27 System.out.println("The tickets don't cover all numbers");
28 }
29 }

Suppose you have created a text file named LottoNumbers.txt that contains the input data 2 5
6 5 4 3 23 43 2 0. You can run the program using the following command:

java LottoNumbers < LottoNumbers.txt

The program can be traced as follows:

check allCovered?

Line# Representative elements in array isCovered number allCovered

[1] [2] [3] [4] [5] [22] [42]

6 false false false false false false false

9 2

11 true

12 5

11 true

12 6

11 true

12 5

11 true

12 4

11 true

12 3

11 true

12 23

11 true

12 43

11 true

12 2

11 true

12 0

16 true

18(i=0) false

234 Chapter 6 Single-Dimensional Arrays

The program creates an array of 99 boolean elements and initializes each element to
false (line 6). It reads the first number from the file (line 9). The program then repeats the
following operations in a loop:

■ If the number is not zero, set its corresponding value in array isCovered to true
(line 11);

■ Read the next number (line 12).

When the input is 0, the input ends. The program checks whether all numbers are covered in
lines 16–21 and displays the result in lines 24–27.

6.4 Case Study: Deck of Cards
The problem is to create a program that will randomly select four cards from a deck of
cards.

Say you want to write a program that will pick four cards at random from a deck of 52 cards.
All the cards can be represented using an array named deck, filled with initial values 0 to 51,
as follows:

int[] deck = new int[52];

// Initialize cards
for (int i = 0; i < deck.length; i++)
deck[i] = i;

Card numbers 0 to 12, 13 to 25, 26 to 38, and 39 to 51 represent 13 Spades, 13 Hearts,
13 Diamonds, and 13 Clubs, respectively, as shown in Figure 6.3. cardNumber / 13 deter-
mines the suit of the card and cardNumber % 13 determines the rank of the card, as shown
in Figure 6.4. After shuffling the array deck, pick the first four cards from deck. The pro-
gram displays the cards from these four card numbers.

Key
Point

0
.
.
.

12
13
.
.
.

25
26
.
.
.

38
39
.
.
.

51

13 Diamonds ()

13 Clubs ()

0
.
.
.

12
13
.
.
.

25
26
.
.
.

38
39
.
.
.

51

deck
[0]
.
.
.

[12]
[13]

.

.

.
[25]
[26]

.

.

.
[38]
[39]

.

.

.
[51]

Random shuffle

6
48
11
24
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

deck
[0]
[1]
[2]
[3]
[4]
[5]
.
.
.

[25]
[26]

.

.

.
[38]
[39]

.

.

.
[51]

Card number 6 is the
7 (6 % 13 = 6) of
Spades (7 / 13 is 0)

Card number 48 is the
10 (48 % 13 = 9) of
Clubs (48 / 13 is 3)

Card number 11 is the
Queen (11 % 13 = 11) of
Spades (11 / 13 is 0)

Card number 24 is the
Queen (24 % 13 = 11) of
Hearts (24 / 13 is 1)

13 Hearts ()

13 Spades ()

FIGURE 6.3 52 cards are stored in an array named deck.

6.4 Case Study: Deck of Cards 235

Listing 6.2 gives the solution to the problem.

LISTING 6.2 DeckOfCards.java
1 public class DeckOfCards {
2 public static void main(String[] args) {
3 int[] deck = new int[52];
4 String[] suits = {"Spades", "Hearts", "Diamonds", "Clubs"};
5 String[] ranks = {"Ace", "2", "3", "4", "5", "6", "7", "8", "9",
6 "10", "Jack", "Queen", "King"};
7
8 // Initialize the cards
9 for (int i = 0; i < deck.length; i++)
10 deck[i] = i;
11
12 // Shuffle the cards
13 for (int i = 0; i < deck.length; i++) {
14 // Generate an index randomly
15 int index = (int)(Math.random() * deck.length);
16 int temp = deck[i];
17 deck[i] = deck[index];
18 deck[index] = temp;
19 }
20
21 // Display the first four cards
22 for (int i = 0; i < 4; i++) {
23 String suit = suits[deck[i] / 13];
24 String rank = ranks[deck[i] % 13];
25 System.out.println("Card number " + deck[i] + ": "
26 + rank + " of " + suit);
27 }
28 }
29 }

cardNumber / 13 =

0

3

2

1

Spades

Hearts

Diamonds

Clubs

cardNumber % 13 =

0

11

10

.

Ace

1 2

.

12

Jack

Queen

King

FIGURE 6.4 How cardNumber identifies a card’s suit and rank number.

Card number 6: 7 of Spades
Card number 48: 10 of Clubs
Card number 11: Queen of Spades
Card number 24: Queen of Hearts

create array deck
array of strings
array of strings

initialize deck

shuffle deck

suit of a card
rank of a card

236 Chapter 6 Single-Dimensional Arrays

The program defines an array suits for four suits (line 4) and an array ranks for 13 cards in
a suit (lines 5–6). Each element in these arrays is a string.

The program initializes deck with values 0 to 51 in lines 9–10. The deck value 0 repre-
sents the card Ace of Spades, 1 represents the card 2 of Spades, 13 represents the card Ace of
Hearts, and 14 represents the card 2 of Hearts.

Lines 13–19 randomly shuffle the deck. After a deck is shuffled, deck[i] contains an
arbitrary value. deck[i] / 13 is 0, 1, 2, or 3, which determines the suit (line 23). deck[i]
% 13 is a value between 0 and 12, which determines the rank (line 24). If the suits array is
not defined, you would have to determine the suit using a lengthy multi-way if-else state-
ment as follows:

if (deck[i] / 13 == 0)
System.out.print("suit is Spades");

else if (deck[i] / 13 == 1)
System.out.print("suit is Hearts");

else if(deck[i] / 13 == 2)
System.out.print("suit is Diamonds");

else
System.out.print("suit is Clubs");

With suits = {"Spades", "Hearts", "Diamonds", "Clubs"} created in an array,
suits[deck / 13] gives the suit for the deck. Using arrays greatly simplifies the solution
for this program.

6.5 Copying Arrays
To copy the contents of one array into another, you have to copy the array’s individual
elements into the other array.

Often, in a program, you need to duplicate an array or a part of an array. In such cases you
could attempt to use the assignment statement (=), as follows:

list2 = list1;

However, this statement does not copy the contents of the array referenced by list1 to list2,
but instead merely copies the reference value from list1 to list2. After this statement,
list1 and list2 reference the same array, as shown in Figure 6.5. The array previously ref-
erenced by list2 is no longer referenced; it becomes garbage, which will be automatically
collected by the Java Virtual Machine (this process is called garbage collection).

Key
Point

copy reference

garbage collection

Contents
of list1

Contents
of list1

Contents
of list2

Contents
of list2

list1

list2

Before the assignment
list2 = list1;

list1

list2

After the assignment
list2 = list1;

FIGURE 6.5 Before the assignment statement, list1 and list2 point to separate memory
locations. After the assignment, the reference of the list1 array is passed to list2.

In Java, you can use assignment statements to copy primitive data type variables, but not
arrays. Assigning one array variable to another array variable actually copies one reference to
another and makes both variables point to the same memory location.

6.6 Passing Arrays to Methods 237

There are three ways to copy arrays:

■ Use a loop to copy individual elements one by one.

■ Use the static arraycopy method in the System class.

■ Use the clone method to copy arrays; this will be introduced in Chapter 15,
Abstract Classes and Interfaces.

You can write a loop to copy every element from the source array to the corresponding ele-
ment in the target array. The following code, for instance, copies sourceArray to
targetArray using a for loop.

int[] sourceArray = {2, 3, 1, 5, 10};
int[] targetArray = new int[sourceArray.length];
for (int i = 0; i < sourceArray.length; i++) {
targetArray[i] = sourceArray[i];

}

Another approach is to use the arraycopy method in the java.lang.System class to copy
arrays instead of using a loop. The syntax for arraycopy is:

arraycopy(sourceArray, src_pos, targetArray, tar_pos, length);

The parameters src_pos and tar_pos indicate the starting positions in sourceArray and
targetArray, respectively. The number of elements copied from sourceArray to
targetArray is indicated by length. For example, you can rewrite the loop using the fol-
lowing statement:

System.arraycopy(sourceArray, 0, targetArray, 0, sourceArray.length);

The arraycopy method does not allocate memory space for the target array. The target array
must have already been created with its memory space allocated. After the copying takes place,
targetArray and sourceArray have the same content but independent memory locations.

Note
The arraycopy method violates the Java naming convention. By convention, this
method should be named arrayCopy (i.e., with an uppercase C).

6.12 Use the arraycopy() method to copy the following array to a target array t:

int[] source = {3, 4, 5};

6.13 Once an array is created, its size cannot be changed. Does the following code resize
the array?

int[] myList;
myList = new int[10];
// Sometime later you want to assign a new array to myList
myList = new int[20];

6.6 Passing Arrays to Methods
When passing an array to a method, the reference of the array is passed to the method.

Just as you can pass primitive type values to methods, you can also pass arrays to methods.
For example, the following method displays the elements in an int array:

public static void printArray(int[] array) {
for (int i = 0; i < array.length; i++) {

✓Point✓Check

Key
Point

arraycopy method

238 Chapter 6 Single-Dimensional Arrays

System.out.print(array[i] + " ");
}

}

You can invoke it by passing an array. For example, the following statement invokes the
printArray method to display 3, 1, 2, 6, 4, and 2.

printArray(new int[]{3, 1, 2, 6, 4, 2});

Note
The preceding statement creates an array using the following syntax:

new elementType[]{value0, value1, ..., valuek};

There is no explicit reference variable for the array. Such array is called an anonymous
array.

Java uses pass-by-value to pass arguments to a method. There are important differences
between passing the values of variables of primitive data types and passing arrays.

■ For an argument of a primitive type, the argument’s value is passed.

■ For an argument of an array type, the value of the argument is a reference to an array;
this reference value is passed to the method. Semantically, it can be best described as
pass-by-sharing, that is, the array in the method is the same as the array being
passed. Thus, if you change the array in the method, you will see the change outside
the method.

Take the following code, for example:

public class Test {
public static void main(String[] args) {
int x = 1; // x represents an int value
int[] y = new int[10]; // y represents an array of int values

; // Invoke m with arguments x and y

System.out.println("x is " + x);
System.out.println("y[0] is " + y[0]);

}

public static void {
number = 1001; // Assign a new value to number
numbers[0] = 5555; // Assign a new value to numbers[0]

}
}

m(int number, int[] numbers)

m(x, y)

anonymous array

pass-by-value

pass-by-sharing

x is 1
y[0] is 5555

You may wonder why after m is invoked, x remains 1, but y[0] become 5555. This is
because y and numbers, although they are independent variables, reference the same array, as
illustrated in Figure 6.6. When m(x, y) is invoked, the values of x and y are passed to
number and numbers. Since y contains the reference value to the array, numbers now con-
tains the same reference value to the same array.

6.6 Passing Arrays to Methods 239

Note
Arrays are objects in Java (objects are introduced in Chapter 8). The JVM stores the objects
in an area of memory called the heap, which is used for dynamic memory allocation.

Listing 6.3 gives another program that shows the difference between passing a primitive data
type value and an array reference variable to a method.

The program contains two methods for swapping elements in an array. The first method,
named swap, fails to swap two int arguments. The second method, named
swapFirstTwoInArray, successfully swaps the first two elements in the array argument.

LISTING 6.3 TestPassArray.java
1 public class TestPassArray {
2 /** Main method */
3 public static void main(String[] args) {
4
5
6 // Swap elements using the swap method
7 System.out.println("Before invoking swap");
8 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
9
10 System.out.println("After invoking swap");
11 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
12
13 // Swap elements using the swapFirstTwoInArray method
14 System.out.println("Before invoking swapFirstTwoInArray");
15 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
16
17 System.out.println("After invoking swapFirstTwoInArray");
18 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
19 }
20
21 /** Swap two variables */
22 public static void {
23 int temp = n1;
24 n1 = n2;
25 n2 = temp;
26 }
27
28 /** Swap the first two elements in the array */
29 public static void {
30 int temp = array[0];
31 array[0] = array[1];
32 array[1] = temp;
33 }
34 }

swapFirstTwoInArray(int[] array)

swap(int n1, int n2)

swapFirstTwoInArray(a);

swap(a[0], a[1]);

int[] a = {1, 2};

reference

Space required for the
main method

int[] y:
int x: 1

Stack

Space required for
method m
int[] numbers:
int number: 1 An array of

ten int
values is
stored here

Arrays are
stored in a
heap.

Heap

reference

FIGURE 6.6 The primitive type value in x is passed to number, and the reference value in y
is passed to numbers.

heap

false swap

swap array elements

240 Chapter 6 Single-Dimensional Arrays

Before invoking swap
array is {1, 2}
After invoking swap
array is {1, 2}
Before invoking swapFirstTwoInArray
array is {1, 2}
After invoking swapFirstTwoInArray
array is {2, 1}

As shown in Figure 6.7, the two elements are not swapped using the swap method. However,
they are swapped using the swapFirstTwoInArray method. Since the parameters in the swap
method are primitive type, the values of a[0] and a[1] are passed to n1 and n2 inside the
method when invoking swap(a[0], a[1]). The memory locations for n1 and n2 are inde-
pendent of the ones for a[0] and a[1]. The contents of the array are not affected by this call.

The parameter in the swapFirstTwoInArray method is an array. As shown in Figure 6.7,
the reference of the array is passed to the method. Thus the variables a (outside the method)
and array (inside the method) both refer to the same array in the same memory location.
Therefore, swapping array[0] with array[1] inside the method swapFirstTwoInArray
is the same as swapping a[0] with a[1] outside of the method.

6.7 Returning an Array from a Method
When a method returns an array, the reference of the array is returned.

You can pass arrays when invoking a method. A method may also return an array. For exam-
ple, the following method returns an array that is the reversal of another array.

Key
Point

create array

return array

Invoke swap(int n1, int n2).
The primitive type values in
a[0] and a[1] are passed to the
swap method.

Invoke swapFirstTwoInArray(int[]
array). The reference value in a is passed
to the swapFirstTwoInArray method.

The arrays are
stored in a
heap.

Stack Heap

Space required for the
swap method

Space required for the
main method

n2: 2
n1: 1

int[] a reference reference

reference

Stack

Space required for the
swapFirstTwoInArray
method

Space required for the
main method

int[] a

int[] array

a[0]: 1
a[1]: 2

FIGURE 6.7 When passing an array to a method, the reference of the array is passed to the
method.

 l public static int[] reverse(int[] list) {
 2 int[] result = new int[list.length];
 3
 4 for (int i = 0, j = result.length - 1;
 5 i < list.length; i++, j--) {
 6 result[j] = list[i];
 7 }
 8
 9 return result;
10 }

list

result

6.8 Case Study: Counting the Occurrences of Each Letter 241

Line 2 creates a new array result. Lines 4–7 copy elements from array list to array
result. Line 9 returns the array. For example, the following statement returns a new array
list2 with elements 6, 5, 4, 3, 2, 1.

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

6.8 Case Study: Counting the Occurrences of Each Letter
This section presents a program to count the occurrences of each letter in an array of
characters.

The program given in Listing 6.4 does the following:

1. Generates 100 lowercase letters randomly and assigns them to an array of characters, as
shown in Figure 6.8a. You can obtain a random letter by using the getRandomLower-
CaseLetter() method in the RandomCharacter class in Listing 5.10.

2. Count the occurrences of each letter in the array. To do so, create an array, say counts,
of 26 int values, each of which counts the occurrences of a letter, as shown in Figure
6.8b. That is, counts[0] counts the number of a’s, counts[1] counts the number of
b’s, and so on.

Key
Point

…

…

chars[0]

chars[1]

…

…

chars[98]

chars[99]

…

…

counts[0]

counts[1]

…

…

counts[24]

counts[25]

(a) (b)

FIGURE 6.8 The chars array stores 100 characters, and the counts array stores 26 counts,
each of which counts the occurrences of a letter.

LISTING 6.4 CountLettersInArray.java
1 public class CountLettersInArray {
2 /** Main method */
3 public static void main(String[] args) {
4 // Declare and create an array
5 char[] chars =
6
7 // Display the array
8 System.out.println("The lowercase letters are:");
9
10
11 // Count the occurrences of each letter
12 int[] counts = ;
13
14 // Display counts
15 System.out.println();
16 System.out.println("The occurrences of each letter are:");
17
18 }
19
20 /** Create an array of characters */

displayCounts(counts);

countLetters(chars)

displayArray(chars);

createArray(); create array

pass array

return array

pass array

242 Chapter 6 Single-Dimensional Arrays

21 public static {
22 // Declare an array of characters and create it
23 char[] chars = new char[100];
24
25 // Create lowercase letters randomly and assign
26 // them to the array
27 for (int i = 0; i < chars.length; i++)
28 chars[i] = RandomCharacter.getRandomLowerCaseLetter();
29
30 // Return the array
31 return chars;
32 }
33
34 /** Display the array of characters */
35 public static {
36 // Display the characters in the array 20 on each line
37 for (int i = 0; i < chars.length; i++) {
38 if ((i + 1) % 20 == 0)
39 System.out.println(chars[i]);
40 else
41 System.out.print(chars[i] + " ");
42 }
43 }
44
45 /** Count the occurrences of each letter */
46 public static {
47 // Declare and create an array of 26 int
48 int[] counts = new int[26];
49
50 // For each lowercase letter in the array, count it
51 for (int i = 0; i < chars.length; i++)
52 counts[chars[i] - 'a']++;
53
54 return counts;
55 }
56
57 /** Display counts */
58 public static {
59 for (int i = 0; i < counts.length; i++) {
60 if ((i + 1) % 10 == 0)
61 System.out.println(counts[i] + " " + (char)(i + 'a'));
62 else
63 System.out.print(counts[i] + " " + (char)(i + 'a') + " ");
64 }
65 }
66 }

void displayCounts(int[] counts)

int[] countLetters(char[] chars)

void displayArray(char[] chars)

char[] createArray()

increase count

The lowercase letters are:
e y l s r i b k j v j h a b z n w b t v
s c c k r d w a m p w v u n q a m p l o
a z g d e g f i n d x m z o u l o z j v
h w i w n t g x w c d o t x h y v z y z
q e a m f w p g u q t r e n n w f c r f

The occurrences of each letter are:
5 a 3 b 4 c 4 d 4 e 4 f 4 g 3 h 3 i 3 j
2 k 3 l 4 m 6 n 4 o 3 p 3 q 4 r 2 s 4 t
3 u 5 v 8 w 3 x 3 y 6 z

6.8 Case Study: Counting the Occurrences of Each Letter 243

The createArray method (lines 21–32) generates an array of 100 random lowercase letters.
Line 5 invokes the method and assigns the array to chars. What would be wrong if you
rewrote the code as follows?

char[] chars = new char[100];
chars = createArray();

You would be creating two arrays. The first line would create an array by using new
char[100]. The second line would create an array by invoking createArray() and assign
the reference of the array to chars. The array created in the first line would be garbage
because it is no longer referenced, and as mentioned earlier Java automatically collects
garbage behind the scenes. Your program would compile and run correctly, but it would cre-
ate an array unnecessarily.

Invoking getRandomLowerCaseLetter() (line 28) returns a random lowercase letter.
This method is defined in the RandomCharacter class in Listing 5.10.

The countLetters method (lines 46–55) returns an array of 26 int values, each of
which stores the number of occurrences of a letter. The method processes each letter in the
array and increases its count by one. A brute-force approach to count the occurrences of each
letter might be as follows:

for (int i = 0; i < chars.length; i++)
if (chars[i] == 'a')
counts[0]++;

else if (chars[i] == 'b')
counts[1]++;

...

But a better solution is given in lines 51–52.

for (int i = 0; i < chars.length; i++)
counts[chars[i] - 'a']++;

If the letter (chars[i]) is a, the corresponding count is counts['a' - 'a'] (i.e.,
counts[0]). If the letter is b, the corresponding count is counts['b' - 'a'] (i.e.,
counts[1]), since the Unicode of b is one more than that of a. If the letter is z, the corre-
sponding count is counts['z' - 'a'] (i.e., counts[25]), since the Unicode of z is 25
more than that of a.

Figure 6.9 shows the call stack and heap during and after executing createArray.
See Checkpoint Question 6.16 to show the call stack and heap for other methods in the
program.

Array of 100
characters

Stack

(a) Executing
createArray in line 5

(b) After exiting
createArray in line 5

Heap

Space required for the
createArray method

Space required for the
main method

Array of 100
characters

Stack Heap

Space required for the
main method

char[] chars: refchar[] chars: ref

char[] chars: ref

FIGURE 6.9 (a) An array of 100 characters is created when executing createArray.
(b) This array is returned and assigned to the variable chars in the main method.

244 Chapter 6 Single-Dimensional Arrays

6.14 True or false? When an array is passed to a method, a new array is created and passed
to the method.

6.15 Show the output of the following two programs:

6.16 Where are the arrays stored during execution? Show the contents of the stack and
heap during and after executing displayArray, countLetters, displayCounts
in Listing 6.4.

6.9 Variable-Length Argument Lists
A variable number of arguments of the same type can be passed to a method and
treated as an array.

You can pass a variable number of arguments of the same type to a method. The parameter in
the method is declared as follows:

typeName... parameterName

In the method declaration, you specify the type followed by an ellipsis (...). Only one
variable-length parameter may be specified in a method, and this parameter must be the last
parameter. Any regular parameters must precede it.

Java treats a variable-length parameter as an array. You can pass an array or a variable
number of arguments to a variable-length parameter. When invoking a method with a variable
number of arguments, Java creates an array and passes the arguments to it. Listing 6.5 con-
tains a method that prints the maximum value in a list of an unspecified number of values.

LISTING 6.5 VarArgsDemo.java
1 public class VarArgsDemo {
2 public static void main(String[] args) {
3
4
5 }
6
7 public static void printMax() {
8 if (numbers.length == 0) {
9 System.out.println("No argument passed");

double... numbers

printMax(new double[]{1, 2, 3});
printMax(34, 3, 3, 2, 56.5);

✓Point✓Check

Key
Point

public class Test {
public static void main(String[] args) {

int number = 0;
int[] numbers = new int[1];

m(number, numbers);

System.out.println("number is " + number
+ " and numbers[0] is " + numbers[0]);

}

public static void m(int x, int[] y) {
x = 3;
y[0] = 3;

}
}

public class Test {
public static void main(String[] args) {

int[] list = {1, 2, 3, 4, 5};
reverse(list);
for (int i = 0; i < list.length; i++)
System.out.print(list[i] + " ");

}

public static void reverse(int[] list) {
int[] newList = new int[list.length];

for (int i = 0; i < list.length; i++)
newList[i] = list[list.length - 1 - i];

list = newList;
}

}

(a) (b)

pass variable-length arg list
pass an array arg

a variable-length arg
parameter

6.10 Searching Arrays 245

10 return;
11 }
12
13 double result = numbers[0];
14
15 for (int i = 1; i < numbers.length; i++)
16 if (numbers[i] > result)
17 result = numbers[i];
18
19 System.out.println("The max value is " + result);
20 }
21 }

Line 3 invokes the printMax method with a variable-length argument list passed to the array
numbers. If no arguments are passed, the length of the array is 0 (line 8).

Line 4 invokes the printMax method with an array.

6.17 What is wrong in the following method header?

public static void print(String... strings, double... numbers)
public static void print(double... numbers, String name)
public static double... print(double d1, double d2)

6.18 Can you invoke the printMax method in Listing 6.5 using the following statements?

printMax(1, 2, 2, 1, 4);
printMax(new double[]{1, 2, 3});
printMax(new int[]{1, 2, 3});

6.10 Searching Arrays
If an array is sorted, binary search is more efficient than linear search for finding an
element in the array.

Searching is the process of looking for a specific element in an array—for example, discover-
ing whether a certain score is included in a list of scores. Searching is a common task in com-
puter programming. Many algorithms and data structures are devoted to searching. This
section discusses two commonly used approaches, linear search and binary search.

6.10.1 The Linear Search Approach
The linear search approach compares the key element key sequentially with each element in
the array. It continues to do so until the key matches an element in the array or the array is
exhausted without a match being found. If a match is made, the linear search returns the index
of the element in the array that matches the key. If no match is found, the search returns -1.
The linearSearch method in Listing 6.6 gives the solution.

LISTING 6.6 LinearSearch.java

Key
Point

✓Point✓Check

linear search

binary search

linear search animation on
Companion Website

list

key Compare key with list[i] for i = 0, 1, …

[0] [1] [2] …

1 public class LinearSearch {
2 /** The method for finding a key in the list */
3 public static int linearSearch(int[] list, int key) {
4 for (int i = 0; i < list.length; i++) {
5 if (key == list[i])
6 return i;
7 }
8 return -1;
9 }
10 }

246 Chapter 6 Single-Dimensional Arrays

To better understand this method, trace it with the following statements:

1 int[] list = {1, 4, 4, 2, 5, -3, 6, 2};
2 int i = linearSearch(list, 4); // Returns 1
3 int j = linearSearch(list, -4); // Returns -1
4 int k = linearSearch(list, -3); // Returns 5

The linear search method compares the key with each element in the array. The elements can
be in any order. On average, the algorithm will have to examine half of the elements in an
array before finding the key, if it exists. Since the execution time of a linear search increases
linearly as the number of array elements increases, linear search is inefficient for a large array.

6.10.2 The Binary Search Approach
Binary search is the other common search approach for a list of values. For binary search to
work, the elements in the array must already be ordered. Assume that the array is in ascend-
ing order. The binary search first compares the key with the element in the middle of the array.
Consider the following three cases:

■ If the key is less than the middle element, you need to continue to search for the key
only in the first half of the array.

■ If the key is equal to the middle element, the search ends with a match.

■ If the key is greater than the middle element, you need to continue to search for the
key only in the second half of the array.

Clearly, the binary search method eliminates at least half of the array after each comparison.
Sometimes you eliminate half of the elements, and sometimes you eliminate half plus one.
Suppose that the array has n elements. For convenience, let n be a power of 2. After the first
comparison, n/2 elements are left for further search; after the second comparison, (n/2)/2
elements are left. After the kth comparison, n/2k elements are left for further search. When k
= log2n, only one element is left in the array, and you need only one more comparison.
Therefore, in the worst case when using the binary search approach, you need log2n+1 com-
parisons to find an element in the sorted array. In the worst case for a list of 1024 (210) ele-
ments, binary search requires only 11 comparisons, whereas a linear search requires 1023
comparisons in the worst case.

The portion of the array being searched shrinks by half after each comparison. Let low and
high denote, respectively, the first index and last index of the array that is currently being
searched. Initially, low is 0 and high is list.length–1. Let mid denote the index of the
middle element, so mid is (low + high)/2. Figure 6.10 shows how to find key 11 in the list
{2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79} using binary search.

You now know how the binary search works. The next task is to implement it in Java.
Don’t rush to give a complete implementation. Implement it incrementally, one step at a time.
You may start with the first iteration of the search, as shown in Figure 6.11a. It compares the
key with the middle element in the list whose low index is 0 and high index is
list.length - 1. If key < list[mid], set the high index to mid - 1; if key ==
list[mid], a match is found and return mid; if key > list[mid], set the low index to
mid + 1.

Next consider implementing the method to perform the search repeatedly by adding a loop,
as shown in Figure 6.11b. The search ends if the key is found, or if the key is not found when
low > high.

When the key is not found, low is the insertion point where a key would be inserted to
maintain the order of the list. It is more useful to return the insertion point than -1. The
method must return a negative value to indicate that the key is not in the list. Can it simply
return –low? No. If the key is less than list[0], low would be 0. -0 is 0. This would

binary search animation on
Companion Website

why not –1?

6.10 Searching Arrays 247

key is 11 low

key � 50

key � 7

[0] [1] [2] [3] [4] [5] [7] [8] [9] [10] [11]

2list 4 7 10 11 45 50 59 60 66 69 70 79

mid

[6]

high

[12]

low

[0] [1] [2] [3] [4] [5]

2list 4 7 10 11 45

mid high

key �� 11

[3] [4] [5]

list 10 11 45

low mid high

FIGURE 6.10 Binary search eliminates half of the list from further consideration after each
comparison.

public static int binarySearch(
int[] list, int key) {

int low = 0;
int high = list.length - 1;

if (key < list[mid])
high = mid - 1;

else if (key == list[mid])

else
low = mid + 1;

}

return mid;

int mid = (low + high) / 2;

(a) Version 1

public static int binarySearch(
int[] list, int key) {

int low = 0;
int high = list.length - 1;

int mid = (low + high) / 2;
if (key < list[mid])
high = mid - 1;

else if (key == list[mid])
return mid;

else
low = mid + 1;

// Not found
}
return -1;

}

while (high >= low) {

(b) Version 2

FIGURE 6.11 Binary search is implemented incrementally.

indicate that the key matches list[0]. A good choice is to let the method return –low – 1
if the key is not in the list. Returning –low – 1 indicates not only that the key is not in the list,
but also where the key would be inserted.

The complete program is given in Listing 6.7.

LISTING 6.7 BinarySearch.java
1 public class BinarySearch {
2 /** Use binary search to find the key in the list */
3 public static int binarySearch(int[] list, int key) {
4 int low = 0;
5 int high = list.length - 1;
6
7
8
9 if (key < list[mid])
10 high = mid - 1;
11 else if (key == list[mid])

int mid = (low + high) / 2;
while (high >= low) {

first half

248 Chapter 6 Single-Dimensional Arrays

12
13 else
14 low = mid + 1;
15
16
17 // Now high < low, key not found
18 }
19 }

The binary search returns the index of the search key if it is contained in the list (line 12). Oth-
erwise, it returns –low – 1 (line 17).

What would happen if we replaced (high >= low) in line 7 with (high > low)? The
search would miss a possible matching element. Consider a list with just one element. The search
would miss the element.

Does the method still work if there are duplicate elements in the list? Yes, as long as the
elements are sorted in increasing order. The method returns the index of one of the matching
elements if the element is in the list.

To better understand this method, trace it with the following statements and identify low
and high when the method returns.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};
int i = BinarySearch.binarySearch(list, 2); // Returns 0
int j = BinarySearch.binarySearch(list, 11); // Returns 4
int k = BinarySearch.binarySearch(list, 12); // Returns –6
int l = BinarySearch.binarySearch(list, 1); // Returns –1
int m = BinarySearch.binarySearch(list, 3); // Returns –2

Here is the table that lists the low and high values when the method exits and the value
returned from invoking the method.

return –low - 1;

}

return mid;

second half

binary search benefits

selection sort

insertion sort

Method Low High Value Returned

binarySearch(list, 2) 0 1 0

binarySearch(list, 11) 3 5 4

binarySearch(list, 12) 5 4 -6

binarySearch(list, 1) 0 -1 -1

binarySearch(list, 3) 1 0 -2

Note
Linear search is useful for finding an element in a small array or an unsorted array, but it
is inefficient for large arrays. Binary search is more efficient, but it requires that the array
be presorted.

6.11 Sorting Arrays
There are many strategies for sorting elements in an array. Selection sort and insertion
sort are two common approaches.

Sorting, like searching, is a common task in computer programming. Many different algo-
rithms have been developed for sorting. This section introduces two simple, intuitive sorting
algorithms: selection sort and insertion sort.

Key
Point

6.11 Sorting Arrays 249

6.11.1 Selection Sort
Suppose that you want to sort a list in ascending order. Selection sort finds the smallest number
in the list and swaps it with the first element. It then finds the smallest number remaining and
swaps it with the second element, and so on, until only a single number remains. Figure 6.12
shows how to sort the list {2, 9, 5, 4, 8, 1, 6} using selection sort.

VideoNote

Selection sort

Select 1 (the smallest) and swap it
with 2 (the first) in the list.

The number 1 is now in the
correct position and thus no
longer needs to be considered.

The number 2 is now in the
correct position and thus no
longer needs to be considered.

The number 4 is now in the
correct position and thus no
longer needs to be considered.

The number 5 is now in the
correct position and thus no
longer needs to be considered.

The number 6 is now in the
correct position and thus no
longer needs to be considered.

2

1

1

1

1

1

1

9

9

2

2

2

2

2

5

swap

5

5

4

4

4

4

4

4

4

5

5

5

5

8

8

8

8

8

6

6

1

2

9

9

9

9

8

6

6

6

6

6

8

9
The number 8 is now in the
correct position and thus no
longer needs to be considered.

Select 2 (the smallest) and swap it
with 9 (the first) in the remaining
list.

Select 4 (the smallest) and swap it
with 5 (the first) in the remaining
list.

5 is the smallest and in the right
position. No swap is necessary.

Select 6 (the smallest) and swap it
with 8 (the first) in the remaining
list.

Select 8 (the smallest) and swap it
with 9 (the first) in the remaining
list.

Since there is only one element
remaining in the list, the sort is
completed.

swap

swap

swap

swap

FIGURE 6.12 Selection sort repeatedly selects the smallest number and swaps it with the first number
in the list.

You know how the selection-sort approach works. The task now is to implement it in
Java. Beginners find it difficult to develop a complete solution on the first attempt. Start by
writing the code for the first iteration to find the smallest element in the list and swap it with
the first element, and then observe what would be different for the second iteration, the
third, and so on. The insight this gives will enable you to write a loop that generalizes all
the iterations.

The solution can be described as follows:

for (int i = 0; i < list.length - 1; i++) {
select the smallest element in list[i..list.length-1];
swap the smallest with list[i], if necessary;
// list[i] is in its correct position.
// The next iteration apply on list[i+1..list.length-1]

}

selection sort animation on
Companion Website

250 Chapter 6 Single-Dimensional Arrays

Listing 6.8 implements the solution.

LISTING 6.8 SelectionSort.java
1 public class SelectionSort {
2 /** The method for sorting the numbers */
3 public static void selectionSort(double[] list) {
4
5 // Find the minimum in the list[i..list.length-1]
6 double currentMin = list[i];
7 int currentMinIndex = i;
8
9
10 if (currentMin > list[j]) {
11 currentMin = list[j];
12 currentMinIndex = j;
13 }
14 }
15
16 // Swap list[i] with list[currentMinIndex] if necessary
17 if (currentMinIndex != i) {
18 list[currentMinIndex] = list[i];
19 list[i] = currentMin;
20 }
21 }
22 }
23 }

The selectionSort(double[] list) method sorts any array of double elements. The
method is implemented with a nested for loop. The outer loop (with the loop control variable
i) (line 4) is iterated in order to find the smallest element in the list, which ranges from
list[i] to list[list.length-1], and exchange it with list[i].

The variable i is initially 0. After each iteration of the outer loop, list[i] is in the right
place. Eventually, all the elements are put in the right place; therefore, the whole list is sorted.

To understand this method better, trace it with the following statements:

double[] list = {1, 9, 4.5, 6.6, 5.7, -4.5};
SelectionSort.selectionSort(list);

6.11.2 Insertion Sort
Suppose that you want to sort a list in ascending order. The insertion-sort algorithm sorts a list
of values by repeatedly inserting a new element into a sorted sublist until the whole list is
sorted. Figure 6.13 shows how to sort the list {2, 9, 5, 4, 8, 1, 6} using insertion sort.

The algorithm can be described as follows:

for (int i = 1; i < list.length; i++) {
insert list[i] into a sorted sublist list[0..i-1] so that
list[0..i] is sorted.

}

To insert list[i] into list[0..i-1], save list[i] into a temporary variable, say
currentElement. Move list[i-1] to list[i] if list[i-1] > currentElement,
move list[i-2] to list[i-1] if list[i-2] > currentElement, and so on, until
list[i-k] <= currentElement or k > i (we pass the first element of the sorted list).
Assign currentElement to list[i-k+1]. For example, to insert 4 into {2, 5, 9} in Step 4
in Figure 6.14, move list[2] (9) to list[3] since 9 > 4, and move list[1] (5) to
list[2] since 5 > 4. Finally, move currentElement (4) to list[1].

for (int j = i + 1; j < list.length; j++) {

for (int i = 0; i < list.length - 1; i++) {

select

swap

insertion sort animation on
Companion Website

6.11 Sorting Arrays 251

The algorithm can be expanded and implemented as in Listing 6.9.

LISTING 6.9 InsertionSort.java
1 public class InsertionSort {
2 /** The method for sorting the numbers */
3 public static void insertionSort(double[] list) {
4 for (int i = 1; i < list.length; i++) {
5 /** Insert list[i] into a sorted sublist list[0..i-1] so that
6 list[0..i] is sorted. */
7 double currentElement = list[i];
8 int k;
9
10 list[k + 1] = list[k];
11 }
12
13 // Insert the current element into list[k + 1]

for (k = i - 1; k >= 0 && list[k] > currentElement; k——) {

Step 1: Initially, the sorted sublist contains the
first element in the list. Insert 9 into the sublist.

Step 2: The sorted sublist is {2, 9}. Insert 5 into
the sublist.

Step 3: The sorted sublist is {2, 5, 9}. Insert 4
into the sublist.

Step 4: The sorted sublist is {2, 4, 5, 9}. Insert 8
into the sublist.

Step 5: The sorted sublist is {2, 4, 5, 8, 9}. Insert
1 into the sublist.

Step 6: The sorted sublist is {1, 2, 4, 5, 8, 9}.
Insert 6 into the sublist.

2

2

2

2

2

1

1

9

9

5

4

4

2

2

5

5

9

5

5

4

4

4

4

4

9

8

5

5

8

8

8

8

9

8

6

1

1

1

1

1

9

8

6

6

6

6

6

6

9Step 7: The entire list is now sorted.

FIGURE 6.13 Insertion sort repeatedly inserts a new element into a sorted sublist.

[0][1][2][3][4][5][6]

2 5 9 4list Step 1: Save 4 to a temporary variable currentElement

[0][1][2][3][4][5][6]

2 5 9list Step 2: Move list[2] to list[3]

[0][1][2][3][4][5][6]

2 5 9list Step 3: Move list[1] to list[2]

[0][1][2][3][4][5][6]

2 4 5 9list Step 4: Assign currentElement to list[1]

FIGURE 6.14 A new element is inserted into a sorted sublist.

shift

252 Chapter 6 Single-Dimensional Arrays

14
15 }
16 }
17 }

The insertionSort(double[] list) method sorts any array of double elements. The
method is implemented with a nested for loop. The outer loop (with the loop control variable
i) (line 4) is iterated in order to obtain a sorted sublist, which ranges from list[0] to
list[i]. The inner loop (with the loop control variable k) inserts list[i] into the sublist
from list[0] to list[i-1].

To better understand this method, trace it with the following statements:

double[] list = {1, 9, 4.5, 6.6, 5.7, -4.5};
InsertionSort.insertionSort(list);

6.19 Use Figure 6.10 as an example to show how to apply the binary search approach to a
search for key 10 and key 12 in list {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79}.

6.20 If the binary search method returns -4, is the key in the list? Where should the key be
inserted if you wish to insert the key into the list?

6.21 Use Figure 6.12 as an example to show how to apply the selection-sort approach to
sort {3.4, 5, 3, 3.5, 2.2, 1.9, 2}.

6.22 Use Figure 6.13 as an example to show how to apply the insertion-sort approach to
sort {3.4, 5, 3, 3.5, 2.2, 1.9, 2}.

6.23 How do you modify the selectionSort method in Listing 6.8 to sort numbers in
decreasing order?

6.24 How do you modify the insertionSort method in Listing 6.9 to sort numbers in
decreasing order?

6.12 The Arrays Class
The java.util.Arrays class contains useful methods for common array operations
such as sorting and searching.

The java.util.Arrays class contains various static methods for sorting and searching
arrays, comparing arrays, filling array elements, and returning a string representation of the
array. These methods are overloaded for all primitive types.

You can use the sort method to sort a whole array or a partial array. For example, the fol-
lowing code sorts an array of numbers and an array of characters.

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};
// Sort the whole array

char[] chars = {'a', 'A', '4', 'F', 'D', 'P'};
// Sort part of the array

Invoking sort(numbers) sorts the whole array numbers. Invoking sort(chars, 1, 3)
sorts a partial array from chars[1] to chars[].

You can use the binarySearchmethod to search for a key in an array. The array must be pre-
sorted in increasing order. If the key is not in the array, the method returns –(insertionindex
+ 1). For example, the following code searches the keys in an array of integers and an array of
characters.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};
System.out.println("(1) Index is " +

java.util.Arrays.binarySearch(list, 11));

3-1

java.util.Arrays.sort(chars, 1, 3);

java.util.Arrays.sort(numbers);

list[k + 1] = currentElement;insert

✓Point✓Check

sort

binarySearch

Key
Point

6.12 The Arrays Class 253

System.out.println("(2) Index is " +
java.util.Arrays.binarySearch(list, 12));

char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'};
System.out.println("(3) Index is " +

java.util.Arrays.binarySearch(chars, 'a'));
System.out.println("(4) Index is " +

java.util.Arrays.binarySearch(chars, 't'));

The output of the preceding code is

1. Index is 4

2. Index is –6

3. Index is 0

4. Index is –4

You can use the equals method to check whether two arrays are equal. Two arrays are equal
if they have the same contents. In the following code, list1 and list2 are equal, but list2
and list3 are not.

int[] list1 = {2, 4, 7, 10};
int[] list2 = {2, 4, 7, 10};
int[] list3 = {4, 2, 7, 10};
System.out.println(); // true
System.out.println(); // false

You can use the fill method to fill in all or part of the array. For example, the following code
fills list1 with 5 and fills 8 into elements list2[1] and list2[3-1].

int[] list1 = {2, 4, 7, 10};
int[] list2 = {2, 4, 7, 10};

; // Fill 5 to the whole array
; // Fill 8 to a partial array

You can also use the toString method to return a string that represents all elements in the
array. This is a quick and simple way to display all elements in the array. For example, the fol-
lowing code

int[] list = {2, 4, 7, 10};
System.out.println(Arrays.toString(list));

displays [2, 4, 7, 10].

6.25 What types of array can be sorted using the java.util.Arrays.sort method?
Does this sort method create a new array?

6.26 To apply java.util.Arrays.binarySearch(array, key), should the array be
sorted in increasing order, in decreasing order, or neither?

6.27 Show the output of the following code:

int[] list1 = {2, 4, 7, 10};
java.util.Arrays.fill(list1, 7);
System.out.println(java.util.Arrays.toString(list1));

int[] list2 = {2, 4, 7, 10};
System.out.println(java.util.Arrays.toString(list2));
System.out.print(java.util.Arrays.equals(list1, list2));

java.util.Arrays.fill(list2, 1, 3, 8)
java.util.Arrays.fill(list1, 5)

java.util.Arrays.equals(list2, list3)
java.util.Arrays.equals(list1, list2)

equals

fill

toString

✓Point✓Check

254 Chapter 6 Single-Dimensional Arrays

KEY TERMS

anonymous array 238
array 224
array initializer 227
binary search 245
garbage collection 236
index 224

indexed variable 226
insertion sort 248
linear search 245
off-by-one error 230
selection sort 248

CHAPTER SUMMARY

1. A variable is declared as an array type using the syntax elementType[] arrayRefVar
or elementType arrayRefVar[]. The style elementType[] arrayRefVar is
preferred, although elementType arrayRefVar[] is legal.

2. Unlike declarations for primitive data type variables, the declaration of an array vari-
able does not allocate any space in memory for the array. An array variable is not a
primitive data type variable. An array variable contains a reference to an array.

3. You cannot assign elements to an array unless it has already been created. You can
create an array by using the new operator with the following syntax: new element-
Type[arraySize].

4. Each element in the array is represented using the syntax arrayRefVar[index].
An index must be an integer or an integer expression.

5. After an array is created, its size becomes permanent and can be obtained using
arrayRefVar.length. Since the index of an array always begins with 0, the last
index is always arrayRefVar.length - 1. An out-of-bounds error will occur if
you attempt to reference elements beyond the bounds of an array.

6. Programmers often mistakenly reference the first element in an array with index 1,
but it should be 0. This is called the index off-by-one error.

7. When an array is created, its elements are assigned the default value of 0 for the
numeric primitive data types, \u0000 for char types, and false for boolean types.

8. Java has a shorthand notation, known as the array initializer, which combines declar-
ing an array, creating an array, and initializing an array in one statement, using the
syntax elementType[] arrayRefVar = {value0, value1, ..., valuek}.

9. When you pass an array argument to a method, you are actually passing the reference
of the array; that is, the called method can modify the elements in the caller’s original
array.

10. If an array is sorted, binary search is more efficient than linear search for finding an
element in the array.

11. Selection sort finds the smallest number in the list and swaps it with the first element.
It then finds the smallest number remaining and swaps it with the first element in the
remaining list, and so on, until only a single number remains.

Programming Exercises 255

12. The insertion-sort algorithm sorts a list of values by repeatedly inserting a new element
into a sorted sublist until the whole list is sorted.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 6.2–6.5
*6.1 (Assign grades) Write a program that reads student scores, gets the best score, and

then assigns grades based on the following scheme:

Grade is A if score is best

Grade is B if score is best ;

Grade is C if score is best ;

Grade is D if score is best ;

Grade is F otherwise.

The program prompts the user to enter the total number of students, then prompts
the user to enter all of the scores, and concludes by displaying the grades. Here is
a sample run:

- 407=
- 307=
- 207=
- 107=

Enter the number of students:
Enter 4 scores:
Student 0 score is 40 and grade is C
Student 1 score is 55 and grade is B
Student 2 score is 70 and grade is A
Student 3 score is 58 and grade is B

40 55 70 58
4

6.2 (Reverse the numbers entered) Write a program that reads ten integers and dis-
plays them in the reverse of the order in which they were read.

**6.3 (Count occurrence of numbers) Write a program that reads the integers between 1
and 100 and counts the occurrences of each. Assume the input ends with 0. Here is
a sample run of the program:

Enter the integers between 1 and 100:
2 occurs 2 times
3 occurs 1 time
4 occurs 1 time
5 occurs 2 times
6 occurs 1 time
23 occurs 1 time
43 occurs 1 time

2 5 6 5 4 3 23 43 2 0

Note that if a number occurs more than one time, the plural word “times” is used
in the output.

www.cs.armstrong.edu/liang/intro9e/test.html

256 Chapter 6 Single-Dimensional Arrays

6.4 (Analyze scores) Write a program that reads an unspecified number of scores and
determines how many scores are above or equal to the average and how many
scores are below the average. Enter a negative number to signify the end of the
input. Assume that the maximum number of scores is 100.

**6.5 (Print distinct numbers) Write a program that reads in ten numbers and displays
distinct numbers (i.e., if a number appears multiple times, it is displayed only
once). (Hint: Read a number and store it to an array if it is new. If the number is
already in the array, ignore it.) After the input, the array contains the distinct num-
bers. Here is the sample run of the program:

Enter ten numbers:
The distinct numbers are: 1 2 3 6 4 5

1 2 3 2 1 6 3 4 5 2

*6.6 (Revise Listing 4.14, PrimeNumber.java) Listing 4.14 determines whether a num-
ber n is prime by checking whether 2, 3, 4, 5, 6, ..., n/2 is a divisor. If a divisor is
found, n is not prime. A more efficient approach is to check whether any of the
prime numbers less than or equal to can divide n evenly. If not, n is prime.
Rewrite Listing 4.14 to display the first 50 prime numbers using this approach.
You need to use an array to store the prime numbers and later use them to check
whether they are possible divisors for n.

*6.7 (Count single digits) Write a program that generates 100 random integers between 0
and 9 and displays the count for each number. (Hint: Use (int)(Math.random()
* 10) to generate a random integer between 0 and 9. Use an array of ten integers,
say counts, to store the counts for the number of 0s, 1s, ..., 9s.)

Sections 6.6–6.8
6.8 (Average an array) Write two overloaded methods that return the average of an

array with the following headers:

public static int average(int[] array)
public static double average(double[] array)

Write a test program that prompts the user to enter ten double values, invokes this
method, and displays the average value.

6.9 (Find the smallest element) Write a method that finds the smallest element in an
array of double values using the following header:

public static double min(double[] array)

Write a test program that prompts the user to enter ten numbers, invokes this
method to return the minimum value, and displays the minimum value. Here is a
sample run of the program:

2n

Enter ten numbers:
The minimum number is: 1.5

1.9 2.5 3.7 2 1.5 6 3 4 5 2

6.10 (Find the index of the smallest element) Write a method that returns the index of
the smallest element in an array of integers. If the number of such elements is
greater than 1, return the smallest index. Use the following header:

public static int indexOfSmallestElement(double[] array)

Programming Exercises 257

Enter ten numbers:
The mean is 3.11
The standard deviation is 1.55738

1.9 2.5 3.7 2 1 6 3 4 5 2

*6.12 (Reverse an array) The reverse method in Section 6.7 reverses an array by
copying it to a new array. Rewrite the method that reverses the array passed in the
argument and returns this array. Write a test program that prompts the user to
enter ten numbers, invokes the method to reverse the numbers, and displays the
numbers.

Section 6.9
*6.13 (Random number chooser) Write a method that returns a random number between

1 and 54, excluding the numbers passed in the argument. The method header is
specified as follows:

public static int getRandom(int... numbers)

6.14 (Computing gcd) Write a method that returns the gcd of an unspecified number of
integers. The method header is specified as follows:

public static int gcd(int... numbers)

Write a test program that prompts the user to enter five numbers, invokes the
method to find the gcd of these numbers, and displays the gcd.

Sections 6.10–6.12
6.15 (Eliminate duplicates) Write a method that returns a new array by eliminating the

duplicate values in the array using the following method header:

public static int[] eliminateDuplicates(int[] list)

Write a test program that prompts the user to enter ten numbers, invokes this
method to return the index of the smallest element, and displays the index.

*6.11 (Statistics: compute deviation) Programming Exercise 5.37 computes the standard
deviation of numbers. This exercise uses a different but equivalent formula to
compute the standard deviation of n numbers.

To compute the standard deviation with this formula, you have to store the indi-
vidual numbers using an array, so that they can be used after the mean is obtained.

Your program should contain the following methods:

/** Compute the deviation of double values */
public static double deviation(double[] x)

/** Compute the mean of an array of double values */
public static double mean(double[] x)

Write a test program that prompts the user to enter ten numbers and displays the
mean and standard deviation, as shown in the following sample run:

mean =
a

n

i=1
x i

n
=

x1 + x2 + c + xn

n
 deviation = Qa

n

i=1
(x i - mean)2

n - 1

258 Chapter 6 Single-Dimensional Arrays

Write a test program that reads in ten integers, invokes the method, and displays
the result. Here is the sample run of the program:

Enter ten numbers:
The distinct numbers are: 1 2 3 6 4 5

1 2 3 2 1 6 3 4 5 2

6.16 (Execution time) Write a program that randomly generates an array of 100,000
integers and a key. Estimate the execution time of invoking the linearSearch
method in Listing 6.6. Sort the array and estimate the execution time of invoking
the binarySearch method in Listing 6.7. You can use the following code tem-
plate to obtain the execution time:

long startTime = System.currentTimeMillis();
perform the task;
long endTime = System.currentTimeMillis();
long executionTime = endTime - startTime;

**6.17 (Sort students) Write a program that prompts the user to enter the number of stu-
dents, the students’ names, and their scores, and prints student names in decreas-
ing order of their scores.

**6.18 (Bubble sort) Write a sort method that uses the bubble-sort algorithm. The bubble-
sort algorithm makes several passes through the array. On each pass, successive
neighboring pairs are compared. If a pair is not in order, its values are swapped;
otherwise, the values remain unchanged. The technique is called a bubble sort or
sinking sort because the smaller values gradually “bubble” their way to the top and
the larger values “sink” to the bottom. Write a test program that reads in ten double
numbers, invokes the method, and displays the sorted numbers.

**6.19 (Sorted?) Write the following method that returns true if the list is already sorted
in increasing order.

public static boolean isSorted(int[] list)

Write a test program that prompts the user to enter a list and displays whether the
list is sorted or not. Here is a sample run. Note that the first number in the input
indicates the number of the elements in the list.

Enter list:
The list is not sorted

8 10 1 5 16 61 9 11 1

Enter list:
The list is already sorted

10 1 1 3 4 4 5 7 9 11 21

*6.20 (Revise selection sort) In Section 6.11.1, you used selection sort to sort an array.
The selection-sort method repeatedly finds the smallest number in the current
array and swaps it with the first. Rewrite this program by finding the largest num-
ber and swapping it with the last. Write a test program that reads in ten double
numbers, invokes the method, and displays the sorted numbers.

***6.21 (Game: bean machine) The bean machine, also known as a quincunx or the Gal-
ton box, is a device for statistics experiments named after English scientist Sir
Francis Galton. It consists of an upright board with evenly spaced nails (or pegs)
in a triangular form, as shown in Figure 6.15.

Programming Exercises 259

Balls are dropped from the opening of the board. Every time a ball hits a nail, it
has a 50% chance of falling to the left or to the right. The piles of balls are accu-
mulated in the slots at the bottom of the board.

Write a program that simulates the bean machine. Your program should prompt
the user to enter the number of the balls and the number of the slots in the
machine. Simulate the falling of each ball by printing its path. For example, the
path for the ball in Figure 6.15b is LLRRLLR and the path for the ball in Figure
6.15c is RLRRLRR. Display the final buildup of the balls in the slots in a his-
togram. Here is a sample run of the program:

Enter the number of balls to drop:
Enter the number of slots in the bean machine:

LRLRLRR
RRLLLRR
LLRLLRR
RRLLLLL
LRLRRLR

O
O

OOO

7
5

(Hint: Create an array named slots. Each element in slots stores the number
of balls in a slot. Each ball falls into a slot via a path. The number of Rs in a
path is the position of the slot where the ball falls. For example, for the path
LRLRLRR, the ball falls into slots[4], and for the path is RRLLLLL, the
ball falls into slots[2].)

***6.22 (Game: Eight Queens) The classic Eight Queens puzzle is to place eight queens
on a chessboard such that no two queens can attack each other (i.e., no two
queens are on the same row, same column, or same diagonal). There are many
possible solutions. Write a program that displays one such solution. A sample
output is shown below:
Q							
				Q			
							Q
					Q		
		Q					
						Q	
	Q						
			Q				

(a) (b) (c)

FIGURE 6.15 Each ball takes a random path and falls into a slot.

260 Chapter 6 Single-Dimensional Arrays

**6.23 (Game: locker puzzle) A school has 100 lockers and 100 students. All lockers are
closed on the first day of school. As the students enter, the first student, denoted
S1, opens every locker. Then the second student, S2, begins with the second
locker, denoted L2, and closes every other locker. Student S3 begins with the third
locker and changes every third locker (closes it if it was open, and opens it if it was
closed). Student S4 begins with locker L4 and changes every fourth locker. Stu-
dent S5 starts with L5 and changes every fifth locker, and so on, until student S100
changes L100.

After all the students have passed through the building and changed the lockers,
which lockers are open? Write a program to find your answer.

(Hint: Use an array of 100 Boolean elements, each of which indicates whether a
locker is open (true) or closed (false). Initially, all lockers are closed.)

**6.24 (Simulation: coupon collector’s problem) Coupon collector is a classic statistics
problem with many practical applications. The problem is to pick objects from a
set of objects repeatedly and find out how many picks are needed for all the
objects to be picked at least once. A variation of the problem is to pick cards from
a shuffled deck of 52 cards repeatedly and find out how many picks are needed
before you see one of each suit. Assume a picked card is placed back in the deck
before picking another. Write a program to simulate the number of picks needed to
get four cards from each suit and display the four cards picked (it is possible a card
may be picked twice). Here is a sample run of the program:

Coupon collector’s problem

Queen of Spades
5 of Clubs
Queen of Hearts
4 of Diamonds
Number of picks: 12

6.25 (Algebra: solve quadratic equations) Write a method for solving a quadratic equa-
tion using the following header:

public static int solveQuadratic(double[] eqn, double[] roots)

The coefficients of a quadratic equation are passed to the array
eqn and the noncomplex roots are stored in roots. The method returns the number
of roots. See Programming Exercise 3.1 on how to solve a quadratic equation.

Write a program that prompts the user to enter values for a, b, and c and displays
the number of roots and all noncomplex roots.

6.26 (Strictly identical arrays) The arrays list1 and list2 are strictly identical if
their corresponding elements are equal. Write a method that returns true if
list1 and list2 are strictly identical, using the following header:

public static boolean equals(int[] list1, int[] list2)

Write a test program that prompts the user to enter two lists of integers and dis-
plays whether the two are strictly identical. Here are the sample runs. Note that the
first number in the input indicates the number of the elements in the list.

ax2 + bx + c = 0

Enter list1:
Enter list2:
Two lists are strictly identical

5 2 5 6 1 6
5 2 5 6 1 6

VideoNote

Programming Exercises 261

Enter list1:
Enter list2:
Two lists are not strictly identical

5 2 5 6 1 6
5 2 5 6 6 1

6.27 (Identical arrays) The arrays list1 and list2 are identical if they have the same
contents. Write a method that returns true if list1 and list2 are identical,
using the following header:

public static boolean equals(int[] list1, int[] list2)

Write a test program that prompts the user to enter two lists of integers and dis-
plays whether the two are identical. Here are the sample runs. Note that the first
number in the input indicates the number of the elements in the list.

Enter list1:
Enter list2:
Two lists are identical

5 5 2 6 1 6
5 2 5 6 6 1

Enter list1:
Enter list2:
Two lists are not identical

5 2 5 6 1 6
5 5 5 6 6 1

*6.28 (Math: combinations) Write a program that prompts the user to enter 10 integers
and displays all combinations of picking two numbers from the 10.

*6.29 (Game: pick four cards) Write a program that picks four cards from a deck of 52
cards and computes their sum. An Ace, King, Queen, and Jack represent 1, 13, 12,
and 11, respectively. Your program should display the number of picks that yields
the sum of 24.

*6.30 (Pattern recognition: consecutive four equal numbers) Write the following
method that tests whether the array has four consecutive numbers with the same
value.

public static boolean isConsecutiveFour(int[] values)

Write a test program that prompts the user to enter a series of integers and displays
true if the series contains four consecutive numbers with the same value. Other-
wise, display false. Your program should first prompt the user to enter the input
size—i.e., the number of values in the series.

**6.31 (Merge two sorted lists) Write the following method that merges two sorted lists
into a new sorted list.

public static int[] merge(int[] list1, int[] list2)

Implement the method in a way that takes list1.length + list2.length
comparisons. Write a test program that prompts the user to enter two sorted lists
and displays the merged list. Here is a sample run. Note that the first number in the
input indicates the number of the elements in the list.

Consecutive four
VideoNote

262 Chapter 6 Single-Dimensional Arrays

Enter list1:
Enter list2:
The merged list is 1 2 4 5 5 6 16 61 111

4 2 4 5 6
5 1 5 16 61 111

**6.32 (Partition of a list) Write the following method that partitions the list using the
first element, called a pivot.

public static int partition(int[] list)

After the partition, the elements in the list are rearranged so that all the elements
before the pivot are less than or equal to the pivot and the elements after the pivot
are greater than the pivot. The method returns the index where the pivot is located
in the new list. For example, suppose the list is . After the parti-
tion, the list becomes . Implement the method in a way that takes
list.length comparisons. Write a test program that prompts the user to enter
a list and displays the list after the partition. Here is a sample run. Note that the
first number in the input indicates the number of the elements in the list.

{3, 2, 5, 9, 6, 8}
{5, 2, 9, 3, 6, 8}

Enter list:
After the partition, the list is 9 1 5 1 10 61 11 16

8 10 1 5 16 61 9 11 1

*6.33 (Culture: Chinese Zodiac) Simplify Listing 3.10 using an array of strings to store
the animal names.

***6.34 (Game: multiple Eight Queens solutions) Exercise 6.22 finds one solution for the
Eight Queens problem. Write a program to count all possible solutions for the
Eight Queens problem and display all solutions.

MULTIDIMENSIONAL
ARRAYS

Objectives
■ To give examples of representing data using two-dimensional arrays (§7.1).

■ To declare variables for two-dimensional arrays, create arrays, and access
array elements in a two-dimensional array using row and column indexes
(§7.2).

■ To program common operations for two-dimensional arrays (displaying
arrays, summing all elements, finding the minimum and maximum
elements, and random shuffling) (§7.3).

■ To pass two-dimensional arrays to methods (§7.4).

■ To write a program for grading multiple-choice questions using
two-dimensional arrays (§7.5).

■ To solve the closest-pair problem using two-dimensional arrays (§7.6).

■ To check a Sudoku solution using two-dimensional arrays (§7.7).

■ To use multidimensional arrays (§7.8).

CHAPTER

7

264 Chapter 7 Multidimensional Arrays

Key
Point

Key
Point

7.1 Introduction
Data in a table or a matrix can be represented using a two-dimensional array.

The preceding chapter introduced how to use one-dimensional arrays to store linear collec-
tions of elements. You can use a two-dimensional array to store a matrix or a table. For exam-
ple, the following table that lists the distances between cities can be stored using a
two-dimensional array named distances.

double[][] distances = {
{0, 983, 787, 714, 1375, 967, 1087},
{983, 0, 214, 1102, 1763, 1723, 1842},
{787, 214, 0, 888, 1549, 1548, 1627},
{714, 1102, 888, 0, 661, 781, 810},
{1375, 1763, 1549, 661, 0, 1426, 1187},
{967, 1723, 1548, 781, 1426, 0, 239},
{1087, 1842, 1627, 810, 1187, 239, 0},

};

7.2 Two-Dimensional Array Basics
An element in a two-dimensional array is accessed through a row and column index.

How do you declare a variable for two-dimensional arrays? How do you create a two-
dimensional array? How do you access elements in a two-dimensional array? This section
addresses these issues.

7.2.1 Declaring Variables of Two-Dimensional Arrays and Creating
Two-Dimensional Arrays

The syntax for declaring a two-dimensional array is:

elementType[][] arrayRefVar;

or

elementType arrayRefVar[][]; // Allowed, but not preferred

As an example, here is how you would declare a two-dimensional array variable matrix
of int values:

int[][] matrix;

problem

Distance Table (in miles)

Chicago Boston New York Atlanta Miami Dallas Houston

Chicago 0 983 787 714 1375 967 1087

Boston 983 0 214 1102 1763 1723 1842

New York 787 214 0 888 1549 1548 1627

Atlanta 714 1102 888 0 661 781 810

Miami 1375 1763 1549 661 0 1426 1187

Dallas 967 1723 1548 781 1426 0 239

Houston 1087 1842 1627 810 1187 239 0

7.2 Two-Dimensional Array Basics 265

or

int matrix[][]; // This style is allowed, but not preferred

You can create a two-dimensional array of 5-by-5 int values and assign it to matrix
using this syntax:

matrix = new int[5][5];

Two subscripts are used in a two-dimensional array, one for the row and the other for the col-
umn. As in a one-dimensional array, the index for each subscript is of the int type and starts
from 0, as shown in Figure 7.1a.

To assign the value 7 to a specific element at row 2 and column 1, as shown in Figure 7.1b,
you can use the following syntax:

matrix[2][1] = 7;

Caution
It is a common mistake to use matrix[2, 1] to access the element at row 2 and
column 1. In Java, each subscript must be enclosed in a pair of square brackets.

You can also use an array initializer to declare, create, and initialize a two-dimensional
array. For example, the following code in (a) creates an array with the specified initial values,
as shown in Figure 7.1c. This is equivalent to the code in (b).

[4][3][2][1][0]

[4]

[3]

[2]

[1]

[0]

[4][3][2][1][0]

[4]

[3]

[2]

[1]

[0]

[2][1][0]

[3]

[2]

[1]

[0] 1

matrix = new int[5][5]; matrix[2][1] = 7;

2 3

4 5 6

7 8 9

10 11 12

7

0000 0

0000 0

0000 0

0000 0

0000 0

0000 0

0000 0

000 0

0000 0

0000 0 int[][] array = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
};

(a) (b) (c)

FIGURE 7.1 The index of each subscript of a two-dimensional array is an int value, starting
from 0.

int[][] array = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9},
{10, 11, 12}

};

(a)

int[][] array = new int[4][3];
array[0][0] = 1; array[0][1] = 2; array[0][2] = 3;
array[1][0] = 4; array[1][1] = 5; array[1][2] = 6;
array[2][0] = 7; array[2][1] = 8; array[2][2] = 9;
array[3][0] = 10; array[3][1] = 11; array[3][2] = 12;

Equivalent

(b)

7.2.2 Obtaining the Lengths of Two-Dimensional Arrays
A two-dimensional array is actually an array in which each element is a one-dimensional
array. The length of an array x is the number of elements in the array, which can be obtained
using x.length. x[0], x[1], . . . , and x[x.length-1] are arrays. Their lengths can be
obtained using x[0].length, x[1].length, . . . , and x[x.length-1].length.

266 Chapter 7 Multidimensional Arrays

For example, suppose x = new int[3][4], x[0], x[1], and x[2] are one-dimensional
arrays and each contains four elements, as shown in Figure 7.2. x.length is 3, and
x[0].length, x[1].length, and x[2].length are 4.

7.2.3 Ragged Arrays
Each row in a two-dimensional array is itself an array. Thus, the rows can have different
lengths. An array of this kind is known as a ragged array. Here is an example of creating a
ragged array:

x

x[0]

x[1]

x[2]

x[0][0] x[0][1] x[0][3]

x[1][0] x[1][1] x[1][2] x[1][3]

x[2][0] x[2][1] x[2][2] x[2][3]
x.length is 3

x[0].length is 4

x[1].length is 4

x[2].length is 4

x[0][2]

FIGURE 7.2 A two-dimensional array is a one-dimensional array in which each element is
another one-dimensional array.

int[][] triangleArray = {
 {1, 2, 3, 4, 5},
 {2, 3, 4, 5},
 {3, 4, 5},
 {4, 5},
 {5}
};

1 2 3 4 5

2 3 4 5

5

4 5

3 4 5

✓Point✓Check

As you can see, triangleArray[0].length is 5, triangleArray[1].length

is 4, triangleArray[2].length is 3, triangleArray[3].length is 2, and
triangle-Array[4].length is 1.

If you don’t know the values in a ragged array in advance, but do know the sizes—say, the
same as before—you can create a ragged array using the following syntax:

int[][] triangleArray = ;
triangleArray[0] = new int[5];
triangleArray[1] = new int[4];
triangleArray[2] = new int[3];
triangleArray[3] = new int[2];
triangleArray[4] = new int[1];

You can now assign values to the array. For example,

triangleArray[0][3] = 50;
triangleArray[4][0] = 45;

Note
The syntax new int[5][] for creating an array requires the first index to be specified.
The syntax new int[][] would be wrong.

7.1 Declare an array reference variable for a two-dimensional array of int values, create
a 4-by-5 int matrix, and assign it to the variable.

new int[5][]

ragged array

7.3 Processing Two-Dimensional Arrays 267

7.2 Can the rows in a two-dimensional array have different lengths?

7.3 What is the output of the following code?

int[][] array = new int[5][6];
int[] x = {1, 2};
array[0] = x;
System.out.println("array[0][1] is " + array[0][1]);

7.4 Which of the following statements are valid?

int[][] r = new int[2];
int[] x = new int[];
int[][] y = new int[3][];
int[][] z = {{1, 2}};
int[][] m = {{1, 2}, {2, 3}};
int[][] n = {{1, 2}, {2, 3}, };

7.3 Processing Two-Dimensional Arrays
Nested for loops are often used to process a two-dimensional array.

Suppose an array matrix is created as follows:

int[][] matrix = new int[10][10];

The following are some examples of processing two-dimensional arrays.

1. Initializing arrays with input values. The following loop initializes the array with user
input values:

java.util.Scanner input = new Scanner(System.in);
System.out.println("Enter " + matrix.length + " rows and " +
matrix[0].length + " columns: ");

for (int row = 0; row < ; row++) {
for (int column = 0; column < ; column++) {
matrix[row][column] = input.nextInt();

}
}

2. Initializing arrays with random values. The following loop initializes the array with
random values between 0 and 99:

for (int row = 0; row < ; row++) {
for (int column = 0; column < ; column++) {
matrix[row][column] = (int)(Math.random() * 100);

}
}

3. Printing arrays. To print a two-dimensional array, you have to print each element in the
array using a loop like the following:

for (int row = 0; row < ; row++) {
for (int column = 0; column < ; column++) {
System.out.print(matrix[row][column] + " ");

}

System.out.println();
}

matrix[row].length
matrix.length

matrix[row].length
matrix.length

matrix[row].length
matrix.length

Key
Point

268 Chapter 7 Multidimensional Arrays

4. Summing all elements. Use a variable named total to store the sum. Initially total is
0. Add each element in the array to total using a loop like this:

int total = 0;
for (int row = 0; row < matrix.length; row++) {
for (int column = 0; column < matrix[row].length; column++) {
total += matrix[row][column];

}
}

5. Summing elements by column. For each column, use a variable named total to store
its sum. Add each element in the column to total using a loop like this:

for (int column = 0; column < matrix[0].length; column++) {
int total = 0;
for (int row = 0; row < matrix.length; row++)
total += matrix[row][column];

System.out.println("Sum for column " + column + " is "
+ total);

}

6. Which row has the largest sum? Use variables maxRow and indexOfMaxRow to track
the largest sum and index of the row. For each row, compute its sum and update maxRow
and indexOfMaxRow if the new sum is greater.

int maxRow = 0;
int indexOfMaxRow = 0;

// Get sum of the first row in maxRow
for (int column = 0; column < matrix[0].length; column++) {
maxRow += matrix[0][column];

}

for (int row = 1; row < matrix.length; row++) {
int totalOfThisRow = 0;
for (int column = 0; column < matrix[row].length; column++)
totalOfThisRow += matrix[row][column];

if (totalOfThisRow > maxRow) {
maxRow = totalOfThisRow;
indexOfMaxRow = row;

}
}

System.out.println("Row " + indexOfMaxRow
+ " has the maximum sum of " + maxRow);

7. Random shuffling. Shuffling the elements in a one-dimensional array was introduced in
Section 6.2.6. How do you shuffle all the elements in a two-dimensional array? To
accomplish this, for each element matrix[i][j], randomly generate indices i1 and
j1 and swap matrix[i][j] with matrix[i1][j1], as follows:

for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[i].length; j++) {
int i1 = (int)(Math.random() * matrix.length);
int j1 = (int)(Math.random() * matrix[i].length);

// Swap matrix[i][j] with matrix[i1][j1]
int temp = matrix[i][j];
matrix[i][j] = matrix[i1][j1];
matrix[i1][j1] = temp;

}
}

Find the row with the largest
sum

VideoNote

7.4 Passing Two-Dimensional Arrays to Methods 269

Key
Point

✓Point✓Check7.5 Show the printout of the following code:

int[][] array = {{1, 2}, {3, 4}, {5, 6}};
for (int i = array.length - 1; i >= 0; i——) {
for (int j = array[i].length - 1; j >= 0; j——)
System.out.print(array[i][j] + " ");

System.out.println();
}

7.6 Show the printout of the following code:

int[][] array = {{1, 2}, {3, 4}, {5, 6}};
int sum = 0;
for (int i = 0; i < array.length; i++)
sum += array[i][0];

System.out.println(sum);

7.4 Passing Two-Dimensional Arrays to Methods
When passing a two-dimensional array to a method, the reference of the array is
passed to the method.

You can pass a two-dimensional array to a method just as you pass a one-dimensional array.
You can also return an array from a method. Listing 7.1 gives an example with two methods.
The first method, getArray(), returns a two-dimensional array, and the second method,
sum(int[][] m), returns the sum of all the elements in a matrix.

LISTING 7.1 PassTwoDimensionalArray.java
1 import java.util.Scanner;
2
3 public class PassTwoDimensionalArray {
4 public static void main(String[] args) {
5 int[][] m = getArray(); // Get an array
6
7 // Display sum of elements
8 System.out.println("\nSum of all elements is " +);
9 }
10
11
12 // Create a Scanner
13 Scanner input = new Scanner(System.in);
14
15 // Enter array values
16 int[][] m = new int[3][4];
17 System.out.println("Enter " + m.length + " rows and "
18 + m[0].length + " columns: ");
19 for (int i = 0; i < m.length; i++)
20 for (int j = 0; j < m[i].length; j++)
21 m[i][j] = input.nextInt();
22
23
24 }
25
26
27 int total = 0;
28 for (int row = 0; row < m.length; row++) {
29 for (int column = 0; column < m[row].length; column++) {
30 total += m[row][column];
31 }

public static int sum(int[][] m) {

return m;

public static int[][] getArray() {

sum(m)

get array

pass array

getArray method

return array

sum method

270 Chapter 7 Multidimensional Arrays

32 }
33
34 return total;
35 }
36 }

Enter 3 rows and 4 columns:

Sum of all elements is 78

9 10 11 12
5 6 7 8
1 2 3 4

The method getArray prompts the user to enter values for the array (lines 11–24) and
returns the array (line 23).

The method sum (lines 26–35) has a two-dimensional array argument. You can obtain the
number of rows using m.length (line 28) and the number of columns in a specified row
using m[row].length (line 29).

7.7 Show the printout of the following code:

public class Test {
public static void main(String[] args) {
int[][] array = {{1, 2, 3, 4}, {5, 6, 7, 8}};
System.out.println(m1(array)[0]);
System.out.println(m1(array)[1]);

}

public static int[] m1(int[][] m) {
int[] result = new int[2];
result[0] = m.length;
result[1] = m[0].length;
return result;

}
}

7.5 Case Study: Grading a Multiple-Choice Test
The problem is to write a program that will grade multiple-choice tests.

Suppose you need to write a program that grades multiple-choice tests. Assume there are
eight students and ten questions, and the answers are stored in a two-dimensional array. Each
row records a student’s answers to the questions, as shown in the following array.

✓Point✓Check

Key
Point

Grade multiple-choice test Students’ Answers to the Questions:

0 1 2 3 4 5 6 7 8 9

Student 0 A B A C C D E E A D
Student 1 D B A B C A E E A D
Student 2 E D D A C B E E A D
Student 3 C B A E D C E E A D
Student 4 A B D C C D E E A D
Student 5 B B E C C D E E A D
Student 6 B B A C C D E E A D
Student 7 E B E C C D E E A D

VideoNote

7.5 Case Study: Grading a Multiple-Choice Test 271

The key is stored in a one-dimensional array:

2-D array

1-D array

compare with key

Key to the Questions:

0 1 2 3 4 5 6 7 8 9

Key D B D C C D A E A D

Your program grades the test and displays the result. It compares each student’s answers with
the key, counts the number of correct answers, and displays it. Listing 7.2 gives the program.

LISTING 7.2 GradeExam.java
1 public class GradeExam {
2 /** Main method */
3 public static void main(String[] args) {
4 // Students' answers to the questions
5
6
7
8
9
10
11
12
13
14
15 // Key to the questions
16
17
18 // Grade all answers
19 for (int i = 0; ; i++) {
20 // Grade one student
21 int correctCount = 0;
22 for (int j = 0; ; j++) {
23 if ()
24 correctCount++;
25 }
26
27 System.out.println("Student " + i + "'s correct count is " +
28 correctCount);
29 }
30 }
31 }

answers[i][j] == keys[j]
j < answers[i].length

i < answers.length

char[] keys = {'D', 'B', 'D', 'C', 'C', 'D', 'A', 'E', 'A', 'D'};

{'E', 'B', 'E', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}};
{'B', 'B', 'A', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
{'B', 'B', 'E', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
{'A', 'B', 'D', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
{'C', 'B', 'A', 'E', 'D', 'C', 'E', 'E', 'A', 'D'},
{'E', 'D', 'D', 'A', 'C', 'B', 'E', 'E', 'A', 'D'},
{'D', 'B', 'A', 'B', 'C', 'A', 'E', 'E', 'A', 'D'},
{'A', 'B', 'A', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},

char[][] answers = {

Student 0's correct count is 7
Student 1's correct count is 6
Student 2's correct count is 5
Student 3's correct count is 4
Student 4's correct count is 8
Student 5's correct count is 7
Student 6's correct count is 7
Student 7's correct count is 7

The statement in lines 5–13 declares, creates, and initializes a two-dimensional array of
characters and assigns the reference to answers of the char[][] type.

The statement in line 16 declares, creates, and initializes an array of char values and
assigns the reference to keys of the char[] type.

272 Chapter 7 Multidimensional Arrays

Key
Point

Each row in the array answers stores a student’s answer, which is graded by comparing it
with the key in the array keys. The result is displayed immediately after a student’s answer is
graded.

7.6 Case Study: Finding the Closest Pair
This section presents a geometric problem for finding the closest pair of points.

Given a set of points, the closest-pair problem is to find the two points that are nearest to each
other. In Figure 7.3, for example, points (1, 1) and (2, 0.5) are closest to each other.
There are several ways to solve this problem. An intuitive approach is to compute the distances
between all pairs of points and find the one with the minimum distance, as implemented in
Listing 7.3.

LISTING 7.3 FindNearestPoints.java
1 import java.util.Scanner;
2
3 public class FindNearestPoints {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6 System.out.print("Enter the number of points: ");
7 int numberOfPoints = input.nextInt();
8
9 // Create an array to store points
10
11 System.out.print("Enter " + numberOfPoints + " points: ");
12 for (int i = 0; i < points.length; i++) {
13 points[i][0] = input.nextDouble();
14 points[i][1] = input.nextDouble();
15 }
16
17 // p1 and p2 are the indices in the points' array
18 // Initial two points
19
20 // Initialize shortestDistance
21
22 // Compute distance for every two points
23 for (int i = 0; i < points.length; i++) {

points[p2][0], points[p2][1]);
double shortestDistance = distance(points[p1][0], points[p1][1],
int p1 = 0, p2 = 1;

double[][] points = new double[numberOfPoints][2];

(1, 1)

(–1, –1)

(–1, 3)

(2, 0.5)

(3, 3)

–1 3

x y

–1 –1
1 1
2 0.5
2 –1
3 3
4 2
4

0
1
2
3
4
5
6
7 –0.5

(4, 2)

(2, –1)
(4, –0.5)

FIGURE 7.3 Points can be represented in a two-dimensional array.

number of points

2-D array

read points

track two points
track shortestDistance

for each point i

closest-pair animation on the
Companion Website

7.6 Case Study: Finding the Closest Pair 273

24
25 double distance = distance(points[i][0], points[i][1],
26 points[j][0], points[j][1]); // Find distance
27
28
29 p1 = i; // Update p1
30 p2 = j; // Update p2
31 shortestDistance = distance; // Update shortestDistance
32 }
33 }
34 }
35
36 // Display result
37 System.out.println("The closest two points are " +
38 "(" + points[p1][0] + ", " + points[p1][1] + ") and (" +
39 points[p2][0] + ", " + points[p2][1] + ")");
40 }
41
42 /** Compute the distance between two points (x1, y1) and (x2, y2)*/
43 public static double distance(
44 double x1, double y1, double x2, double y2) {
45 return Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1));
46 }
47 }

if (shortestDistance > distance) {

for (int j = i + 1; j < points.length; j++) { for each point j
distance between i and j
distance between two points

update shortestDistance

Enter the number of points:
Enter 8 points:
The closest two points are (1, 1) and (2, 0.5)

-1 3 -1 -1 1 1 2 0.5 2 -1 3 3 4 2 4 -0.5
8

The program prompts the user to enter the number of points (lines 6–7). The points are
read from the console and stored in a two-dimensional array named points (lines 12–15).
The program uses the variable shortestDistance (line 19) to store the distance between
the two nearest points, and the indices of these two points in the points array are stored in
p1 and p2 (line 18).

For each point at index i, the program computes the distance between points[i] and
points[j] for all j > i (lines 23–34). Whenever a shorter distance is found, the variable
shortestDistance and p1 and p2 are updated (lines 28–32).

The distance between two points (x1, y1) and (x2, y2) can be computed using the for-

mula (lines 43–46).
The program assumes that the plane has at least two points. You can easily modify the pro-

gram to handle the case if the plane has zero or one point.
Note that there might be more than one closest pair of points with the same minimum dis-

tance. The program finds one such pair. You may modify the program to find all closest pairs
in Programming Exercise 7.8.

Tip
It is cumbersome to enter all points from the keyboard. You may store the input in a
file, say FindNearestPoints.txt, and compile and run the program using the follow-
ing command:

java FindNearestPoints < FindNearestPoints.txt

2(x2 - x1)
2 + (y2 - y1)

2

multiple closest pairs

input file

274 Chapter 7 Multidimensional Arrays

7.7 Case Study: Sudoku
The problem is to check whether a given Sudoku solution is correct.

This section presents an interesting problem of a sort that appears in the newspaper every day.
It is a number-placement puzzle, commonly known as Sudoku. This is a very challenging
problem. To make it accessible to the novice, this section presents a solution to a simplified
version of the Sudoku problem, which is to verify whether a solution is correct. The complete
solution for solving the Sudoku problem is presented in Supplement VI.A.

Sudoku is a grid divided into smaller boxes (also called regions or blocks), as
shown in Figure 7.4a. Some cells, called fixed cells, are populated with numbers from 1 to 9. The
objective is to fill the empty cells, also called free cells, with the numbers 1 to 9 so that every row,
every column, and every box contains the numbers 1 to 9, as shown in Figure 7.4b.3 * 3

3 * 39 * 9

Key
Point

Sudoku

fixed cells

free cells

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6

4 1 9 5

8 7 9

(a) Puzzle

Solution

(b) Solution

5 3 4 6 7 8 9 1 2

6 7 2 1 9 5 3 4 8

1 9 8 3 4 2 5 6 7

8 5 9 7 6 1 4 2 3

4 2 6 8 5 3 7 9 1

7 1 3 9 2 4 8 5 6

9 6 1 5 3 7 2 8 4

2 8 7 4 1 9 6 3 5

3 4 5 2 8 6 1 7 9

FIGURE 7.4 The Sudoku puzzle in (a) is solved in (b).

To find a solution for the puzzle, we must replace each 0 in the grid with an appropriate
number from 1 to 9. For the solution to the puzzle in Figure 7.5, the grid should be as shown
in Figure 7.6.

Once a solution to a Sudoku puzzle is found, how do you verify that it is correct? Here are
two approaches:

■ Check if every row has numbers from 1 to 9, every column has numbers from 1 to 9,
and every small box has numbers from 1 to 9.

representing a grid

5 3 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

00

0

00 0

0 0

0 0

0

0 00

0 080 00

0 00

0 06

7

6 0 0

0 0

0 0

0 0 0

1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

4 1 9 5

7 9

(a) (b)

int[][] grid =
 {{5, 3, 0, 0, 7, 0, 0, 0, 0},
 {6, 0, 0, 1, 9, 5, 0, 0, 0},
 {0, 9, 8, 0, 0, 0, 0, 6, 0},
 {8, 0, 0, 0, 6, 0, 0, 0, 3},
 {4, 0, 0, 8, 0, 3, 0, 0, 1},
 {7, 0, 0, 0, 2, 0, 0, 0, 6},
 {0, 6, 0, 0, 0, 0, 2, 8, 0},
 {0, 0, 0, 4, 1, 9, 0, 0, 5},
 {0, 0, 0, 0, 8, 0, 0, 7, 9}
 };

FIGURE 7.5 A grid can be represented using a two-dimensional array.

For convenience, we use value 0 to indicate a free cell, as shown in Figure 7.5a. The grid
can be naturally represented using a two-dimensional array, as shown in Figure 7.5b.

VideoNote

7.7 Case Study: Sudoku 275

■ Check each cell. Each cell must be a number from 1 to 9 and the cell must be unique
on every row, every column, and every small box.

A solution grid is
 {{5, 3, 4, 6, 7, 8, 9, 1, 2},
 {6, 7, 2, 1, 9, 5, 3, 4, 8},
 {1, 9, 8, 3, 4, 2, 5, 6, 7},
 {8, 5, 9, 7, 6, 1, 4, 2, 3},
 {4, 2, 6, 8, 5, 3, 7, 9, 1},
 {7, 1, 3, 9, 2, 4, 8, 5, 6},
 {9, 6, 1, 5, 3, 7, 2, 8, 4},
 {2, 8, 7, 4, 1, 9, 6, 3, 5},
 {3, 4, 5, 2, 8, 6, 1, 7, 9}
 };

FIGURE 7.6 A solution is stored in grid.

The program in Listing 7.4 prompts the user to enter a solution and reports whether it is
valid. We use the second approach in the program to check whether the solution is correct.

LISTING 7.4 CheckSudokuSolution.java
1 import java.util.Scanner;
2
3 public class CheckSudokuSolution {
4 public static void main(String[] args) {
5 // Read a Sudoku solution
6
7
8 System.out.println(? "Valid solution" :
9 "Invalid solution");
10 }
11
12 /** Read a Sudoku solution from the console */
13
14 // Create a Scanner
15 Scanner input = new Scanner(System.in);
16
17 System.out.println("Enter a Sudoku puzzle solution:");
18 int[][] grid = new int[9][9];
19 for (int i = 0; i < 9; i++)
20 for (int j = 0; j < 9; j++)
21 grid[i][j] = input.nextInt();
22
23 return grid;
24 }
25
26 /** Check whether a solution is valid */
27
28 for (int i = 0; i < 9; i++)
29 for (int j = 0; j < 9; j++)
30 if (grid[i][j] < 1 || grid[i][j] > 9
31 || !isValid(i, j, grid))
32 return false;
33 return true; // The solution is valid
34 }
35
36 /** Check whether grid[i][j] is valid in the grid */
37
38 // Check whether grid[i][j] is valid in i's row

public static boolean isValid(int i, int j, int[][] grid) {

public static boolean isValid(int[][] grid) {

public static int[][] readASolution() {

isValid(grid)

int[][] grid = readASolution(); read input

solution valid?

read solution

check solution

276 Chapter 7 Multidimensional Arrays

39
40 if (column != j && grid[i][column] == grid[i][j])
41 return false;
42
43 // Check whether grid[i][j] is valid in j's column
44
45 if (row != i && grid[row][j] == grid[i][j])
46 return false;
47
48 // Check whether grid[i][j] is valid in the 3-by-3 box
49
50 for (int col = (j / 3) * 3; col < (j / 3) * 3 + 3; col++)
51 if (row != i && col != j && grid[row][col] == grid[i][j])
52 return false;
53
54 return true; // The current value at grid[i][j] is valid
55 }
56 }

for (int row = (i / 3) * 3; row < (i / 3) * 3 + 3; row++)

for (int row = 0; row < 9; row++)

for (int column = 0; column < 9; column++)

check columns

check small boxes

Enter a Sudoku puzzle solution:

Valid solution
6 4 2 5 9 8 1 7 3
3 1 7 2 4 6 9 8 5
5 8 9 7 1 3 4 6 2
7 3 5 9 6 1 8 2 4
4 9 6 8 5 2 3 1 7
8 2 1 4 3 7 5 9 6
2 5 4 6 8 9 7 3 1
1 7 8 3 2 5 6 4 9
9 6 3 1 7 4 2 5 8

The program invokes the readASolution() method (line 6) to read a Sudoku solution
and return a two-dimensional array representing a Sudoku grid.

The isValid(grid) method checks whether the values in the grid are valid by verifying
that each value is between 1 and 9 and that each value is valid in the grid (lines 27–34).

The isValid(i, j, grid) method checks whether the value at grid[i][j] is valid.
It checks whether grid[i][j] appears more than once in row i (lines 39–41), in column j
(lines 44–46), and in the box (lines 49–52).

How do you locate all the cells in the same box? For any grid[i][j], the starting cell of
the box that contains it is grid[(i / 3) * 3][(j / 3) * 3], as illustrated in
Figure 7.7.

3 * 3

3 * 3

isValid method

overloaded isValid method

check rows

grid[0][6]

grid[6][3]

For any grid[i][j] in this 3 by 3 box, its
starting cell is grid[3*(i/3)][3*(j/3)]
(i.e., grid[6][3]). For example, for
grid[8][5], i=8 and j=5, 3*(i/3)=6 and
3*(j/3)=3.

For any grid[i][j] in this 3 by 3 box, its starting cell
is grid[3*(i/3)][3*(j/3)] (i.e., grid[0][6]). For
example, for grid[2][8], i=2 and j=8, 3*(i/3)=0 and
3*(j/3)=6.

grid[0][0]

FIGURE 7.7 The location of the first cell in a box determines the locations of other cells in the box.3 * 3

7.8 Multidimensional Arrays 277

With this observation, you can easily identify all the cells in the box. For instance, if
grid[r][c] is the starting cell of a box, the cells in the box can be traversed in a
nested loop as follows:

// Get all cells in a 3-by-3 box starting at grid[r][c]
for (int row = r; row < r + 3; row++)
for (int col = c; col < c + 3; col++)
// grid[row][col] is in the box

It is cumbersome to enter 81 numbers from the console. When you test the program, you may
store the input in a file, say CheckSudokuSolution.txt (see www.cs.armstrong.edu/liang/data/
CheckSudokuSolution.txt), and run the program using the following command:

java CheckSudokuSolution < CheckSudokuSolution.txt

7.8 Multidimensional Arrays
A two-dimensional array consists of an array of one-dimensional arrays and a three-
dimensional array consists of an array of two-dimensional arrays.

In the preceding section, you used a two-dimensional array to represent a matrix or a table.
Occasionally, you will need to represent n-dimensional data structures. In Java, you can cre-
ate n-dimensional arrays for any integer n.

The way to declare two-dimensional array variables and create two-dimensional arrays can
be generalized to declare n-dimensional array variables and create n-dimensional arrays for

For example, you may use a three-dimensional array to store exam scores for a class
of six students with five exams, and each exam has two parts (multiple-choice and essay). The
following syntax declares a three-dimensional array variable scores, creates an array, and
assigns its reference to scores.

double[][][] scores = new double[6][5][2];

You can also use the short-hand notation to create and initialize the array as follows:

double[][][] scores = {
{{7.5, 20.5}, {9.0, 22.5}, {15, 33.5}, {13, 21.5}, {15, 2.5}},
{{4.5, 21.5}, {9.0, 22.5}, {15, 34.5}, {12, 20.5}, {14, 9.5}},
{{6.5, 30.5}, {9.4, 10.5}, {11, 33.5}, {11, 23.5}, {10, 2.5}},
{{6.5, 23.5}, {9.4, 32.5}, {13, 34.5}, {11, 20.5}, {16, 7.5}},
{{8.5, 26.5}, {9.4, 52.5}, {13, 36.5}, {13, 24.5}, {16, 2.5}},
{{9.5, 20.5}, {9.4, 42.5}, {13, 31.5}, {12, 20.5}, {16, 6.5}}};

scores[0][1][0] refers to the multiple-choice score for the first student’s second exam,
which is 9.0. scores[0][1][1] refers to the essay score for the first student’s second
exam, which is 22.5. This is depicted in the following figure:

n 7= 3.

3 * 3

input file

Key
Point

Which student Which exam Multiple-choice or essay

scores [i] [j] [k]

A multidimensional array is actually an array in which each element is another array. A three-
dimensional array consists of an array of two-dimensional arrays. A two-dimensional array
consists of an array of one-dimensional arrays. For example, suppose x = new

int[2][2][5], and x[0] and x[1] are two-dimensional arrays. X[0][0], x[0][1],
x[1][0], and x[1][1] are one-dimensional arrays and each contains five elements.

www.cs.armstrong.edu/liang/data/CheckSudokuSolution.txt
www.cs.armstrong.edu/liang/data/CheckSudokuSolution.txt

278 Chapter 7 Multidimensional Arrays

x.length is 2, x[0].length and x[1].length are 2, and X[0][0].length,
x[0][1].length, x[1][0].length, and x[1][1].length are 5.

7.8.1 Case Study: Daily Temperature and Humidity
Suppose a meteorology station records the temperature and humidity every hour of every day and
stores the data for the past ten days in a text file named Weather.txt (see
www.cs.armstrong.edu/liang/data/Weather.txt). Each line of the file consists of four numbers that indi-
cate the day, hour, temperature, and humidity. The contents of the file may look like the one in (a).

1 1 76.4 0.92
1 2 77.7 0.93
. . .
10 23 97.7 0.71
10 24 98.7 0.74

10 24 98.7 0.74
1 2 77.7 0.93
. . .
10 23 97.7 0.71
1 1 76.4 0.92

(a) (b)

Note that the lines in the file are not necessarily in increasing order of day and hour. For
example, the file may appear as shown in (b).

Your task is to write a program that calculates the average daily temperature and humidity
for the 10 days. You can use the input redirection to read the file and store the data in a three-
dimensional array named data. The first index of data ranges from 0 to 9 and represents 10
days, the second index ranges from 0 to 23 and represents 24 hours, and the third index ranges
from 0 to 1 and represents temperature and humidity, as depicted in the following figure:

LISTING 7.5 Weather.java
1 import java.util.Scanner;
2
3 public class Weather {
4 public static void main(String[] args) {
5 final int NUMBER_OF_DAYS = 10;
6 final int NUMBER_OF_HOURS = 24;
7
8
9
10 Scanner input = new Scanner(System.in);
11 // Read input using input redirection from a file
12 for (int k = 0; k < NUMBER_OF_DAYS * NUMBER_OF_HOURS; k++) {
13 int day = input.nextInt();
14 int hour = input.nextInt();
15 double temperature = input.nextDouble();
16 double humidity = input.nextDouble();
17 data[day - 1][hour - 1][0] = temperature;

= new double[NUMBER_OF_DAYS][NUMBER_OF_HOURS][2];
double[][][] data

three-dimensional array

Day Temperature
Hour Humidity

Day Temperature
Hour Humidity

Which day Which hour Temperature or humidity

data [i] [j] [k]

Note that the days are numbered from 1 to 10 and the hours from 1 to 24 in the file.
Because the array index starts from 0, data[0][0][0] stores the temperature in day 1 at
hour 1 and data[9][23][1] stores the humidity in day 10 at hour 24.

The program is given in Listing 7.5.

www.cs.armstrong.edu/liang/data/Weather.txt

7.8 Multidimensional Arrays 279

18 data[day - 1][hour - 1][1] = humidity;
19 }
20
21 // Find the average daily temperature and humidity
22 for (int i = 0; i < NUMBER_OF_DAYS; i++) {
23 double dailyTemperatureTotal = 0, dailyHumidityTotal = 0;
24 for (int j = 0; j < NUMBER_OF_HOURS; j++) {
25 dailyTemperatureTotal += data[i][j][0];
26 dailyHumidityTotal += data[i][j][1];
27 }
28
29 // Display result
30 System.out.println("Day " + i + "'s average temperature is "
31 + dailyTemperatureTotal / NUMBER_OF_HOURS);
32 System.out.println("Day " + i + "'s average humidity is "
33 + dailyHumidityTotal / NUMBER_OF_HOURS);
34 }
35 }
36 }

Day 0's average temperature is 77.7708
Day 0's average humidity is 0.929583
Day 1's average temperature is 77.3125
Day 1's average humidity is 0.929583
. . .
Day 9's average temperature is 79.3542
Day 9's average humidity is 0.9125

You can use the following command to run the program:

java Weather < Weather.txt

A three-dimensional array for storing temperature and humidity is created in line 8. The
loop in lines 12–19 reads the input to the array. You can enter the input from the keyboard, but
doing so will be awkward. For convenience, we store the data in a file and use input redirection
to read the data from the file. The loop in lines 24–27 adds all temperatures for each hour in a
day to dailyTemperatureTotal and all humidity for each hour to dailyHumidityTotal.
The average daily temperature and humidity are displayed in lines 30–33.

7.8.2 Case Study: Guessing Birthdays
Listing 3.3, GuessBirthday.java, gives a program that guesses a birthday. The program can be
simplified by storing the numbers in five sets in a three-dimensional array, and it prompts the
user for the answers using a loop, as shown in Listing 7.6. The sample run of the program can
be the same as shown in Listing 3.3.

LISTING 7.6 GuessBirthdayUsingArray.java
1 import java.util.Scanner;
2
3 public class GuessBirthdayUsingArray {
4 public static void main(String[] args) {
5 int day = 0; // Day to be determined
6 int answer;
7
8
9 {{ 1, 3, 5, 7},
10 { 9, 11, 13, 15},

int[][][] dates = { three-dimensional array

280 Chapter 7 Multidimensional Arrays

11 {17, 19, 21, 23},
12 {25, 27, 29, 31}},
13 {{ 2, 3, 6, 7},
14 {10, 11, 14, 15},
15 {18, 19, 22, 23},
16 {26, 27, 30, 31}},
17 {{ 4, 5, 6, 7},
18 {12, 13, 14, 15},
19 {20, 21, 22, 23},
20 {28, 29, 30, 31}},
21 {{ 8, 9, 10, 11},
22 {12, 13, 14, 15},
23 {24, 25, 26, 27},
24 {28, 29, 30, 31}},
25 {{16, 17, 18, 19},
26 {20, 21, 22, 23},
27 {24, 25, 26, 27},
28 {28, 29, 30, 31}}};
29
30 // Create a Scanner
31 Scanner input = new Scanner(System.in);
32
33 for (int i = 0; i < 5; i++) {
34 System.out.println("Is your birthday in Set" + (i + 1) + "?");
35 for (int j = 0; j < 4; j++) {
36 for (int k = 0; k < 4; k++)
37 System.out.printf("%4d",);
38 System.out.println();
39 }
40
41 System.out.print("\nEnter 0 for No and 1 for Yes: ");
42 answer = input.nextInt();
43
44 if (answer == 1)
45 day += ;
46 }
47
48 System.out.println("Your birthday is " + day);
49 }
50 }

A three-dimensional array dates is created in Lines 8–28. This array stores five sets of
numbers. Each set is a 4-by-4 two-dimensional array.

The loop starting from line 33 displays the numbers in each set and prompts the user to
answer whether the birthday is in the set (lines 41–42). If the day is in the set, the first number
(dates[i][0][0]) in the set is added to variable day (line 45).

7.8 Declare an array variable for a three-dimensional array, create a int

array, and assign its reference to the variable.

7.9 Assume int[][][] x = new char[12][5][2], how many elements are in the
array? What are x.length, x[2].length, and x[0][0].length?

7.10 Show the printout of the following code:

int[][][] array = {{{1, 2}, {3, 4}}, {{5, 6},{7, 8}}};
System.out.println(array[0][0][0]);
System.out.println(array[1][1][1]);

4 * 6 * 5

dates[i][0][0]

dates[i][j][k]

Set i

add to day

✓Point✓Check

Programming Exercises 281

CHAPTER SUMMARY

1. A two-dimensional array can be used to store a table.

2. A variable for two-dimensional arrays can be declared using the syntax:
elementType[][] arrayVar.

3. A two-dimensional array can be created using the syntax: new elementType

[ROW_SIZE][COLUMN_SIZE].

4. Each element in a two-dimensional array is represented using the syntax:
arrayVar[rowIndex][columnIndex].

5. You can create and initialize a two-dimensional array using an array initializer with the
syntax: elementType[][] arrayVar = {{row values}, . . . , {row values}}.

6. You can use arrays of arrays to form multidimensional arrays. For example, a variable
for three-dimensional arrays can be declared as elementType[][][] arrayVar, and
a three-dimensional array can be created using new elementType[size1][size2]
[size3].

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

*7.1 (Sum elements column by column) Write a method that returns the sum of all the
elements in a specified column in a matrix using the following header:

public static double sumColumn(double[][] m, int columnIndex)

Write a test program that reads a 3-by-4 matrix and displays the sum of each col-
umn. Here is a sample run:

Enter a 3-by-4 matrix row by row:

Sum of the elements at column 0 is 16.5
Sum of the elements at column 1 is 9.0
Sum of the elements at column 2 is 13.0
Sum of the elements at column 3 is 13.0

9.5 1 3 1
5.5 6 7 8
1.5 2 3 4

*7.2 (Sum the major diagonal in a matrix) Write a method that sums all the numbers in
the major diagonal in an matrix of integers using the following header:

public static double sumMajorDiagonal(double[][] m)

Write a test program that reads a 4-by-4 matrix and displays the sum of all its ele-
ments on the major diagonal. Here is a sample run:

n * n

www.cs.armstrong.edu/liang/intro9e/test.html

282 Chapter 7 Multidimensional Arrays

Enter a 4-by-4 matrix row by row:

Sum of the elements in the major diagonal is 34.5
13 14 15 16
9 10 11 12
5 6.5 7 8

1 2 3 4.0

*7.3 (Sort students on grades) Rewrite Listing 7.2, GradeExam.java, to display the stu-
dents in increasing order of the number of correct answers.

**7.4 (Compute the weekly hours for each employee) Suppose the weekly hours for all
employees are stored in a two-dimensional array. Each row records an employee’s
seven-day work hours with seven columns. For example, the following array
stores the work hours for eight employees. Write a program that displays employ-
ees and their total hours in decreasing order of the total hours.

Employee 0

Employee 1

Employee 2

Employee 3

Employee 4

Employee 5

Employee 6

Employee 7

Su M T W Th F Sa

2 4 3 4 5 8 8

7 3 4 3 3 4 4

3 3 4 3 3 2 2

9 3 4 7 3 4 1

3 5 4 3 6 3 8

3 4 4 6 3 4 4

3 7 4 8 3 8 4

6 3 5 9 2 7 9

7.5 (Algebra: add two matrices) Write a method to add two matrices. The header of
the method is as follows:

public static double[][] addMatrix(double[][] a, double[][] b)

In order to be added, the two matrices must have the same dimensions and the
same or compatible types of elements. Let c be the resulting matrix. Each element

is For example, for two matrices a and b, c is

Write a test program that prompts the user to enter two matrices and dis-
plays their sum. Here is a sample run:

3 * 3

£a11 a12 a13

a21 a22 a23

a31 a32 a33

≥ + £b11 b12 b13

b21 b22 b23

b31 b32 b33

≥ = £a11 + b11 a12 + b12 a13 + b13

a21 + b21 a22 + b22 a23 + b23

a31 + b31 a32 + b32 a33 + b33

≥
3 * 3aij + bij.cij

Multiply two matrices

Enter matrix1:
Enter matrix2:
The matrices are added as follows
1.0 2.0 3.0 0.0 2.0 4.0 1.0 4.0 7.0
4.0 5.0 6.0 + 1.0 4.5 2.2 = 5.0 9.5 8.2
7.0 8.0 9.0 1.1 4.3 5.2 8.1 12.3 14.2

0 2 4 1 4.5 2.2 1.1 4.3 5.2
1 2 3 4 5 6 7 8 9

VideoNote

Programming Exercises 283

**7.6 (Algebra: multiply two matrices) Write a method to multiply two matrices. The
header of the method is:

public static double[][]
multiplyMatrix(double[][] a, double[][] b)

To multiply matrix a by matrix b, the number of columns in a must be the same as
the number of rows in b, and the two matrices must have elements of the same or
compatible types. Let c be the result of the multiplication. Assume the column size
of matrix a is n. Each element is
For example, for two matrices a and b, c is

where

Write a test program that prompts the user to enter two matrices and displays
their product. Here is a sample run:

3 * 3

cij = ai1 * b1j + ai2 * b2j + ai3 * b3j.

£a11 a12 a13

a21 a22 a23

a31 a32 a33

≥ * £b11 b12 b13

b21 b22 b23

b31 b32 b33

≥ = £c11 c12 c13

c21 c22 c23

c31 c32 c33

≥
3 * 3

ai1 * b1j + ai2 * b2j + c + ain * bnj.cij

Enter matrix1:
Enter matrix2:
The multiplication of the matrices is
1 2 3 0 2.0 4.0 5.3 23.9 24
4 5 6 * 1 4.5 2.2 = 11.6 56.3 58.2
7 8 9 1.1 4.3 5.2 17.9 88.7 92.4

0 2 4 1 4.5 2.2 1.1 4.3 5.2
1 2 3 4 5 6 7 8 9

*7.7 (Points nearest to each other) Listing 7.3 gives a program that finds two points
in a two-dimensional space nearest to each other. Revise the program so that it
finds two points in a three-dimensional space nearest to each other. Use a two-
dimensional array to represent the points. Test the program using the following
points:

double[][] points = {{-1, 0, 3}, {-1, -1, -1}, {4, 1, 1},
{2, 0.5, 9}, {3.5, 2, -1}, {3, 1.5, 3}, {-1.5, 4, 2},
{5.5, 4, -0.5}};

The formula for computing the distance between two points (x1, y1, z1) and

(x2, y2, z2) is

**7.8 (All closest pairs of points) Revise Listing 7.3, FindNearestPoints.java, to find all
closest pairs of points with the same minimum distance.

***7.9 (Game: play a tic-tac-toe game) In a game of tic-tac-toe, two players take turns
marking an available cell in a grid with their respective tokens (either X or O).
When one player has placed three tokens in a horizontal, vertical, or diagonal row on
the grid, the game is over and that player has won. A draw (no winner) occurs when
all the cells on the grid have been filled with tokens and neither player has achieved
a win. Create a program for playing tic-tac-toe.

The program prompts two players to enter an X token and O token alternately.
Whenever a token is entered, the program redisplays the board on the console and
determines the status of the game (win, draw, or continue). Here is a sample run:

3 * 3

2(x2 - x1)
2 + (y2 - y1)

2 + (z2 - z1)
2.

284 Chapter 7 Multidimensional Arrays

——————-——————
| | | |
——————-——————
| | | |
——————-——————
| | | |
——————-——————
Enter a row (0, 1, or 2) for player X:
Enter a column (0, 1, or 2) for player X:

——————-——————
| | | |
——————-——————
| | X | |
——————-——————
| | | |
——————-——————
Enter a row (0, 1, or 2) for player O:
Enter a column (0, 1, or 2) for player O:

——————-——————
| | | |
——————-——————
| | X | O |
——————-——————
| | | |
——————-——————
Enter a row (0, 1, or 2) for player X:

. . .

——————-——————
| X | | |
——————-——————
| O | X | O |
——————-——————
| | | X |
——————-——————
X player won

2
1

1
1

*7.10 (Largest row and column) Write a program that randomly fills in 0s and 1s into a
4-by-4 matrix, prints the matrix, and finds the first row and column with the most
1s. Here is a sample run of the program:

0011
0011
1101
1010
The largest row index: 2
The largest column index: 2

**7.11 (Game: nine heads and tails) Nine coins are placed in a 3-by-3 matrix with some
face up and some face down. You can represent the state of the coins using a 3-by-
3 matrix with values 0 (heads) and 1 (tails). Here are some examples:

0 0 0 1 0 1 1 1 0 1 0 1 1 0 0
0 1 0 0 0 1 1 0 0 1 1 0 1 1 1
0 0 0 1 0 0 0 0 1 1 0 0 1 1 0

Programming Exercises 285

Each state can also be represented using a binary number. For example, the pre-
ceding matrices correspond to the numbers

000010000 101001100 110100001 101110100 100111110

There are a total of 512 possibilities, so you can use decimal numbers 0, 1, 2,
3, . . . , and 511 to represent all states of the matrix. Write a program that prompts
the user to enter a number between 0 and 511 and displays the corresponding
matrix with the characters H and T. Here is a sample run:

Enter a number between 0 and 511:
H H H
H H H
T T T

7

The user entered 7, which corresponds to 000000111. Since 0 stands for H and 1

for T, the output is correct.

**7.12 (Financial application: compute tax) Rewrite Listing 3.6, ComputeTax.java, using
arrays. For each filing status, there are six tax rates. Each rate is applied to a cer-
tain amount of taxable income. For example, from the taxable income of $400,000
for a single filer, $8,350 is taxed at 10%, (33,950 – 8,350) at 15%, (82,250 –
33,950) at 25%, (171,550 – 82,550) at 28%, (372,550 – 82,250) at 33%, and
(400,000 – 372,950) at 36%. The six rates are the same for all filing statuses,
which can be represented in the following array:

double[] rates = {0.10, 0.15, 0.25, 0.28, 0.33, 0.35};

The brackets for each rate for all the filing statuses can be represented in a two-
dimensional array as follows:

int[][] brackets = {
{8350, 33950, 82250, 171550, 372950}, // Single filer
{16700, 67900, 137050, 20885, 372950}, // Married jointly

// or qualifying widow(er)
{8350, 33950, 68525, 104425, 186475}, // Married separately
{11950, 45500, 117450, 190200, 372950} // Head of household

};

Suppose the taxable income is $400,000 for single filers. The tax can be computed
as follows:

tax = brackets[0][0] * rates[0] +
(brackets[0][1] – brackets[0][0]) * rates[1] +
(brackets[0][2] – brackets[0][1]) * rates[2] +
(brackets[0][3] – brackets[0][2]) * rates[3] +
(brackets[0][4] – brackets[0][3]) * rates[4] +
(400000 – brackets[0][4]) * rates[5]

*7.13 (Locate the largest element) Write the following method that returns the location
of the largest element in a two-dimensional array.

public static int[] locateLargest(double[][] a)

The return value is a one-dimensional array that contains two elements. These
two elements indicate the row and column indices of the largest element in the
two-dimensional array. Write a test program that prompts the user to enter a

286 Chapter 7 Multidimensional Arrays

two-dimensional array and displays the location of the largest element in the
array. Here is a sample run:

Enter the number of rows and columns of the array:
Enter the array:

The location of the largest element is at (1, 2)
35 44 5.5 9.6
4.5 3 45 3.5
23.5 35 2 10

3 4

**7.14 (Explore matrix) Write a program that prompts the user to enter the length of a
square matrix, randomly fills in 0s and 1s into the matrix, prints the matrix, and
finds the rows, columns, and diagonals with all 0s or 1s. Here is a sample run of
the program:

Enter the size for the matrix:
0111
0000
0100
1111
All 0s on row 1
All 1s on row 3
No same numbers on a column
No same numbers on the major diagonal
No same numbers on the sub-diagonal

4

*7.15 (Geometry: same line?) Programming Exercise 5.39 gives a method for testing
whether three points are on the same line.

Write the following method to test whether all the points in the array points are
on the same line.

public static boolean sameLine(double[][] points)

Write a program that prompts the user to enter five points and displays whether
they are on the same line. Here are sample runs:

Enter five points:
The five points are not on the same line

3.4 2 6.5 9.5 2.3 2.3 5.5 5 -5 4

Enter five points:
The five points are on the same line

1 1 2 2 3 3 4 4 5 5

*7.16 (Sort two-dimensional array) Write a method to sort a two-dimensional array
using the following header:

public static void sort(int m[][])

Programming Exercises 287

The method performs a primary sort on rows and a secondary sort on columns.
For example, the following array

{{4, 2},{1, 7},{4, 5},{1, 2},{1, 1},{4, 1}}

will be sorted to

{{1, 1},{1, 2},{1, 7},{4, 1},{4, 2},{4, 5}}.

***7.17 (Financial tsunami) Banks lend money to each other. In tough economic times, if
a bank goes bankrupt, it may not be able to pay back the loan. A bank’s total assets
are its current balance plus its loans to other banks. The diagram in Figure 7.8
shows five banks. The banks’ current balances are 25, 125, 175, 75, and 181 mil-
lion dollars, respectively. The directed edge from node 1 to node 2 indicates that
bank 1 lends 40 million dollars to bank 2.

1

2

3

4

0

100.5

125

85

40
75

175125

125

125

320.5

181

25
75

FIGURE 7.8 Banks lend money to each other.

If a bank’s total assets are under a certain limit, the bank is unsafe. The money it
borrowed cannot be returned to the lender, and the lender cannot count the loan
in its total assets. Consequently, the lender may also be unsafe, if its total assets
are under the limit. Write a program to find all the unsafe banks. Your program
reads the input as follows. It first reads two integers n and limit, where n indi-
cates the number of banks and limit is the minimum total assets for keeping a
bank safe. It then reads n lines that describe the information for n banks with IDs
from 0 to n-1.

The first number in the line is the bank’s balance, the second number indicates
the number of banks that borrowed money from the bank, and the rest are pairs
of two numbers. Each pair describes a borrower. The first number in the pair is
the borrower’s ID and the second is the amount borrowed. For example, the
input for the five banks in Figure 7.8 is as follows (note that the limit is 201):

5 201
25 2 1 100.5 4 320.5
125 2 2 40 3 85
175 2 0 125 3 75
75 1 0 125
181 1 2 125

The total assets of bank 3 are which is under 201, so bank 3 is
unsafe. After bank 3 becomes unsafe, the total assets of bank 1 fall below

Thus, bank 1 is also unsafe. The output of the program should be

Unsafe banks are 3 1

(125 + 40).

(75 + 125),

288 Chapter 7 Multidimensional Arrays

(Hint: Use a two-dimensional array borrowers to represent loans.
borrowers[i][j] indicates the loan that bank i loans to bank j. Once bank j
becomes unsafe, borrowers[i][j] should be set to 0.)

*7.18 (Shuffle rows) Write a method that shuffles the rows in a two-dimensional int
array using the following header:

public static void shuffle(int[][] m)

Write a test program that shuffles the following matrix:

int[][] m = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}};

**7.19 (Pattern recognition: four consecutive equal numbers) Write the following
method that tests whether a two-dimensional array has four consecutive numbers
of the same value, either horizontally, vertically, or diagonally.

public static boolean isConsecutiveFour(int[][] values)

Write a test program that prompts the user to enter the number of rows and
columns of a two-dimensional array and then the values in the array and displays
true if the array contains four consecutive numbers with the same value. Other-
wise, display false. Here are some examples of the true cases:

***7.20 (Game: connect four) Connect four is a two-player board game in which the
players alternately drop colored disks into a seven-column, six-row vertically
suspended grid, as shown below.

0 1 0 3 1 6 1

0 1 6 8 6 0 1

9 6 2 1 8 2 9

6 9 6 1 1 9 1

1 3 9 1 4 0 7

3 3 3 9 4 0 7

0 1 0 3 1 6 1

0 1 6 8 6 0 1

5 6 2 1 8 2 9

6 5 6 1 1 9 1

1 3 6 1 4 0 7

3 3 3 3 4 0 7

0 1 0 3 1 6 1

0 1 6 8 6 0 1

5 5 2 1 8 2 9

6 5 6 1 1 9 1

1 5 6 1 4 0 7

3 5 3 3 4 0 7

0 1 0 3 1 6 1

0 1 6 8 6 0 1

5 6 2 1 6 2 9

6 5 6 6 1 9 1

1 3 6 1 4 0 7

3 6 3 3 4 0 7

The objective of the game is to connect four same-colored disks in a row, a col-
umn, or a diagonal before your opponent can do likewise. The program prompts
two players to drop a red or yellow disk alternately. In the preceding figure, the
red disk is shown in a dark color and the yellow in a light color. Whenever a disk
is dropped, the program redisplays the board on the console and determines the
status of the game (win, draw, or continue). Here is a sample run:

Programming Exercises 289

———————————————
Drop a red disk at column (0–6):

R						
———————————————
Drop a yellow disk at column (0–6):

R			Y			

. . .

. . .

. . .

Drop a yellow disk at column (0–6):
			R			
			Y	R	Y	
		R	Y	Y	Y	Y
R	Y	R	Y	R	R	R
———————————————
The yellow player won

6

3

0

Even number of 1s

VideoNote

*7.21 (Central city) Given a set of cities, the central point is the city that has the shortest
total distance to all other cities. Write a program that prompts the user to enter the
number of the cities and the locations of the cities (coordinates), and finds the cen-
tral city.

Enter the number of cities:
Enter the coordinates of the cities:

The central city is at (2.5, 5.0)
2.5 5 5.1 3 1 9 5.4 54 5.5 2.1

5

*7.22 (Even number of 1s) Write a program that generates a 6-by-6 two-dimensional
matrix filled with 0s and 1s, displays the matrix, and checks if every row and every
column have an even number of 1s.

*7.23 (Game: find the flipped cell) Suppose you are given a 6-by-6 matrix filled with 0s
and 1s. All rows and all columns have an even number of 1s. Let the user flip one

290 Chapter 7 Multidimensional Arrays

Enter a 3-by-3 matrix row by row:

It is a Markov matrix
0.30 0.12 0.4
0.55 0.005 0.225
0.15 0.875 0.375

Enter a 3-by-3 matrix row by row:

It is not a Markov matrix
0.30 0.22 -0.4
0.65 0.005 0.225
0.95 -0.875 0.375

*7.26 (Row sorting) Implement the following method to sort the rows in a two-
dimensional array. A new array is returned and the original array is intact.

public static double[][] sortRows(double[][] m)

Write a test program that prompts the user to enter a matrix of double val-
ues and displays a new row-sorted matrix. Here is a sample run:

3 * 3

Enter a 3-by-3 matrix row by row:

The row-sorted array is
0.15 0.375 0.875
0.005 0.225 0.55
0.12 0.30 0.4

0.30 0.12 0.4
0.55 0.005 0.225
0.15 0.875 0.375

*7.27 (Column sorting) Implement the following method to sort the columns in a two-
dimensional array. A new array is returned and the original array is intact.

public static double[][] sortColumns(double[][] m)

cell (i.e., flip from 1 to 0 or from 0 to 1) and write a program to find which cell was
flipped. Your program should prompt the user to enter a 6-by-6 array with 0s and
1s and find the first row r and first column c where the even number of the 1s prop-
erty is violated (i.e., the number of 1s is not even). The flipped cell is at (r, c).

*7.24 (Check Sudoku solution) Listing 7.4 checks whether a solution is valid by check-
ing whether every number is valid in the board. Rewrite the program by checking
whether every row, every column, and every small box has the numbers 1 to 9.

*7.25 (Markov matrix) An matrix is called a positive Markov matrix if each ele-
ment is positive and the sum of the elements in each column is 1. Write the fol-
lowing method to check whether a matrix is a Markov matrix.

public static boolean isMarkovMatrix(double[][] m)

Write a test program that prompts the user to enter a matrix of double values
and tests whether it is a Markov matrix. Here are sample runs:

3 * 3

n * n

Programming Exercises 291

Write a test program that prompts the user to enter a matrix of double val-
ues and displays a new column-sorted matrix. Here is a sample run:

3 * 3

Enter a 3-by-4 matrix row by row:

The column-sorted array is
0.15 0.0050 0.225
0.3 0.12 0.375
0.55 0.875 0.4

0.30 0.12 0.4
0.55 0.005 0.225
0.15 0.875 0.375

7.28 (Strictly identical arrays) The two-dimensional arrays m1 and m2 are strictly iden-
tical if their corresponding elements are equal. Write a method that returns true
if m1 and m2 are strictly identical, using the following header:

public static boolean equals(int[][] m1, int[][] m2)

Write a test program that prompts the user to enter two arrays of integers
and displays whether the two are strictly identical. Here are the sample runs.

3 * 3

Enter list1:
Enter list2:
The two arrays are strictly identical

51 22 25 6 1 4 24 54 6
51 22 25 6 1 4 24 54 6

Enter list1:
Enter list2:
The two arrays are not strictly identical

51 22 25 6 1 4 24 54 6
51 25 22 6 1 4 24 54 6

7.29 (Identical arrays) The two-dimensional arrays m1 and m2 are identical if they have
the same contents. Write a method that returns true if m1 and m2 are identical,
using the following header:

public static boolean equals(int[][] m1, int[][] m2)

Write a test program that prompts the user to enter two lists of integers and dis-
plays whether the two are identical. Here are the sample runs.

Enter list1:
Enter list2:
The two arrays are identical

51 22 25 6 1 4 24 54 6
51 25 22 6 1 4 24 54 6

Enter list1:
Enter list2:
The two arrays are not identical

51 22 25 6 1 4 24 54 6
51 5 22 6 1 4 24 54 6

292 Chapter 7 Multidimensional Arrays

*7.30 (Algebra: solve linear equations) Write a method that solves the following
system of linear equations:

The method header is

public static double[] linearEquation(double[][] a, double[] b)

The method returns null if is 0. Write a test program that
prompts the user to enter and and displays the result. If

is 0, report that “The equation has no solution.” A sample run is
similar to Programming Exercise 3.3.

*7.31 (Geometry: intersecting point) Write a method that returns the intersecting point of
two lines. The intersecting point of the two lines can be found by using the formula
shown in Programming Exercise 3.25. Assume that (x1, y1) and (x2, y2) are the
two points on line 1 and (x3, y3) and (x4, y4) are on line 2. The method header is

public static double[] getIntersectingPoint(double[][] points)

The points are stored in a 4-by-2 two-dimensional array points with
(points[0][0], points[0][1]) for (x1, y1). The method returns the intersect-
ing point or null if the two lines are parallel. Write a program that prompts the
user to enter four points and displays the intersecting point. See Programming
Exercise 3.25 for a sample run.

*7.32 (Geometry: area of a triangle) Write a method that returns the area of a triangle
using the following header:

public static double getTriangleArea(double[][] points)

The points are stored in a 3-by-2 two-dimensional array points with
points[0][0] and points[0][1] for (x1, y1). The triangle area can be com-
puted using the formula in Programming Exercise 2.15. The method returns 0 if the
three points are on the same line. Write a program that prompts the user to enter
two lines and displays the intersecting point. Here is a sample run of the program:

a00a11 - a01a10

b1,a00, a01, a10, a11, b0,
a00a11 - a01a10

a00x + a01y = b0

a10x + a11y = b1
 x =

b0a11 - b1a01

a00a11 - a01a10
 y =

b1a00 - b0a10

a00a11 - a01a10

2 * 2

Enter x1, y1, x2, y2, x3, y3:
The area of the triangle is 2.25

2.5 2 5 -1.0 4.0 2.0

Enter x1, y1, x2, y2, x3, y3:
The three points are on the same line

2 2 4.5 4.5 6 6

*7.33 (Geometry: polygon subareas) A convex 4-vertex polygon is divided into four tri-
angles, as shown in Figure 7.9.

Write a program that prompts the user to enter the coordinates of four vertices and
displays the areas of the four triangles in increasing order. Here is a sample run:

Enter x1, y1, x2, y2, x3, y3, x4, y4:

The areas are 6.17 7.96 8.08 10.42
-2.5 2 4 4 3 -2 -2 -3.5

Programming Exercises 293

v2 (x2, y2)

v3 (x3, y3)

v4 (x4, y4)

v1 (x1, y1)

FIGURE 7.9 A 4-vertex polygon is defined by four vertices.

*7.34 (Geometry: rightmost lowest point) In computational geometry, often you need to
find the rightmost lowest point in a set of points. Write the following method that
returns the rightmost lowest point in a set of points.

public static double[]
getRightmostLowestPoint(double[][] points)

Write a test program that prompts the user to enter the coordinates of six points
and displays the rightmost lowest point. Here is a sample run:

Enter 6 points:
The rightmost lowest point is (6.5, -7.0)

1.5 2.5 -3 4.5 5.6 -7 6.5 -7 8 1 10 2.5

**7.35 (Largest block) Given a square matrix with the elements 0 or 1, write a program to
find a maximum square submatrix whose elements are all 1s. Your program
should prompt the user to enter the number of rows in the matrix. The program
then displays the location of the first element in the maximum square submatrix
and the number of the rows in the submatrix. Here is a sample run:

Enter the number of rows in the matrix:
Enter the matrix row by row:

The maximum square submatrix is at (2, 2) with size 3

1 0 1 1 1
1 0 1 1 1
1 0 1 1 1
1 1 1 0 1
1 0 1 0 1

5

Your program should implement and use the following method to find the maxi-
mum square submatrix:

public static int[] findLargestBlock(int[][] m)

The return value is an array that consists of three values. The first two values are
the row and column indices for the first element in the submatrix, and the third
value is the number of the rows in the submatrix.

**7.36 (Latin square) A Latin square is an n-by-n array filled with n different Latin let-
ters, each occurring exactly once in each row and once in each column. Write a

294 Chapter 7 Multidimensional Arrays

Enter number n:
Enter 4 rows of letters separated by spaces:

The input array is a Latin square
D C A B
C D B A
B A D C
A B C D

4

Enter number n:
Enter 3 rows of letters separated by spaces:

Wrong input: the letters must be from A to C
A F D

3

program that prompts the user to enter the number n and the array of characters, as
shown in the sample output, and checks if the input array is a Latin square. The
characters are the first n characters starting from A.

OBJECTS AND CLASSES

CHAPTER

8

Objectives
■ To describe objects and classes, and use classes to model objects (§8.2).

■ To use UML graphical notation to describe classes and objects (§8.2).

■ To demonstrate how to define classes and create objects (§8.3).

■ To create objects using constructors (§8.4).

■ To access objects via object reference variables (§8.5).

■ To define a reference variable using a reference type (§8.5.1).

■ To access an object’s data and methods using the object member access
operator (.) (§8.5.2).

■ To define data fields of reference types and assign default values for an
object’s data fields (§8.5.3).

■ To distinguish between object reference variables and primitive data
type variables (§8.5.4).

■ To use the Java library classes Date, Random, and JFrame (§8.6).

■ To distinguish between instance and static variables and methods (§8.7).

■ To define private data fields with appropriate get and set methods
(§8.8).

■ To encapsulate data fields to make classes easy to maintain (§8.9).

■ To develop methods with object arguments and differentiate between
primitive-type arguments and object-type arguments (§8.10).

■ To store and process objects in arrays (§8.11).

296 Chapter 8 Objects and Classes

Button Text Field Radio Button Combo BoxLabel Check Box

Key
Point

FIGURE 8.1 The GUI objects are created from classes.

Key
Point

8.1 Introduction
Object-oriented programming enables you to develop large-scale software and GUIs
effectively.

Having learned the material in the preceding chapters, you are able to solve many program-
ming problems using selections, loops, methods, and arrays. However, these Java features are
not sufficient for developing graphical user interfaces and large-scale software systems. Sup-
pose you want to develop a graphical user interface (GUI, pronounced goo-ee) as shown in
Figure 8.1. How would you program it? You will learn how in this chapter.

This chapter introduces object-oriented programming, which you can use to develop GUI
and large-scale software systems.

8.2 Defining Classes for Objects
A class defines the properties and behaviors for objects.

Object-oriented programming (OOP) involves programming using objects. An object repre-
sents an entity in the real world that can be distinctly identified. For example, a student, a
desk, a circle, a button, and even a loan can all be viewed as objects. An object has a unique
identity, state, and behavior.

■ The state of an object (also known as its properties or attributes) is represented by
data fields with their current values. A circle object, for example, has a data field
radius, which is the property that characterizes a circle. A rectangle object has the
data fields width and height, which are the properties that characterize a rectangle.

■ The behavior of an object (also known as its actions) is defined by methods. To invoke
a method on an object is to ask the object to perform an action. For example, you may
define methods named getArea() and getPerimeter() for circle objects. A circle
object may invoke getArea() to return its area and getPerimeter() to return its
perimeter. You may also define the setRadius(radius) method. A circle object can
invoke this method to change its radius.

Objects of the same type are defined using a common class. A class is a template, blue-
print, or contract that defines what an object’s data fields and methods will be. An object is an
instance of a class. You can create many instances of a class. Creating an instance is referred
to as instantiation. The terms object and instance are often interchangeable. The relationship
between classes and objects is analogous to that between an apple-pie recipe and apple pies:
You can make as many apple pies as you want from a single recipe. Figure 8.2 shows a class
named Circle and its three objects.

A Java class uses variables to define data fields and methods to define actions. Addition-
ally, a class provides methods of a special type, known as constructors, which are invoked to
create a new object. A constructor can perform any action, but constructors are designed to
perform initializing actions, such as initializing the data fields of objects. Figure 8.3 shows an
example of defining the class for circle objects.

why OOP?

Define classes and objects

object
state of an object
properties
attributes
data fields
behavior
actions

class
contract

instantiation

instance

data field
method
constructors

VideoNote

Mujahid
Highlight

8.2 Defining Classes for Objects 297

Class Name: Circle

Data Fields:
 radius is _____

Methods:
 getArea
 getPerimeter
 setRadius

Circle Object 1

Data Fields:
 radius is 1

Circle Object 2

Data Fields:
 radius is 25

Circle Object 3

Data Fields:
 radius is 125

A class template

Three objects of
the Circle class

FIGURE 8.2 A class is a template for creating objects.

Data field

Constructors

Method

class Circle {
/** The radius of this circle */
double radius = 1;

/** Construct a circle object */
 Circle() {
 }

/** Construct a circle object */
 Circle(double newRadius) {
 radius = newRadius;
 }

/** Return the area of this circle */
double getArea() {
return radius * radius * Math.PI;

 }

/** Return the perimeter of this circle */
double getPerimeter() {

return 2 * radius * Math.PI;
 }

/** Set new radius for this circle */
double setRadius(double newRadius) {

 radius = newRadius;
 }
 }

FIGURE 8.3 A class is a construct that defines objects of the same type.

The Circle class is different from all of the other classes you have seen thus far. It does
not have a main method and therefore cannot be run; it is merely a definition for circle
objects. The class that contains the main method will be referred to in this book, for conve-
nience, as the main class.

The illustration of class templates and objects in Figure 8.2 can be standardized using Unified
Modeling Language (UML) notation. This notation, as shown in Figure 8.4, is called a UML
class diagram, or simply a class diagram. In the class diagram, the data field is denoted as

dataFieldName: dataFieldType

The constructor is denoted as

ClassName(parameterName: parameterType)

main class

Unified Modeling Language
(UML)

class diagram

298 Chapter 8 Objects and Classes

Key
Point

Class nameCircle

radius: double

Circle()

Circle(newRadius: double)

getArea(): double

getPerimeter(): double

setRadius(newRadius: double): void

Data fields

Constructors and
methods

UML Class Diagram

UML notation
for objects

circle2: Circle

radius = 25

circle3: Circle

radius = 125

circle1: Circle

radius = 1

FIGURE 8.4 Classes and objects can be represented using UML notation.

The method is denoted as

methodName(parameterName: parameterType): returnType

8.3 Example: Defining Classes and Creating Objects
Classes are definitions for objects and objects are created from classes.

This section gives two examples of defining classes and uses the classes to create objects.
Listing 8.1 is a program that defines the Circle class and uses it to create objects. The pro-
gram constructs three circle objects with radius 1, 25, and 125 and displays the radius and
area of each of the three circles. It then changes the radius of the second object to 100 and dis-
plays its new radius and area.

Note
To avoid a naming conflict with several enhanced versions of the Circle class intro-
duced later in the chapter, the Circle class in this example is named SimpleCircle.
For simplicity, we will still refer to the class in the text as Circle.

LISTING 8.1 TestSimpleCircle.java
1 public class TestSimpleCircle {
2 /** Main method */
3 public static void main(String[] args) {
4 // Create a circle with radius 1
5
6 System.out.println("The area of the circle of radius "
7 + + " is " +);
8
9 // Create a circle with radius 25
10
11 System.out.println("The area of the circle of radius "
12 + circle2.radius + " is " + circle2.getArea());
13
14 // Create a circle with radius 125
15
16 System.out.println("The area of the circle of radius "
17 + circle3.radius + " is " + circle3.getArea());
18
19 // Modify circle radius
20 // or circle2.setRadius(100)
21 System.out.println("The area of the circle of radius "
22 + + " is " +);
23 }

circle2.getArea()circle2.radius

circle2.radius = 100;

SimpleCircle circle3 = new SimpleCircle(125);

SimpleCircle circle2 = new SimpleCircle(25);

circle1.getArea()circle1.radius

SimpleCircle circle1 = new SimpleCircle();

main class

main method

create object

create object

create object

avoid naming conflicts

8.3 Example: Defining Classes and Creating Objects 299

24 }
25
26 // Define the circle class with two constructors
27 class SimpleCircle {
28 ;
29
30 /** Construct a circle with radius 1 */
31 {
32 radius = 1;
33 }
34
35 /** Construct a circle with a specified radius */
36 {
37 radius = newRadius;
38 }
39
40 /** Return the area of this circle */
41 {
42 return radius * radius * Math.PI;
43 }
44
45 /** Return the perimeter of this circle */
46 {
47 return 2 * radius * Math.PI;
48 }
49
50 /** Set a new radius for this circle */
51 {
52 radius = newRadius;
53 }
54 }

void setRadius(double newRadius)

double getPerimeter()

double getArea()

SimpleCircle(double newRadius)

SimpleCircle()

double radius
class SimpleCircle
data field

no-arg constructor

second constructor

getArea

getPerimeter

setRadius

The area of the circle of radius 1.0 is 3.141592653589793
The area of the circle of radius 25.0 is 1963.4954084936207
The area of the circle of radius 125.0 is 49087.385212340516
The area of the circle of radius 100.0 is 31415.926535897932

The program contains two classes. The first of these, TestSimpleCircle, is the main class.
Its sole purpose is to test the second class, SimpleCircle. Such a program that uses the class
is often referred to as a client of the class. When you run the program, the Java runtime sys-
tem invokes the main method in the main class.

You can put the two classes into one file, but only one class in the file can be a public class.
Furthermore, the public class must have the same name as the file name. Therefore, the file
name is TestSimpleCircle.java, since TestSimpleCircle is public. Each class in the source
code is compiled into a .class file. When you compile TestSimpleCircle.java, two class files
TestSimpleCircle.class and SimpleCircle.class are generated, as shown in Figure 8.5.

client

public class

Java
Compilercompiled

by

generates

generates

// File TestSimpleCircle.java

public class TestSimpleCircle {
 …
}

class SimpleCircle {
 …
}

TestSimpleCircle.class

SimpleCircle.class

FIGURE 8.5 Each class in the source code file is compiled into a .class file.

300 Chapter 8 Objects and Classes

The main class contains the main method (line 3) that creates three objects. As in creating an
array, the new operator is used to create an object from the constructor. new SimpleCircle()
creates an object with radius 1 (line 5), new SimpleCircle(25) creates an object with radius
25 (line 10), and new SimpleCircle(125) creates an object with radius 125 (line 15).

These three objects (referenced by circle1, circle2, and circle3) have different data
but the same methods. Therefore, you can compute their respective areas by using the
getArea() method. The data fields can be accessed via the reference of the object using
circle1.radius, circle2.radius, and circle3.radius, respectively. The object can
invoke its method via the reference of the object using circle1.getArea(),
circle2.getArea(), and circle3.getArea(), respectively.

These three objects are independent. The radius of circle2 is changed to 100 in line 20.
The object’s new radius and area are displayed in lines 21–22.

There are many ways to write Java programs. For instance, you can combine the two
classes in the example into one, as shown in Listing 8.2.

LISTING 8.2 SimpleCircle.java
1 {
2 /** Main method */
3
4 // Create a circle with radius 1
5
6 System.out.println("The area of the circle of radius "
7 + + " is " +);
8
9 // Create a circle with radius 25
10 SimpleCircle circle2 = new SimpleCircle(25);
11 System.out.println("The area of the circle of radius "
12 + circle2.radius + " is " + circle2.getArea());
13
14 // Create a circle with radius 125
15 SimpleCircle circle3 = new SimpleCircle(125);
16 System.out.println("The area of the circle of radius "
17 + circle3.radius + " is " + circle3.getArea());
18
19 // Modify circle radius
20 circle2.radius = 100;
21 System.out.println("The area of the circle of radius "
22 + circle2.radius + " is " + circle2.getArea());
23 }
24
25 double radius;
26
27 /** Construct a circle with radius 1 */
28 {
29 radius = 1;
30 }
31
32 /** Construct a circle with a specified radius */
33 {
34 radius = newRadius;
35 }
36
37 /** Return the area of this circle */
38 {
39 return radius * radius * Math.PI;
40 }
41

double getArea()

SimpleCircle(double newRadius)

SimpleCircle()

circle1.getArea()circle1.radius

SimpleCircle circle1 = new SimpleCircle();

public static void main(String[] args) {

public class SimpleCircle

main method

data field

no-arg constructor

second constructor

method

8.3 Example: Defining Classes and Creating Objects 301

TV

The current channel (1 to 120) of this TV.

The current volume level (1 to 7) of this TV.

Indicates whether this TV is on/off.

channel: int

volumeLevel: int

on: boolean

+TV()

+turnOn(): void

+turnOff(): void

+setChannel(newChannel: int): void

+setVolume(newVolumeLevel: int): void

+channelUp(): void

+channelDown(): void

+volumeUp(): void

+volumeDown(): void

Constructs a default TV object.

Turns on this TV.

Turns off this TV.

Sets a new channel for this TV.

Sets a new volume level for this TV.

Increases the channel number by 1.

Decreases the channel number by 1.

Increases the volume level by 1.

Decreases the volume level by 1.

The + sign indicates
public modifier

FIGURE 8.6 The TV class models TV sets.

42 /** Return the perimeter of this circle */
43 {
44 return 2 * radius * Math.PI;
45 }
46
47 /** Set a new radius for this circle */
48 {
49 radius = newRadius;
50 }
51 }

Since the combined class has a main method, it can be executed by the Java interpreter. The
main method is the same as in Listing 8.1. This demonstrates that you can test a class by sim-
ply adding a main method in the same class.

As another example, consider television sets. Each TV is an object with states (current
channel, current volume level, power on or off) and behaviors (change channels, adjust vol-
ume, turn on/off). You can use a class to model TV sets. The UML diagram for the class is
shown in Figure 8.6.

void setRadius(double newRadius)

double getPerimeter()

Listing 8.3 gives a program that defines the TV class.

LISTING 8.3 TV.java
1
2 // Default channel is 1
3 // Default volume level is 1
4 // TV is off
5
6
7 }
8
9
10 on = true;
11 }
12
13 public void turnOff() {

public void turnOn() {

public TV() {

boolean on = false;
int volumeLevel = 1;
int channel = 1;

public class TV {
data fields

constructor

turn on TV

turn off TV

302 Chapter 8 Objects and Classes

14 on = false;
15 }
16
17
18 if (on && newChannel >= 1 && newChannel <= 120)
19 channel = newChannel;
20 }
21
22
23 if (on && newVolumeLevel >= 1 && newVolumeLevel <= 7)
24 volumeLevel = newVolumeLevel;
25 }
26
27
28 if (on && channel < 120)
29 channel++;
30 }
31
32
33 if (on && channel > 1)
34 channel—–;
35 }
36
37
38 if (on && volumeLevel < 7)
39 volumeLevel++;
40 }
41
42
43 if (on && volumeLevel > 1)
44 volumeLevel—–;
45 }
46 }

The constructor and methods in the TV class are defined public so they can be accessed from
other classes. Note that the channel and volume level are not changed if the TV is not on. Before
either of these is changed, its current value is checked to ensure that it is within the correct range.

Listing 8.4 gives a program that uses the TV class to create two objects.

LISTING 8.4 TestTV.java
1 public class TestTV {
2 public static void main(String[] args) {
3
4 tv1.turnOn();
5 tv1.setChannel(30);
6 tv1.setVolume(3);
7
8
9 tv2.turnOn();
10 tv2.channelUp();
11 tv2.channelUp();
12 tv2.volumeUp();
13
14 System.out.println("tv1's channel is " +
15 + " and volume level is " +);
16 System.out.println("tv2's channel is " + tv2.channel
17 + " and volume level is " + tv2.volumeLevel);
18 }
19 }

tv1.volumeLevel
tv1.channel

TV tv2 = new TV();

TV tv1 = new TV();

public void volumeDown() {

public void volumeUp() {

public void channelDown() {

public void channelUp() {

public void setVolume(int newVolumeLevel) {

public void setChannel(int newChannel) {set a new channel

set a new volume

increase channel

decrease channel

increase volume

decrease volume

main method
create a TV
turn on
set a new channel
set a new volume

create a TV
turn on
increase channel

increase volume

display state

8.4 Constructing Objects Using Constructors 303

✓Point✓Check

Key
Point

tv1's channel is 30 and volume level is 3
tv2's channel is 3 and volume level is 2

The program creates two objects in lines 3 and 8 and invokes the methods on the objects to
perform actions for setting channels and volume levels and for increasing channels and vol-
umes. The program displays the state of the objects in lines 14–17. The methods are invoked
using syntax such as tv1.turnOn() (line 4). The data fields are accessed using syntax such
as tv1.channel (line 14).

These examples have given you a glimpse of classes and objects. You may have many
questions regarding constructors, objects, reference variables, accessing data fields, and
invoking object’s methods. The sections that follow discuss these issues in detail.

8.1 Describe the relationship between an object and its defining class.

8.2 How do you define a class?

8.3 How do you declare an object’s reference variable?

8.4 How do you create an object?

8.4 Constructing Objects Using Constructors
A constructor is invoked to create an object using the new operator.

Constructors are a special kind of method. They have three peculiarities:

■ A constructor must have the same name as the class itself.

■ Constructors do not have a return type—not even void.

■ Constructors are invoked using the new operator when an object is created. Con-
structors play the role of initializing objects.

The constructor has exactly the same name as its defining class. Like regular methods,
constructors can be overloaded (i.e., multiple constructors can have the same name but differ-
ent signatures), making it easy to construct objects with different initial data values.

It is a common mistake to put the void keyword in front of a constructor. For example,

public Circle() {
}

In this case, Circle() is a method, not a constructor.
Constructors are used to construct objects. To construct an object from a class, invoke a

constructor of the class using the new operator, as follows:

new ClassName(arguments);

For example, new Circle() creates an object of the Circle class using the first construc-
tor defined in the Circle class, and new Circle(25) creates an object using the second
constructor defined in the Circle class.

A class normally provides a constructor without arguments (e.g., Circle()). Such a con-
structor is referred to as a no-arg or no-argument constructor.

A class may be defined without constructors. In this case, a public no-arg constructor with
an empty body is implicitly defined in the class. This constructor, called a default constructor,
is provided automatically only if no constructors are explicitly defined in the class.

8.5 What are the differences between constructors and methods?

8.6 When will a class have a default constructor?

void

constructor’s name

no return type

new operator

overloaded constructors

no void

constructing objects

✓Point✓Check

no-arg constructor

default constructor

Mujahid
Highlight

304 Chapter 8 Objects and Classes

Key
Point

8.5 Accessing Objects via Reference Variables
An object’s data and methods can be accessed through the dot (.) operator via the
object’s reference variable.

Newly created objects are allocated in the memory. They can be accessed via reference
variables.

8.5.1 Reference Variables and Reference Types
Objects are accessed via the object’s reference variables, which contain references to the
objects. Such variables are declared using the following syntax:

ClassName objectRefVar;

A class is essentially a programmer-defined type. A class is a reference type, which means
that a variable of the class type can reference an instance of the class. The following statement
declares the variable myCircle to be of the Circle type:

Circle myCircle;

The variable myCircle can reference a Circle object. The next statement creates an object
and assigns its reference to myCircle:

myCircle = new Circle();

You can write a single statement that combines the declaration of an object reference variable,
the creation of an object, and the assigning of an object reference to the variable with the fol-
lowing syntax:

ClassName objectRefVar = new ClassName();

Here is an example:

Circle myCircle = new Circle();

The variable myCircle holds a reference to a Circle object.

Note
An object reference variable that appears to hold an object actually contains a reference
to that object. Strictly speaking, an object reference variable and an object are different,
but most of the time the distinction can be ignored. Therefore, it is fine, for simplicity, to
say that myCircle is a Circle object rather than use the longer-winded description
that myCircle is a variable that contains a reference to a Circle object.

Note
Arrays are treated as objects in Java. Arrays are created using the new operator. An array
variable is actually a variable that contains a reference to an array.

8.5.2 Accessing an Object’s Data and Methods
In OOP terminology, an object’s member refers to its data fields and methods. After an object
is created, its data can be accessed and its methods invoked using the dot operator (.), also
known as the object member access operator:

■ objectRefVar.dataField references a data field in the object.

■ objectRefVar.method(arguments) invokes a method on the object.

reference variable

reference type

object vs. object reference
variable

array object

dot operator (.)

8.5 Accessing Objects via Reference Variables 305

For example, myCircle.radius references the radius in myCircle, and
myCircle.getArea() invokes the getArea method on myCircle. Methods are invoked
as operations on objects.

The data field radius is referred to as an instance variable, because it is dependent on a
specific instance. For the same reason, the method getArea is referred to as an instance
method, because you can invoke it only on a specific instance. The object on which an
instance method is invoked is called a calling object.

Caution
Recall that you use Math.methodName(arguments) (e.g., Math.pow(3, 2.5))
to invoke a method in the Math class. Can you invoke getArea() using
Circle.getArea()? The answer is no. All the methods in the Math class are static
methods, which are defined using the static keyword. However, getArea() is an
instance method, and thus nonstatic. It must be invoked from an object using
objectRefVar.methodName(arguments) (e.g., myCircle.getArea()). Fur-
ther explanation is given in Section 8.7, Static Variables, Constants, and Methods.

Note
Usually you create an object and assign it to a variable, and then later you can use the
variable to reference the object. Occasionally an object does not need to be referenced
later. In this case, you can create an object without explicitly assigning it to a variable
using the syntax:

new Circle();

or

System.out.println("Area is " + new Circle(5).getArea());

The former statement creates a Circle object. The latter creates a Circle object and
invokes its getArea method to return its area. An object created in this way is known
as an anonymous object.

8.5.3 Reference Data Fields and the null Value
The data fields can be of reference types. For example, the following Student class contains
a data field name of the String type. String is a predefined Java class.

class Student {
String name; // name has the default value null
int age; // age has the default value 0
boolean isScienceMajor; // isScienceMajor has default value false
char gender; // gender has default value '\u0000'

}

If a data field of a reference type does not reference any object, the data field holds a special
Java value, null. null is a literal just like true and false. While true and false are
Boolean literals, null is a literal for a reference type.

The default value of a data field is null for a reference type, 0 for a numeric type, false
for a boolean type, and \u0000 for a char type. However, Java assigns no default value to
a local variable inside a method. The following code displays the default values of the data
fields name, age, isScienceMajor, and gender for a Student object:

class Test {
public static void main(String[] args) {

System.out.println("name? " +); student.name
Student student = new Student();

instance variable

instance method

calling object

invoking methods

anonymous object

reference data fields

null value

default field values

306 Chapter 8 Objects and Classes

Primitive type int i = 1

Circle c

i

Object type c reference

1

Created using new Circle()

radius = 1

c: Circle

FIGURE 8.7 A variable of a primitive type holds a value of the primitive type, and a variable
of a reference type holds a reference to where an object is stored in memory.

Primitive type assignment i = j

Before: After:

2

2

i

j

1

2

i

j

FIGURE 8.8 Primitive variable j is copied to variable i.

System.out.println("age? " +);
System.out.println("isScienceMajor? " +);
System.out.println("gender? " +);

}
}

The following code has a compile error, because the local variables x and y are not initialized:

class Test {
public static void main(String[] args) {

// x has no default value
// y has no default value

System.out.println("x is " +);
System.out.println("y is " +);

}
}

Caution
NullPointerException is a common runtime error. It occurs when you invoke a
method on a reference variable with a null value. Make sure you assign an object refer-
ence to the variable before invoking the method through the reference variable.

8.5.4 Differences between Variables of Primitive Types
and Reference Types

Every variable represents a memory location that holds a value. When you declare a variable,
you are telling the compiler what type of value the variable can hold. For a variable of a prim-
itive type, the value is of the primitive type. For a variable of a reference type, the value is a
reference to where an object is located. For example, as shown in Figure 8.7, the value of int
variable i is int value 1, and the value of Circle object c holds a reference to where the
contents of the Circle object are stored in memory.

When you assign one variable to another, the other variable is set to the same value. For a
variable of a primitive type, the real value of one variable is assigned to the other variable. For
a variable of a reference type, the reference of one variable is assigned to the other variable.
As shown in Figure 8.8, the assignment statement i = j copies the contents of j into i for

y
x

String y;
int x;

student.gender
student.isScienceMajor

student.age

NullPointerException

8.5 Accessing Objects via Reference Variables 307

Object type assignment c1 = c2

c1

After:

c2

Before:

c1

c2

radius = 9

c2: Circle

radius = 5

c1: Circle

radius = 5

c1: Circle

radius = 9

c2: Circle

FIGURE 8.9 Reference variable c2 is copied to variable c1.

primitive variables. As shown in Figure 8.9, the assignment statement c1 = c2 copies the
reference of c2 into c1 for reference variables. After the assignment, variables c1 and c2
refer to the same object.

Note
As illustrated in Figure 8.9, after the assignment statement c1 = c2, c1 points to the
same object referenced by c2. The object previously referenced by c1 is no longer use-
ful and therefore is now known as garbage. Garbage occupies memory space, so the Java
runtime system detects garbage and automatically reclaims the space it occupies. This
process is called garbage collection.

Tip
If you know that an object is no longer needed, you can explicitly assign null to a ref-
erence variable for the object. The JVM will automatically collect the space if the object
is not referenced by any reference variable.

8.7 Which operator is used to access a data field or invoke a method from an object?

8.8 What is an anonymous object?

8.9 What is NullPointerException?

8.10 Is an array an object or a primitive type value? Can an array contain elements of an
object type as well as a primitive type? Describe the default value for the elements of
an array.

8.11 What is wrong with each of the following programs?

garbage

garbage collection

✓Point✓Check

1 public class ShowErrors {
2 public static void main(String[] args) {
3 ShowErrors t = new ShowErrors(5);
4 }
5 }

(a)

1 public class ShowErrors {
2 public static void main(String[] args) {
3 ShowErrors t = new ShowErrors();
4 t.x();
5 }
6 }

(b)

Mujahid
Highlight

308 Chapter 8 Objects and Classes

Key
Point

8.12 What is wrong in the following code?

1 class Test {
2 public static void main(String[] args) {
3 A a = new A();
4 a.print();
5 }
6 }
7
8 class A {
9 String s;
10
11 A(String newS) {
12 s = newS;
13 }
14
15 public void print() {
16 System.out.print(s);
17 }
18 }

8.13 What is the printout of the following code?

public class A {
private boolean x;

public static void main(String[] args) {
A a = new A();
System.out.println(a.x);

}
}

8.6 Using Classes from the Java Library
The Java API contains a rich set of classes for developing Java programs.

Listing 8.1 defined the SimpleCircle class and created objects from the class. You will fre-
quently use the classes in the Java library to develop programs. This section gives some exam-
ples of the classes in the Java library.

8.6.1 The Date Class
In Listing 2.6, ShowCurrentTime.java, you learned how to obtain the current time using
System.currentTimeMillis(). You used the division and remainder operators to extract

1 public class ShowErrors {
2 public void method1() {
3 Circle c;
4 System.out.println("What is radius "
5 + c.getRadius());
6 c = new Circle();
7 }
8 }

(c)

1 public class ShowErrors {
2 public static void main(String[] args) {
3 C c = new C(5.0);
4 System.out.println(c.value);
5 }
6 }
7
8 class C {
9 int value = 2;
10 }

(d)

8.6 Using Classes from the Java Library 309

java.util.Date

+Date()

+Date(elapseTime: long)

+toString(): String

+getTime(): long

+setTime(elapseTime: long): void

Returns a string representing the date and time.

Returns the number of milliseconds since January 1,

Sets a new elapse time in the object.

Constructs a Date object for the current time.

Constructs a Date object for a given time in
milliseconds elapsed since January 1, 1970, GMT.

1970, GMT.

FIGURE 8.10 A Date object represents a specific date and time.

the current second, minute, and hour. Java provides a system-independent encapsulation of
date and time in the java.util.Date class, as shown in Figure 8.10. java.util.Date class

You can use the no-arg constructor in the Date class to create an instance for the current
date and time, the getTime() method to return the elapsed time since January 1, 1970, GMT,
and the toString() method to return the date and time as a string. For example, the follow-
ing code

java.util.Date date = ;
System.out.println("The elapsed time since Jan 1, 1970 is " +

+ " milliseconds");
System.out.println();

displays the output like this:

The elapsed time since Jan 1, 1970 is 1324903419651 milliseconds
Mon Dec 26 07:43:39 EST 2011

The Date class has another constructor, Date(long elapseTime), which can be used to
construct a Date object for a given time in milliseconds elapsed since January 1, 1970, GMT.

8.6.2 The Random Class
You have used Math.random() to obtain a random double value between 0.0 and 1.0
(excluding 1.0). Another way to generate random numbers is to use the java.util.Random
class, as shown in Figure 8.11, which can generate a random int, long, double, float, and
boolean value.

date.toString()
date.getTime()

new java.util.Date() create object

get elapsed time

+Random()

+Random(seed: long)

+nextInt(): int

+nextInt(n: int): int

+nextLong(): long

+nextDouble(): double

+nextFloat(): float

+nextBoolean(): boolean

Constructs a Random object with the current time as its seed.

Constructs a Random object with a specified seed.

Returns a random int value.

Returns a random int value between 0 and n (excluding n).

Returns a random long value.

Returns a random double value between 0.0 and 1.0 (excluding 1.0).

Returns a random float value between 0.0F and 1.0F (excluding 1.0F).

Returns a random boolean value.

java.util.Random

FIGURE 8.11 A Random object can be used to generate random values.

invoke toString

310 Chapter 8 Objects and Classes

FIGURE 8.12 The program creates two windows using the JFrame class.

When you create a Random object, you have to specify a seed or use the default seed. A
seed is a number used to initialize a random number generator. The no-arg constructor creates
a Random object using the current elapsed time as its seed. If two Random objects have the
same seed, they will generate identical sequences of numbers. For example, the following
code creates two Random objects with the same seed, 3.

Random random1 = new Random(3);
System.out.print("From random1: ");
for (int i = 0; i < 10; i++)
System.out.print(random1.nextInt(1000) + " ");

Random random2 = new Random(3);
System.out.print("\nFrom random2: ");
for (int i = 0; i < 10; i++)
System.out.print(random2.nextInt(1000) + " ");

The code generates the same sequence of random int values:

From random1: 734 660 210 581 128 202 549 564 459 961
From random2: 734 660 210 581 128 202 549 564 459 961

Note
The ability to generate the same sequence of random values is useful in software testing
and many other applications. In software testing, often you need to reproduce the test
cases from a fixed sequence of random numbers.

8.6.3 Displaying GUI Components

Pedagogical Note
Graphical user interface (GUI) components are good examples for teaching OOP. Simple
GUI examples are introduced here for this purpose. The full introduction to GUI pro-
gramming begins with Chapter 12, GUI Basics.

When you develop programs to create graphical user interfaces, you will use Java classes such
as JFrame, JButton, JRadioButton, JComboBox, and JList to create frames, buttons,
radio buttons, combo boxes, lists, and so on. Listing 8.5 is an example that creates two win-
dows using the JFrame class. The output of the program is shown in Figure 8.12.

same sequence

create an object
invoke a method

LISTING 8.5 TestFrame.java
1 import javax.swing.JFrame;
2
3 public class TestFrame {
4 public static void main(String[] args) {
5
6 frame1.setTitle("Window 1");
7 frame1.setSize(200, 150);
8 frame1.setLocation(200, 100);
9 frame1.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10 frame1.setVisible(true);

JFrame frame1 = new JFrame();

8.6 Using Classes from the Java Library 311

11
12
13 frame2.setTitle("Window 2");
14 frame2.setSize(200, 150);
15 frame2.setLocation(410, 100);
16 frame2.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
17 frame2.setVisible(true);
18 }
19 }

This program creates two objects of the JFrame class (lines 5, 12) and then uses the methods
setTitle, setSize, setLocation, setDefaultCloseOperation, and setVisible to
set the properties of the objects. The setTitle method sets a title for the window (lines 6,
13). The setSize method sets the window’s width and height (lines 7, 14). The
setLocation method specifies the location of the window’s upper-left corner (lines 8, 15).
The setDefaultCloseOperation method terminates the program when the frame is
closed (lines 9, 16). The setVisible method displays the window.

You can add graphical user interface components, such as buttons, labels, text fields, check
boxes, and combo boxes to the window. The components are defined using classes. Listing
8.6 gives an example of creating a graphical user interface, as shown in Figure 8.1.

LISTING 8.6 GUIComponents.java
1 import javax.swing.*;
2
3 public class GUIComponents {
4 public static void main(String[] args) {
5 // Create a button with text OK
6 JButton jbtOK = new JButton("OK");
7
8 // Create a button with text Cancel
9 JButton jbtCancel = new JButton("Cancel");
10
11 // Create a label with text "Enter your name: "
12 JLabel jlblName = new JLabel("Enter your name: ");
13
14 // Create a text field with text "Type Name Here"
15 JTextField jtfName = new JTextField("Type Name Here");
16
17 // Create a check box with text Bold
18 JCheckBox jchkBold = new JCheckBox("Bold");
19
20 // Create a check box with text Italic
21 JCheckBox jchkItalic = new JCheckBox("Italic");
22
23 // Create a radio button with text Red
24 JRadioButton jrbRed = new JRadioButton("Red");
25
26 // Create a radio button with text Yellow
27 JRadioButton jrbYellow = new JRadioButton("Yellow");
28
29 // Create a combo box with several choices
30 JComboBox jcboColor = new JComboBox(new String[]{"Freshman",
31 "Sophomore", "Junior", "Senior"});
32
33 // Create a panel to group components
34 JPanel panel = new JPanel();
35 panel.add(jbtOK); // Add the OK button to the panel
36 panel.add(jbtCancel); // Add the Cancel button to the panel

JFrame frame2 = new JFrame(); create an object
invoke a method

create a button

create a button

create a label

create a text field

create a check box

create a check box

create a radio button

create a radio button

create a combo box

create a panel
add to panel

VideoNote

Use classes

312 Chapter 8 Objects and Classes

✓Point✓Check

Key
Point

37 panel.add(jlblName); // Add the label to the panel
38 panel.add(jtfName); // Add the text field to the panel
39 panel.add(jchkBold); // Add the check box to the panel
40 panel.add(jchkItalic); // Add the check box to the panel
41 panel.add(jrbRed); // Add the radio button to the panel
42 panel.add(jrbYellow); // Add the radio button to the panel
43 panel.add(jcboColor); // Add the combo box to the panel
44
45 JFrame frame = new JFrame(); // Create a frame
46 frame.add(panel); // Add the panel to the frame
47 frame.setTitle("Show GUI Components");
48 frame.setSize(450, 100);
49 frame.setLocation(200, 100);
50 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
51 frame.setVisible(true);
52 }
53 }

This program creates GUI objects using the classes JButton, JLabel, JTextField,
JCheckBox, JRadioButton, and JComboBox (lines 6–31). Then, using the JPanel class
(line 34), it then creates a panel object and adds the button, label, text field, check box, radio
button, and combo box to it (lines 35–43). The program then creates a frame and adds the
panel to the frame (line 45). The frame is displayed in line 51.

8.14 How do you create a Date for the current time? How do you display the current time?

8.15 How do you create a JFrame, set a title in a frame, and display a frame?

8.16 Which packages contain the classes Date, JFrame, JOptionPane, System, and
Math?

8.7 Static Variables, Constants, and Methods
A static variable is shared by all objects of the class. A static method cannot access
instance members of the class.

The data field radius in the circle class is known as an instance variable. An instance vari-
able is tied to a specific instance of the class; it is not shared among objects of the same class.
For example, suppose that you create the following objects:

Circle circle1 = new Circle();
Circle circle2 = new Circle(5);

The radius in circle1 is independent of the radius in circle2 and is stored in a differ-
ent memory location. Changes made to circle1’s radius do not affect circle2’s radius,
and vice versa.

If you want all the instances of a class to share data, use static variables, also known as
class variables. Static variables store values for the variables in a common memory location.
Because of this common location, if one object changes the value of a static variable, all
objects of the same class are affected. Java supports static methods as well as static variables.
Static methods can be called without creating an instance of the class.

Let’s modify the Circle class by adding a static variable numberOfObjects to count the
number of circle objects created. When the first object of this class is created,
numberOfObjects is 1. When the second object is created, numberOfObjects becomes 2.
The UML of the new circle class is shown in Figure 8.13. The Circle class defines the
instance variable radius and the static variable numberOfObjects, the instance methods
getRadius, setRadius, and getArea, and the static method getNumberOfObjects.
(Note that static variables and methods are underlined in the UML class diagram.)

create a frame
add panel to frame

display frame

instance variable

static variable

static method

VideoNote

Static vs. instance

8.7 Static Variables, Constants, and Methods 313

To declare a static variable or define a static method, put the modifier static in the vari-
able or method declaration. The static variable numberOfObjects and the static method
getNumberOfObjects() can be declared as follows:

int numberOfObjects;

int getNumberObjects() {
return numberOfObjects;

}

Constants in a class are shared by all objects of the class. Thus, constants should be declared
as final static. For example, the constant PI in the Math class is defined as:

final static double PI = 3.14159265358979323846;

The new circle class, named CircleWithStaticMembers, is defined in Listing 8.7:

LISTING 8.7 CircleWithStaticMembers.java
1 public class CircleWithStaticMembers {
2 /** The radius of the circle */
3 double radius;
4
5 /** The number of objects created */
6
7
8 /** Construct a circle with radius 1 */
9 CircleWithStaticMembers() {
10 radius = 1;
11
12 }
13
14 /** Construct a circle with a specified radius */
15 CircleWithStaticMembers(double newRadius) {
16 radius = newRadius;
17
18 }
19
20 /** Return numberOfObjects */
21
22 return numberOfObjects;
23 }
24

static int getNumberOfObjects() {

numberOfObjects++;

numberOfObjects++;

static int numberOfObjects = 0;

static

static

radius

numberOfObjects

radius

Memory
instantiate

instantiate

Circle

circle2: Circle

radius: double
numberOfObjects: int

getNumberOfObjects(): int
getArea(): double

radius = 1
numberOfObjects = 2

radius = 5
numberOfObjects = 2

circle1: Circle

UML Notation:
underline: static variables or methods

1

2

5

After two Circle
Objects were created,
numberOfObjects
is 2.

FIGURE 8.13 Instance variables belong to the instances and have memory storage independent of one another. Static
variables are shared by all the instances of the same class.

declare static variable

define static method

declare constant

static variable

increase by 1

increase by 1

static method

314 Chapter 8 Objects and Classes

25 /** Return the area of this circle */
26 double getArea() {
27 return radius * radius * Math.PI;
28 }
29 }

Method getNumberOfObjects() in CircleWithStaticMembers is a static method.
Other examples of static methods are showMessageDialog and showInputDialog in the
JOptionPane class and all the methods in the Math class. The main method is static, too.

Instance methods (e.g., getArea()) and instance data (e.g., radius) belong to instances
and can be used only after the instances are created. They are accessed via a reference variable.
Static methods (e.g., getNumberOfObjects()) and static data (e.g., numberOfObjects)
can be accessed from a reference variable or from their class name.

The program in Listing 8.8 demonstrates how to use instance and static variables and
methods and illustrates the effects of using them.

LISTING 8.8 TestCircleWithStaticMembers.java
1 public class TestCircleWithStaticMembers {
2 /** Main method */
3 public static void main(String[] args) {
4 System.out.println("Before creating objects");
5 System.out.println("The number of Circle objects is " +
6);
7
8 // Create c1
9
10
11 // Display c1 BEFORE c2 is created
12 System.out.println("\nAfter creating c1");
13 System.out.println("c1: radius (" + c1.radius +
14 ") and number of Circle objects (" +
15 + ")");
16
17 // Create c2
18
19
20 // Modify c1
21
22
23 // Display c1 and c2 AFTER c2 was created
24 System.out.println("\nAfter creating c2 and modifying c1");
25 System.out.println("c1: radius (" + c1.radius +
26 ") and number of Circle objects (" +
27 + ")");
28 System.out.println("c2: radius (" + c2.radius +
29 ") and number of Circle objects (" +
30 + ")");
31 }
32 }

c2.numberOfObjects

c1.numberOfObjects

c1.radius = 9;

CircleWithStaticMembers c2 = new CircleWithStaticMembers(5);

c1.numberOfObjects

CircleWithStaticMembers c1 = new CircleWithStaticMembers();

CircleWithStaticMembers.numberOfObjectsstatic variable

instance variable

static variable

instance variable

static variable

static variable

Before creating objects
The number of Circle objects is 0
After creating c1
c1: radius (1.0) and number of Circle objects (1)
After creating c2 and modifying c1
c1: radius (9.0) and number of Circle objects (2)
c2: radius (5.0) and number of Circle objects (2)

8.7 Static Variables, Constants, and Methods 315

When you compile TestCircleWithStaticMembers.java, the Java compiler automatically
compiles CircleWithStaticMembers.java if it has not been compiled since the last change.

Static variables and methods can be accessed without creating objects. Line 6 displays the
number of objects, which is 0, since no objects have been created.

The main method creates two circles, c1 and c2 (lines 9, 18). The instance variable radius
in c1 is modified to become 9 (line 21). This change does not affect the instance variable radius
in c2, since these two instance variables are independent. The static variable numberOfObjects
becomes 1 after c1 is created (line 9), and it becomes 2 after c2 is created (line 18).

Note that PI is a constant defined in Math, and Math.PI references the constant.
c1.numberOfObjects (line 27) and c2.numberOfObjects (line 30) are better
replaced by CircleWithStaticMembers.numberOfObjects. This improves
readability, because other programmers can easily recognize the static variable. You
can also replace CircleWithStaticMembers.numberOfObjects with
CircleWithStaticMembers.getNumberOfObjects().

Tip
Use ClassName.methodName(arguments) to invoke a static method and
ClassName.staticVariable to access a static variable. This improves readability,
because other programmers can easily recognize the static method and data in the class.

An instance method can invoke an instance or static method and access an instance or static
data field. A static method can invoke a static method and access a static data field. However,
a static method cannot invoke an instance method or access an instance data field, since static
methods and static data fields don’t belong to a particular object. The relationship between
static and instance members is summarized in the following diagram:

use class name

An instance method

invoke

access

invoke

access

An instance method

An instance data field

A static method

A static data field

invoke

A static method

access

invoke

access

An instance method

An instance data field

A static method

A static data field

1 public class A {
2 int i = 5;
3 static int k = 2;
4
5 public static void main(String[] args) {
6 int // Wrong because i is an instance variable
7 // Wrong because m1() is an instance method
8 }
9
10 public void m1() {
11 // Correct since instance and static variables and methods
12 // can be used in an instance method
13 i = i + k + m2(i, k);
14 }
15
16 public static int m2(int i, int j) {
17 return (int)(Math.pow(i, j));
18 }
19 }

m1();
j = i;

For example, the following code is wrong.

316 Chapter 8 Objects and Classes

Note that if you replace the preceding code with the following new code, the program would
be fine, because the instance data field i and method m1 are now accessed from an object a
(lines 7–8):

1 public class A {
2 int i = 5;
3 static int k = 2;
4
5 public static void main(String[] args) {
6 A a = new A();
7 int // OK, a.i accesses the object's instance variable
8 // OK. a.m1() invokes the object's instance method
9 }
10
11 public void m1() {
12 i = i + k + m2(i, k);
13 }
14
15 public static int m2(int i, int j) {
16 return (int)(Math.pow(i, j));
17 }
18 }

Design Guide
How do you decide whether a variable or method should be an instance one or a static
one? A variable or method that is dependent on a specific instance of the class should
be an instance variable or method. A variable or method that is not dependent on a spe-
cific instance of the class should be a static variable or method. For example, every circle
has its own radius, so the radius is dependent on a specific circle. Therefore, radius is
an instance variable of the Circle class. Since the getArea method is dependent on
a specific circle, it is an instance method. None of the methods in the Math class, such
as random, pow, sin, and cos, is dependent on a specific instance. Therefore, these
methods are static methods. The main method is static and can be invoked directly
from a class.

Caution
It is a common design error to define an instance method that should have been defined
as static. For example, the method factorial(int n) should be defined as static, as
shown next, because it is independent of any specific instance.

a.m1();
j = a.i;

instance or static?

common design error

public class Test {
public int factorial(int n) {

int result = 1;
for (int i = 1; i <= n; i++)
result *= i;

return result;
}

}

public class Test {
public int factorial(int n) {

int result = 1;
for (int i = 1; i <= n; i++)
result *= i;

return result;
}

}

static

(a) Wrong design (b) Correct design

8.17 Suppose that the class F is defined in (a). Let f be an instance of F. Which of the
statements in (b) are correct?

✓Point✓Check

8.8 Visibility Modifiers 317

8.18 Add the static keyword in the place of ? if appropriate.

public class Test {
private int count;

public void main(String[] args) {
...

}

public int getCount() {
return count;

}

public int factorial(int n) {
int result = 1;
for (int i = 1; i <= n; i++)
result *= i;

return result;
}

}

8.19 Can you invoke an instance method or reference an instance variable from a static
method? Can you invoke a static method or reference a static variable from an
instance method? What is wrong in the following code?

1 public class C {
2 public static void main(String[] args) {
3 method1();
4 }
5
6 public void method1() {
7 method2();
8 }
9
10 public static void method2() {
11 System.out.println("What is radius " + c.getRadius());
12 }
13
14 Circle c = new Circle();
15 }

8.8 Visibility Modifiers
Visibility modifiers can be used to specify the visibility of a class and its members.

You can use the public visibility modifier for classes, methods, and data fields to denote that
they can be accessed from any other classes. If no visibility modifier is used, then by default
the classes, methods, and data fields are accessible by any class in the same package. This is
known as package-private or package-access.

?

?

?

public class F {
int i;
static String s;

void imethod() {
}

static void smethod() {
}

}

System.out.println(f.i);
System.out.println(f.s);
f.imethod();
f.smethod();
System.out.println(F.i);
System.out.println(F.s);
F.imethod();
F.smethod();

(a) (b)

Key
Point

package-private (or package-
access)

318 Chapter 8 Objects and Classes

If a class is not defined as public, it can be accessed only within the same package. As
shown in Figure 8.15, C1 can be accessed from C2 but not from C3.

Note
Packages can be used to organize classes. To do so, you need to add the following line
as the first noncomment and nonblank statement in the program:

package packageName;

If a class is defined without the package statement, it is said to be placed in the default
package.

Java recommends that you place classes into packages rather using a default package. For
simplicity, however, this book uses default packages. For more information on packages,
see Supplement III.G, Packages.

In addition to the public and default visibility modifiers, Java provides the private and
protected modifiers for class members. This section introduces the private modifier. The
protected modifier will be introduced in Section 11.13, The protected Data and Methods.

The private modifier makes methods and data fields accessible only from within its own
class. Figure 8.14 illustrates how a public, default, and private data field or method in class C1
can be accessed from a class C2 in the same package and from a class C3 in a different pack-
age.

using packages

package p1;

public class C1 {
public int x;
int y;
private int z;

public void m1() {
}
void m2() {
}
private void m3() {
}

}

package p1;

public class C2 {
void aMethod() {

can access o.x;
can access o.y;
cannot access o.z;

can invoke o.m1();
can invoke o.m2();
cannot invoke o.m3();

}
}

C1 o = new C1();

package p2;

public class C3 {
void aMethod() {

can access o.x;
cannot access o.y;
cannot access o.z;

can invoke o.m1();
cannot invoke o.m2();
cannot invoke o.m3();

}
}

C1 o = new C1();

FIGURE 8.14 The private modifier restricts access to its defining class, the default modifier
restricts access to a package, and the public modifier enables unrestricted access.

package p1;

class C1 {
...

}

package p1;

public class C2 {
can access C1

}

package p2;

public class C3 {
cannot access C1;
can access C2;

}

FIGURE 8.15 A nonpublic class has package-access.

A visibility modifier specifies how data fields and methods in a class can be accessed from
outside the class. There is no restriction on accessing data fields and methods from inside the
class. As shown in Figure 8.16b, an object c of class C cannot access its private members,
because c is in the Test class. As shown in Figure 8.16a, an object c of class C can access its
private members, because c is defined inside its own class.

inside access

8.9 Data Field Encapsulation 319

Caution
The private modifier applies only to the members of a class. The public modifier
can apply to a class or members of a class. Using the modifiers public and private
on local variables would cause a compile error.

Note
In most cases, the constructor should be public. However, if you want to prohibit the
user from creating an instance of a class, use a private constructor. For example, there is
no reason to create an instance from the Math class, because all of its data fields and
methods are static. To prevent the user from creating objects from the Math class, the
constructor in java.lang.Math is defined as follows:

private Math() {
}

8.9 Data Field Encapsulation
Making data fields private protects data and makes the class easy to maintain.

The data fields radius and numberOfObjects in the CircleWithStaticMembers class in
Listing 8.7 can be modified directly (e.g., c1.radius = 5 or
CircleWithStaticMembers.numberOfObjects = 10). This is not a good practice—for
two reasons:

■ First, data may be tampered with. For example, numberOfObjects is to count the
number of objects created, but it may be mistakenly set to an arbitrary value (e.g.,
CircleWithStaticMembers.numberOfObjects = 10).

■ Second, the class becomes difficult to maintain and vulnerable to bugs. Suppose
you want to modify the CircleWithStaticMembers class to ensure that the
radius is nonnegative after other programs have already used the class. You have to
change not only the CircleWithStaticMembers class but also the programs
that use it, because the clients may have modified the radius directly (e.g.,
c1.radius = -5).

To prevent direct modifications of data fields, you should declare the data fields private,
using the private modifier. This is known as data field encapsulation.

public class {
boolean x;

public static void main(String[] args) {
C c = new C();
System.out.println();
System.out.println();

}

int convert() {
return x ? 1 : -1;

}
}

private

c.convert()
c.x

private
C public class {

public static void main(String[] args) {
C c = new C();
System.out.println();
System.out.println();

}
}

c.convert()
c.x

Test

(a) This is okay because object c is used inside the class C.

FIGURE 8.16 An object can access its private members if it is defined in its own class.

(b) This is wrong because x and convert are private in class C.

private constructor

Key
Point

VideoNote

Data field encapsulation

data field encapsulation

320 Chapter 8 Objects and Classes

A private data field cannot be accessed by an object from outside the class that defines the
private field. However, a client often needs to retrieve and modify a data field. To make a pri-
vate data field accessible, provide a get method to return its value. To enable a private data
field to be updated, provide a set method to set a new value.

Note
Colloquially, a get method is referred to as a getter (or accessor), and a set method is
referred to as a setter (or mutator).

A get method has the following signature:

If the returnType is boolean, the get method should be defined as follows by convention:

A set method has the following signature:

Let’s create a new circle class with a private data-field radius and its associated accessor and
mutator methods. The class diagram is shown in Figure 8.17. The new circle class, named
CircleWithPrivateDataFields, is defined in Listing 8.9:

public void setPropertyName(dataType propertyValue)

public boolean isPropertyName()

public returnType getPropertyName()

getter (or accessor)
setter (or mutator)

The - sign indicates
a private modifier

Circle

-radius: double

-numberOfObjects: int

+Circle()

+getArea(): double

+getNumberOfObjects(): int

+setRadius(radius: double): void

+getRadius(): double

+Circle(radius: double)

The radius of this circle (default: 1.0).

Constructs a default circle object.

The number of circle objects created.

Returns the area of this circle.

Returns the number of circle objects created.

Sets a new radius for this circle.
Returns the radius of this circle.

Constructs a circle object with the specified radius.

FIGURE 8.17 The Circle class encapsulates circle properties and provides get/set and other methods.

LISTING 8.9 CircleWithPrivateDataFields.java
1 public class CircleWithPrivateDataFields {
2 /** The radius of the circle */
3
4
5 /** The number of objects created */
6
7
8 /** Construct a circle with radius 1 */
9 public CircleWithPrivateDataFields() {
10 numberOfObjects++;
11 }
12
13 /** Construct a circle with a specified radius */
14 public CircleWithPrivateDataFields(double newRadius) {
15 radius = newRadius;

private static int numberOfObjects = 0;

private double radius = 1;

boolean accessor

encapsulate radius

encapsulate
numberOfObjects

8.9 Data Field Encapsulation 321

16 numberOfObjects++;
17 }
18
19 /** Return radius */
20 {
21 return radius;
22 }
23
24 /** Set a new radius */
25 {
26 radius = (newRadius >= 0) ? newRadius : 0;
27 }
28
29 /** Return numberOfObjects */
30 {
31 return numberOfObjects;
32 }
33
34 /** Return the area of this circle */
35 public double getArea() {
36 return radius * radius * Math.PI;
37 }
38 }

The getRadius() method (lines 20–22) returns the radius, and the setRadius(newRadius)
method (line 25–27) sets a new radius for the object. If the new radius is negative, 0 is set as the
radius for the object. Since these methods are the only ways to read and modify the radius, you
have total control over how the radius property is accessed. If you have to change the imple-
mentation of these methods, you don’t need to change the client programs. This makes the class
easy to maintain.

Listing 8.10 gives a client program that uses the Circle class to create a Circle object
and modifies the radius using the setRadius method.

LISTING 8.10 TestCircleWithPrivateDataFields.java
1 public class TestCircleWithPrivateDataFields {
2 /** Main method */
3 public static void main(String[] args) {
4 // Create a circle with radius 5.0
5 CircleWithPrivateDataFields myCircle =
6 new CircleWithPrivateDataFields(5.0);
7 System.out.println("The area of the circle of radius "
8 + + " is " +);
9
10 // Increase myCircle's radius by 10%
11 myCircle.setRadius(myCircle.getRadius() * 1.1);
12 System.out.println("The area of the circle of radius "
13 + + " is " +);
14
15 System.out.println("The number of objects created is "
16 +);
17 }
18 }

The data field radius is declared private. Private data can be accessed only within their
defining class, so you cannot use myCircle.radius in the client program. A compile error
would occur if you attempted to access private data from a client.

CircleWithPrivateDataFields.getNumberOfObjects()

myCircle.getArea()myCircle.getRadius()

myCircle.getArea()myCircle.getRadius()

public static int getNumberOfObjects()

public void setRadius(double newRadius)

public double getRadius() accessor method

mutator method

accessor method

invoke public method

invoke public method

invoke public method

322 Chapter 8 Objects and Classes

Since numberOfObjects is private, it cannot be modified. This prevents tampering. For
example, the user cannot set numberOfObjects to 100. The only way to make it 100 is to
create 100 objects of the Circle class.

Suppose you combined TestCircleWithPrivateDataFields and Circle into one class
by moving the main method in TestCircleWithPrivateDataFields into Circle. Could
you use myCircle.radius in the main method? See Checkpoint Question 8.22 for the answer.

Design Guide
To prevent data from being tampered with and to make the class easy to maintain,
declare data fields private.

8.20 What is an accessor method? What is a mutator method? What are the naming con-
ventions for accessor methods and mutator methods?

8.21 What are the benefits of data field encapsulation?

8.22 In the following code, radius is private in the Circle class, and myCircle is an
object of the Circle class. Does the highlighted code cause any problems? If so,
explain why.

public class Circle {
private double radius = 1;

/** Find the area of this circle */
public double getArea() {
return radius * radius * Math.PI;

}

public static void main(String[] args) {
Circle myCircle = new Circle();
System.out.println("Radius is " +);

}
}

8.10 Passing Objects to Methods
Passing an object to a method is to pass the reference of the object.

You can pass objects to methods. Like passing an array, passing an object is actually passing
the reference of the object. The following code passes the myCircle object as an argument to
the printCircle method:

1 public class Test {
2 public static void main(String[] args) {
3 // CircleWithPrivateDataFields is defined in Listing 8.9
4 CircleWithPrivateDataFields myCircle = new
5 CircleWithPrivateDataFields(5.0);
6
7 }
8
9 public static void {

10 System.out.println("The area of the circle of radius "
11 + c.getRadius() + " is " + c.getArea());
12 }
13 }

Java uses exactly one mode of passing arguments: pass-by-value. In the preceding code,
the value of myCircle is passed to the printCircle method. This value is a reference to a
Circle object.

printCircle(CircleWithPrivateDataFields c)

printCircle(myCircle);

myCircle.radius

✓Point✓Check

Key
Point

pass an object

pass-by-value

8.10 Passing Objects to Methods 323

The program in Listing 8.11 demonstrates the difference between passing a primitive type
value and passing a reference value.

LISTING 8.11 TestPassObject.java
1 public class TestPassObject {
2 /** Main method */
3 public static void main(String[] args) {
4 // Create a Circle object with radius 1
5 CircleWithPrivateDataFields myCircle =
6 new CircleWithPrivateDataFields(1);
7
8 // Print areas for radius 1, 2, 3, 4, and 5.
9 int n = 5;
10
11
12 // See myCircle.radius and times
13 System.out.println("\n" + "Radius is " + myCircle.getRadius());
14 System.out.println("n is " + n);
15 }
16
17 /** Print a table of areas for radius */
18 public static void
19 {
20 System.out.println("Radius \t\tArea");
21 while (times >= 1) {
22 System.out.println(c.getRadius() + "\t\t" + c.getArea());
23 c.setRadius(c.getRadius() + 1);
24 times——;
25 }
26 }
27 }

CircleWithPrivateDataFields c, int times)
printAreas(

printAreas(myCircle, n); pass object

object parameter

Radius Area
1.0 3.141592653589793
2.0 12.566370614359172
3.0 29.274333882308138
4.0 50.26548245743669
5.0 79.53981633974483
Radius is 6.0
n is 5

The CircleWithPrivateDataFields class is defined in Listing 8.9. The program passes
a CircleWithPrivateDataFields object myCircle and an integer value from n to
invoke printAreas(myCircle, n) (line 9), which prints a table of areas for radii 1, 2, 3,
4, 5, as shown in the sample output.

Figure 8.18 shows the call stack for executing the methods in the program. Note that the
objects are stored in a heap (see Section 6.6).

When passing an argument of a primitive data type, the value of the argument is passed. In
this case, the value of n (5) is passed to times. Inside the printAreas method, the content
of times is changed; this does not affect the content of n.

When passing an argument of a reference type, the reference of the object is passed. In this
case, c contains a reference for the object that is also referenced via myCircle. Therefore,
changing the properties of the object through c inside the printAreas method has the same
effect as doing so outside the method through the variable myCircle. Pass-by-value on refer-
ences can be best described semantically as pass-by-sharing; that is, the object referenced in
the method is the same as the object being passed.

pass-by-sharing

324 Chapter 8 Objects and Classes

8.23 Describe the difference between passing a parameter of a primitive type and passing
a parameter of a reference type. Show the output of the following programs:

Space required for the
main method
int n: 5
myCircle:

Stack

Space required for the
printArea method
 int times: 5
 Circle c:

A Circle
object

Heap

reference

reference

Pass-by-value
(here the value is
the reference for
the object)

Pass-by-value (here
the value is 5)

FIGURE 8.18 The value of n is passed to times, and the reference to myCircle is passed to
c in the printAreas method.

public class Test {
public static void main(String[] args) {
Count myCount = new Count();
int times = 0;

for (int i = 0; i < 100; i++)
increment(myCount, times);

System.out.println("count is " + myCount.count);
System.out.println("times is " + times);

}

public static void increment(Count c, int times) {
c.count++;
times++;

}
}

public class Count {
public int count;

public Count(int c) {
count = c;

}

public Count() {
count = 1;

}
}

8.24 Show the output of the following program:

public class Test {
public static void main(String[] args) {
Circle circle1 = new Circle(1);
Circle circle2 = new Circle(2);

swap1(circle1, circle2);
System.out.println("After swap1: circle1 = " +
circle1.radius + " circle2 = " + circle2.radius);

swap2(circle1, circle2);
System.out.println("After swap2: circle1 = " +
circle1.radius + " circle2 = " + circle2.radius);

}

public static void swap1(Circle x, Circle y) {
Circle temp = x;
x = y;
y = temp;

✓Point✓Check

8.10 Passing Objects to Methods 325

}

public static void swap2(Circle x, Circle y) {
double temp = x.radius;
x.radius = y.radius;
y.radius = temp;

}
}

class Circle {
double radius;

Circle(double newRadius) {
radius = newRadius;

}
}

8.25 Show the printout of the following code:

public class Test {
public static void main(String[] args) {
T t = new T();
swap(t);
System.out.println("e1 = " + t.e1
+ " e2 = " + t.e2);

}

public static void swap(T t) {
int temp = t.e1;
t.e1 = t.e2;
t.e2 = temp;

}
}

class T {
int e1 = 1;
int e2 = 2;

}

(c)

public class Test {
public static void main(String[] args) {

T t1 = new T();
T t2 = new T();
System.out.println("t1's i = " +
t1.i + " and j = " + t1.j);

System.out.println("t2's i = " +
t2.i + " and j = " + t2.j);

}
}

class T {
static int i = 0;
int j = 0;

T() {
i++;
j = 1;

}
}

(d)

public class Test {
public static void main(String[] args) {

int[] a = {1, 2};
swap(a[0], a[1]);
System.out.println("a[0] = " + a[0]
+ " a[1] = " + a[1]);

}

public static void swap(int n1, int n2) {
int temp = n1;
n1 = n2;
n2 = temp;

}
}

(a)

public class Test {
public static void main(String[] args) {

int[] a = {1, 2};
swap(a);
System.out.println("a[0] = " + a[0]
+ " a[1] = " + a[1]);

}

public static void swap(int[] a) {
int temp = a[0];
a[0] = a[1];
a[1] = temp;

}
}

(b)

326 Chapter 8 Objects and Classes

8.26 What is the output of the following programs?

import java.util.Date;

public class Test {
public static void main(String[] args) {
Date date = new Date(1234567);
m1(date);
System.out.println(date.getTime());

}

public static void m1(Date date) {
date.setTime(7654321);

}
}

(c)

import java.util.Date;

public class Test {
public static void main(String[] args) {
Date date = new Date(1234567);
m1(date);
System.out.println(date.getTime());

}

public static void m1(Date date) {
date = null;

}
}

(d)

import java.util.Date;

public class Test {
public static void main(String[] args) {
Date date = null;
m1(date);
System.out.println(date);

}

public static void m1(Date date) {
date = new Date();

}
}

(a)

import java.util.Date;

public class Test {
public static void main(String[] args) {
Date date = new Date(1234567);
m1(date);
System.out.println(date.getTime());

}

public static void m1(Date date) {
date = new Date(7654321);

}
}

(b)

8.11 Array of Objects
An array can hold objects as well as primitive type values.

Chapter 6, Single-Dimensional Arrays, described how to create arrays of primitive type ele-
ments. You can also create arrays of objects. For example, the following statement declares
and creates an array of ten Circle objects:

Circle[] circleArray = new Circle[10];

To initialize circleArray, you can use a for loop like this one:

for (int i = 0; i < circleArray.length; i++) {
circleArray[i] = new Circle();

}

An array of objects is actually an array of reference variables. So, invoking
circleArray[1].getArea() involves two levels of referencing, as shown in Figure 8.19.
circleArray references the entire array; circleArray[1] references a Circle object.

Note
When an array of objects is created using the new operator, each element in the array is
a reference variable with a default value of null.

Key
Point

8.11 Array of Objects 327

Listing 8.12 gives an example that demonstrates how to use an array of objects. The pro-
gram summarizes the areas of an array of circles. The program creates circleArray, an
array composed of five Circle objects; it then initializes circle radii with random values and
displays the total area of the circles in the array.

LISTING 8.12 TotalArea.java
1 public class TotalArea {
2 /** Main method */
3 public static void main(String[] args) {
4 // Declare circleArray
5 CircleWithPrivateDataFields[] circleArray;
6
7 // Create circleArray
8 circleArray = ;
9
10 // Print circleArray and total areas of the circles
11
12 }
13
14 /** Create an array of Circle objects */
15 public static CircleWithPrivateDataFields[] {
16 CircleWithPrivateDataFields[] circleArray =
17 new CircleWithPrivateDataFields[5];
18
19 for (int i = 0; i < circleArray.length; i++) {
20 circleArray[i] =
21 new CircleWithPrivateDataFields(Math.random() * 100);
22 }
23
24 // Return Circle array
25 return circleArray;
26 }
27
28 /** Print an array of circles and their total area */
29 public static void
30 {
31 System.out.printf("%-30s%-15s\n", "Radius", "Area");
32 for (int i = 0; i < circleArray.length; i++) {
33 System.out.printf("%-30f%-15f\n", circleArray[i].getRadius(),
34 circleArray[i].getArea());
35 }
36
37 System.out.println("———-");
38
39 // Compute and display the result
40 System.out.printf("%-30s%-15f\n", "The total area of circles is",
41);sum(circleArray)

CircleWithPrivateDataFields[] circleArray)
printCircleArray(

createCircleArray()

printCircleArray(circleArray);

createCircleArray()

…

circleArray[9]

circleArray[1]

circleArray[0]reference Circle object 0

Circle object 1

Circle object 9

circleArray

FIGURE 8.19 In an array of objects, an element of the array contains a reference to an
object.

array of objects

return array of objects

pass array of objects

328 Chapter 8 Objects and Classes

✓Point✓Check

42 }
43
44 /** Add circle areas */
45 public static double {
46 // Initialize sum
47 double sum = 0;
48
49 // Add areas to sum
50 for (int i = 0; i < circleArray.length; i++)
51 sum += circleArray[i].getArea();
52
53 return sum;
54 }
55 }

sum(CircleWithPrivateDataFields[] circleArray)pass array of objects

Radius Area
70.577708 15648.941866
44.152266 6124.291736
24.867853 1942.792644
5.680718 101.380949
36.734246 4239.280350
———-
The total area of circles is 28056.687544

The program invokes createCircleArray() (line 8) to create an array of five circle objects.
Several circle classes were introduced in this chapter. This example uses the
CircleWithPrivateDataFields class introduced in Section 8.9, Data Field Encapsulation.

The circle radii are randomly generated using the Math.random() method (line 21). The
createCircleArray method returns an array of CircleWithPrivateDataFields
objects (line 25). The array is passed to the printCircleArray method, which displays the
radius and area of each circle and the total area of the circles.

The sum of the circle areas is computed by invoking the sum method (line 41), which takes
the array of CircleWithPrivateDataFields objects as the argument and returns a
double value for the total area.

8.27 What is wrong in the following code?

1 public class Test {
2 public static void main(String[] args) {
3 java.util.Date[] dates = new java.util.Date[10];
4 System.out.println(dates[0]);
5 System.out.println(dates[0].toString());
6 }
7 }

KEY TERMS

action 296
anonymous object 305
attribute 296
behavior 296
class 296
client 299

constructor 296
data field 296
data field encapsulation 319
default constructor 303
dot operator (.) 304
getter (or accessor) 320

Chapter Summary 329

instance 296
instance method 305
instance variable 305
instantiation 296
no-arg constructor 303
null value 305
object 296
object-oriented programming (OOP)
package-private (or package-

access) 317
private constructor 319

property 296
public class 299
reference type 304
reference variable 304
setter (or mutator) 320
state 296
static method 312
static variable 312
Unified Modeling Language

(UML) 297

CHAPTER SUMMARY

1. A class is a template for objects. It defines the properties of objects and provides
constructors for creating objects and methods for manipulating them.

2. A class is also a data type. You can use it to declare object reference variables. An
object reference variable that appears to hold an object actually contains a reference
to that object. Strictly speaking, an object reference variable and an object are differ-
ent, but most of the time the distinction can be ignored.

3. An object is an instance of a class. You use the new operator to create an object, and
the dot operator (.) to access members of that object through its reference variable.

4. An instance variable or method belongs to an instance of a class. Its use is associated
with individual instances. A static variable is a variable shared by all instances of the
same class. A static method is a method that can be invoked without using instances.

5. Every instance of a class can access the class’s static variables and methods. For clar-
ity, however, it is better to invoke static variables and methods using
ClassName.variable and ClassName.method.

6. Modifiers specify how the class, method, and data are accessed. A public class,
method, or data is accessible to all clients. A private method or data is accessible
only inside the class.

7. You can provide a get method or a set method to enable clients to see or modify the
data. Colloquially, a get method is referred to as a getter (or accessor), and a set
method as a setter (or mutator).

8. A get method has the signature public returnType getPropertyName(). If
the returnType is boolean, the get method should be defined as public
boolean isPropertyName(). A set method has the signature public void
setPropertyName(dataType propertyValue).

9. All parameters are passed to methods using pass-by-value. For a parameter of a prim-
itive type, the actual value is passed; for a parameter of a reference type, the reference
for the object is passed.

10. A Java array is an object that can contain primitive type values or object type values.
When an array of objects is created, its elements are assigned the default value of null.

330 Chapter 8 Objects and Classes

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Pedagogical Note
The exercises in Chapters 8–11, 15 help you achieve three objectives:

■ Design classes and draw UML class diagrams

■ Implement classes from the UML

■ Use classes to develop applications

Students can download solutions for the UML diagrams for the even-numbered exer-
cises from the Companion Website, and instructors can download all solutions from
the same site.

Sections 8.2–8.5
8.1 (The Rectangle class) Following the example of the Circle class in Section 8.2,

design a class named Rectangle to represent a rectangle. The class contains:

■ Two double data fields named width and height that specify the width and
height of the rectangle. The default values are 1 for both width and height.

■ A no-arg constructor that creates a default rectangle.
■ A constructor that creates a rectangle with the specified width and height.
■ A method named getArea() that returns the area of this rectangle.
■ A method named getPerimeter() that returns the perimeter.

Draw the UML diagram for the class and then implement the class. Write a test
program that creates two Rectangle objects—one with width 4 and height 40
and the other with width 3.5 and height 35.9. Display the width, height, area,
and perimeter of each rectangle in this order.

8.2 (The Stock class) Following the example of the Circle class in Section 8.2,
design a class named Stock that contains:

■ A string data field named symbol for the stock’s symbol.
■ A string data field named name for the stock’s name.
■ A double data field named previousClosingPrice that stores the stock

price for the previous day.
■ A double data field named currentPrice that stores the stock price for the

current time.
■ A constructor that creates a stock with the specified symbol and name.
■ A method named getChangePercent() that returns the percentage changed

from previousClosingPrice to currentPrice.

Draw the UML diagram for the class and then implement the class. Write a test
program that creates a Stock object with the stock symbol ORCL, the name
Oracle Corporation, and the previous closing price of 34.5. Set a new current
price to 34.35 and display the price-change percentage.

Section 8.6
*8.3 (Use the Date class) Write a program that creates a Date object, sets its elapsed

time to 10000, 100000, 1000000, 10000000, 100000000, 1000000000,
10000000000, and 100000000000, and displays the date and time using the
toString() method, respectively.

three objectives

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 331

*8.4 (Use the Random class) Write a program that creates a Random object with seed
1000 and displays the first 50 random integers between 0 and 100 using the
nextInt(100) method.

*8.5 (Use the GregorianCalendar class) Java API has the GregorianCalendar class
in the java.util package, which you can use to obtain the year, month, and day of a
date. The no-arg constructor constructs an instance for the current date, and the meth-
ods get(GregorianCalendar.YEAR), get(GregorianCalendar.MONTH), and
get(GregorianCalendar.DAY_OF_MONTH) return the year, month, and day.
Write a program to perform two tasks:

■ Display the current year, month, and day.
■ The GregorianCalendar class has the setTimeInMillis(long), which

can be used to set a specified elapsed time since January 1, 1970. Set the value
to 1234567898765L and display the year, month, and day.

Sections 8.7–8.9
**8.6 (Display calendars) Rewrite the PrintCalendar class in Listing 5.12 to display

calendars in a message dialog box. Since the output is generated from several sta-
tic methods in the class, you may define a static String variable output for stor-
ing the output and display it in a message dialog box.

8.7 (The Account class) Design a class named Account that contains:

■ A private int data field named id for the account (default 0).
■ A private double data field named balance for the account (default 0).
■ A private double data field named annualInterestRate that stores the

current interest rate (default 0). Assume all accounts have the same interest rate.
■ A private Date data field named dateCreated that stores the date when the

account was created.
■ A no-arg constructor that creates a default account.
■ A constructor that creates an account with the specified id and initial balance.
■ The accessor and mutator methods for id, balance, and

annualInterestRate.
■ The accessor method for dateCreated.
■ A method named getMonthlyInterestRate() that returns the monthly

interest rate.
■ A method named getMonthlyInterest() that returns the monthly interest.
■ A method named withdraw that withdraws a specified amount from the

account.
■ A method named deposit that deposits a specified amount to the account.

Draw the UML diagram for the class and then implement the class. (Hint: The method
getMonthlyInterest() is to return monthly interest, not the interest rate. Monthly
interest is balance * monthlyInterestRate. monthlyInterestRate is
annualInterestRate / 12. Note that annualInterestRate is a percentage,
e.g.,like 4.5%. You need to divide it by 100.)

Write a test program that creates an Account object with an account ID of 1122,
a balance of $20,000, and an annual interest rate of 4.5%. Use the withdraw
method to withdraw $2,500, use the deposit method to deposit $3,000, and print
the balance, the monthly interest, and the date when this account was created.

8.8 (The Fan class) Design a class named Fan to represent a fan. The class contains:

■ Three constants named SLOW, MEDIUM, and FAST with the values 1, 2, and 3 to
denote the fan speed. The Fan class

VideoNote

332 Chapter 8 Objects and Classes

■ A private int data field named speed that specifies the speed of the fan (the
default is SLOW).

■ A private boolean data field named on that specifies whether the fan is on (the
default is false).

■ A private double data field named radius that specifies the radius of the fan
(the default is 5).

■ A string data field named color that specifies the color of the fan (the default
is blue).

■ The accessor and mutator methods for all four data fields.
■ A no-arg constructor that creates a default fan.
■ A method named toString() that returns a string description for the fan. If

the fan is on, the method returns the fan speed, color, and radius in one com-
bined string. If the fan is not on, the method returns the fan color and radius
along with the string “fan is off” in one combined string.

Draw the UML diagram for the class and then implement the class. Write a test
program that creates two Fan objects. Assign maximum speed, radius 10, color
yellow, and turn it on to the first object. Assign medium speed, radius 5, color
blue, and turn it off to the second object. Display the objects by invoking their
toString method.

**8.9 (Geometry: n-sided regular polygon) In an n-sided regular polygon, all sides have
the same length and all angles have the same degree (i.e., the polygon is both equi-
lateral and equiangular). Design a class named RegularPolygon that contains:

■ A private int data field named n that defines the number of sides in the poly-
gon with default value 3.

■ A private double data field named side that stores the length of the side with
default value 1.

■ A private double data field named x that defines the x-coordinate of the poly-
gon’s center with default value 0.

■ A private double data field named y that defines the y-coordinate of the poly-
gon’s center with default value 0.

■ A no-arg constructor that creates a regular polygon with default values.
■ A constructor that creates a regular polygon with the specified number of sides

and length of side, centered at (0, 0).
■ A constructor that creates a regular polygon with the specified number of sides,

length of side, and x-and y-coordinates.
■ The accessor and mutator methods for all data fields.
■ The method getPerimeter() that returns the perimeter of the polygon.

■ The method getArea() that returns the area of the polygon. The formula for

computing the area of a regular polygon is

Draw the UML diagram for the class and then implement the class. Write a test
program that creates three RegularPolygon objects, created using the no-arg
constructor, using RegularPolygon(6, 4), and using RegularPolygon(10,
4, 5.6, 7.8). For each object, display its perimeter and area.

*8.10 (Algebra: quadratic equations) Design a class named QuadraticEquation for a

quadratic equation The class contains:

■ Private data fields a, b, and c that represent three coefficients.
■ A constructor for the arguments for a, b, and c.

ax2 + bx + x = 0.

Area =
n * s2

4 * tan¢pn ≤
.

Programming Exercises 333

■ Three get methods for a, b, and c.
■ A method named getDiscriminant() that returns the discriminant, which is

■ The methods named getRoot1() and getRoot2() for returning two roots of
the equation

These methods are useful only if the discriminant is nonnegative. Let these meth-
ods return 0 if the discriminant is negative.

Draw the UML diagram for the class and then implement the class. Write a test
program that prompts the user to enter values for a, b, and c and displays the result
based on the discriminant. If the discriminant is positive, display the two roots. If
the discriminant is 0, display the one root. Otherwise, display “The equation has
no roots.” See Programming Exercise 3.1 for sample runs.

*8.11 (Algebra: linear equations) Design a class named LinearEquation for a
system of linear equations:

The class contains:

■ Private data fields a, b, c, d, e, and f.
■ A constructor with the arguments for a, b, c, d, e, and f.
■ Six get methods for a, b, c, d, e, and f.
■ A method named isSolvable() that returns true if is not 0.
■ Methods getX() and getY() that return the solution for the equation.

Draw the UML diagram for the class and then implement the class. Write a test
program that prompts the user to enter a, b, c, d, e, and f and displays the result.
If is 0, report that “The equation has no solution.” See Programming
Exercise 3.3 for sample runs.

**8.12 (Geometry: intersection) Suppose two line segments intersect. The two endpoints
for the first line segment are (x1, y1) and (x2, y2) and for the second line segment
are (x3, y3) and (x4, y4). Write a program that prompts the user to enter these four
endpoints and displays the intersecting point. (Hint : Use the LinearEquation
class in Exercise 8.11.)

ad - bc

ad - bc

ax + by = e

cx + dy = f
 x =

ed - bf

ad - bc
 y =

af - ec

ad - bc

2 * 2
2 * 2

r1 =
- ˛b + 2b2 - 4ac

2a
 and r2 =

- ˛b - 2b2 - 4ac

2a

b2 - 4ac.

Enter the endpoints of the first line segment:
Enter the endpoints of the second line segment:
The intersecting point is: (1.0, 1.0)

0 2.0 2.0 0
2.0 2.0 0 0

**8.13 (The Location class) Design a class named Location for locating a maximal
value and its location in a two-dimensional array. The class contains public data
fields row, column, and maxValue that store the maximal value and its indices in
a two-dimensional array with row and column as int types and maxValue as a
double type.

Write the following method that returns the location of the largest element in a
two-dimensional array:

public static Location locateLargest(double[][] a)

334 Chapter 8 Objects and Classes

*8.14 (Stopwatch) Design a class named StopWatch. The class contains:

■ Private data fields startTime and endTime with get methods.
■ A no-arg constructor that initializes startTime with the current time.
■ A method named start() that resets the startTime to the current time.
■ A method named stop() that sets the endTime to the current time.
■ A method named getElapsedTime() that returns the elapsed time for the

stopwatch in milliseconds.

Draw the UML diagram for the class and then implement the class. Write a test
program that measures the execution time of sorting 100,000 numbers using selec-
tion sort.

Enter the number of rows and columns in the array:
Enter the array:

The location of the largest element is 45 at (1, 2)

35 44 5.5 9.6
4.5 3 45 3.5
23.5 35 2 10

3 4

The return value is an instance of Location. Write a test program that prompts
the user to enter a two-dimensional array and displays the location of the largest
element in the array. Here is a sample run:

STRINGS

Objectives
■ To use the String class to process fixed strings (§9.2).

■ To construct strings (§9.2.1).

■ To understand that strings are immutable and to create an interned
string (§9.2.2).

■ To compare strings (§9.2.3).

■ To get string length and characters, and combine strings (§9.2.4).

■ To obtain substrings (§9.2.5).

■ To convert, replace, and split strings (§9.2.6).

■ To match, replace, and split strings by patterns (§9.2.7).

■ To search for a character or substring in a string (§9.2.8).

■ To convert between a string and an array (§9.2.9).

■ To convert characters and numbers into a string (§9.2.10).

■ To obtain a formatted string (§9.2.11).

■ To check whether a string is a palindrome (§9.3).

■ To convert hexadecimal numbers to decimal numbers (§9.4).

■ To use the Character class to process a single character (§9.5).

■ To use the StringBuilder and StringBuffer classes to process
flexible strings (§9.6).

■ To distinguish among the String, StringBuilder, and
StringBuffer classes (§9.2–9.6).

■ To learn how to pass arguments to the main method from the
command line (§9.7).

CHAPTER

9

336 Chapter 9 Strings

Key
Point

Key
Point

9.1 Introduction
The classes String, StringBuilder, and StringBuffer are used for processing
strings.

A string is a sequence of characters. Strings are frequently used in programming. In many
languages, strings are treated as an array of characters, but in Java a string is treated as an
object. This chapter introduces the classes for processing strings.

9.2 The String Class
A String object is immutable: Its content cannot be changed once the string is
created.

The String class has 13 constructors and more than 40 methods for manipulating strings.
Not only is it very useful in programming, but it is also a good example for learning classes
and objects.

9.2.1 Constructing a String
You can create a string object from a string literal or from an array of characters. To create a
string from a string literal, use the syntax:

String newString = new String(stringLiteral);

The argument stringLiteral is a sequence of characters enclosed inside double quotes.
The following statement creates a String object message for the string literal "Welcome
to Java":

String message = new String("Welcome to Java");

Java treats a string literal as a String object. Thus, the following statement is valid:

String message = "Welcome to Java";

You can also create a string from an array of characters. For example, the following state-
ments create the string "Good Day":

char[] charArray = {'G', 'o', 'o', 'd', ' ', 'D', 'a', 'y'};
String message = new String(charArray);

Note
A String variable holds a reference to a String object that stores a string value. Strictly
speaking, the terms String variable, String object, and string value are different, but
most of the time the distinctions between them can be ignored. For simplicity, the term
string will often be used to refer to String variable, String object, and string value.

9.2.2 Immutable Strings and Interned Strings
A String object is immutable; its contents cannot be changed. Does the following code
change the contents of the string?

String s = "Java";
s = "HTML";

The answer is no. The first statement creates a String object with the content "Java" and
assigns its reference to s. The second statement creates a new String object with the content

string literal object

String variable, String
object, string value

immutable

9.2 The String Class 337

"HTML" and assigns its reference to s. The first String object still exists after the assign-
ment, but it can no longer be accessed, because variable s now points to the new object, as
shown in Figure 9.1.

Because strings are immutable and are ubiquitous in programming, the JVM uses a
unique instance for string literals with the same character sequence in order to improve effi-
ciency and save memory. Such an instance is called an interned string. For example, the fol-
lowing statements:

interned string

display

s1 == s2 is false
s1 == s3 is true

In the preceding statements, s1 and s3 refer to the same interned string—"Welcome to
Java"—so s1 == s3 is true. However, s1 == s2 is false, because s1 and s2 are two
different string objects, even though they have the same contents.

9.2.3 String Comparisons
The String class provides the methods for comparing strings, as shown in Figure 9.2.

How do you compare the contents of two strings? You might attempt to use the == opera-
tor, as follows:

if (string1 == string2)
System.out.println("string1 and string2 are the same object");

else
System.out.println("string1 and string2 are different objects");

However, the == operator checks only whether string1 and string2 refer to the same object;
it does not tell you whether they have the same contents. Therefore, you cannot use the == oper-
ator to find out whether two string variables have the same contents. Instead, you should use the
equals method. The following code, for instance, can be used to compare two strings:

if (string1.equals(string2))
System.out.println("string1 and string2 have the same contents");

else
System.out.println("string1 and string2 are not equal");

After executing String s = "Java"; After executing s = "HTML";

Contents cannot be changed

String object for "Java"

String object for "HTML"

This string object is
now unreferenced

s

String object for "Java"

s : String : String

: String

FIGURE 9.1 Strings are immutable; once created, their contents cannot be changed.

String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

System.out.println("s1 == s2 is " + (s1 == s2));
System.out.println("s1 == s3 is " + (s1 == s3));

s1

s2

s3
Interned string object for
"Welcome to Java"

: String

A string object for
"Welcome to Java"

: String

==

string1.equals(string2)

338 Chapter 9 Strings

Note that parameter type for the equals method is Object. We will introduce the Object
class in Chapter 11. For now, you can replace Object by String for using the equals method
to compare two strings. For example, the following statements display true and then false.

String s1 = new String("Welcome to Java");
String s2 = "Welcome to Java";
String s3 = "Welcome to C++";
System.out.println(s1.equals(s2)); // true
System.out.println(s1.equals(s3)); // false

The compareTo method can also be used to compare two strings. For example, consider the
following code:

s1.compareTo(s2)

The method returns the value 0 if s1 is equal to s2, a value less than 0 if s1 is lexicographi-
cally (i.e., in terms of Unicode ordering) less than s2, and a value greater than 0 if s1 is lexi-
cographically greater than s2.

The actual value returned from the compareTo method depends on the offset of the first
two distinct characters in s1 and s2 from left to right. For example, suppose s1 is abc and s2
is abg, and s1.compareTo(s2) returns -4. The first two characters (a vs. a) from s1 and
s2 are compared. Because they are equal, the second two characters (b vs. b) are compared.
Because they are also equal, the third two characters (c vs. g) are compared. Since the char-
acter c is 4 less than g, the comparison returns -4.

Caution
Syntax errors will occur if you compare strings by using comparison operators
>, >=, <, or <=. Instead, you have to use s1.compareTo(s2).

Note
The equals method returns true if two strings are equal and false if they are not.
The compareTo method returns 0, a positive integer, or a negative integer, depending
on whether one string is equal to, greater than, or less than the other string.

The String class also provides the equalsIgnoreCase, compareToIgnoreCase, and
regionMatches methods for comparing strings. The equalsIgnoreCase and

s1.compareTo(s2)

java.lang.String

+equals(s1: Object): boolean

+equalsIgnoreCase(s1: String):
boolean

+compareTo(s1: String): int

+compareToIgnoreCase(s1: String):
int

+regionMatches(index: int, s1: String,
s1Index: int, len: int): boolean

+regionMatches(ignoreCase: boolean,
index: int, s1: String, s1Index: int,
len: int): boolean

+startsWith(prefix: String): boolean

+endsWith(suffix: String): boolean

Returns true if this string is equal to string s1.

Returns true if this string is equal to string s1 case
insensitive.

Returns an integer greater than 0, equal to 0, or less than 0
to indicate whether this string is greater than, equal to, or
less than s1.

Same as compareTo except that the comparison is case
insensitive.

Returns true if the specified subregion of this string exactly
matches the specified subregion in string s1.

Same as the preceding method except that you can specify
whether the match is case sensitive.

Returns true if this string starts with the specified prefix.

Returns true if this string ends with the specified suffix.

FIGURE 9.2 The String class contains the methods for comparing strings.

9.2 The String Class 339

compareToIgnoreCase methods ignore the case of the letters when comparing two strings.
The regionMatches method compares portions of two strings for equality. You can also use
str.startsWith(prefix) to check whether string str starts with a specified prefix, and
str.endsWith(suffix) to check whether string str ends with a specified suffix.

9.2.4 Getting String Length and Characters, and Combining
Strings

The String class provides the methods for obtaining a string’s length, retrieving individual
characters, and concatenating strings, as shown in Figure 9.3.

You can get the length of a string by invoking its length() method. For example,
message.length() returns the length of the string message.

Caution
length is a method in the String class but is a property of an array object. Therefore,
you have to use s.length() to get the number of characters in string s, and
a.length to get the number of elements in array a.

The s.charAt(index) method can be used to retrieve a specific character in a string s,
where the index is between 0 and s.length()–1. For example, message.charAt(0)
returns the character W, as shown in Figure 9.4.

Note
When you use a string, you often know its literal value. For convenience, Java allows you
to use the string literal to refer directly to strings without creating new variables. Thus,
"Welcome to Java".charAt(0) is correct and returns W.

length()

Indices
message

message.charAt(0) message.charAt(14)message.length() is 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

W e l c o m e t o J a v a

FIGURE 9.4 The characters in a String object are stored using an array internally.

string length vs. array length

charAt(index)

string literal

java.lang.String

+length(): int

+charAt(index: int): char

+concat(s1: String): String

Returns the number of characters in this string.

Returns the character at the specified index from this string.

Returns a new string that concatenates this string with string s1.

FIGURE 9.3 The String class contains the methods for getting string length, individual characters, and combining strings.

Note
The String class uses an array to store characters internally. The array is private and
cannot be accessed outside of the String class. The String class provides many
public methods, such as length() and charAt(index), to retrieve the string infor-
mation. This is a good example of encapsulation: the data field of the class is hidden
from the user through the private modifier, and thus the user cannot directly manipulate
it. If the array were not private, the user would be able to change the string content by
modifying the array. This would violate the tenet that the String class is immutable.

encapsulating string

340 Chapter 9 Strings

Caution
Attempting to access characters in a string s out of bounds is a common program-
ming error. To avoid it, make sure that you do not use an index beyond
s.length() – 1. For example, s.charAt(s.length()) would cause a
StringIndexOutOfBoundsException.

You can use the concat method to concatenate two strings. The statement shown below, for
example, concatenates strings s1 and s2 into s3:

String s3 = s1.concat(s2);

Because string concatenation is heavily used in programming, Java provides a convenient way
to accomplish it. You can use the plus (+) operator to concatenate two strings, so the previous
statement is equivalent to

String s3 = s1 + s2;

The following code combines the strings message, " and ", and "HTML" into one string:

String myString = message + " and " + "HTML";

Recall that the + operator can also concatenate a number with a string. In this case, the num-
ber is converted into a string and then concatenated. Note that at least one of the operands
must be a string in order for concatenation to take place.

9.2.5 Obtaining Substrings
You can obtain a single character from a string using the charAtmethod, as shown in Figure 9.3.
You can also obtain a substring from a string using the substring method in the String class,
as shown in Figure 9.5.

For example,

String message = "Welcome to Java".substring(0, 11) + "HTML";

The string message now becomes Welcome to HTML.

string index range

s1.concat(s2)

s1 + s2

java.lang.String

+substring(beginIndex: int):
String

+substring(beginIndex: int,
endIndex: int): String

Returns this string’s substring that begins with the character at the
specified beginIndex and extends to the end of the string, as
shown in Figure 9.6.

Returns this string’s substring that begins at the specified
beginIndex and extends to the character at index endIndex – 1,
as shown in Figure 9.6. Note that the character at endIndex is not
part of the substring.

FIGURE 9.5 The String class contains the methods for obtaining substrings.

Indices
Message

message.substring(0, 11) message.substring(11)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

W e l c o m e t o J a v a

FIGURE 9.6 The substring method obtains a substring from a string.

9.2 The String Class 341

Note
If beginIndex is endIndex, substring(beginIndex, endIndex) returns an
empty string with length 0. If beginIndex > endIndex, it would be a runtime error.

9.2.6 Converting, Replacing, and Splitting Strings
The String class provides the methods for converting, replacing, and splitting strings, as
shown in Figure 9.7.

beginIndex <= endIndex

Once a string is created, its contents cannot be changed. The methods toLowerCase,
toUpperCase, trim, replace, replaceFirst, and replaceAll return a new string
derived from the original string (without changing the original string!). The toLowerCase and
toUpperCase methods return a new string by converting all the characters in the string to
lowercase or uppercase. The trim method returns a new string by eliminating whitespace
characters from both ends of the string. Several versions of the replace methods are provided
to replace a character or a substring in the string with a new character or a new substring.

For example,

"Welcome". toLowerCase() returns a new string, welcome.
"Welcome". toUpperCase() returns a new string, WELCOME.
"\t Good Night \n". trim() returns a new string, Good Night.
"Welcome". replace('e', 'A') returns a new string, WAlcomA.
"Welcome". replaceFirst("e", "AB") returns a new string, WABlcome.
"Welcome". replace("e", "AB") returns a new string, WABlcomAB.
"Welcome". replace("el", "AB") returns a new string, WABcome.

The split method can be used to extract tokens from a string with the specified delimiters.
For example, the following code

String[] tokens = "Java#HTML#Perl".split("#");
for (int i = 0; i < tokens.length; i++)
System.out.print(tokens[i] + " ");

displays

Java HTML Perl

toLowerCase()

toUpperCase()

trim()

replace

replaceFirst

replace

replace

java.lang.String

+toLowerCase(): String

+toUpperCase(): String

+trim(): String

+replace(oldChar: char,
newChar: char): String

+replaceFirst(oldString: String,
newString: String): String

+replaceAll(oldString: String,
newString: String): String

+split(delimiter: String):
String[]

Returns a new string with all characters converted to lowercase.

Returns a new string with all characters converted to uppercase.

Returns a new string with whitespace characters trimmed on both sides.

Returns a new string that replaces all matching characters in this
string with the new character.

Returns a new string that replaces the first matching substring in
this string with the new substring.

Returns a new string that replaces all matching substrings in this
string with the new substring.

Returns an array of strings consisting of the substrings split by the
delimiter.

FIGURE 9.7 The String class contains the methods for converting, replacing, and splitting strings.

split

342 Chapter 9 Strings

9.2.7 Matching, Replacing and Splitting by Patterns
Often you will need to write code that validates user input, such as to check whether the input is
a number, a string with all lowercase letters, or a Social Security number. How do you write this
type of code? A simple and effective way to accomplish this task is to use the regular expression.

A regular expression (abbreviated regex) is a string that describes a pattern for matching a
set of strings. You can match, replace, or split a string by specifying a pattern. This is an
extremely useful and powerful feature.

Let us begin with the matches method in the String class. At first glance, the matches
method is very similar to the equals method. For example, the following two statements
both evaluate to true.

"Java".matches("Java");
"Java".equals("Java");

However, the matches method is more powerful. It can match not only a fixed string, but also a
set of strings that follow a pattern. For example, the following statements all evaluate to true:

"Java is fun".matches()
"Java is cool".matches()
"Java is powerful".matches()

Java.* in the preceding statements is a regular expression. It describes a string pattern that
begins with Java followed by any zero or more characters. Here, the substring matches any
zero or more characters.

The following statement evaluates to true.

"440-02-4534".matches()

Here \\d represents a single digit, and \\d{3} represents three digits.
The replaceAll, replaceFirst, and split methods can be used with a regular

expression. For example, the following statement returns a new string that replaces $, +, or #
in a+b$#c with the string NNN.

String s = "a+b$#c".replaceAll("[$+#]", "NNN");
System.out.println(s);

Here the regular expression [$+#] specifies a pattern that matches $, +, or #. So, the output is
aNNNbNNNNNNc.

The following statement splits the string into an array of strings delimited by punctuation
marks.

String[] tokens = "Java,C?C#,C++".split("[.,:;?]");

for (int i = 0; i < tokens.length; i++)
System.out.println(tokens[i]);

In this example, the regular expression [.,:;?] specifies a pattern that matches ., ,, :, ;, or
?. Each of these characters is a delimiter for splitting the string. Thus, the string is split into
Java, C, C#, and C++, which are stored in array tokens.

Regular expression patterns are complex for beginning students to understand. For this rea-
son, simple patterns are introduced in this section. Please refer to Supplement III.H, Regular
Expressions, to learn more about these patterns.

9.2.8 Finding a Character or a Substring in a String
The String class provides several overloaded indexOf and lastIndexOf methods to find
a character or a substring in a string, as shown in Figure 9.8.

"\\d{3}-\\d{2}-\\d{4}"

.*

"Java.*"
"Java.*"
"Java.*"

why regular expression?
regular expression
regex

matches(regex)

replaceAll(regex)

split(regex)

further studies

9.2 The String Class 343

For example,

"Welcome to Java".indexOf('W') returns 0.
"Welcome to Java".indexOf('o') returns 4.
"Welcome to Java".indexOf('o', 5) returns 9.
"Welcome to Java".indexOf("come") returns 3.
"Welcome to Java".indexOf("Java", 5) returns 11.
"Welcome to Java".indexOf("java", 5) returns -1.

"Welcome to Java".lastIndexOf('W') returns 0.
"Welcome to Java".lastIndexOf('o') returns 9.
"Welcome to Java".lastIndexOf('o', 5) returns 4.
"Welcome to Java".lastIndexOf("come") returns 3.
"Welcome to Java".lastIndexOf("Java", 5) returns -1.
"Welcome to Java".lastIndexOf("Java") returns 11.

9.2.9 Conversion between Strings and Arrays
Strings are not arrays, but a string can be converted into an array, and vice versa. To convert a
string into an array of characters, use the toCharArray method. For example, the following
statement converts the string Java to an array.

char[] chars = "Java".toCharArray();

Thus, chars[0] is J, chars[1] is a, chars[2] is v, and chars[3] is a.
You can also use the getChars(int srcBegin, int srcEnd, char[] dst, int

dstBegin) method to copy a substring of the string from index srcBegin to index
srcEnd-1 into a character array dst starting from index dstBegin. For example, the fol-
lowing code copies a substring "3720" in "CS3720" from index 2 to index 6-1 into the char-
acter array dst starting from index 4.

char[] dst = {'J', 'A', 'V', 'A', '1', '3', '0', '1'};
"CS3720".getChars(2, 6, dst, 4);

Thus, dst becomes {'J', 'A', 'V', 'A', '3', '7', '2', '0'}.

indexOf

lastIndexOf

toCharArray

java.lang.String

+indexOf(ch: char): int

+indexOf(ch: char, fromIndex:
int): int

+indexOf(s: String): int

+indexOf(s: String, fromIndex:
int): int

+lastIndexOf(ch: int): int

+lastIndexOf(ch: int,
fromIndex: int): int

+lastIndexOf(s: String): int

+lastIndexOf(s: String,
fromIndex: int): int

Returns the index of the first occurrence of ch in the string.
Returns -1 if not matched.

Returns the index of the first occurrence of ch after fromIndex in
the string. Returns -1 if not matched.

Returns the index of the first occurrence of string s in this string.
Returns -1 if not matched.

Returns the index of the first occurrence of string s in this string
after fromIndex. Returns -1 if not matched.

Returns the index of the last occurrence of ch in the string.
Returns -1 if not matched.

Returns the index of the last occurrence of ch before fromIndex
in this string. Returns -1 if not matched.

Returns the index of the last occurrence of string s. Returns -1 if
not matched.

Returns the index of the last occurrence of string s before
fromIndex. Returns -1 if not matched.

FIGURE 9.8 The String class contains the methods for matching substrings.

getChars

344 Chapter 9 Strings

To convert an array of characters into a string, use the String(char[]) constructor or
the valueOf(char[]) method. For example, the following statement constructs a string
from an array using the String constructor.

String str = new String(new char[]{'J', 'a', 'v', 'a'});

The next statement constructs a string from an array using the valueOf method.

String str = String.valueOf(new char[]{'J', 'a', 'v', 'a'});

9.2.10 Converting Characters and Numeric Values to Strings
The static valueOf method can be used to convert an array of characters into a string. There
are several overloaded versions of the valueOf method that can be used to convert a charac-
ter and numeric values to strings with different parameter types, char, double, long, int,
and float, as shown in Figure 9.9.

valueOf

overloaded valueOf

For example, to convert a double value 5.44 to a string, use String.valueOf(5.44).
The return value is a string consisting of the characters '5', '.', '4', and '4'.

Note
You can use Double.parseDouble(str) or Integer.parseInt(str) to con-
vert a string to a double value or an int value. Double and Integer are two classes
in the java.lang package.

9.2.11 Formatting Strings
The String class contains the static format method to create a formatted string. The syntax
to invoke this method is:

String.format(format, item1, item2, ..., itemk)

This method is similar to the printf method except that the format method returns a for-
matted string, whereas the printf method displays a formatted string. For example,

String s = String.format("%7.2f%6d%-4s", 45.556, 14, "AB");
System.out.println(s);

displays

45.56 14AB

Note that

System.out.printf(format, item1, item2, ..., itemk);

java.lang.String

+valueOf(c: char): String

+valueOf(data: char[]): String

+valueOf(d: double): String

+valueOf(f: float): String

+valueOf(i: int): String

+valueOf(l: long): String

Returns a string consisting of the character c.

Returns a string consisting of the characters in the array.

Returns a string representing the double value.

Returns a string representing the float value.

Returns a string representing the int value.

Returns a string representing the long value.

+valueOf(b: boolean): String Returns a string representing the boolean value.

FIGURE 9.9 The String class contains the static methods for creating strings from primi-
tive type values.

9.2 The String Class 345

is equivalent to

System.out.printf(
String.format(format, item1, item2, ..., itemk));

where the square box () denotes a blank space.

9.1 Suppose that s1, s2, s3, and s4 are four strings, given as follows:

String s1 = "Welcome to Java";
String s2 = s1;
String s3 = new String("Welcome to Java");
String s4 = "Welcome to Java";

What are the results of the following expressions?

✓Point✓Check

a. s1 == s2

b. s2 == s3

c. s1.equals(s2)

d. s2.equals(s3)

e. s1.compareTo(s2)

f. s2.compareTo(s3)

g. s1 == s4

h. s1.charAt(0)

i. s1.indexOf('j')

j. s1.indexOf("to")

k. s1.lastIndexOf('a')

l. s1.lastIndexOf("o", 15)

m. s1.length()

n. s1.substring(5)

o. s1.substring(5, 11)

p. s1.startsWith("Wel")

q. s1.endsWith("Java")

r. s1.toLowerCase()

s. s1.toUpperCase()

t. "Welcome ".trim()

u. s1.replace('o', 'T')

v. s1.replaceAll("o", "T")

w. s1.replaceFirst("o", "T")

x. s1.toCharArray()

9.2 To create the string Welcome to Java, you may use a statement like this:

String s = "Welcome to Java";

or:

String s = new String("Welcome to Java");

Which one is better? Why?

9.3 Suppose that s1 and s2 are two strings. Which of the following statements or expres-
sions are incorrect?

String s = new String("new string");
String s3 = s1 + s2;
String s3 = s1 - s2;
s1 == s2;
s1 >= s2;
s1.compareTo(s2);
int i = s1.length();
char c = s1(0);
char c = s1.charAt(s1.length());

9.4 What is the printout of the following code?

String s1 = "Welcome to Java";
String s2 = s1.replace("o", "abc");
System.out.println(s1);
System.out.println(s2);

346 Chapter 9 Strings

9.5 Let s1 be " Welcome " and s2 be " welcome ". Write the code for the following
statements:

a. Check whether s1 is equal to s2 and assign the result to a Boolean variable
isEqual.

b. Check whether s1 is equal to s2, ignoring case, and assign the result to a Boolean
variable isEqual.

c. Compare s1 with s2 and assign the result to an int variable x.

d. Compare s1 with s2, ignoring case, and assign the result to an int variable x.

e. Check whether s1 has the prefix AAA and assign the result to a Boolean variable b.

f. Check whether s1 has the suffix AAA and assign the result to a Boolean variable b.

g. Assign the length of s1 to an int variable x.

h. Assign the first character of s1 to a char variable x.

i. Create a new string s3 that combines s1 with s2.

j. Create a substring of s1 starting from index 1.

k. Create a substring of s1 from index 1 to index 4.

l. Create a new string s3 that converts s1 to lowercase.

m. Create a new string s3 that converts s1 to uppercase.

n. Create a new string s3 that trims blank spaces on both ends of s1.

o. Replace all occurrences of the character ewith E in s1 and assign the new string to s3.

p. Split Welcome to Java and HTML into an array tokens delimited by a space.

q. Assign the index of the first occurrence of the character e in s1 to an int variable x.

r. Assign the index of the last occurrence of the string abc in s1 to an int variable x.

9.6 Does any method in the String class change the contents of the string?

9.7 Suppose string s is created using new String(); what is s.length()?

9.8 How do you convert a char, an array of characters, or a number to a string?

9.9 Why does the following code cause a NullPointerException?

1 public class Test {
2 private String text;
3
4 public Test(String s) {
5
6 }
7
8 public static void main(String[] args) {
9 Test test = new Test("ABC");
10 System.out.println(test.text.toLowerCase());
11 }
12 }

9.10 What is wrong in the following program?

1 public class Test {
2 String text;
3

String text = s;

9.3 Case Study: Checking Palindromes 347

4 public Test(String s) {
5 text = s;
6 }
7
8 public static void main(String[] args) {
9 Test test = new Test("ABC");
10 System.out.println(test);
11 }
12 }

9.11 Show the output of the following code.

public class Test {
public static void main(String[] args) {
System.out.println("Hi, ABC, good".matches("ABC "));
System.out.println("Hi, ABC, good".matches(".*ABC.*"));
System.out.println("A,B;C".replaceAll(",;", "#"));
System.out.println("A,B;C".replaceAll("[,;]", "#"));

String[] tokens = "A,B;C".split("[,;]");
for (int i = 0; i < tokens.length; i++)
System.out.print(tokens[i] + " ");

}
}

9.3 Case Study: Checking Palindromes
This section presents a program that checks whether a string is a palindrome.

A string is a palindrome if it reads the same forward and backward. The words “mom,” “dad,”
and “noon,” for instance, are all palindromes.

The problem is to write a program that prompts the user to enter a string and reports
whether the string is a palindrome. One solution is to check whether the first character in the
string is the same as the last character. If so, check whether the second character is the same
as the second-to-last character. This process continues until a mismatch is found or all the
characters in the string are checked, except for the middle character if the string has an odd
number of characters.

To implement this idea, use two variables, say low and high, to denote the position of the
two characters at the beginning and the end in a string s, as shown in Listing 9.1 (lines 22,
25). Initially, low is 0 and high is s.length() – 1. If the two characters at these positions
match, increment low by 1 and decrement high by 1 (lines 31–32). This process continues
until (low >= high) or a mismatch is found.

LISTING 9.1 CheckPalindrome.java
1 import java.util.Scanner;
2
3 public class CheckPalindrome {
4 /** Main method */
5 public static void main(String[] args) {
6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8
9 // Prompt the user to enter a string
10 System.out.print("Enter a string: ");
11
12
13 if () isPalindrome(s)

String s = input.nextLine();

void

Key
Point

Check palindrome
VideoNote

input string

348 Chapter 9 Strings

14 System.out.println(s + " is a palindrome");
15 else
16 System.out.println(s + " is not a palindrome");
17 }
18
19 /** Check if a string is a palindrome */
20 public static boolean isPalindrome() {
21 // The index of the first character in the string
22 int low = 0;
23
24 // The index of the last character in the string
25 int high = - 1;
26
27 while (low < high) {
28 if ()
29 return false; // Not a palindrome
30
31 low++;
32 high——;
33 }
34
35 return true; // The string is a palindrome
36 }
37 }

s.charAt(low) != s.charAt(high)

s.length()

String s

low index

high index

update indices

Enter a string:
noon is a palindrome

noon

The nextLine() method in the Scanner class (line 11) reads a line into s, and then
isPalindrome(s) checks whether s is a palindrome (line 13).

9.4 Case Study: Converting Hexadecimals to Decimals
This section presents a program that converts a hexadecimal number into a decimal
number.

Section 5.7 gives a program that converts a decimal to a hexadecimal. How do you convert a
hex number into a decimal?

Given a hexadecimal number . . . the equivalent decimal value is

. . .
For example, the hex number AB8C is

Our program will prompt the user to enter a hex number as a string and convert it into a deci-
mal using the following method:

public static int hexToDecimal(String hex)

A brute-force approach is to convert each hex character into a decimal number, multiply it by
for a hex digit at the i’s position, and then add all the items together to obtain the equiva-

lent decimal value for the hex number.
16i

10 * 163 + 11 * 162 + 8 * 161 + 12 * 160 = 43916

+ h2 * 162 + h1 * 161 + h0 * 160hn * 16n + hn-1 * 16n-1 + hn-2 * 16n-2 +

h2h1h0,hnhn-1hn-2

Key
Point

Enter a string:
moon is not a palindrome

moon

input string

hex to decimal

9.4 Case Study: Converting Hexadecimals to Decimals 349

Note that

This observation, known as the Horner’s algorithm, leads to the following efficient code for
converting a hex string to a decimal number:

int decimalValue = 0;
for (int i = 0; i < hex.length(); i++) {
char hexChar = hex.charAt(i);
decimalValue = decimalValue * 16 + hexCharToDecimal(hexChar);

}

Here is a trace of the algorithm for hex number AB8C:

= (c ((hn * 16 + hn-1) * 16 + hn-2) * 16 + . . . + h1) * 16 + h0

hn * 16n + hn-1 * 16n-1 + hn-2 * 16n-2 + . . . + h1 * 161 + h0 * 160

i hexChar hexCharToDecimal(hexChar) decimalValue

before the loop 0

after the 1st iteration 0 A 10 10

after the 2nd iteration 1 B 11 10 * 16 + 11

after the 3rd iteration 2 8 8 (10 * 16 + 11)
* 16 + 8

after the 4th iteration 3 C 12 ((10 * 16 + 11)
* 16 + 8) * 16 + 12

Listing 9.2 gives the complete program.

LISTING 9.2 HexToDecimalConversion.java
1 import java.util.Scanner;
2
3 public class HexToDecimalConversion {
4 /** Main method */
5 public static void main(String[] args) {
6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8
9 // Prompt the user to enter a string
10 System.out.print("Enter a hex number: ");
11 String hex = input.nextLine();
12
13 System.out.println("The decimal value for hex number "
14 + hex + " is " +);
15 }
16
17
18 int decimalValue = 0;
19 for (int i = 0; i < hex.length(); i++) {
20 char hexChar = hex.charAt(i);
21 decimalValue = decimalValue * 16 + hexCharToDecimal(hexChar);
22 }
23
24 return decimalValue;
25 }
26

public static int hexToDecimal(String hex) {

hexToDecimal(hex.toUpperCase())

350 Chapter 9 Strings

Key
Point

wrapper class

to uppercase

Enter a hex number:
The decimal value for hex number AB8C is 43916

AB8C

Enter a hex number:
The decimal value for hex number af71 is 44913

af71

The program reads a string from the console (line 11), and invokes the hexToDecimal method
to convert a hex string to decimal number (line 14). The characters can be in either lowercase
or uppercase. They are converted to uppercase before invoking the hexToDecimal method.

The hexToDecimal method is defined in lines 17–25 to return an integer. The length of
the string is determined by invoking hex.length() in line 19.

The hexCharToDecimal method is defined in lines 27–32 to return a decimal value for a
hex character. The character can be in either lowercase or uppercase. Recall that to subtract
two characters is to subtract their Unicodes. For example, '5' – '0' is 5.

9.5 The Character Class
You can create an object for a character using the Character class. A Character
object contains a character value.

Many methods in the Java API require an object argument. To enable the primitive data values
to be treated as objects, Java provides a class for every primitive data type. These classes are
Character, Boolean, Byte, Short, Integer, Long, Float, and Double for char,
boolean, byte, short, int, long, float, and double, respectively. These classes are
called wrapper classes because each wraps or encapsulates a primitive type value in an object.
All these classes are in the java.lang package, and they contain useful methods for
processing primitive values. This section introduces the Character class. The other wrapper
classes will be introduced in Chapter 10, Thinking in Objects.

The Character class has a constructor and several methods for determining a character’s
category (uppercase, lowercase, digit, and so on) and for converting characters from upper-
case to lowercase, and vice versa, as shown in Figure 9.10.

You can create a Character object from a char value. For example, the following state-
ment creates a Character object for the character a.

Character character = new Character('a');

The charValue method returns the character value wrapped in the Character object. The
compareTo method compares this character with another character and returns an integer
that is the difference between the Unicode of this character and the Unicode of the other char-
acter. The equals method returns true if and only if the two characters are the same. For
example, suppose charObject is new Character('b'):

charObject.compareTo(new Character('a')) returns 1
charObject.compareTo(new Character('b')) returns 0
charObject.compareTo(new Character('c')) returns –1

27
28 if (ch >= 'A' && ch <= 'F')
29 return 10 + ch - 'A';
30 else // ch is '0', '1', ..., or '9'
31 return ch - '0';
32 }
33 }

public static int hexCharToDecimal(char ch) {hex char to decimal

9.5 The Character Class 351

charObject.compareTo(new Character('d')) returns –2
charObject.equals(new Character('b')) returns true
charObject.equals(new Character('d')) returns false

Most of the methods in the Character class are static methods. The isDigit(char ch)
method returns true if the character is a digit, and the isLetter(char ch) method returns
true if the character is a letter. The isLetterOrDigit(char ch) method returns true if
the character is a letter or a digit. The isLowerCase(char ch) method returns true if the
character is a lowercase letter, and the isUpperCase(char ch) method returns true if the
character is an uppercase letter. The toLowerCase(char ch) method returns the lowercase
letter for the character, and the toUpperCase(char ch) method returns the uppercase let-
ter for the character.

Now let’s write a program that prompts the user to enter a string and counts the number of
occurrences of each letter in the string regardless of case.

Here are the steps to solve this problem:

1. Convert all the uppercase letters in the string to lowercase using the toLowerCase
method in the String class.

2. Create an array, say counts of 26 int values, each of which counts the occurrences of
a letter. That is, counts[0] counts the number of as, counts[1] counts the number of
bs, and so on.

3. For each character in the string, check whether it is a (lowercase) letter. If so, increment
the corresponding count in the array.

Listing 9.3 gives the complete program.

LISTING 9.3 CountEachLetter.java
1 import java.util.Scanner;
2
3 public class CountEachLetter {
4 /** Main method */
5 public static void main(String[] args) {
6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8

java.lang.Character

Returns the uppercase of the specified character.+toUpperCase(ch: char): char

+Character(value: char)

+charValue(): char

+compareTo(anotherCharacter: Character): int

+equals(anotherCharacter: Character): boolean

+isDigit(ch: char): boolean

+isLetter(ch: char): boolean

+isLetterOrDigit(ch: char): boolean

+isLowerCase(ch: char): boolean

+isUpperCase(ch: char): boolean

+toLowerCase(ch: char): char

Constructs a character object with char value.

Returns the char value from this object.

Compares this character with another.

Returns true if this character is equal to another.

Returns true if the specified character is a digit.

Returns true if the specified character is a letter.

Returns true if the character is a letter or a digit.

Returns true if the character is a lowercase letter.

Returns true if the character is an uppercase letter.

Returns the lowercase of the specified character.

FIGURE 9.10 The Character class provides the methods for manipulating a character.

352 Chapter 9 Strings

9 // Prompt the user to enter a string
10 System.out.print("Enter a string: ");
11 String s = input.nextLine();
12
13 // Invoke the countLetters method to count each letter
14 int[] counts = ;
15
16 // Display results
17 for (int i = 0; i < counts.length; i++) {
18 if (counts[i] != 0)
19 System.out.println((char)('a' + i) + " appears " +
20 counts[i] + ((counts[i] == 1) ? " time" : " times"));
21 }
22 }
23
24 /** Count each letter in the string */
25 public static int[] countLetters() {
26 int[] counts = new int[26];
27
28 for (int i = 0; i < ; i++) {
29 if ()
30 counts[s.charAt(i) - 'a']++;
31 }
32
33 return counts;
34 }
35 }

Character.isLetter(s.charAt(i))
s.length()

String s

countLetters(s.toLowerCase())

count a letter

Enter a string:
a appears 3 times
b appears 3 times
x appears 1 time

abababx

✓Point✓Check

The main method reads a line (line 11) and counts the number of occurrences of each letter in
the string by invoking the countLetters method (line 14). Since the case of the letters is
ignored, the program uses the toLowerCase method to convert the string into all lowercase
and pass the new string to the countLetters method.

The countLetters method (lines 25–34) returns an array of 26 elements. Each element
counts the number of occurrences of a letter in the string s. The method processes each char-
acter in the string. If the character is a letter, its corresponding count is increased by 1. For
example, if the character (s.charAr(i)) is a, the corresponding count is counts['a' -
'a'] (i.e., counts[0]). If the character is b, the corresponding count is counts['b' -
'a'] (i.e., counts[1]), since the Unicode of b is 1 more than that of a. If the character is z,
the corresponding count is counts['z' - 'a'] (i.e., counts[25]), since the Unicode of
z is 25 more than that of a.

9.12 How do you determine whether a character is in lowercase or uppercase?

9.13 How do you determine whether a character is alphanumeric?

9.14 Show the output of the following code.

public class Test {
public static void main(String[] args) {
String s = "Hi, Good Morning";
System.out.println(m(s));

}

input string

count letters

9.6 The StringBuilder and StringBuffer Classes 353

Key
Point

StringBuilder

public static int m(String s) {
int count = 0;
for (int i = 0; i < s.length(); i++)
if (Character.isUpperCase(s.charAt(i)))
count++;

return count;
}

}

9.6 The StringBuilder and StringBuffer Classes
The StringBuilder and StringBuffer classes are similar to the String class
except that the String class is immutable.

In general, the StringBuilder and StringBuffer classes can be used wherever a string is
used. StringBuilder and StringBuffer are more flexible than String. You can add,
insert, or append new contents into StringBuilder and StringBuffer objects, whereas
the value of a String object is fixed once the string is created.

The StringBuilder class is similar to StringBuffer except that the methods for modify-
ing the buffer in StringBuffer are synchronized, which means that only one task is allowed to
execute the methods. Use StringBuffer if the class might be accessed by multiple tasks con-
currently. Concurrent programming will be introduced in Chapter 32. Using StringBuilder is
more efficient if it is accessed by just a single task. The constructors and methods in
StringBuffer and StringBuilder are almost the same. This section covers
StringBuilder. You can replace StringBuilder in all occurrences in this section by
StringBuffer. The program can compile and run without any other changes.

The StringBuilder class has three constructors and more than 30 methods for manag-
ing the builder and modifying strings in the builder. You can create an empty string builder or
a string builder from a string using the constructors, as shown in Figure 9.11.

StringBuilder
constructors

java.lang.StringBuilder

+StringBuilder()

+StringBuilder(capacity: int)

+StringBuilder(s: String)

Constructs an empty string builder with capacity 16.

Constructs a string builder with the specified capacity.

Constructs a string builder with the specified string.

FIGURE 9.11 The StringBuilder class contains the constructors for creating instances of
StringBuilder.

9.6.1 Modifying Strings in the StringBuilder
You can append new contents at the end of a string builder, insert new contents at a specified
position in a string builder, and delete or replace characters in a string builder, using the meth-
ods listed in Figure 9.12.

The StringBuilder class provides several overloaded methods to append boolean,
char, char[], double, float, int, long, and String into a string builder. For example,
the following code appends strings and characters into stringBuilder to form a new string,
Welcome to Java.

StringBuilder stringBuilder = new StringBuilder();
stringBuilder.append("Welcome");
stringBuilder.append(' ');
stringBuilder.append("to");
stringBuilder.append(' ');
stringBuilder.append("Java");

append

354 Chapter 9 Strings

The StringBuilder class also contains overloaded methods to insert boolean, char,
char array, double, float, int, long, and String into a string builder. Consider the
following code:

stringBuilder.insert(11, "HTML and ");

Suppose stringBuilder contains Welcome to Java before the insert method is
applied. This code inserts "HTML and " at position 11 in stringBuilder (just before the
J). The new stringBuilder is Welcome to HTML and Java.

You can also delete characters from a string in the builder using the two delete methods,
reverse the string using the reverse method, replace characters using the replace method,
or set a new character in a string using the setCharAt method.

For example, suppose stringBuilder contains Welcome to Java before each of the
following methods is applied:

stringBuilder.delete(8, 11) changes the builder to Welcome Java.
stringBuilder.deleteCharAt(8) changes the builder to Welcome o Java.
stringBuilder.reverse() changes the builder to avaJ ot emocleW.
stringBuilder.replace(11, 15, "HTML") changes the builder to Welcome to HTML.
stringBuilder.setCharAt(0, 'w') sets the builder to welcome to Java.

All these modification methods except setCharAt do two things:

■ Change the contents of the string builder

■ Return the reference of the string builder

For example, the following statement

StringBuilder stringBuilder1 = stringBuilder.reverse();

insert

delete

deleteCharAt

reverse

replace

setCharAt

ignore return value

java.lang.StringBuilder

+append(data: char[]): StringBuilder

+append(data: char[], offset: int, len: int):
StringBuilder

+append(v: aPrimitiveType): StringBuilder

+append(s: String): StringBuilder

+delete(startIndex: int, endIndex: int):
StringBuilder

+deleteCharAt(index: int): StringBuilder

+insert(index: int, data: char[], offset: int,
len: int): StringBuilder

+insert(offset: int, data: char[]):
StringBuilder

+insert(offset: int, b: aPrimitiveType):
StringBuilder

+insert(offset: int, s: String): StringBuilder

+replace(startIndex: int, endIndex: int, s:
String): StringBuilder

+reverse(): StringBuilder

+setCharAt(index: int, ch: char): void

Appends a char array into this string builder.
Appends a subarray in data into this string builder.

Appends a primitive type value as a string to this
builder.

Appends a string to this string builder.

Deletes characters from startIndex to endIndex-1.

Deletes a character at the specified index.

Inserts a subarray of the data in the array into the builder
at the specified index.

Inserts data into this builder at the position offset.

Inserts a value converted to a string into this builder.

Inserts a string into this builder at the position offset.

Replaces the characters in this builder from startIndex
to endIndex-1 with the specified string.

Reverses the characters in the builder.

Sets a new character at the specified index in this
builder.

FIGURE 9.12 The StringBuilder class contains the methods for modifying string builders.

9.6 The StringBuilder and StringBuffer Classes 355

String or StringBuilder?

reverses the string in the builder and assigns the builder’s reference to stringBuilder1.
Thus, stringBuilder and stringBuilder1 both point to the same StringBuilder
object. Recall that a value-returning method can be invoked as a statement, if you are not
interested in the return value of the method. In this case, the return value is simply ignored.
For example, in the following statement

stringBuilder.reverse();

the return value is ignored.

Tip
If a string does not require any change, use String rather than StringBuilder. Java
can perform some optimizations for String, such as sharing interned strings.

9.6.2 The toString, capacity, length, setLength,
and charAt Methods

The StringBuilder class provides the additional methods for manipulating a string builder
and obtaining its properties, as shown in Figure 9.13.

The capacity() method returns the current capacity of the string builder. The capacity is
the number of characters the string builder is able to store without having to increase its size.

The length() method returns the number of characters actually stored in the string
builder. The setLength(newLength) method sets the length of the string builder. If the
newLength argument is less than the current length of the string builder, the string builder is
truncated to contain exactly the number of characters given by the newLength argument. If
the newLength argument is greater than or equal to the current length, sufficient null charac-
ters (\u0000) are appended to the string builder so that length becomes the newLength
argument. The newLength argument must be greater than or equal to 0.

The charAt(index) method returns the character at a specific index in the string
builder. The index is 0 based. The first character of a string builder is at index 0, the next at
index 1, and so on. The index argument must be greater than or equal to 0, and less than the
length of the string builder.

Note
The length of the string is always less than or equal to the capacity of the builder. The
length is the actual size of the string stored in the builder, and the capacity is the current
size of the builder. The builder’s capacity is automatically increased if more characters
are added to exceed its capacity. Internally, a string builder is an array of characters, so

capacity()

length()

setLength(int)

charAt(int)

length and capacity

java.lang.StringBuilder

+toString(): String

+capacity(): int

+charAt(index: int): char

+length(): int

+setLength(newLength: int): void

+substring(startIndex: int): String

+substring(startIndex: int, endIndex: int):
String

+trimToSize(): void

Returns a string object from the string builder.

Returns the capacity of this string builder.

Returns the character at the specified index.

Returns the number of characters in this builder.

Sets a new length in this builder.

Returns a substring starting at startIndex.

Returns a substring from startIndex to endIndex-1.

Reduces the storage size used for the string builder.

FIGURE 9.13 The StringBuilder class contains the methods for modifying string builders.

356 Chapter 9 Strings

the builder’s capacity is the size of the array. If the builder’s capacity is exceeded, the
array is replaced by a new array. The new array size is 2 * (the previous array
size + 1).

Tip
You can use new StringBuilder(initialCapacity) to create a StringBuilder
with a specified initial capacity. By carefully choosing the initial capacity, you can make
your program more efficient. If the capacity is always larger than the actual length of the
builder, the JVM will never need to reallocate memory for the builder. On the other hand, if
the capacity is too large, you will waste memory space. You can use the trimToSize()
method to reduce the capacity to the actual size.

9.6.3 Case Study: Ignoring Nonalphanumeric Characters When
Checking Palindromes

Listing 9.1, CheckPalindrome.java, considered all the characters in a string to check whether
it was a palindrome. Write a new program that ignores nonalphanumeric characters in check-
ing whether a string is a palindrome.

Here are the steps to solve the problem:

1. Filter the string by removing the nonalphanumeric characters. This can be done by cre-
ating an empty string builder, adding each alphanumeric character in the string to a
string builder, and returning the string from the string builder. You can use the
isLetterOrDigit(ch) method in the Character class to check whether character
ch is a letter or a digit.

2. Obtain a new string that is the reversal of the filtered string. Compare the reversed string
with the filtered string using the equals method.

The complete program is shown in Listing 9.4.

LISTING 9.4 PalindromeIgnoreNonAlphanumeric.java
1 import java.util.Scanner;
2
3 public class PalindromeIgnoreNonAlphanumeric {
4 /** Main method */
5 public static void main(String[] args) {
6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8
9 // Prompt the user to enter a string
10 System.out.print("Enter a string: ");
11 String s = input.nextLine();
12
13 // Display result
14 System.out.println("Ignoring nonalphanumeric characters, \nis "
15 + s + " a palindrome? " + isPalindrome(s));
16 }
17
18 /** Return true if a string is a palindrome */
19
20 // Create a new string by eliminating nonalphanumeric chars
21 String s1 = filter(s);
22
23 // Create a new string that is the reversal of s1
24 String s2 = reverse(s1);
25
26 // Check if the reversal is the same as the original string

public static boolean isPalindrome(String s) {check palindrome

initial capacity

trimToSize()

9.6 The StringBuilder and StringBuffer Classes 357

add letter or digit

27 return s2.equals(s1);
28 }
29
30 /** Create a new string by eliminating nonalphanumeric chars */
31 public static String filter(String s) {
32 // Create a string builder
33
34
35 // Examine each char in the string to skip alphanumeric char
36 for (int i = 0; i < ; i++) {
37 if () {
38
39 }
40 }
41
42 // Return a new filtered string
43 return stringBuilder.toString();
44 }
45
46 /** Create a new string by reversing a specified string */
47 public static String reverse(String s) {
48 StringBuilder stringBuilder = new StringBuilder(s);
49 // Invoke reverse in StringBuilder
50 return stringBuilder.toString();
51 }
52 }

stringBuilder.reverse();

stringBuilder.append(s.charAt(i));
Character.isLetterOrDigit(s.charAt(i))

s.length()

StringBuilder stringBuilder = new StringBuilder();

Enter a string:
Ignoring nonalphanumeric characters,
is ab<c>cb?a a palindrome? true

ab<c>cb?a

The filter(String s) method (lines 31–44) examines each character in string s and
copies it to a string builder if the character is a letter or a numeric character. The filter
method returns the string in the builder. The reverse(String s) method (lines 47–51) cre-
ates a new string that reverses the specified string s. The filter and reverse methods both
return a new string. The original string is not changed.

The program in Listing 9.1 checks whether a string is a palindrome by comparing pairs of
characters from both ends of the string. Listing 9.4 uses the reverse method in the
StringBuilder class to reverse the string, then compares whether the two strings are equal
to determine whether the original string is a palindrome.

9.15 What is the difference between StringBuilder and StringBuffer?

9.16 How do you create a string builder from a string? How do you return a string from a
string builder?

9.17 Write three statements to reverse a string s using the reverse method in the
StringBuilder class.

9.18 Write three statements to delete a substring from a string s of 20 characters, starting
at index 4 and ending with index 10. Use the delete method in the
StringBuilder class.

9.19 What is the internal storage for characters in a string and a string builder?

✓Point✓Check

Enter a string:
Ignoring nonalphanumeric characters,
is abcc><?cab a palindrome? false

abcc><?cab

358 Chapter 9 Strings

9.20 Suppose that s1 and s2 are given as follows:

StringBuilder s1 = new StringBuilder("Java");
StringBuilder s2 = new StringBuilder("HTML");

Show the value of s1 after each of the following statements. Assume that the state-
ments are independent.

Key
Point

a. s1.append(" is fun");

b. s1.append(s2);

c. s1.insert(2, "is fun");

d. s1.insert(1, s2);

e. s1.charAt(2);

f. s1.length();

9.21 Show the output of the following program:

public class Test {
public static void main(String[] args) {
String s = "Java";
StringBuilder builder = new StringBuilder(s);
change(s, builder);

System.out.println(s);
System.out.println(builder);

}

private static void change(String s, StringBuilder builder) {
s = s + " and HTML";
builder.append(" and HTML");

}
}

9.7 Command-Line Arguments
The main method can receive string arguments from the command line.

Perhaps you have already noticed the unusual header for the main method, which has the
parameter args of String[] type. It is clear that args is an array of strings. The main
method is just like a regular method with a parameter. You can call a regular method by pass-
ing actual parameters. Can you pass arguments to main? Yes, of course you can. In the fol-
lowing examples, the main method in class TestMain is invoked by a method in A.

public class A {
public static void main(String[] args) {
String[] strings = {"New York",
"Boston", "Atlanta"};

}
}

TestMain.main(strings);

public class TestMain {
{

for (int i = 0; i < args.length; i++)
System.out.println(args[i]);

}
}

public static void main(String[] args)

A main method is just a regular method. Furthermore, you can pass arguments from the
command line.

g. s1.deleteCharAt(3);

h. s1.delete(1, 3);

i. s1.reverse();

j. s1.replace(1, 3, "Computer");

k. s1.substring(1, 3);

l. s1.substring(2);

9.7 Command-Line Arguments 359

9.7.1 Passing Strings to the main Method
You can pass strings to a main method from the command line when you run the program.
The following command line, for example, starts the program TestMain with three strings:
arg0, arg1, and arg2:

java TestMain arg0 arg1 arg2

arg0, arg1, and arg2 are strings, but they don’t have to appear in double quotes on the
command line. The strings are separated by a space. A string that contains a space must be
enclosed in double quotes. Consider the following command line:

java TestMain "First num" alpha 53

It starts the program with three strings: First num, alpha, and 53. Since First num is a
string, it is enclosed in double quotes. Note that 53 is actually treated as a string. You can use
"53" instead of 53 in the command line.

When the main method is invoked, the Java interpreter creates an array to hold the
command-line arguments and pass the array reference to args. For example, if you invoke a
program with n arguments, the Java interpreter creates an array like this one:

args = new String[n];

The Java interpreter then passes args to invoke the main method.

Note
If you run the program with no strings passed, the array is created with new
String[0]. In this case, the array is empty with length 0. args references to this
empty array. Therefore, args is not null, but args.length is 0.

9.7.2 Case Study: Calculator
Suppose you are to develop a program that performs arithmetic operations on integers. The
program receives an expression in one string argument. The expression consists of an integer
followed by an operator and another integer. For example, to add two integers, use this
command:

java Calculator "2 + 3"

The program will display the following output:

2 + 3 = 5

Figure 9.14 shows sample runs of the program.
The strings passed to the main program are stored in args, which is an array of strings. In

this case, we pass the expression as one string. Therefore, the array contains only one element
in args[0] and args.length is 1.

Here are the steps in the program:

1. Use args.length to determine whether the expression has been provided as one argu-
ment in the command line. If not, terminate the program using System.exit(1).

2. Split the expression in the string args[0] into three tokens in tokens[0],
tokens[1], and tokens[2].

3. Perform a binary arithmetic operation on the operands tokens[0] and tokens[2]
using the operator in tokens[1].

Command-line argument
VideoNote

360 Chapter 9 Strings

The program is shown in Listing 9.5.

LISTING 9.5 Calculator.java
1 public class Calculator {
2 /** Main method */
3 public static void main(String[] args) {
4 // Check number of strings passed
5 if (!= 1) {
6 System.out.println(
7 "Usage: java Calculator \"operand1 operator operand2\"");
8 System.exit(1);
9 }
10
11 // The result of the operation
12 int result = 0;
13
14 // The result of the operation
15 String[] tokens = args[0].split(" ");
16
17 // Determine the operator
18 switch () {
19 case '+': result = Integer.parseInt() +
20 Integer.parseInt();
21 break;
22 case '-': result = Integer.parseInt() -
23 Integer.parseInt();
24 break;
25 case '*': result = Integer.parseInt() *
26 Integer.parseInt();
27 break;
28 case '/': result = Integer.parseInt() /
29 Integer.parseInt();
30 }
31
32 // Display result
33 System.out.println(+ ' ' + + ' '
34 + + " = " + result);
35 }
36 }

tokens[2]
tokens[1]tokens[0]

tokens[2]
tokens[0]

tokens[2]
tokens[0]

tokens[2]
tokens[0]

tokens[2]
tokens[0]

tokens[1].charAt(0)

args.lengthcheck argument

split string

check operator

Add

Subtract

Multiply

Divide

FIGURE 9.14 The program takes an expression in one argument (operand1 operator
operand2) from the command line and displays the expression and the result of the
arithmetic operation.

Chapter Summary 361

The expression is passed as a string in one argument and it is split into three parts—
tokens[0], tokens[1], and tokens[2]—using the split method (line 15) with a space
as a delimiter.

Integer.parseInt(tokens[0]) (line 19) converts a digital string into an integer. The
string must consist of digits. If it doesn’t, the program will terminate abnormally.

For this program to work, the expression must be entered in the form of “operand1 opera-
tor operand2”. The operands and operator are separated by exactly one space. You can mod-
ify the program to accept the expressions in different forms (see Programming Exercise 9.28).

9.22 This book declares the main method as

public static void main(String[] args)

Can it be replaced by one of the following lines?

public static void main(String args[])
public static void main(String[] x)
public static void main(String x[])
static void main(String x[])

9.23 Show the output of the following program when invoked using

1. java Test I have a dream

2. java Test “1 2 3”

3. java Test

public class Test {
public static void main(String[] args) {
System.out.println("Number of strings is " + args.length);
for (int i = 0; i < args.length; i++)
System.out.println(args[i]);

}
}

KEY TERMS

✓Point✓Check

wrapper class 350interned string 337

CHAPTER SUMMARY

1. Strings are objects encapsulated in the String class. A string can be constructed
using one of the 13 constructors or simply using a string literal. Java treats a string lit-
eral as a String object.

2. A String object is immutable; its contents cannot be changed. To improve effi-
ciency and save memory, the JVM stores two literal strings that have the same char-
acter sequence in a unique object. This unique object is called an interned string
object.

3. You can get the length of a string by invoking its length() method, retrieve a char-
acter at the specified index in the string using the charAt(index) method, and use
the indexOf and lastIndexOf methods to find a character or a substring in a
string.

362 Chapter 9 Strings

4. You can use the concat method to concatenate two strings, or the plus (+) operator
to concatenate two or more strings.

5. You can use the substring method to obtain a substring from the string.

6. You can use the equals and compareTo methods to compare strings. The equals
method returns true if two strings are equal, and false if they are not equal. The
compareTo method returns 0, a positive integer, or a negative integer, depending on
whether one string is equal to, greater than, or less than the other string.

7. A regular expression (abbreviated regex) is a string that describes a pattern for match-
ing a set of strings. You can match, replace, or split a string by specifying a pattern.

8. The Character class is a wrapper class for a single character. The Character class
provides useful static methods to determine whether a character is a letter
(isLetter(char)), a digit (isDigit(char)), uppercase (isUpperCase(char)),
or lowercase (isLowerCase(char)).

9. The StringBuilder and StringBuffer classes can be used to replace the
String class. The String object is immutable, but you can add, insert, or append
new contents into StringBuilder and StringBuffer objects. Use String if the
string contents do not require any change, and use StringBuilder or
StringBuffer if they might change.

10. You can pass strings to the main method from the command line. Strings passed to
the main program are stored in args, which is an array of strings. The first string is
represented by args[0], and args.length is the number of strings passed.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 9.2–9.3
*9.1 (Check SSN) Write a program that prompts the user to enter a Social Security

number in the format DDD-DD-DDDD, where D is a digit. The program displays
Valid SSN for a correct Social Security number and Invalid SSN otherwise.

**9.2 (Check substrings) You can check whether a string is a substring of another string
by using the indexOf method in the String class. Write your own method for
this function. Write a program that prompts the user to enter two strings, and
checks whether the first string is a substring of the second.

**9.3 (Check password) Some websites impose certain rules for passwords. Write a
method that checks whether a string is a valid password. Suppose the password
rules are as follows:

■ A password must have at least eight characters.
■ A password consists of only letters and digits.
■ A password must contain at least two digits.

Write a program that prompts the user to enter a password and displays Valid
Password if the rules are followed or Invalid Password otherwise.

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 363

9.4 (Occurrences of a specified character) Write a method that finds the number of
occurrences of a specified character in a string using the following header:

public static int count(String str, char a)

For example, count("Welcome", 'e') returns 2. Write a test program that
prompts the user to enter a string followed by a character and displays the number
of occurrences of the character in the string.

**9.5 (Occurrences of each digit in a string) Write a method that counts the occurrences
of each digit in a string using the following header:

public static int[] count(String s)

The method counts how many times a digit appears in the string. The return value
is an array of ten elements, each of which holds the count for a digit. For example,
after executing int[] counts = count("12203AB3"), counts[0] is 1,
counts[1] is 1, counts[2] is 2, and counts[3] is 2.

Write a test program that prompts the user to enter a string and displays the num-
ber of occurrences of each digit in the string.

*9.6 (Count the letters in a string) Write a method that counts the number of letters in a
string using the following header:

public static int countLetters(String s)

Write a test program that prompts the user to enter a string and displays the num-
ber of letters in the string.

*9.7 (Phone keypads) The international standard letter/number mapping found on the
telephone is:

1 2 3

ABC DEF

4 5 6

GHI JKL MNO

7 8 9

PQRS TUV WXYZ

0

Write a method that returns a number, given an uppercase letter, as follows:

public static int getNumber(char uppercaseLetter)

Write a test program that prompts the user to enter a phone number as a string. The
input number may contain letters. The program translates a letter (upper- or lower-
case) to a digit and leaves all other characters intact. Here is a sample run of the
program:

Enter a string:
1-800-3569377

1-800-Flowers

364 Chapter 9 Strings

Enter a string: 1800flowers
18003569377

*9.8 (Binary to decimal) Write a method that parses a binary number as a string into a
decimal integer. The method header is:

public static int binaryToDecimal(String binaryString)

For example, binary string 10001 is 17
Therefore, binaryToDecimal("10001") returns 17. Note that

Integer.parseInt("10001", 2) parses a binary string to a decimal value.
Do not use this method in this exercise.

Write a test program that prompts the user to enter a binary string and displays the
corresponding decimal integer value.

Section 9.4
**9.9 (Binary to hex) Write a method that parses a binary number into a hex number.

The method header is:

public static String binaryToHex(String binaryValue)

Write a test program that prompts the user to enter a binary number and displays
the corresponding hexadecimal value.

**9.10 (Decimal to binary) Write a method that parses a decimal number into a binary
number as a string. The method header is:

public static String decimalToBinary(int value)

Write a test program that prompts the user to enter a decimal integer value and dis-
plays the corresponding binary value.

**9.11 (Sort characters in a string) Write a method that returns a sorted string using the
following header:

public static String sort(String s)

For example, sort("acb") returns abc.

Write a test program that prompts the user to enter a string and displays the sorted
string.

**9.12 (Anagrams) Write a method that checks whether two words are anagrams. Two
words are anagrams if they contain the same letters in any order. For example,
silent and listen are anagrams. The header of the method is:

public static boolean isAnagram(String s1, String s2)

Write a test program that prompts the user to enter two strings and, if they are
anagrams, displays two strings are anagrams, and displays two strings
are not anagrams if they are not anagrams.

Section 9.5
*9.13 (Pass a string to check palindromes) Rewrite Listing 9.1 by passing the string as a

command-line argument.

*9.14 (Sum integers) Write two programs. The first program passes an unspecified num-
ber of integers as separate strings to the main method and displays their total. The

+ 1 = 17).
(1 * 24 + 0 * 23 + 0 * 22 + 0 * 2

Number conversion

VideoNote

Programming Exercises 365

second program passes an unspecified number of integers delimited by one space
in a string to the main method and displays their total. Name the two programs
Exercise9_14a and Exercise9_14b, as shown in Figure 9.15.

*9.15 (Find the number of uppercase letters in a string) Write a program that passes a
string to the main method and displays the number of uppercase letters in the string.

Comprehensive
**9.16 (Implement the String class) The String class is provided in the Java library.

Provide your own implementation for the following methods (name the new class
MyString1):

public MyString1(char[] chars);
public char charAt(int index);
public int length();
public MyString1 substring(int begin, int end);
public MyString1 toLowerCase();
public boolean equals(MyString1 s);
public static MyString1 valueOf(int i);

**9.17 (Guess the capitals) Write a program that repeatedly prompts the user to enter a
capital for a state. Upon receiving the user input, the program reports whether the
answer is correct. Assume that 50 states and their capitals are stored in a two-
dimensional array, as shown in Figure 9.16. The program prompts the user to
answer all states’ capitals and displays the total correct count. The user’s answer is
not case-sensitive.

FIGURE 9.15 The program adds all the numbers passed from the command line.

Alabama Montgomery
Alaska Juneau
Arizona Phoenix
... ...
... ...

FIGURE 9.16 A two-dimensional array stores states and their capitals.

Here is a sample run:

What is the capital of Alabama?
The correct answer should be Montgomery
What is the capital of Alaska?
Your answer is correct
What is the capital of Arizona? ...
...
The correct count is 35

Juneau

Montogomery

366 Chapter 9 Strings

**9.18 (Implement the String class) The String class is provided in the Java library.
Provide your own implementation for the following methods (name the new class
MyString2):

public MyString2(String s);
public int compare(String s);
public MyString2 substring(int begin);
public MyString2 toUpperCase();
public char[] toChars();
public static MyString2 valueOf(boolean b);

*9.19 (Common prefix) Write a method that returns the longest common prefix of two
strings. For example, the longest common prefix of distance and
disinfection is dis. The header of the method is:

public static String prefix(String s1, String s2)

If the two strings don’t have a common prefix, the method returns an empty string.

Write a main method that prompts the user to enter two strings and displays their
longest common prefix.

9.20 (Implement the Character class) The Character class is provided in the Java
library. Provide your own implementation for this class. Name the new class
MyCharacter.

**9.21 (New string split method) The split method in the String class returns an
array of strings consisting of the substrings split by the delimiters. However, the
delimiters are not returned. Implement the following new method that returns an
array of strings consisting of the substrings split by the matching delimiters,
including the matching delimiters.

public static String[] split(String s, String regex)

For example, split("ab#12#453", "#") returns ab, #, 12, #, 453 in an array
of String, and split("a?b?gf#e", "[?#]") returns a, b, ?, b, gf, #, and e
in an array of String.

**9.22 (Implement the StringBuilder class) The StringBuilder class is provided
in the Java library. Provide your own implementation for the following methods
(name the new class MyStringBuilder1):

public MyStringBuilder1(String s);
public MyStringBuilder1 append(MyStringBuilder1 s);
public MyStringBuilder1 append(int i);
public int length();
public char charAt(int index);
public MyStringBuilder1 toLowerCase();
public MyStringBuilder1 substring(int begin, int end);
public String toString();

**9.23 (Financial: credit card number validation) Rewrite Programming Exercise 5.31
using a string input for the credit card number. Redesign the program using the
following methods:

/** Return true if the card number is valid */
public static boolean isValid(String cardNumber)

/** Get the result from Step 2 */
public static int sumOfDoubleEvenPlace(String cardNumber)

Programming Exercises 367

/** Return this number if it is a single digit; otherwise,
* return the sum of the two digits */

public static int getDigit(int number)

/** Return sum of odd-place digits in number */
public static int sumOfOddPlace(String cardNumber)

**9.24 (Implement the StringBuilder class) The StringBuilder class is provided
in the Java library. Provide your own implementation for the following methods
(name the new class MyStringBuilder2):

public MyStringBuilder2();
public MyStringBuilder2(char[] chars);
public MyStringBuilder2(String s);
public MyStringBuilder2 insert(int offset, MyStringBuilder2 s);
public MyStringBuilder2 reverse();
public MyStringBuilder2 substring(int begin);
public MyStringBuilder2 toUpperCase();

***9.25 (Game: hangman) Write a hangman game that randomly generates a word and
prompts the user to guess one letter at a time, as shown in the sample run. Each
letter in the word is displayed as an asterisk. When the user makes a correct
guess, the actual letter is then displayed. When the user finishes a word, display
the number of misses and ask the user whether to continue to play with another
word. Declare an array to store words, as follows:

// Add any words you wish in this array
String[] words = {"write", "that", ...};

(Guess) Enter a letter in word ******* > p
(Guess) Enter a letter in word p****** > r
(Guess) Enter a letter in word pr**r** > p

p is already in the word
(Guess) Enter a letter in word pr**r** > o
(Guess) Enter a letter in word pro*r** > g
(Guess) Enter a letter in word progr** > n

n is not in the word
(Guess) Enter a letter in word progr** > m
(Guess) Enter a letter in word progr*m > a
The word is program. You missed 1 time
Do you want to guess another word? Enter y or n>

**9.26 (Check ISBN-10) Use string operations to simplify Programming Exercise 3.9.
Enter the first 9 digits of an ISBN number as a string.

*9.27 (Bioinformatics: find genes) Biologists use a sequence of the letters A, C, T, and G
to model a genome. A gene is a substring of a genome that starts after a triplet
ATG and ends before a triplet TAG, TAA, or TGA. Furthermore, the length of a
gene string is a multiple of 3, and the gene does not contain any of the triplets
ATG, TAG, TAA, or TGA. Write a program that prompts the user to enter a
genome and displays all genes in the genome. If no gene is found in the input
sequence, display “no gene is found”. Here are the sample runs:

Enter a genome string:
TTT
GGGCGT

TTATGTTTTAAGGATGGGGCGTTAGTT

Check ISBN-10

VideoNote

368 Chapter 9 Strings

Enter a genome string:
no gene is found

TGTGTGTATAT

*9.28 (Calculator) Revise Listing 9.5, Calculator.java, to accept an expression in which
the operands and operator are separated by zero or more spaces. For example, 3+4
and 3 + 4 are acceptable expressions.

*9.29 (Business: check ISBN-13) ISBN-13 is a new standard for identifying books. It
uses the 13 digits The last digit, is a check-
sum, which is calculated from the other digits using the following formula:

If the checksum is 10, replace it with 0. Your program should read the input as a
string. Here are sample runs:

10 - (d1 + 3d2 + d3 + 3d4 + d5 + 3d6 + d7 + 3d8 + d9 + 3d10 + d11 + 3d12) % 10

d13,d1d2d3d4d5d6d7d8d9d10d11d12d13.

Enter the first 12 digits of an ISBN-13 as a string:

The ISBN-13 number is 9780132130806
978013213080

Enter the first 12 digits of an ISBN-13 as a string:

The ISBN-13 number is 9780132130790
978013213079

Enter a string:
The new string is: London England 2015

london england 2015

Enter a string:
The new string is: i'M HERE

I'm here

*9.30 (Capitalize first letter of each word) Write the following method that returns a
new string in which the first letter in each word is capitalized.

public static void title(String s)

Write a test program that prompts the user to enter a string and invokes this
method, and displays the return value from this method. Here is a sample run:

Note that words may be separated by multiple blank spaces.

*9.31 (Swap case) Write the following method that returns a new string in which the
uppercase letters are changed to lowercase and lowercase letters are changed to
uppercase.

public static String swapCase(String s)

Write a test program that prompts the user to enter a string and invokes this
method, and displays the return value from this method. Here is a sample run:

CHAPTER

10
THINKING IN
OBJECTS

Objectives
■ To create immutable objects from immutable classes to protect the contents

of objects (§10.2).

■ To determine the scope of variables in the context of a class (§10.3).

■ To use the keyword this to refer to the calling object itself (§10.4).

■ To apply class abstraction to develop software (§10.5).

■ To explore the differences between the procedural paradigm and
object-oriented paradigm (§10.6).

■ To develop classes for modeling composition relationships (§10.7).

■ To design programs using the object-oriented paradigm (§§10.8–10.10).

■ To design classes that follow the class-design guidelines (§10.11).

■ To create objects for primitive values using the wrapper classes (Byte,
Short, Integer, Long, Float, Double, Character, and Boolean)
(§10.12).

■ To simplify programming using automatic conversion between primitive
types and wrapper class types (§10.13).

■ To use the BigInteger and BigDecimal classes for computing very large
numbers with arbitrary precisions (§10.14).

370 Chapter 10 Thinking in Objects

Key
Point

Key
Point

10.1 Introduction
The focus of this chapter is on class design and explores the differences between
procedural programming and object-oriented programming.

The preceding two chapters introduced objects and classes. You learned how to define classes,
create objects, and use objects from several classes in the Java API (e.g., Date, Random,
String, StringBuilder, and Scanner). This book’s approach is to teach problem solving
and fundamental programming techniques before object-oriented programming. This chapter
shows how procedural and object-oriented programming differ. You will see the benefits of
object-oriented programming and learn to use it effectively.

We will use several examples to illustrate the advantages of the object-oriented approach.
The examples involve designing new classes and using them in applications. We first intro-
duce some language features supporting these examples.

10.2 Immutable Objects and Classes
You can define immutable classes to create immutable objects. The contents of
immutable objects cannot be changed.

Normally, you create an object and allow its contents to be changed later. However, occasion-
ally it is desirable to create an object whose contents cannot be changed once the object has
been created. We call such an object an immutable object and its class an immutable class.
The String class, for example, is immutable. If you deleted the set method in the
CircleWithPrivateDataFields class in Listing 8.9, the class would be immutable,
because radius is private and cannot be changed without a set method.

If a class is immutable, then all its data fields must be private and it cannot contain public
set methods for any data fields. A class with all private data fields and no mutators is not
necessarily immutable. For example, the following Student class has all private data fields
and no set methods, but it is not an immutable class.

1
2 private int id;
3
4
5
6 public Student(int ssn, String newName) {
7 id = ssn;
8
9 dateCreated = new java.util.Date();
10 }
11
12 public int getId() {
13 return id;
14 }
15
16 public String getName() {
17 return name;
18 }
19
20
21 return dateCreated;
22 }
23 }

As shown in the following code, the data field dateCreated is returned using the
getDateCreated() method. This is a reference to a Date object. Through this reference,
the content for dateCreated can be changed.

public java.util.Date getDateCreated() {

name = newName;

private java.util.Date dateCreated;
private String name;

public class Student {

Immutable objects and this
keyword

immutable object

immutable class

Student class

VideoNote

10.3 The Scope of Variables 371

Key
Point

✓Point✓Check

public class Test {
public static void main(String[] args) {
Student student = new Student(111223333, "John");

dateCreated.setTime(200000); // Now dateCreated field is changed!
}

}

For a class to be immutable, it must meet the following requirements:

■ All data fields must be private.

■ There can’t be any mutator methods for data fields.

■ No accessor methods can return a reference to a data field that is mutable.

Interested readers may refer to Supplement III.AB for an extended discussion on immutable
objects.

10.1 If a class contains only private data fields and no set methods, is the class immutable?

10.2 If all the data fields in a class are private and primitive types, and the class doesn’t
contain any set methods, is the class immutable?

10.3 Is the following class immutable?

public class A {
private int[] values;

public int[] getValues() {
return values;

}
}

10.3 The Scope of Variables
The scope of instance and static variables is the entire class, regardless of where the
variables are declared.

Chapter 5, Methods, discussed local variables and their scope rules. Local variables are
declared and used inside a method locally. This section discusses the scope rules of all the
variables in the context of a class.

Instance and static variables in a class are referred to as the class’s variables or data fields.
A variable defined inside a method is referred to as a local variable. The scope of a class’s
variables is the entire class, regardless of where the variables are declared. A class’s variables
and methods can appear in any order in the class, as shown in Figure 10.1a. The exception is
when a data field is initialized based on a reference to another data field. In such cases, the

java.util.Date dateCreated = student.getDateCreated();

class’s variables

FIGURE 10.1 Members of a class can be declared in any order, with one exception.

public class Circle {
public double findArea() {
return radius * radius * Math.PI;

}

private double radius = 1;
}

public class F {
private int i;
private int j = i + 1;

}

(a) The variable radius and method findArea() can be
declared in any order.

(b) i has to be declared before j because j’s initial value is
dependent on i.

372 Chapter 10 Thinking in Objects

✓Point✓Check

other data field must be declared first, as shown in Figure 10.1b. For consistency, this book
declares data fields at the beginning of the class.

You can declare a class’s variable only once, but you can declare the same variable name in
a method many times in different nonnesting blocks.

If a local variable has the same name as a class’s variable, the local variable takes
precedence and the class’s variable with the same name is hidden. For example, in the fol-
lowing program, x is defined both as an instance variable and as a local variable in the
method.

public class F {
private int // Instance variable
private int y = 0;

public F() {
}

public void p() {
int // Local variable
System.out.println("x = " + x);
System.out.println("y = " + y);

}
}

What is the printout for f.p(), where f is an instance of F? The printout for f.p() is 1 for x
and 0 for y. Here is why:

■ x is declared as a data field with the initial value of 0 in the class, but it is also
declared in the method p() with an initial value of 1. The latter x is referenced in the
System.out.println statement.

■ y is declared outside the method p(), but y is accessible inside the method.

Tip
To avoid confusion and mistakes, do not use the names of instance or static variables as
local variable names, except for method parameters.

10.4 What is the output of the following program?

public class Test {
private static int i = 0;
private static int j = 0;

public static void main(String[] args) {
int i = 2;
int k = 3;

{
int j = 3;
System.out.println("i + j is " + i + j);

}

k = i + j;
System.out.println("k is " + k);
System.out.println("j is " + j);

}
}

x = 1;

x = 0;

hidden variables

10.4 The this Reference 373

Key
Point

10.4 The this Reference
The keyword this refers to the object itself. It can also be used inside a constructor to
invoke another constructor of the same class.

The this keyword is the name of a reference that an object can use to refer to itself. You can
use the this keyword to refer to the object’s instance members. For example, the following
code in (a) uses this to reference the object’s radius and invokes its getArea() method
explicitly. The this reference is normally omitted, as shown in (b). However, the this refer-
ence is needed to reference hidden data fields or invoke an overloaded constructor.

this keyword

hidden data fields

public class Circle {
private double radius;

...

public double getArea() {
return .radius * .radius

* Math.PI;
}

public String toString() {
return "radius: " + .radius

+ "area: " + .getArea();
}

}

this

this

thisthis

(a)

public class Circle {
private double radius;

...

public double getArea() {
return radius * radius * Math.PI;

}

public String toString() {
return "radius: " + radius

+ "area: " + getArea();
}

}

Equivalent

(b)

10.4.1 Using this to Reference Hidden Data Fields
The this keyword can be used to reference a class’s hidden data fields. For example, a data-
field name is often used as the parameter name in a set method for the data field. In this case,
the data field is hidden in the set method. You need to reference the hidden data-field name
in the method in order to set a new value to it. A hidden static variable can be accessed simply
by using the ClassName.staticVariable reference. A hidden instance variable can be
accessed by using the keyword this, as shown in Figure 10.2a.

public class F {
private int i = 5;
private static double k = 0;

public void setI(int i) {
;

}

public static void setK(double k) {

}

// Other methods omitted
}

F.k = k;

this.i = i

(a)

Suppose that f1 and f2 are two objects of F.

Invoking f1.setI(10) is to execute
this.i = 10, where this refers f1

Invoking f2.setI(45) is to execute
this.i = 45, where this refers f2

Invoking F.setK(33) is to execute
F.k = 33. setK is a static method

(b)

FIGURE 10.2 The keyword this refers to the calling object that invokes the method.

The this keyword gives us a way to refer to the object that invokes an instance method.
To invoke f1.setI(10), this.i = i is executed, which assigns the value of parameter i
to the data field i of this calling object f1. The keyword this refers to the object that invokes

374 Chapter 10 Thinking in Objects

the instance method setI, as shown in Figure 10.2b. The line F.k = k means that the value
in parameter k is assigned to the static data field k of the class, which is shared by all the
objects of the class.

10.4.2 Using this to Invoke a Constructor
The this keyword can be used to invoke another constructor of the same class. For example,
you can rewrite the Circle class as follows:

✓Point✓Check

public class Circle {
private double radius;

public Circle(double radius) {
this.radius = radius;

} The this keyword is used to reference the hidden
data field radius of the object being constructed.

public Circle() {

} The this keyword is used to invoke another
constructor.

...
}

this(1.0);

The line this(1.0) in the second constructor invokes the first constructor with a double
value argument.

Note
Java requires that the this(arg-list) statement appear first in the constructor
before any other executable statements.

Tip
If a class has multiple constructors, it is better to implement them using this(arg-
list) as much as possible. In general, a constructor with no or fewer arguments can
invoke a constructor with more arguments using this(arg-list). This syntax often
simplifies coding and makes the class easier to read and to maintain.

10.5 Describe the role of the this keyword.

10.6 What is wrong in the following code?

1 public class C {
2 private int p;
3
4 public C() {
5 System.out.println("C's no-arg constructor invoked");
6 this(0);
7 }
8
9 public C(int p) {
10 p = p;
11 }
12
13 public void setP(int p) {
14 p = p;
15 }
16 }

10.5 Class Abstraction and Encapsulation 375

10.7 What is wrong in the following code?

public class Test {
private int id;

public void m1() {
this.id = 45;

}

public void m2() {
Test.id = 45;

}
}

10.5 Class Abstraction and Encapsulation
Class abstraction is the separation of class implementation from the use of a class. The
details of implementation are encapsulated and hidden from the user. This is known as
class encapsulation.

In Chapter 5, you learned about method abstraction and used it in stepwise refinement. Java
provides many levels of abstraction, and class abstraction separates class implementation
from how the class is used. The creator of a class describes the functions of the class and lets
the user know how the class can be used. The collection of methods and fields that are acces-
sible from outside the class, together with the description of how these members are expected
to behave, serves as the class’s contract. As shown in Figure 10.3, the user of the class does
not need to know how the class is implemented. The details of implementation are encapsu-
lated and hidden from the user. This is called class encapsulation. For example, you can cre-
ate a Circle object and find the area of the circle without knowing how the area is computed.
For this reason, a class is also known as an abstract data type (ADT).

Class abstraction and encapsulation are two sides of the same coin. Many real-life exam-
ples illustrate the concept of class abstraction. Consider, for instance, building a computer
system. Your personal computer has many components—a CPU, memory, disk, motherboard,
fan, and so on. Each component can be viewed as an object that has properties and methods.
To get the components to work together, you need know only how each component is used
and how it interacts with the others. You don’t need to know how the components work inter-
nally. The internal implementation is encapsulated and hidden from you. You can build a
computer without knowing how a component is implemented.

The computer-system analogy precisely mirrors the object-oriented approach. Each com-
ponent can be viewed as an object of the class for the component. For example, you might
have a class that models all kinds of fans for use in a computer, with properties such as fan
size and speed and methods such as start and stop. A specific fan is an instance of this class
with specific property values.

As another example, consider getting a loan. A specific loan can be viewed as an object of
a Loan class. The interest rate, loan amount, and loan period are its data properties, and

Key
Point

class abstraction

class’s contract

class encapsulation

abstract data type

Class Contract
(signatures of

public methods and
public constants)

Class

Class implementation
is like a black box
hidden from the clients

Clients use the
class through the

contract of the class

FIGURE 10.3 Class abstraction separates class implementation from the use of the class.

376 Chapter 10 Thinking in Objects

computing the monthly payment and total payment are its methods. When you buy a car, a loan
object is created by instantiating the class with your loan interest rate, loan amount, and loan
period. You can then use the methods to find the monthly payment and total payment of your
loan. As a user of the Loan class, you don’t need to know how these methods are implemented.

Listing 2.8, ComputeLoan.java, presented a program for computing loan payments. That
program cannot be reused in other programs because the code for computing the payments is
in the main method. One way to fix this problem is to define static methods for computing the
monthly payment and total payment. However, this solution has limitations. Suppose you wish
to associate a date with the loan. There is no good way to tie a date with a loan without using
objects. The traditional procedural programming paradigm is action-driven, and data are sepa-
rated from actions. The object-oriented programming paradigm focuses on objects, and actions
are defined along with the data in objects. To tie a date with a loan, you can define a loan class
with a date along with other of the loan’s properties as data fields. A loan object now contains
data and actions for manipulating and processing data, and the loan data and actions are inte-
grated in one object. Figure 10.4 shows the UML class diagram for the Loan class.

The Loan class

The UML diagram in Figure 10.4 serves as the contract for the Loan class. Throughout
this book, you will play the roles of both class user and class developer. Remember that a
class user can use the class without knowing how the class is implemented.

Assume that the Loan class is available. The program in Listing 10.1 uses that class.

LISTING 10.1 TestLoanClass.java
1 import java.util.Scanner;
2
3 public class TestLoanClass {
4 /** Main method */
5 public static void main(String[] args) {

Loan

The annual interest rate of the loan (default: 2.5).

Returns the annual interest rate of this loan.

Sets a new annual interest rate for this loan.

Sets a new number of years for this loan.

Sets a new amount for this loan.

Returns the monthly payment for this loan.

The number of years for the loan (default: 1).

The loan amount (default: 1000).

The date this loan was created.

Constructs a loan with specified interest rate, years,
 and loan amount.

Returns the number of the years of this loan.

Returns the amount of this loan.

Returns the date of the creation of this loan.

Returns the total payment for this loan.

+Loan(annualInterestRate: double,
 numberOfYears: int,loanAmount:
 double)

+getAnnualInterestRate(): double

+setNumberOfYears(
 numberOfYears: int): void

+setLoanAmount(
 loanAmount: double): void

+getMonthlyPayment(): double

+setAnnualInterestRate(
 annualInterestRate: double): void

+Loan()

+getNumberOfYears(): int

+getLoanAmount(): double

+getLoanDate(): java.util.Date

+getTotalPayment(): double

Constructs a default Loan object.

-annualInterestRate: double

-numberOfYears: int

-loanAmount: double

-loanDate: java.util.Date

FIGURE 10.4 The Loan class models the properties and behaviors of loans.

VideoNote

10.5 Class Abstraction and Encapsulation 377

6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8
9 // Enter annual interest rate
10 System.out.print(
11 "Enter annual interest rate, for example, 8.25: ");
12 double annualInterestRate = input.nextDouble();
13
14 // Enter number of years
15 System.out.print("Enter number of years as an integer: ");
16 int numberOfYears = input.nextInt();
17
18 // Enter loan amount
19 System.out.print("Enter loan amount, for example, 120000.95: ");
20 double loanAmount = input.nextDouble();
21
22 // Create a Loan object
23 Loan loan =
24 ;
25
26 // Display loan date, monthly payment, and total payment
27 System.out.printf("The loan was created on %s\n" +
28 "The monthly payment is %.2f\nThe total payment is %.2f\n",
29 loan.getLoanDate().toString(), loan.getMonthlyPayment(),
30 loan.getTotalPayment());
31 }
32 }

new Loan(annualInterestRate, numberOfYears, loanAmount) create Loan object

invoke instance method
invoke instance method

Enter annual interest rate, for example, 8.25:
Enter number of years as an integer:
Enter loan amount, for example, 120000.95:
The loan was created on Sat Jun 16 21:12:50 EDT 2012
The monthly payment is 17.75
The total payment is 1064.84

1000
5

2.5

The main method reads the interest rate, the payment period (in years), and the loan amount;
creates a Loan object; and then obtains the monthly payment (line 29) and the total payment
(line 30) using the instance methods in the Loan class.

The Loan class can be implemented as in Listing 10.2.

LISTING 10.2 Loan.java
1 public {
2 private double annualInterestRate;
3 private int numberOfYears;
4 private double loanAmount;
5 private java.util.Date loanDate;
6
7 /** Default constructor */
8 public Loan() {
9 this(2.5, 1, 1000);
10 }
11
12 /** Construct a loan with specified annual interest rate,
13 number of years, and loan amount
14 */

class Loan

no-arg constructor

378 Chapter 10 Thinking in Objects

15
16 {
17 this.annualInterestRate = annualInterestRate;
18 this.numberOfYears = numberOfYears;
19 this.loanAmount = loanAmount;
20 loanDate = new java.util.Date();
21 }
22
23 /** Return annualInterestRate */
24 public double getAnnualInterestRate() {
25 return annualInterestRate;
26 }
27
28 /** Set a new annualInterestRate */
29 public void setAnnualInterestRate(double annualInterestRate) {
30 this.annualInterestRate = annualInterestRate;
31 }
32
33 /** Return numberOfYears */
34 public int getNumberOfYears() {
35 return numberOfYears;
36 }
37
38 /** Set a new numberOfYears */
39 public void setNumberOfYears(int numberOfYears) {
40 this.numberOfYears = numberOfYears;
41 }
42
43 /** Return loanAmount */
44 public double getLoanAmount() {
45 return loanAmount;
46 }
47
48 /** Set a new loanAmount */
49 public void setLoanAmount(double loanAmount) {
50 this.loanAmount = loanAmount;
51 }
52
53 /** Find monthly payment */
54 public double getMonthlyPayment() {
55 double monthlyInterestRate = annualInterestRate / 1200;
56 double monthlyPayment = loanAmount * monthlyInterestRate / (1 -
57 (1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12)));
58 return monthlyPayment;
59 }
60
61 /** Find total payment */
62 public double getTotalPayment() {
63 double totalPayment = getMonthlyPayment() * numberOfYears * 12;
64 return totalPayment;
65 }
66
67 /** Return loan date */
68 public java.util.Date getLoanDate() {
69 return loanDate;
70 }
71 }

double loanAmount)
public Loan(double annualInterestRate, int numberOfYears,constructor

10.6 Object-Oriented Thinking 379

From a class developer’s perspective, a class is designed for use by many different customers.
In order to be useful in a wide range of applications, a class should provide a variety of ways
for customization through constructors, properties, and methods.

The Loan class contains two constructors, four get methods, three set methods, and the
methods for finding the monthly payment and the total payment. You can construct a Loan
object by using the no-arg constructor or the constructor with three parameters: annual inter-
est rate, number of years, and loan amount. When a loan object is created, its date is stored in
the loanDate field. The getLoanDate method returns the date. The three get methods—
getAnnualInterest, getNumberOfYears, and getLoanAmount—return the annual
interest rate, payment years, and loan amount, respectively. All the data properties and meth-
ods in this class are tied to a specific instance of the Loan class. Therefore, they are instance
variables and methods.

Important Pedagogical Tip
Use the UML diagram for the Loan class shown in Figure 10.4 to write a test program
that uses the Loan class even though you don’t know how the Loan class is imple-
mented. This has three benefits:

■ It demonstrates that developing a class and using a class are two separate tasks.

■ It enables you to skip the complex implementation of certain classes without inter-
rupting the sequence of this book.

■ It is easier to learn how to implement a class if you are familiar with it by using the class.

For all the class examples from now on, create an object from the class and try using its
methods before turning your attention to its implementation.

10.8 If you redefine the Loan class in Listing 10.2 without set methods, is the class
immutable?

10.6 Object-Oriented Thinking
The procedural paradigm focuses on designing methods. The object-oriented
paradigm couples data and methods together into objects. Software design using the
object-oriented paradigm focuses on objects and operations on objects.

Chapters 1–7 introduced fundamental programming techniques for problem solving using
loops, methods, and arrays. Knowing these techniques lays a solid foundation for object-
oriented programming. Classes provide more flexibility and modularity for building reusable
software. This section improves the solution for a problem introduced in Chapter 3 using the
object-oriented approach. From these improvements, you will gain insight into the differences
between procedural and object-oriented programming and see the benefits of developing
reusable code using objects and classes.

Listing 3.5, ComputeAndInterpretBMI.java, presented a program for computing body
mass index. The code cannot be reused in other programs, because the code is in the main
method. To make it reusable, define a static method to compute body mass index as follows:

public static double getBMI(double weight, double height)

This method is useful for computing body mass index for a specified weight and height. How-
ever, it has limitations. Suppose you need to associate the weight and height with a person’s
name and birth date. You could declare separate variables to store these values, but these val-
ues would not be tightly coupled. The ideal way to couple them is to create an object that con-
tains them all. Since these values are tied to individual objects, they should be stored in
instance data fields. You can define a class named BMI as shown in Figure 10.5.

✓Point✓Check

Key
Point

380 Chapter 10 Thinking in Objects

Assume that the BMI class is available. Listing 10.3 gives a test program that uses this
class.

LISTING 10.3 UseBMIClass.java
1 public class UseBMIClass {
2 public static void main(String[] args) {
3
4 System.out.println("The BMI for " + + " is "
5 + + " " +);
6
7
8 System.out.println("The BMI for " + + " is "
9 + + " " +);
10 }
11 }

bmi2.getStatus()bmi2.getBMI()
bmi2.getName()

BMI bmi2 = new BMI("Susan King", 215, 70);

bmi1.getStatus()bmi1.getBMI()
bmi1.getName()

BMI bmi1 = new BMI("Kim Yang", 18, 145, 70);

The BMI class

create an object
invoke instance method

create an object
invoke instance method

The BMI for Kim Yang is 20.81 Normal
The BMI for Susan King is 30.85 Obese

Line 3 creates the object bmi1 for Kim Yang and line 7 creates the object bmi2 for Susan
King. You can use the instance methods getName(), getBMI(), and getStatus() to
return the BMI information in a BMI object.

The BMI class can be implemented as in Listing 10.4.

LISTING 10.4 BMI.java
1 public class BMI {
2 private String name;
3 private int age;
4 private double weight; // in pounds
5 private double height; // in inches
6 public static final double KILOGRAMS_PER_POUND = 0.45359237;

BMI

-name: String

-age: int
-weight: double

-height: double

+BMI(name: String, age: int, weight:
 double, height: double)

+BMI(name: String, weight: double,
 height: double)

+getBMI(): double

+getStatus(): String

The name of the person.

The age of the person.
The weight of the person in pounds.

The height of the person in inches.

Creates a BMI object with the specified
 name, age, weight, and height.

Creates a BMI object with the specified
 name, weight, height, and a default age 20.

Returns the BMI

Returns the BMI status (e.g., normal,
 overweight, etc.)

The get methods for these data fields
are provided in the class, but omitted in the
UML diagram for brevity.

FIGURE 10.5 The BMI class encapsulates BMI information.

VideoNote

10.6 Object-Oriented Thinking 381

7 public static final double METERS_PER_INCH = 0.0254;
8
9 public BMI(String name, int age, double weight, double height) {
10 this.name = name;
11 this.age = age;
12 this.weight = weight;
13 this.height = height;
14 }
15
16 public BMI(String name, double weight, double height) {
17
18 }
19
20
21 double bmi = weight * KILOGRAMS_PER_POUND /
22 ((height * METERS_PER_INCH) * (height * METERS_PER_INCH));
23 return Math.round(bmi * 100) / 100.0;
24 }
25
26
27 double bmi = getBMI();
28 if (bmi < 18.5)
29 return "Underweight";
30 else if (bmi < 25)
31 return "Normal";
32 else if (bmi < 30)
33 return "Overweight";
34 else

35 return "Obese";
36 }
37
38 public String getName() {
39 return name;
40 }
41
42 public int getAge() {
43 return age;
44 }
45
46 public double getWeight() {
47 return weight;
48 }
49
50 public double getHeight() {
51 return height;
52 }
53 }

The mathematical formula for computing the BMI using weight and height is given in Section 3.9.
The instance method getBMI() returns the BMI. Since the weight and height are instance
data fields in the object, the getBMI() method can use these properties to compute the BMI
for the object.

The instance method getStatus() returns a string that interprets the BMI. The interpre-
tation is also given in Section 3.9.

This example demonstrates the advantages of the object-oriented paradigm over the proce-
dural paradigm. The procedural paradigm focuses on designing methods. The object-oriented
paradigm couples data and methods together into objects. Software design using the object-
oriented paradigm focuses on objects and operations on objects. The object-oriented approach

public String getStatus() {

public double getBMI() {

this(name, 20, weight, height);

constructor

constructor

getBMI

getStatus

procedural vs. object-oriented
paradigms

382 Chapter 10 Thinking in Objects

combines the power of the procedural paradigm with an added dimension that integrates data
with operations into objects.

In procedural programming, data and operations on the data are separate, and this
methodology requires sending data to methods. Object-oriented programming places data
and the operations that pertain to them in an object. This approach solves many of the
problems inherent in procedural programming. The object-oriented programming
approach organizes programs in a way that mirrors the real world, in which all objects are
associated with both attributes and activities. Using objects improves software reusability
and makes programs easier to develop and easier to maintain. Programming in Java
involves thinking in terms of objects; a Java program can be viewed as a collection of
cooperating objects.

10.9 Is the BMI class defined in Listing 10.4 immutable?

10.7 Object Composition
An object can contain another object. The relationship between the two is called
composition.

In Listing 10.2, you defined the Loan class to contain a Date data field. The relationship
between Loan and Date is composition. In Listing 10.4, you defined the BMI class to contain
a String data field. The relationship between BMI and String is composition.

Composition is actually a special case of the aggregation relationship. Aggregation models
has-a relationships and represents an ownership relationship between two objects. The owner
object is called an aggregating object and its class an aggregating class. The subject object is
called an aggregated object and its class an aggregated class.

An object may be owned by several other aggregating objects. If an object is exclu-
sively owned by an aggregating object, the relationship between them is referred to as
composition. For example, “a student has a name” is a composition relationship between
the Student class and the Name class, whereas “a student has an address” is an aggrega-
tion relationship between the Student class and the Address class, because an address
may be shared by several students. In UML notation, a filled diamond is attached to an
aggregating class (e.g., Student) to denote the composition relationship with an aggregated
class (e.g., Name), and an empty diamond is attached to an aggregating class (e.g., Student)
to denote the aggregation relationship with an aggregated class (e.g., Address), as shown
in Figure 10.6.

Each class involved in a relationship may specify a multiplicity. A multiplicity could be a
number or an interval that specifies how many of the class’s objects are involved in the rela-
tionship. The character * means an unlimited number of objects, and the interval m..n means
that the number of objects should be between m and n, inclusive. In Figure 10.6, each student
has only one address, and each address may be shared by up to 3 students. Each student has
one name, and a name is unique for each student.

✓Point✓Check

Key
Point

aggregation

has-a relationship

composition

multiplicity

Aggregation

AddressName

Composition

1 1 1 1..3
Student

FIGURE 10.6 A student has a name and an address.

10.7 Object Composition 383

An aggregation relationship is usually represented as a data field in the aggregating class.
For example, the relationship in Figure 10.6 can be represented as follows:

Aggregation may exist between objects of the same class. For example, a person may have a
supervisor. This is illustrated in Figure 10.7.

In the relationship “a person has a supervisor,” as shown in Figure 10.7, a supervisor can
be represented as a data field in the Person class, as follows:

// The type for the data is the class itself

...
}

If a person can have several supervisors, as shown in Figure 10.8a, you may use an array to
store supervisors, as shown in Figure 10.8b.

private Person supervisor;

public class Person {

aggregation or composition

✓Point✓Check

1

1 Supervisor

Person

FIGURE 10.7 A person may have a supervisor.

Person

Supervisor

1

(a) (b)

m

public class Person {
 ...

private Person[] supervisors;
}

FIGURE 10.8 A person can have several supervisors.

public class Name {
...

}

Aggregated class

public class Student {
private Name name;
private Address address;

...
}

Aggregating class

public class Address {
...

}

Aggregated class

Note
Since aggregation and composition relationships are represented using classes in the
same way, many texts don’t differentiate them and call both compositions. We will do
the same in this book for simplicity.

10.10 What is an aggregation relationship between two objects?

10.11 What is a composition relationship between two objects?

384 Chapter 10 Thinking in Objects

10.8 Case Study: Designing the Course Class
This section designs a class for modeling courses.

This book’s philosophy is teaching by example and learning by doing. The book provides a
wide variety of examples to demonstrate object-oriented programming. This section and the
next two offer additional examples on designing classes.

Suppose you need to process course information. Each course has a name and has students
enrolled. You should be able to add/drop a student to/from the course. You can use a class to
model the courses, as shown in Figure 10.9.

A Course object can be created using the constructor Course(String name) by pass-
ing a course name. You can add students to the course using the addStudent(String stu-
dent) method, drop a student from the course using the dropStudent(String student)
method, and return all the students in the course using the getStudents() method. Suppose
the class is available; Listing 10.5 gives a test class that creates two courses and adds students
to them.

LISTING 10.5 TestCourse.java
1 public class TestCourse {
2 public static void main(String[] args) {
3
4
5
6
7 course1.addStudent("Kim Smith");
8 course1.addStudent("Anne Kennedy");
9
10
11 course2.addStudent("Steve Smith");
12
13 System.out.println("Number of students in course1: "
14 +);
15 String[] students = ;
16 for (int i = 0; i < ; i++)
17 System.out.print(students[i] + ", ");
18
19 System.out.println();
20 System.out.print("Number of students in course2: "

course1.getNumberOfStudents()
course1.getStudents()

course1.getNumberOfStudents()

course2.addStudent("Peter Jones");

course1.addStudent("Peter Jones");

Course course2 = new Course("Database Systems");
Course course1 = new Course("Data Structures");create a course

add a student

number of students
return students

Course

-courseName: String
-students: String[]

-numberOfStudents: int

+Course(courseName: String)

+getCourseName(): String

+addStudent(student: String): void

+dropStudent(student: String): void

+getStudents(): String[]
+getNumberOfStudents(): int

The name of the course.
An array to store the students for the course.

The number of students (default: 0).

Creates a course with the specified name.

Returns the course name.

Adds a new student to the course.

Drops a student from the course.
Returns the students for the course.
Returns the number of students for the course.

FIGURE 10.9 The Course class models the courses.

Key
Point

10.8 Case Study: Designing the Course Class 385

Number of students in course1: 3
Peter Jones, Kim Smith, Anne Kennedy,
Number of students in course2: 2

The Course class is implemented in Listing 10.6. It uses an array to store the students in the
course. For simplicity, assume that the maximum course enrollment is 100. The array is cre-
ated using new String[100] in line 3. The addStudent method (line 10) adds a student to
the array. Whenever a new student is added to the course, numberOfStudents is increased
(line 12). The getStudents method returns the array. The dropStudent method (line 27)
is left as an exercise.

LISTING 10.6 Course.java
1 public class Course {
2 private String courseName;
3 private String[] students = ;
4 private int numberOfStudents;
5
6 public Course(String courseName) {
7 this.courseName = courseName;
8 }
9
10
11 students[numberOfStudents] = student;
12 numberOfStudents++;
13 }
14
15
16 return students;
17 }
18
19
20 return numberOfStudents;
21 }
22
23
24 return courseName;
25 }
26
27
28 // Left as an exercise in Programming Exercise 10.9
29 }
30 }

The array size is fixed to be 100 (line 3), so you cannot have more than 100 students in the
course. You can improve the class by automatically increasing the array size in Programming
Exercise 10.9.

When you create a Course object, an array object is created. A Course object contains a
reference to the array. For simplicity, you can say that the Course object contains the array.

The user can create a Course object and manipulate it through the public methods
addStudent, dropStudent, getNumberOfStudents, and getStudents. However, the

public void dropStudent(String student) {

public String getCourseName() {

public int getNumberOfStudents() {

public String[] getStudents() {

public void addStudent(String student) {

new String[100] create students

add a course

return students

number of students

21 + course2.getNumberOfStudents());
22 }
23 }

386 Chapter 10 Thinking in Objects

user doesn’t need to know how these methods are implemented. The Course class encapsu-
lates the internal implementation. This example uses an array to store students, but you could
use a different data structure to store students. The program that uses Course does not
need to change as long as the contract of the public methods remains unchanged.

10.9 Case Study: Designing a Class for Stacks
This section designs a class for modeling stacks.

Recall that a stack is a data structure that holds data in a last-in, first-out fashion, as shown in
Figure 10.10.

Stacks have many applications. For example, the compiler uses a stack to process method
invocations. When a method is invoked, its parameters and local variables are pushed into a
stack. When a method calls another method, the new method’s parameters and local variables
are pushed into the stack. When a method finishes its work and returns to its caller, its associ-
ated space is released from the stack.

You can define a class to model stacks. For simplicity, assume the stack holds the int val-
ues. So name the stack class StackOfIntegers. The UML diagram for the class is shown in
Figure 10.11.

Key
Point

stack

The StackOfIntegers class

Suppose that the class is available. The test program in Listing 10.7 uses the class to create
a stack (line 3), store ten integers 0, 1, 2, . . . , and 9 (line 6), and displays them in reverse order
(line 9).

Data1

Data2
Data1

Data3

Data3
Data2
Data1

Data1

Data1

Data2

Data1

Data2

Data2
Data1

Data3

FIGURE 10.10 A stack holds data in a last-in, first-out fashion.

StackOfIntegers

-elements: int[]

-size: int

+StackOfIntegers()
+StackOfIntegers(capacity: int)
+empty(): boolean
+peek(): int

+push(value: int): void

+pop(): int

+getSize(): int

An array to store integers in the stack.
The number of integers in the stack.

Constructs an empty stack with a default capacity of 16.

Constructs an empty stack with a specified capacity.
Returns true if the stack is empty.
Returns the integer at the top of the stack without
 removing it from the stack.
Stores an integer into the top of the stack.

Removes the integer at the top of the stack and returns it.

Returns the number of elements in the stack.

FIGURE 10.11 The StackOfIntegers class encapsulates the stack storage and provides the operations for manipulating
the stack.

VideoNote

10.9 Case Study: Designing a Class for Stacks 387

create a stack

push to stack

LISTING 10.7 TestStackOfIntegers.java
1 public class TestStackOfIntegers {
2 public static void main(String[] args) {
3
4
5 for (int i = 0; i < 10; i++)
6
7
8 while (!stack.empty())
9 System.out.print(+ " ");
10 }
11 }

stack.pop()

stack.push(i);

StackOfIntegers stack = new StackOfIntegers();

pop from stack

9 8 7 6 5 4 3 2 1 0

How do you implement the StackOfIntegers class? The elements in the stack are stored in
an array named elements. When you create a stack, the array is also created. The no-arg
constructor creates an array with the default capacity of 16. The variable size counts the
number of elements in the stack, and size – 1 is the index of the element at the top of the
stack, as shown in Figure 10.12. For an empty stack, size is 0.

The StackOfIntegers class is implemented in Listing 10.8. The methods empty(), peek(),
pop(), and getSize() are easy to implement. To implement push(int value), assign
value to elements[size] if size < capacity (line 24). If the stack is full (i.e., size >=
capacity), create a new array of twice the current capacity (line 19), copy the contents of the
current array to the new array (line 20), and assign the reference of the new array to the current
array in the stack (line 21). Now you can add the new value to the array (line 24).

LISTING 10.8 StackOfIntegers.java
1 public {
2 private int[] elements;
3 private int size;
4 public static final int DEFAULT_CAPACITY = 16;
5
6 /** Construct a stack with the default capacity 16 */
7 {
8 this (DEFAULT_CAPACITY);

public StackOfIntegers()

class StackOfIntegers

max capacity 16

.

.

.

.

.

.

elements[0]
elements[1]

elements[size � 1]
capacity

top

bottom

size

elements[capacity � 1]

FIGURE 10.12 The StackOfIntegers class encapsulates the stack storage and provides
the operations for manipulating the stack.

388 Chapter 10 Thinking in Objects

9 }
10
11 /** Construct a stack with the specified maximum capacity */
12 {
13 elements = new int[capacity];
14 }
15
16 /** Push a new integer to the top of the stack */
17 public void push(int value) {
18 if (size >= elements.length) {
19 int[] temp = new int[elements.length * 2];
20 System.arraycopy(elements, 0, temp, 0, elements.length);
21 elements = temp;
22 }
23
24 elements[size++] = value;
25 }
26
27 /** Return and remove the top element from the stack */
28 public int pop() {
29 return elements[——size];
30 }
31
32 /** Return the top element from the stack */
33 public int peek() {
34 return elements[size - 1];
35 }
36
37 /** Test whether the stack is empty */
38 public boolean empty() {
39 return size == 0;
40 }
41
42 /** Return the number of elements in the stack */
43 public int getSize() {
44 return size;
45 }
46 }

public StackOfIntegers(int capacity)

10.10 Case Study: Designing the GuessDate Class
You can define utility classes that contain static methods and static data.

Listing 3.3, GuessBirthday.java, and Listing 7.6, GuessBirthdayUsingArray.java, presented
two programs for guessing birthdays. Both programs use the same data developed with the
procedural paradigm. The majority of the code in these two programs is to define the five sets
of data. You cannot reuse the code in these two programs, because the code is in the main
method. To make the code reusable, design a class to encapsulate the data, as defined in
Figure 10.13.

Note that getValue is defined as a static method because it is not dependent on a specific
object of the GuessDate class. The GuessDate class encapsulates dates as a private mem-
ber. The user of this class doesn’t need to know how dates is implemented or even that the
dates field exists in the class. All that the user needs to know is how to use this method to
access dates. Suppose this class is available. As shown in Section 3.4, there are five sets of
dates. Invoking getValue(setNo, row, column) returns the date at the specified row and
column in the given set. For example, getValue(1, 0, 0) returns 2.

double the capacity

add to stack

Key
Point

10.10 Case Study: Designing the GuessDate Class 389

The static array to hold dates.

Returns a date at the specified row and column
 in a given set.

GuessDate

-dates: int[][][]

+getValue(setNo: int, row: int,
 column: int): int

FIGURE 10.13 The GuessDate class defines data for guessing birthdays.

Assume that the GuessDate class is available. Listing 10.9 is a test program that uses this
class.

LISTING 10.9 UseGuessDateClass.java
1 import java.util.Scanner;
2
3 public class UseGuessDateClass {
4 public static void main(String[] args) {
5 int date = 0; // Date to be determined
6 int answer;
7
8 // Create a Scanner
9 Scanner input = new Scanner(System.in);
10
11 for (int i = 0; i < 5; i++) {
12 System.out.println("Is your birthday in Set" + (i + 1) + "?");
13 for (int j = 0; j < 4; j++) {
14 for (int k = 0; k < 4; k++)
15 System.out.print(+ " ");
16 System.out.println();
17 }
18
19 System.out.print("\nEnter 0 for No and 1 for Yes: ");
20 answer = input.nextInt();
21
22 if (answer == 1)
23 date += ;
24 }
25
26 System.out.println("Your birthday is " + date);
27 }
28 }

GuessDate.getValue(i, 0, 0)

GuessDate.getValue(i, j, k) invoke static method

invoke static method

Is your birthday in Set1?
1 3 5 7
9 11 13 15
17 19 21 23
25 27 29 31
Enter 0 for No and 1 for Yes:

Is your birthday in Set2?
2 3 6 7
10 11 14 15
18 19 22 23
26 27 30 31
Enter 0 for No and 1 for Yes: 1

0

390 Chapter 10 Thinking in Objects

Is your birthday in Set3?
4 5 6 7
12 13 14 15
20 21 22 23
28 29 30 31
Enter 0 for No and 1 for Yes:

Is your birthday in Set4?
8 9 10 11
12 13 14 15
24 25 26 27
28 29 30 31
Enter 0 for No and 1 for Yes:

Is your birthday in Set5?
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
Enter 0 for No and 1 for Yes:

Your birthday is 26

1

1

0

Since getValue is a static method, you don’t need to create an object in order to invoke it.
GuessDate.getValue(i, j, k) (line 15) returns the date at row j and column k in Set i.

The GuessDate class can be implemented as in Listing 10.10.

LISTING 10.10 GuessDate.java
1 public class GuessDate {
2
3 {{ 1, 3, 5, 7},
4 { 9, 11, 13, 15},
5 {17, 19, 21, 23},
6 {25, 27, 29, 31}},
7 {{ 2, 3, 6, 7},
8 {10, 11, 14, 15},
9 {18, 19, 22, 23},

10 {26, 27, 30, 31}},
11 {{ 4, 5, 6, 7},
12 {12, 13, 14, 15},
13 {20, 21, 22, 23},
14 {28, 29, 30, 31}},
15 {{ 8, 9, 10, 11},
16 {12, 13, 14, 15},
17 {24, 25, 26, 27},
18 {28, 29, 30, 31}},
19 {{16, 17, 18, 19},
20 {20, 21, 22, 23},
21 {24, 25, 26, 27},
22 {28, 29, 30, 31}}};
23
24 /** Prevent the user from creating objects from GuessDate */
25
26 }
27
28 /** Return a date at the specified row and column in a given set */

private GuessDate() {

private final static int[][][] dates = {static field

private constructor

10.11 Class Design Guidelines 391

static method

benefit of data encapsulation

private constructor

29
30 return dates[setNo][i][j];
31 }
32 }

This class uses a three-dimensional array to store dates (lines 2–22). You could use a dif-
ferent data structure (i.e., five two-dimensional arrays for representing five sets of numbers).
The implementation of the getValue method would change, but the program that uses
GuessDate wouldn’t need to change as long as the contract of the public method getValue
remains unchanged. This shows the benefit of data encapsulation.

The class defines a private no-arg constructor (line 25) to prevent the user from creating
objects for this class. Since all methods are static in this class, there is no need to create
objects from this class.

10.12 Why is the no-arg constructor in the Math class defined private?

10.11 Class Design Guidelines
Class design guidelines are helpful for designing sound classes.

You have learned how to design classes from the preceding two examples and from many
other examples in the preceding chapters. This section summarizes some of the guidelines.

10.11.1 Cohesion
A class should describe a single entity, and all the class operations should logically fit
together to support a coherent purpose. You can use a class for students, for example, but you
should not combine students and staff in the same class, because students and staff are differ-
ent entities.

A single entity with many responsibilities can be broken into several classes to separate the
responsibilities. The classes String, StringBuilder, and StringBuffer all deal with
strings, for example, but have different responsibilities. The String class deals with
immutable strings, the StringBuilder class is for creating mutable strings, and the
StringBuffer class is similar to StringBuilder except that StringBuffer contains
synchronized methods for updating strings.

10.11.2 Consistency
Follow standard Java programming style and naming conventions. Choose informative names
for classes, data fields, and methods. A popular style is to place the data declaration before the
constructor and place constructors before methods.

Make the names consistent. It is not a good practice to choose different names for similar
operations. For example, the length() method returns the size of a String, a
StringBuilder, and a StringBuffer. It would be inconsistent if different names were
used for this method in these classes.

In general, you should consistently provide a public no-arg constructor for constructing a
default instance. If a class does not support a no-arg constructor, document the reason. If no con-
structors are defined explicitly, a public default no-arg constructor with an empty body is assumed.

If you want to prevent users from creating an object for a class, you can declare a private
constructor in the class, as is the case for the Math class and the GuessDate class.

10.11.3 Encapsulation
A class should use the private modifier to hide its data from direct access by clients. This
makes the class easy to maintain.

public static int getValue(int setNo, int i, int j) {

✓Point✓Check

Key
Point

coherent purpose

separating responsibilities

naming conventions

naming consistency

no-arg constructor

encapsulating data fields

392 Chapter 10 Thinking in Objects

Provide a get method only if you want the field to be readable, and provide a set method
only if you want the field to be updateable. For example, the Course class provides a get
method for courseName, but no set method, because the user is not allowed to change the
course name once it is created.

10.11.4 Clarity
Cohesion, consistency, and encapsulation are good guidelines for achieving design clarity.
Additionally, a class should have a clear contract that is easy to explain and easy to understand.

Users can incorporate classes in many different combinations, orders, and environments.
Therefore, you should design a class that imposes no restrictions on how or when the user can
use it, design the properties in a way that lets the user set them in any order and with any com-
bination of values, and design methods that function independently of their order of occur-
rence. For example, the Loan class contains the properties loanAmount, numberOfYears,
and annualInterestRate. The values of these properties can be set in any order.

Methods should be defined intuitively without causing confusion. For example, the
substring(int beginIndex, int endIndex) method in the String class is some-
what confusing. The method returns a substring from beginIndex to endIndex – 1, rather
than to endIndex. It would be more intuitive to return a substring from beginIndex to
endIndex.

You should not declare a data field that can be derived from other data fields. For example,
the following Person class has two data fields: birthDate and age. Since age can be
derived from birthDate, age should not be declared as a data field.

public class Person {
private java.util.Date birthDate;

...
}

10.11.5 Completeness
Classes are designed for use by many different customers. In order to be useful in a wide
range of applications, a class should provide a variety of ways for customization through
properties and methods. For example, the String class contains more than 40 methods that
are useful for a variety of applications.

10.11.6 Instance vs. Static
A variable or method that is dependent on a specific instance of the class must be an instance
variable or method. A variable that is shared by all the instances of a class should be declared
static. For example, the variable numberOfObjects in CircleWithPrivateDataFields

in Listing 8.9 is shared by all the objects of the CircleWithPrivateDataFields class and
therefore is declared static. A method that is not dependent on a specific instance should
be defined as a static method. For instance, the getNumberOfObjects method in
CircleWithPrivateDataFields is not tied to any specific instance and therefore is
defined as a static method.

Always reference static variables and methods from a class name (rather than a reference
variable) to improve readability and avoid errors.

Do not pass a parameter from a constructor to initialize a static data field. It is better to
use a set method to change the static data field. Thus, the following class in (a) is better
replaced by (b).

private int age;

independent methods

intuitive meaning

independent properties

easy to explain

BAD CODE

10.12 Processing Primitive Data Type Values as Objects 393

Instance and static are integral parts of object-oriented programming. A data field or
method is either instance or static. Do not mistakenly overlook static data fields or methods.
It is a common design error to define an instance method that should have been static. For
example, the factorial(int n) method for computing the factorial of n should be
defined static, because it is independent of any specific instance.

A constructor is always instance, because it is used to create a specific instance. A static
variable or method can be invoked from an instance method, but an instance variable or
method cannot be invoked from a static method.

10.13 Describe class design guidelines.

10.12 Processing Primitive Data Type Values as Objects
A primitive type value is not an object, but it can be wrapped in an object using a
wrapper class in the Java API.

Owing to performance considerations, primitive data type values are not objects in Java.
Because of the overhead of processing objects, the language’s performance would be
adversely affected if primitive data type values were treated as objects. However, many Java
methods require the use of objects as arguments. Java offers a convenient way to incorporate,
or wrap, a primitive data type into an object (e.g., wrapping int into the Integer class, and
wrapping double into the Double class). Recall that a char value can be wrapped into a
Character object in Section 9.5. By using a wrapper class, you can process primitive data
type values as objects. Java provides Boolean, Character, Double, Float, Byte, Short,
Integer, and Long wrapper classes in the java.lang package for primitive data types. The
Boolean class wraps a Boolean value true or false. This section uses Integer and Dou-

ble as examples to introduce the numeric wrapper classes.

Note
Most wrapper class names for a primitive type are the same as the primitive data type
name with the first letter capitalized. The exceptions are Integer and Character.

Numeric wrapper classes are very similar to each other. Each contains the methods
doubleValue(), floatValue(), intValue(), longValue(), shortValue(), and
byteValue(). These methods “convert” objects into primitive type values. The key features
of Integer and Double are shown in Figure 10.14.

You can construct a wrapper object either from a primitive data type value or from a string
representing the numeric value—for example, new Double(5.0), new Double("5.0"),
new Integer(5), and new Integer("5").

common design error

✓Point✓Check

Key
Point

why wrapper class?

naming convention

public class SomeThing {
private int t1;
private static

public SomeThing(int t1, int t2) {
...

}
}

int t2;

(a)

public class SomeThing {
private int t1;
private static

public SomeThing(int t1) {
...

}

public static void setT2(int t2) {
SomeThing.t2 = t2;

}
}

int t2;

(b)

constructors

394 Chapter 10 Thinking in Objects

The wrapper classes do not have no-arg constructors. The instances of all wrapper classes
are immutable; this means that, once the objects are created, their internal values cannot be
changed.

Each numeric wrapper class has the constants MAX_VALUE and MIN_VALUE. MAX_VALUE
represents the maximum value of the corresponding primitive data type. For Byte, Short,
Integer, and Long, MIN_VALUE represents the minimum byte, short, int, and long val-
ues. For Float and Double, MIN_VALUE represents the minimum positive float and
double values. The following statements display the maximum integer (2,147,483,647),
the minimum positive float (1.4E–45), and the maximum double floating-point number

System.out.println("The maximum integer is " + Integer.MAX_VALUE);
System.out.println("The minimum positive float is " +
Float.MIN_VALUE);

System.out.println(
"The maximum double-precision floating-point number is " +
Double.MAX_VALUE);

Each numeric wrapper class contains the methods doubleValue(), floatValue(),
intValue(), longValue(), and shortValue() for returning a double, float, int,
long, or short value for the wrapper object. For example,

new Double("12.4").intValue() returns 12;
new Integer("12").doubleValue() returns 12.0;

Recall that the String class contains the compareTo method for comparing two strings.
The numeric wrapper classes contain the compareTo method for comparing two numbers
and returns 1, 0, or -1, if this number is greater than, equal to, or less than the other number.
For example,

(1.79769313486231570e+308d).

no no-arg constructor

immutable

constants

conversion methods

-value: int

+MAX_VALUE: int

+MIN_VALUE: int

+Integer(value: int)

+Integer(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float

+doubleValue(): double

+compareTo(o: Integer): int

+toString(): String

+valueOf(s: String): Integer

+valueOf(s: String, radix: int): Integer

+parseInt(s: String): int

+parseInt(s: String, radix: int): int

java.lang.Integer java.lang.Double

-value: double

+MAX_VALUE: double

+MIN_VALUE: double

+Double(value: double)

+Double(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float

+doubleValue(): double

+compareTo(o: Double): int

+toString(): String

+valueOf(s: String): Double

+valueOf(s: String, radix: int): Double

+parseDouble(s: String): double

+parseDouble(s: String, radix: int): double

FIGURE 10.14 The wrapper classes provide constructors, constants, and conversion methods for manipulating various
data types.

compareTo method

10.12 Processing Primitive Data Type Values as Objects 395

new Double("12.4").compareTo(new Double("12.3")) returns 1;
new Double("12.3").compareTo(new Double("12.3")) returns 0;
new Double("12.3").compareTo(new Double("12.51")) returns -1;

The numeric wrapper classes have a useful static method, valueOf (String s). This
method creates a new object initialized to the value represented by the specified string. For
example,

Double doubleObject = Double.valueOf("12.4");
Integer integerObject = Integer.valueOf("12");

You have used the parseInt method in the Integer class to parse a numeric string into
an int value and the parseDouble method in the Double class to parse a numeric string
into a double value. Each numeric wrapper class has two overloaded parsing methods to
parse a numeric string into an appropriate numeric value based on 10 (decimal) or any speci-
fied radix (e.g., 2 for binary, 8 for octal, and 16 for hexadecimal). The following examples
show how to use these methods.

// These two methods are in the Byte class
public static byte parseByte(String s)
public static byte parseByte(String s, int radix)

// These two methods are in the Short class
public static short parseShort(String s)
public static short parseShort(String s, int radix)

// These two methods are in the Integer class
public static int parseInt(String s)
public static int parseInt(String s, int radix)

// These two methods are in the Long class
public static long parseLong(String s)
public static long parseLong(String s, int radix)

// These two methods are in the Float class
public static float parseFloat(String s)
public static float parseFloat(String s, int radix)

// These two methods are in the Double class
public static double parseDouble(String s)
public static double parseDouble(String s, int radix)

For example,

Integer.parseInt("11", 2) returns 3;
Integer.parseInt("12", 8) returns 10;
Integer.parseInt("13", 10) returns 13;
Integer.parseInt("1A", 16) returns 26;

Integer.parseInt("12", 2) would raise a runtime exception because 12 is not a
binary number.

Note that you can convert a decimal number into a hex number using the format method.
For example,

String.format("%x", 26) returns 1A;

static valueOf methods

static parsing methods

converting decimal to hex

396 Chapter 10 Thinking in Objects

10.14 Describe primitive-type wrapper classes.

10.15 Can each of the following statements be compiled?

a. Integer i = new Integer("23");

b. Integer i = new Integer(23);

c. Integer i = Integer.valueOf("23");

d. Integer i = Integer.parseInt("23", 8);

e. Double d = new Double();

f. Double d = Double.valueOf("23.45");

g. int i = (Integer.valueOf("23")).intValue();

h. double d = (Double.valueOf("23.4")).doubleValue();

i. int i = (Double.valueOf("23.4")).intValue();

j. String s = (Double.valueOf("23.4")).toString();

10.16 How do you convert an integer into a string? How do you convert a numeric string
into an integer? How do you convert a double number into a string? How do you con-
vert a numeric string into a double value?

10.17 Show the output of the following code.

public class Test {
public static void main(String[] args) {
Integer x = new Integer(3);
System.out.println(x.intValue());
System.out.println(x.compareTo(new Integer(4)));

}
}

10.18 What is the output of the following code?

public class Test {
public static void main(String[] args) {
System.out.println(Integer.parseInt("10"));
System.out.println(Integer.parseInt("10", 10));
System.out.println(Integer.parseInt("10", 16));
System.out.println(Integer.parseInt("11"));
System.out.println(Integer.parseInt("11", 10));
System.out.println(Integer.parseInt("11", 16));

}
}

10.13 Automatic Conversion between Primitive
Types and Wrapper Class Types
A primitive type value can be automatically converted to an object using a wrapper
class, and vice versa, depending on the context.

Converting a primitive value to a wrapper object is called boxing. The reverse conversion is
called unboxing. Java allows primitive types and wrapper classes to be converted automati-
cally. The compiler will automatically box a primitive value that appears in a context
requiring an object, and will unbox an object that appears in a context requiring a primitive
value. This is called autoboxing and autounboxing.

✓Point✓Check

Key
Point

boxing

unboxing

autoboxing

autounboxing

10.14 The BigInteger and BigDecimal Classes 397

For instance, the following statement in (a) can be simplified as in (b) due to autoboxing.

✓Point✓Check

Integer intObject = new Integer(2);

(a)

Integer intObject = 2;Equivalent

autoboxing
(b)

Consider the following example:

1 Integer[] intArray = {1, 2, 3};
2 System.out.println(intArray[0] + intArray[1] + intArray[2]);

In line 1, the primitive values 1, 2, and 3 are automatically boxed into objects new Inte-
ger(1), new Integer(2), and new Integer(3). In line 2, the objects intArray[0],
intArray[1], and intArray[2] are automatically converted into int values that are
added together.

10.19 What are autoboxing and autounboxing? Are the following statements correct?

a. Integer x = 3 + new Integer(5);

b. Integer x = 3;

c. Double x = 3;

d. Double x = 3.0;

e. int x = new Integer(3);

f. int x = new Integer(3) + new Integer(4);

10.20 Show the output of the following code?

public class Test {
public static void main(String[] args) {
Double x = new Double(3.5);
System.out.println(x.intValue());
System.out.println(x.compareTo(4.5));

}
}

10.14 The BigInteger and BigDecimal Classes
The BigInteger and BigDecimal classes can be used to represent integers or
decimal numbers of any size and precision.

If you need to compute with very large integers or high-precision floating-point values, you can
use the BigInteger and BigDecimal classes in the java.math package. Both are immutable.
The largest integer of the long type is Long.MAX_VALUE (i.e., 9223372036854775807).
An instance of BigInteger can represent an integer of any size. You can use new BigInte-
ger(String) and new BigDecimal(String) to create an instance of BigInteger and
BigDecimal, use the add, subtract, multiple, divide, and remainder methods to per-
form arithmetic operations, and use the compareTo method to compare two big numbers. For
example, the following code creates two BigInteger objects and multiplies them.

BigInteger a = new BigInteger("9223372036854775807");
BigInteger b = new BigInteger("2");
BigInteger c = a.multiply(b); // 9223372036854775807 * 2
System.out.println(c);

The output is 18446744073709551614.

Key
Point

Process large numbers
VideoNote

immutable

398 Chapter 10 Thinking in Objects

There is no limit to the precision of a BigDecimal object. The divide method may throw
an ArithmeticException if the result cannot be terminated. However, you can use
the overloaded divide(BigDecimal d, int scale, int roundingMode) method to
specify a scale and a rounding mode to avoid this exception, where scale is the maxi-
mum number of digits after the decimal point. For example, the following code creates two
BigDecimal objects and performs division with scale 20 and rounding mode
BigDecimal.ROUND_UP.

BigDecimal a = new BigDecimal(1.0);
BigDecimal b = new BigDecimal(3);
BigDecimal c = a.divide(b, 20, BigDecimal.ROUND_UP);
System.out.println(c);

The output is 0.33333333333333333334.
Note that the factorial of an integer can be very large. Listing 10.11 gives a method that can

return the factorial of any integer.

LISTING 10.11 LargeFactorial.java
1 import java.math.*;
2
3 public class LargeFactorial {
4 public static void main(String[] args) {
5 System.out.println("50! is \n" + factorial(50));
6 }
7
8 public static BigInteger factorial(long n) {
9
10 for (int i = 1; i <= n; i++)
11
12
13 return result;
14 }
15 }

result = result.multiply(new BigInteger(i + ""));

BigInteger result = BigInteger.ONE;constant

multiply

50! is
30414093201713378043612608166064768844377641568960512000000000000

BigInteger.ONE (line 9) is a constant defined in the BigInteger class. BigInteger.ONE is
the same as new BigInteger("1").

A new result is obtained by invoking the multiply method (line 11).

10.21 What is the output of the following code?

public class Test {
public static void main(String[] args) {
java.math.BigInteger x = new java.math.BigInteger("3");
java.math.BigInteger y = new java.math.BigInteger("7");
x.add(y);
System.out.println(x);

}
}

✓Point✓Check

Programming Exercises 399

abstract data type (ADT) 375
aggregation 382
boxing 396
class abstraction 375
class encapsulation 375
class’s contract 375
class’s variable 371
composition 382

has-a relationship 382
immutable class 370
immutable object 370
multiplicity 382
stack 386
this keyword 373
unboxing 396

CHAPTER SUMMARY

1. Once it is created, an immutable object cannot be modified. To prevent users from
modifying an object, you can define immutable classes.

2. The scope of instance and static variables is the entire class, regardless of where the
variables are declared. Instance and static variables can be declared anywhere in the
class. For consistency, they are declared at the beginning of the class in this book.

3. The keyword this can be used to refer to the calling object. It can also be used inside
a constructor to invoke another constructor of the same class.

4. The procedural paradigm focuses on designing methods. The object-oriented para-
digm couples data and methods together into objects. Software design using the
object-oriented paradigm focuses on objects and operations on objects. The object-
oriented approach combines the power of the procedural paradigm with an added
dimension that integrates data with operations into objects.

5. Many Java methods require the use of objects as arguments. Java offers a convenient
way to incorporate, or wrap, a primitive data type into an object (e.g., wrapping int
into the Integer class, and wrapping double into the Double class).

6. Java can automatically convert a primitive type value to its corresponding wrapper
object in the context and vice versa.

7. The BigInteger class is useful for computing and processing integers of any size.
The BigDecimal class can be used to compute and process floating-point numbers
with any arbitrary precision.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 10.2–10.6
*10.1 (The Time class) Design a class named Time. The class contains:

■ The data fields hour, minute, and second that represent a time.
■ A no-arg constructor that creates a Time object for the current time. (The values

of the data fields will represent the current time.)

KEY TERMS

www.cs.armstrong.edu/liang/intro9e/test.html

400 Chapter 10 Thinking in Objects

■ A constructor that constructs a Time object with a specified elapsed time since
midnight, January 1, 1970, in milliseconds. (The values of the data fields will
represent this time.)

■ A constructor that constructs a Time object with the specified hour, minute, and
second.

■ Three get methods for the data fields hour, minute, and second, respec-
tively.

■ A method named setTime(long elapseTime) that sets a new time for the
object using the elapsed time. For example, if the elapsed time is 555550000
milliseconds, the hour is 10, the minute is 19, and the second is 10.

Draw the UML diagram for the class and then implement the class. Write a
test program that creates two Time objects (using new Time() and new

Time(555550000)) and displays their hour, minute, and second in the format
hour:minute:second.

(Hint: The first two constructors will extract the hour, minute, and second from the
elapsed time. For the no-arg constructor, the current time can be obtained using
System.currentTimeMillis(), as shown in Listing 2.6, ShowCurrentTime.java.)

10.2 (The BMI class) Add the following new constructor in the BMI class:

/** Construct a BMI with the specified name, age, weight,
* feet, and inches
*/
public BMI(String name, int age, double weight, double feet,
double inches)

10.3 (The MyInteger class) Design a class named MyInteger. The class contains:

■ An int data field named value that stores the int value represented by this
object.

■ A constructor that creates a MyInteger object for the specified int value.
■ A get method that returns the int value.
■ The methods isEven(), isOdd(), and isPrime() that return true if the

value in this object is even, odd, or prime, respectively.
■ The static methods isEven(int), isOdd(int), and isPrime(int) that

return true if the specified value is even, odd, or prime, respectively.
■ The static methods isEven(MyInteger), isOdd(MyInteger), and

isPrime(MyInteger) that return true if the specified value is even, odd, or
prime, respectively.

■ The methods equals(int) and equals(MyInteger) that return true if the
value in this object is equal to the specified value.

■ A static method parseInt(char[]) that converts an array of numeric charac-
ters to an int value.

■ A static method parseInt(String) that converts a string into an int value.

Draw the UML diagram for the class and then implement the class. Write a client
program that tests all methods in the class.

10.4 (The MyPoint class) Design a class named MyPoint to represent a point with x-
and y-coordinates. The class contains:

■ The data fields x and y that represent the coordinates with get methods.
■ A no-arg constructor that creates a point (0, 0).
■ A constructor that constructs a point with specified coordinates.
■ Two get methods for the data fields x and y, respectively.The MyPoint class

VideoNote

Programming Exercises 401

■ A method named distance that returns the distance from this point to another
point of the MyPoint type.

■ A method named distance that returns the distance from this point to another
point with specified x- and y-coordinates.

Draw the UML diagram for the class and then implement the class. Write a test
program that creates the two points (0, 0) and (10, 30.5) and displays the distance
between them.

Sections 10.7–10.11
*10.5 (Displaying the prime factors) Write a program that prompts the user to enter a

positive integer and displays all its smallest factors in decreasing order. For exam-
ple, if the integer is 120, the smallest factors are displayed as 5, 3, 2, 2, 2. Use the
StackOfIntegers class to store the factors (e.g., 2, 2, 2, 3, 5) and retrieve and
display them in reverse order.

*10.6 (Displaying the prime numbers) Write a program that displays all the prime num-
bers less than 120 in decreasing order. Use the StackOfIntegers class to store
the prime numbers (e.g., 2, 3, 5, . . .) and retrieve and display them in reverse order.

**10.7 (Game: ATM machine) Use the Account class created in Programming Exercise
8.7 to simulate an ATM machine. Create ten accounts in an array with id 0, 1, . . . ,
9, and initial balance $100. The system prompts the user to enter an id. If the id is
entered incorrectly, ask the user to enter a correct id. Once an id is accepted, the
main menu is displayed as shown in the sample run. You can enter a choice 1 for
viewing the current balance, 2 for withdrawing money, 3 for depositing money,
and 4 for exiting the main menu. Once you exit, the system will prompt for an id
again. Thus, once the system starts, it will not stop.

Enter an id:

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice:
The balance is 100.0

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice:
Enter an amount to withdraw:

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice:
The balance is 97.0

1

3
2

1

4

402 Chapter 10 Thinking in Objects

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice:
Enter an amount to deposit:

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice:
The balance is 107.0

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice:

Enter an id:

4

1

10
3

***10.8 (Financial: the Tax class) Programming Exercise 7.12 writes a program for com-
puting taxes using arrays. Design a class named Tax to contain the following
instance data fields:

■ int filingStatus: One of the four tax-filing statuses: 0—single filer, 1—
married filing jointly or qualifying widow(er), 2—married filing separately,
and 3—head of household. Use the public static constants SINGLE_FILER (0),
MARRIED_JOINTLY_OR_QUALIFYING_WIDOW(ER) (1), MARRIED_

SEPARATELY (2), HEAD_OF_HOUSEHOLD (3) to represent the statuses.
■ int[][] brackets: Stores the tax brackets for each filing status.
■ double[] rates: Stores the tax rates for each bracket.
■ double taxableIncome: Stores the taxable income.

Provide the get and set methods for each data field and the getTax() method
that returns the tax. Also provide a no-arg constructor and the constructor
Tax(filingStatus, brackets, rates, taxableIncome).

Draw the UML diagram for the class and then implement the class. Write a test
program that uses the Tax class to print the 2001 and 2009 tax tables for taxable
income from $50,000 to $60,000 with intervals of $1,000 for all four statuses.
The tax rates for the year 2009 were given in Table 3.2. The tax rates for 2001 are
shown in Table 10.1.

**10.9 (The Course class) Revise the Course class as follows:

■ The array size is fixed in Listing 10.6. Improve it to automatically increase the
array size by creating a new larger array and copying the contents of the cur-
rent array to it.

■ Implement the dropStudent method.
■ Add a new method named clear() that removes all students from the course.

Write a test program that creates a course, adds three students, removes one, and
displays the students in the course.

Programming Exercises 403

TABLE 10.1 2001 United States Federal Personal Tax Rates

Tax
rate Single filers

Married filing jointly
or qualifying widow(er)

Married filing
separately Head of household

15% Up to $27,050 Up to $45,200 Up to $22,600 Up to $36,250

27.5% $27,051–$65,550 $45,201–$109,250 $22,601–$54,625 $36,251–$93,650

30.5% $65,551–$136,750 $109,251–$166,500 $54,626–$83,250 $93,651–$151,650

35.5% $136,751–$297,350 $166,501–$297,350 $83,251–$148,675 $151,651–$297,350

39.1% $297,351 or more $297,351 or more $ 148,676 or more $297,351 or more

*10.10 (Game: The GuessDate class) Modify the GuessDate class in Listing 10.10.
Instead of representing dates in a three-dimensional array, use five two-dimensional
arrays to represent the five sets of numbers. Thus, you need to declare:

private static int[][] set1 = {{1, 3, 5, 7}, ... };
private static int[][] set2 = {{2, 3, 6, 7}, ... };
private static int[][] set3 = {{4, 5, 6, 7}, ... };
private static int[][] set4 = {{8, 9, 10, 11}, ... };
private static int[][] set5 = {{16, 17, 18, 19}, ... };

*10.11 (Geometry: The Circle2D class) Define the Circle2D class that contains:

■ Two double data fields named x and y that specify the center of the circle with
get methods.

■ A data field radius with a get method.
■ A no-arg constructor that creates a default circle with (0, 0) for (x, y) and 1 for

radius.
■ A constructor that creates a circle with the specified x, y, and radius.
■ A method getArea() that returns the area of the circle.
■ A method getPerimeter() that returns the perimeter of the circle.
■ A method contains(double x, double y) that returns true if the speci-

fied point (x, y) is inside this circle (see Figure 10.15a).
■ A method contains(Circle2D circle) that returns true if the specified

circle is inside this circle (see Figure 10.15b).
■ A method overlaps(Circle2D circle) that returns true if the specified

circle overlaps with this circle (see Figure 10.15c).

Draw the UML diagram for the class and then implement the class. Write a test
program that creates a Circle2D object c1 (new Circle2D(2, 2, 5.5)), dis-
plays its area and perimeter, and displays the result of c1.contains(3, 3),
c1.contains(new Circle2D(4, 5, 10.5)), and c1.overlaps(new
Circle2D(3, 5, 2.3)).

(a) (b) (c)

p

FIGURE 10.15 (a) A point is inside the circle. (b) A circle is inside another circle. (c) A circle
overlaps another circle.

404 Chapter 10 Thinking in Objects

***10.12 (Geometry: The Triangle2D class) Define the Triangle2D class that contains:

■ Three points named p1, p2, and p3 of the type MyPoint with get and set

methods. MyPoint is defined in Exercise 10.4.
■ A no-arg constructor that creates a default triangle with the points (0, 0),

(1, 1), and (2, 5).
■ A constructor that creates a triangle with the specified points.
■ A method getArea() that returns the area of the triangle.
■ A method getPerimeter() that returns the perimeter of the triangle.
■ A method contains(MyPoint p) that returns true if the specified point p

is inside this triangle (see Figure 10.16a).
■ A method contains(Triangle2D t) that returns true if the specified tri-

angle is inside this triangle (see Figure 10.16b).
■ A method overlaps(Triangle2D t) that returns true if the specified tri-

angle overlaps with this triangle (see Figure 10.16c).

Draw the UML diagram for the class and then implement the class. Write a test pro-
gram that creates a Triangle2D objects t1 using the constructor new Trian-
gle2D(new MyPoint(2.5, 2), new MyPoint(4.2, 3), new MyPoint(5,

3.5)), displays its area and perimeter, and displays the result of t1.contains(3,
3), r1.contains(new Triangle2D(new MyPoint(2.9, 2), new

MyPoint(4, 1), MyPoint(1, 3.4))), and t1.overlaps(new Trian-

gle2D(new MyPoint(2, 5.5), new MyPoint(4, -3), MyPoint(2,

6.5))).

(Hint: For the formula to compute the area of a triangle, see Programming Exer-
cise 2.15. Use the java.awt.geo.Line2D class in the Java API to implement
the contains and overlaps methods. The Line2D class contains the methods
for checking whether two line segments intersect and whether a line contains a
point, and so on. Please see the Java API for more information on Line2D. To
detect whether a point is inside a triangle, draw three dashed lines, as shown in
Figure 10.17. If the point is inside a triangle, each dashed line should intersect a
side only once. If a dashed line intersects a side twice, then the point must be out-
side the triangle.)

(a) (b) (c)

p

FIGURE 10.16 (a) A point is inside the triangle. (b) A triangle is inside another triangle.
(c) A triangle overlaps another triangle.

(a) (b)

p
p

FIGURE 10.17 (a) A point is inside the triangle. (b) A point is outside the triangle.

Programming Exercises 405

*10.13 (Geometry: the MyRectangle2D class) Define the MyRectangle2D class that
contains:

■ Two double data fields named x and y that specify the center of the rectangle
with get and set methods. (Assume that the rectangle sides are parallel to x-
or y- axes.)

■ The data fields width and height with get and set methods.
■ A no-arg constructor that creates a default rectangle with (0, 0) for (x, y) and 1

for both width and height.
■ A constructor that creates a rectangle with the specified x, y, width, and

height.
■ A method getArea() that returns the area of the rectangle.
■ A method getPerimeter() that returns the perimeter of the rectangle.
■ A method contains(double x, double y) that returns true if the speci-

fied point (x, y) is inside this rectangle (see Figure 10.18a).
■ A method contains(MyRectangle2D r) that returns true if the specified

rectangle is inside this rectangle (see Figure 10.18b).
■ A method overlaps(MyRectangle2D r) that returns true if the specified

rectangle overlaps with this rectangle (see Figure 10.18c).

Draw the UML diagram for the class and then implement the class. Write a test
program that creates a MyRectangle2D object r1 (new MyRectangle2D(2,
2, 5.5, 4.9)), displays its area and perimeter, and displays the result of
r1.contains(3, 3), r1.contains(new MyRectangle2D(4, 5, 10.5,
3.2)), and r1.overlaps(new MyRectangle2D(3, 5, 2.3, 5.4)).

*10.14 (The MyDate class) Design a class named MyDate. The class contains:

■ The data fields year, month, and day that represent a date. month is 0-based,
i.e., 0 is for January.

■ A no-arg constructor that creates a MyDate object for the current date.
■ A constructor that constructs a MyDate object with a specified elapsed time

since midnight, January 1, 1970, in milliseconds.
■ A constructor that constructs a MyDate object with the specified year, month,

and day.
■ Three get methods for the data fields year, month, and day, respectively.
■ A method named setDate(long elapsedTime) that sets a new date for the

object using the elapsed time.

Draw the UML diagram for the class and then implement the class. Write a test
program that creates two MyDate objects (using new MyDate() and new

MyDate(34355555133101L)) and displays their year, month, and day.

(Hint: The first two constructors will extract the year, month, and day from the elapsed
time. For example, if the elapsed time is 561555550000 milliseconds, the year is

(a) (b) (c) (d)

p

FIGURE 10.18 A point is inside the rectangle. (b) A rectangle is inside another rectangle.
(c) A rectangle overlaps another rectangle. (d) Points are enclosed inside a rectangle.

406 Chapter 10 Thinking in Objects

1987, the month is 9, and the day is 18. You may use the GregorianCalendar class
discussed in Programming Exercise 8.5 to simplify coding.)

*10.15 (Geometry: finding the bounding rectangle) A bounding rectangle is the minimum
rectangle that encloses a set of points in a two-dimensional plane, as shown in
Figure 10.18d. Write a method that returns a bounding rectangle for a set of points
in a two-dimensional plane, as follows:

public static MyRectangle2D getRectangle(double[][] points)

The Rectangle2D class is defined in Exercise 10.13. Write a test program that
prompts the user to enter five points and displays the bounding rectangle’s center,
width, and height. Here is a sample run:

Enter five points:
The bounding rectangle's center (5.0, 6.25), width 8.0, height 7.5

1.0 2.5 3 4 5 6 7 8 9 10

Sections 10.12–10.14
*10.16 (Divisible by 2 or 3) Find the first ten numbers with 50 decimal digits that are

divisible by 2 or 3.

*10.17 (Square numbers) Find the first ten square numbers that are greater than
Long.MAX_VALUE. A square number is a number in the form of

*10.18 (Large prime numbers) Write a program that finds five prime numbers larger than
Long.MAX_VALUE.

*10.19 (Mersenne prime) A prime number is called a Mersenne prime if it can be written
in the form for some positive integer p. Write a program that finds all
Mersenne primes with and displays the output as shown below. (Hint:
You have to use BigInteger to store the number, because it is too big to be
stored in long. Your program may take several hours to run.)

p 2^p – 1

2 3
3 7
5 31

...

*10.20 (Approximate e) Programming Exercise 4.26 approximates e using the following
series:

In order to get better precision, use BigDecimal with 25 digits of precision in the
computation. Write a program that displays the e value for i 100, 200, . . . , and
1000.

10.21 (Divisible by 5 or 6) Find the first ten numbers (greater than Long.MAX_VALUE)
that are divisible by 5 or 6.

=

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ c +

1

i!

p … 100
2p - 1

n2.

INHERITANCE
AND POLYMORPHISM

Objectives
■ To define a subclass from a superclass through inheritance (§11.2).

■ To invoke the superclass’s constructors and methods using the super
keyword (§11.3).

■ To override instance methods in the subclass (§11.4).

■ To distinguish differences between overriding and overloading (§11.5).

■ To explore the toString() method in the Object class (§11.6).

■ To discover polymorphism and dynamic binding (§§11.7–11.8).

■ To describe casting and explain why explicit downcasting is necessary
(§11.9).

■ To explore the equals method in the Object class (§11.10).

■ To store, retrieve, and manipulate objects in an ArrayList (§11.11).

■ To implement a Stack class using ArrayList (§11.12).

■ To enable data and methods in a superclass accessible from subclasses
using the protected visibility modifier (§11.13).

■ To prevent class extending and method overriding using the final
modifier (§11.14).

CHAPTER

11

408 Chapter 11 Inheritance and Polymorphism

11.1 Introduction
Object-oriented programming allows you to define new classes from existing classes.
This is called inheritance.

As discussed earlier in the book, the procedural paradigm focuses on designing methods and
the object-oriented paradigm couples data and methods together into objects. Software design
using the object-oriented paradigm focuses on objects and operations on objects. The object-
oriented approach combines the power of the procedural paradigm with an added dimension
that integrates data with operations into objects.

Inheritance is an important and powerful feature for reusing software. Suppose you need
to define classes to model circles, rectangles, and triangles. These classes have many common
features. What is the best way to design these classes so as to avoid redundancy and make the
system easy to comprehend and easy to maintain? The answer is to use inheritance.

11.2 Superclasses and Subclasses
Inheritance enables you to define a general class (e.g., a superclass) and later extend
it to more specialized classes (e.g., subclasses).

You use a class to model objects of the same type. Different classes may have some common
properties and behaviors, which can be generalized in a class that can be shared by other
classes. You can define a specialized class that extends the generalized class. The specialized
classes inherit the properties and methods from the general class.

Consider geometric objects. Suppose you want to design the classes to model geometric
objects such as circles and rectangles. Geometric objects have many common properties and
behaviors. They can be drawn in a certain color and be filled or unfilled. Thus a general class
GeometricObject can be used to model all geometric objects. This class contains the proper-
ties color and filled and their appropriate get and set methods. Assume that this class also
contains the dateCreated property and the getDateCreated() and toString() methods.
The toString() method returns a string representation of the object. Since a circle is a special
type of geometric object, it shares common properties and methods with other geometric objects.
Thus it makes sense to define the Circle class that extends the GeometricObject class. Like-
wise, Rectangle can also be defined as a subclass of GeometricObject. Figure 11.1 shows
the relationship among these classes. A triangular arrow pointing to the superclass is used to
denote the inheritance relationship between the two classes involved.

In Java terminology, a class C1 extended from another class C2 is called a subclass, and C2
is called a superclass. A superclass is also referred to as a parent class or a base class, and a
subclass as a child class, an extended class, or a derived class. A subclass inherits accessible
data fields and methods from its superclass and may also add new data fields and methods.

The Circle class inherits all accessible data fields and methods from the
GeometricObject class. In addition, it has a new data field, radius, and its associated get
and set methods. The Circle class also contains the getArea(), getPerimeter(), and
getDiameter() methods for returning the area, perimeter, and diameter of the circle.

The Rectangle class inherits all accessible data fields and methods from the
GeometricObject class. In addition, it has the data fields width and height and their
associated get and set methods. It also contains the getArea() and getPerimeter()

methods for returning the area and perimeter of the rectangle.
The GeometricObject, Circle, and Rectangle classes are shown in Listings 11.1,

11.2, and 11.3.

Note
To avoid a naming conflict with the improved GeometricObject, Circle, and
Rectangle classes introduced in Chapter 15, we’ll name these classes

Key
Point

inheritance

why inheritance?

Key
Point

Geometric class hierarchy

subclass

superclass

VideoNote

avoid naming conflicts

11.2 Superclasses and Subclasses 409

SimpleGeometricObject, CircleFromSimpleGeometricObject, and
RectangleFromSimpleGeometricObject in this chapter. For simplicity, we will
still refer to them in the text as GeometricObject, Circle, and Rectangle
classes. The best way to avoid naming conflicts is to place these classes in different
packages. However, for simplicity and consistency, all classes in this book are placed in
the default package.

LISTING 11.1 SimpleGeometricObject.java
1 public class SimpleGeometricObject {
2 private String color = "white";
3 private boolean filled;
4 private java.util.Date dateCreated;
5
6 /** Construct a default geometric object */
7 public SimpleGeometricObject() {
8 dateCreated = new java.util.Date();

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

GeometricObject

-color: String

-filled: boolean

-dateCreated: java.util.Date

+GeometricObject()

Creates a GeometricObject with the specified color and filled
 values.

+GeometricObject(color: String,
 filled: boolean)
+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,
 filled: boolean)

+getRadius(): double

+getArea(): double

+setRadius(radius: double): void

+printCircle(): void

+getPerimeter(): double

+getDiameter(): double

Rectangle

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double
 color: String, filled: boolean)

+getWidth(): double

+getHeight(): double

+setHeight(height: double): void

+setWidth(width: double): void

+getArea(): double

+getPerimeter(): double

-width: double

FIGURE 11.1 The GeometricObject class is the superclass for Circle and Rectangle.

data fields

constructor
date constructed

410 Chapter 11 Inheritance and Polymorphism

9 }
10
11 /** Construct a geometric object with the specified color
12 * and filled value */
13 public SimpleGeometricObject(String color, boolean filled) {
14
15 this.color = color;
16 this.filled = filled;
17 }
18
19 /** Return color */
20 public String getColor() {
21 return color;
22 }
23
24 /** Set a new color */
25 public void setColor(String color) {
26 this.color = color;
27 }
28
29 /** Return filled. Since filled is boolean,
30 its get method is named isFilled */
31 public boolean isFilled() {
32 return filled;
33 }
34
35 /** Set a new filled */
36 public void setFilled(boolean filled) {
37 this.filled = filled;
38 }
39
40 /** Get dateCreated */
41 public java.util.Date getDateCreated() {
42 return dateCreated;
43 }
44
45 /** Return a string representation of this object */
46 public String toString() {
47 return "created on " + dateCreated + "\ncolor: " + color +
48 " and filled: " + filled;
49 }
50 }

LISTING 11.2 CircleFromSimpleGeometricObject.java
1 public class CircleFromSimpleGeometricObject
2 {
3 private double radius;
4
5 public CircleFromSimpleGeometricObject() {
6 }
7
8 public CircleFromSimpleGeometricObject(double radius) {
9 this.radius = radius;
10 }
11
12 public CircleFromSimpleGeometricObject(double radius,
13 String color, boolean filled) {
14 this.radius = radius;
15 setColor(color);

extends SimpleGeometricObject

dateCreated = new java.util.Date();

extends superclass
data fields

constructor

11.2 Superclasses and Subclasses 411

16 setFilled(filled);
17 }
18
19 /** Return radius */
20 public double getRadius() {
21 return radius;
22 }
23
24 /** Set a new radius */
25 public void setRadius(double radius) {
26 this.radius = radius;
27 }
28
29 /** Return area */
30 public double getArea() {
31 return radius * radius * Math.PI;
32 }
33
34 /** Return diameter */
35 public double getDiameter() {
36 return 2 * radius;
37 }
38
39 /** Return perimeter */
40 public double getPerimeter() {
41 return 2 * radius * Math.PI;
42 }
43
44 /** Print the circle info */
45 public void printCircle() {
46 System.out.println("The circle is created " + +
47 " and the radius is " + radius);
48 }
49 }

The Circle class (Listing 11.2) extends the GeometricObject class (Listing 11.1) using
the following syntax:

getDateCreated()

methods

Subclass Superclass

extends GeometricObjectpublic class Circle

The keyword extends (lines 1–2) tells the compiler that the Circle class extends the
GeometricObject class, thus inheriting the methods getColor, setColor, isFilled,
setFilled, and toString.

The overloaded constructor Circle(double radius, String color, boolean

filled) is implemented by invoking the setColor and setFilled methods to set the
color and filled properties (lines 12–17). These two public methods are defined in the base
class GeometricObject and are inherited in Circle, so they can be used in the derived
class.

You might attempt to use the data fields color and filled directly in the constructor as
follows:

public CircleFromSimpleGeometricObject(
double radius, String color, boolean filled) {

private member in base class

412 Chapter 11 Inheritance and Polymorphism

this.radius = radius;
this.color = color; // Illegal
this.filled = filled; // Illegal

}

This is wrong, because the private data fields color and filled in the
GeometricObject class cannot be accessed in any class other than in the
GeometricObject class itself. The only way to read and modify color and filled is
through their get and set methods.

The Rectangle class (Listing 11.3) extends the GeometricObject class (Listing 11.1)
using the following syntax:

extends superclass
data fields

constructor

methods

Subclass Superclass

extends GeometricObjectpublic class Rectangle

The keyword extends (lines 1–2) tells the compiler that the Rectangle class extends the
GeometricObject class, thus inheriting the methods getColor, setColor, isFilled,
setFilled, and toString.

LISTING 11.3 RectangleFromSimpleGeometricObject.java
1 public class RectangleFromSimpleGeometricObject
2
3 private double width;
4 private double height;
5
6 public RectangleFromSimpleGeometricObject() {
7 }
8
9 public RectangleFromSimpleGeometricObject(
10 double width, double height) {
11 this.width = width;
12 this.height = height;
13 }
14
15 public RectangleFromSimpleGeometricObject(
16 double width, double height, String color, boolean filled) {
17 this.width = width;
18 this.height = height;
19 setColor(color);
20 setFilled(filled);
21 }
22
23 /** Return width */
24 public double getWidth() {
25 return width;
26 }
27
28 /** Set a new width */
29 public void setWidth(double width) {
30 this.width = width;
31 }
32

extends SimpleGeometricObject {

11.2 Superclasses and Subclasses 413

33 /** Return height */
34 public double getHeight() {
35 return height;
36 }
37
38 /** Set a new height */
39 public void setHeight(double height) {
40 this.height = height;
41 }
42
43 /** Return area */
44 public double getArea() {
45 return width * height;
46 }
47
48 /** Return perimeter */
49 public double getPerimeter() {
50 return 2 * (width + height);
51 }
52 }

The code in Listing 11.4 creates objects of Circle and Rectangle and invokes the methods
on these objects. The toString() method is inherited from the GeometricObject class
and is invoked from a Circle object (line 5) and a Rectangle object (line 13).

LISTING 11.4 TestCircleRectangle.java
1 public class TestCircleRectangle {
2 public static void main(String[] args) {
3
4
5 System.out.println("A circle " +);
6 System.out.println("The color is " +);
7 System.out.println("The radius is " +);
8 System.out.println("The area is " +);
9 System.out.println("The diameter is " +);
10
11
12
13 System.out.println("\nA rectangle " +);
14 System.out.println("The area is " +);
15 System.out.println("The perimeter is " +
16);
17 }
18 }

rectangle.getPerimeter()

rectangle.getArea()
rectangle.toString()

new RectangleFromSimpleGeometricObject(2, 4);
RectangleFromSimpleGeometricObject rectangle =

circle.getDiameter()
circle.getArea()
circle.getRadius()
circle.getColor()

circle.toString()
new CircleFromSimpleGeometricObject(1);

CircleFromSimpleGeometricObject circle =
Circle object
invoke toString
invoke getColor

Rectangle object
invoke toString

A circle created on Thu Feb 10 19:54:25 EST 2011
color: white and filled: false
The color is white
The radius is 1.0
The area is 3.141592653589793
The diameter is 2.0
A rectangle created on Thu Feb 10 19:54:25 EST 2011
color: white and filled: false
The area is 8.0
The perimeter is 12.0

414 Chapter 11 Inheritance and Polymorphism

Key
Point

✓Point✓Check

Note the following points regarding inheritance:

■ Contrary to the conventional interpretation, a subclass is not a subset of its super-
class. In fact, a subclass usually contains more information and methods than its
superclass.

■ Private data fields in a superclass are not accessible outside the class. Therefore, they
cannot be used directly in a subclass. They can, however, be accessed/mutated
through public accessors/mutators if defined in the superclass.

■ Not all is-a relationships should be modeled using inheritance. For example, a square
is a rectangle, but you should not extend a Square class from a Rectangle class,
because the width and height properties are not appropriate for a square. Instead,
you should define a Square class to extend the GeometricObject class and define
the side property for the side of a square.

■ Inheritance is used to model the is-a relationship. Do not blindly extend a class just
for the sake of reusing methods. For example, it makes no sense for a Tree class to
extend a Person class, even though they share common properties such as height
and weight. A subclass and its superclass must have the is-a relationship.

■ Some programming languages allow you to derive a subclass from several classes.
This capability is known as multiple inheritance. Java, however, does not allow mul-
tiple inheritance. A Java class may inherit directly from only one superclass. This
restriction is known as single inheritance. If you use the extends keyword to define
a subclass, it allows only one parent class. Nevertheless, multiple inheritance can be
achieved through interfaces, which will be introduced in Section 15.4.

11.1 True or false? A subclass is a subset of a superclass.

11.2 What keyword do you use to define a subclass?

11.3 What is single inheritance? What is multiple inheritance? Does Java support multiple
inheritance?

11.3 Using the super Keyword
The keyword super refers to the superclass and can be used to invoke the superclass’s
methods and constructors.

A subclass inherits accessible data fields and methods from its superclass. Does it inherit con-
structors? Can the superclass’s constructors be invoked from a subclass? This section
addresses these questions and their ramifications.

Section 10.4, The this Reference, introduced the use of the keyword this to reference
the calling object. The keyword super refers to the superclass of the class in which super
appears. It can be used in two ways:

■ To call a superclass constructor.

■ To call a superclass method.

11.3.1 Calling Superclass Constructors
A constructor is used to construct an instance of a class. Unlike properties and methods, the
constructors of a superclass are not inherited by a subclass. They can only be invoked from
the constructors of the subclasses using the keyword super.

more in subclass

private data fields

nonextensible is-a

no blind extension

multiple inheritance

single inheritance

11.3 Using the super Keyword 415

The syntax to call a superclass’s constructor is:

super(), or super(parameters);

The statement super() invokes the no-arg constructor of its superclass, and the statement
super(arguments) invokes the superclass constructor that matches the arguments. The
statement super() or super(arguments) must appear in the first line of the subclass’s
constructor; this is the only way to explicitly invoke a superclass constructor. For example, the
constructor in lines 12–17 in Listing 11.2 can be replaced by the following code:

public CircleFromSimpleGeometricObject(
double radius, String color, boolean filled) {

super(color, filled);
this.radius = radius;

}

Caution
You must use the keyword super to call the superclass constructor, and the call must
be the first statement in the constructor. Invoking a superclass constructor’s name in a
subclass causes a syntax error.

11.3.2 Constructor Chaining
A constructor may invoke an overloaded constructor or its superclass constructor. If neither is
invoked explicitly, the compiler automatically puts super() as the first statement in the con-
structor. For example:

constructor chaining

public ClassName() {
// some statements

}

public ClassName(double d) {
// some statements

}

public ClassName(double d) {

// some statements
}

super();

public ClassName() {

// some statements
}

super();Equivalent

Equivalent

In any case, constructing an instance of a class invokes the constructors of all the superclasses
along the inheritance chain. When constructing an object of a subclass, the subclass construc-
tor first invokes its superclass constructor before performing its own tasks. If the superclass is
derived from another class, the superclass constructor invokes its parent-class constructor
before performing its own tasks. This process continues until the last constructor along the
inheritance hierarchy is called. This is called constructor chaining.

Consider the following code:

1 public class {
2 public static void main(String[] args) {
3
4 }
5
6 {public Faculty()

new Faculty();

Faculty extends Employee

416 Chapter 11 Inheritance and Polymorphism

7 System.out.println("(4) Performs Faculty's tasks");
8 }
9 }
10
11 class {
12 {
13 this("(2) Invoke Employee's overloaded constructor");
14 System.out.println("(3) Performs Employee's tasks ");
15 }
16
17 {
18 System.out.println(s);
19 }
20 }
21
22 class Person {
23 {
24 System.out.println("(1) Performs Person's tasks");
25 }
26 }

public Person()

public Employee(String s)

public Employee()
Employee extends Person

invoke overloaded
constructor

(1) Performs Person's tasks
(2) Invoke Employee's overloaded constructor
(3) Performs Employee's tasks
(4) Performs Faculty's tasks

The program produces the preceding output. Why? Let us discuss the reason. In line 3, new
Faculty() invokes Faculty’s no-arg constructor. Since Faculty is a subclass of
Employee, Employee’s no-arg constructor is invoked before any statements in Faculty’s
constructor are executed. Employee’s no-arg constructor invokes Employee’s second con-
structor (line 12). Since Employee is a subclass of Person, Person’s no-arg constructor is
invoked before any statements in Employee’s second constructor are executed. This process
is illustrated in the following figure.

no-arg constructor

Faculty() {

Performs Faculty's
tasks;

}

Person() {

Performs Person's
tasks;

}

Employee(String s) {

Performs Employee's
tasks;

}

Employee() {
this("(2) ...");

Performs Employee's
tasks;

}

Caution
If a class is designed to be extended, it is better to provide a no-arg constructor to avoid
programming errors. Consider the following code:

1 public class {
2 }
3
4 class {
5 public Fruit(String name) {
6 System.out.println("Fruit's constructor is invoked");
7 }
8 }

Fruit

Apple extends Fruit

11.3 Using the super Keyword 417

Since no constructor is explicitly defined in Apple, Apple’s default no-arg constructor
is defined implicitly. Since Apple is a subclass of Fruit, Apple’s default constructor
automatically invokes Fruit’s no-arg constructor. However, Fruit does not have a
no-arg constructor, because Fruit has an explicit constructor defined. Therefore, the
program cannot be compiled.

Design Guide
If possible, you should provide a no-arg constructor for every class to make the class
easy to extend and to avoid errors.

11.3.3 Calling Superclass Methods
The keyword super can also be used to reference a method other than the constructor in the
superclass. The syntax is:

super.method(parameters);

You could rewrite the printCircle() method in the Circle class as follows:

public void printCircle() {
System.out.println("The circle is created " +

getDateCreated() + " and the radius is " + radius);
}

It is not necessary to put super before getDateCreated() in this case, however, because
getDateCreated is a method in the GeometricObject class and is inherited by the
Circle class. Nevertheless, in some cases, as shown in the next section, the keyword super
is needed.

11.4 What is the printout of running the class C in (a)? What problem arises in compiling
the program in (b)?

super.

no-arg constructor

✓Point✓Check

class A {
public A() {
System.out.println(

"A's no-arg constructor is invoked");
}

}

class B extends A {
}

public class C {
public static void main(String[] args) {
B b = new B();

}
}

(a)

class A {
public A(int x) {
}

}

class B extends A {
public B() {
}

}

public class C {
public static void main(String[] args) {
B b = new B();

}
}

(b)

11.5 How does a subclass invoke its superclass’s constructor?

11.6 True or false? When invoking a constructor from a subclass, its superclass’s no-arg
constructor is always invoked.

418 Chapter 11 Inheritance and Polymorphism

11.4 Overriding Methods
To override a method, the method must be defined in the subclass using the same
signature and the same return type as in its superclass.

A subclass inherits methods from a superclass. Sometimes it is necessary for the subclass to
modify the implementation of a method defined in the superclass. This is referred to as
method overriding.

The toString method in the GeometricObject class (lines 46–49 in Listing 11.1)
returns the string representation of a geometric object. This method can be overridden to
return the string representation of a circle. To override it, add the following new method in
the Circle class in Listing 11.2.

1 public class CircleFromSimpleGeometricObject
2 extends SimpleGeometricObject {
3 // Other methods are omitted
4
5 // Override the toString method defined in the superclass
6 public String toString() {
7 return + "\nradius is " + radius;
8 }
9 }

The toString() method is defined in the GeometricObject class and modified in the
Circle class. Both methods can be used in the Circle class. To invoke the toString
method defined in the GeometricObject class from the Circle class, use
super.toString() (line 7).

Can a subclass of Circle access the toString method defined in the
GeometricObject class using syntax such as super.super.toString()? No. This is a
syntax error.

Several points are worth noting:

■ An instance method can be overridden only if it is accessible. Thus a private method
cannot be overridden, because it is not accessible outside its own class. If a method
defined in a subclass is private in its superclass, the two methods are completely
unrelated.

■ Like an instance method, a static method can be inherited. However, a static method
cannot be overridden. If a static method defined in the superclass is redefined in a
subclass, the method defined in the superclass is hidden. The hidden static methods
can be invoked using the syntax SuperClassName.staticMethodName.

11.7 True or false? You can override a private method defined in a superclass.

11.8 True or false? You can override a static method defined in a superclass.

11.9 How do you explicitly invoke a superclass’s constructor from a subclass?

11.10 How do you invoke an overridden superclass method from a subclass?

11.5 Overriding vs. Overloading
Overloading means to define multiple methods with the same name but different
signatures. Overriding means to provide a new implementation for a method in the
subclass.

You learned about overloading methods in Section 5.8. To override a method, the method
must be defined in the subclass using the same signature and the same return type.

super.toString()

Key
Point

method overriding

toString in superclass

no super.super.methodName()

override accessible instance
method

cannot override static method

✓Point✓Check

Key
Point

11.5 Overriding vs. Overloading 419

Let us use an example to show the differences between overriding and overloading. In (a)
below, the method p(double i) in class A overrides the same method defined in class B. In
(b), however, the class A has two overloaded methods: p(double i) and p(int i). The
method p(double i) is inherited from B.

public class Test {
public static void main(String[] args) {
A a = new A();
a.p(10);
a.p(10.0);

}
}

class B {
public void p(double i) {
System.out.println(i * 2);

}
}

class A extends B {
// This method the method in B
public void p() {
System.out.println(i);

}
}

double i
overrides

(a)

public class Test {
public static void main(String[] args) {
A a = new A();
a.p(10);
a.p(10.0);

}
}

class B {
public void p(double i) {
System.out.println(i * 2);

}
}

class A extends B {
// This method the method in B
public void p() {
System.out.println(i);

}
}

int i
overloads

(b)

When you run the Test class in (a), both a.p(10) and a.p(10.0) invoke the p(double
i) method defined in class A to display 10.0. When you run the Test class in (b), a.p(10)
invokes the p(int i) method defined in class A to display 10, and a.p(10.0) invokes the
p(double i) method defined in class B to display 20.0.

Note the following:

■ Overridden methods are in different classes related by inheritance; overloaded meth-
ods can be either in the same class or different classes related by inheritance.

■ Overridden methods have the same signature and return type; overloaded methods
have the same name but a different parameter list.

To avoid mistakes, you can use a special Java syntax, called override annotation, to place
@Override before the method in the subclass. For example:

1 public class CircleFromSimpleGeometricObject
2 extends SimpleGeometricObject {
3 // Other methods are omitted
4
5
6 public String toString() {
7 return super.toString() + "\nradius is " + radius;
8 }
9 }

This annotation denotes that the annotated method is required to override a method in the
superclass. If a method with this annotation does not override its superclass’s method, the
compiler will report an error. For example, if toString is mistyped as tostring, a compile
error is reported. If the override annotation isn’t used, the compile won’t report an error.
Using annotation avoids mistakes.

@Override

override annotation

toString in superclass

420 Chapter 11 Inheritance and Polymorphism

11.11 Identify the problems in the following code:

1 public class Circle {
2 private double radius;
3
4 public Circle(double radius) {
5 radius = radius;
6 }
7
8 public double getRadius() {
9 return radius;
10 }
11
12 public double getArea() {
13 return radius * radius * Math.PI;
14 }
15 }
16
17 class B extends Circle {
18 private double length;
19
20 B(double radius, double length) {
21 Circle(radius);
22 length = length;
23 }
24
25 @Override
26 public double getArea() {
27 return getArea() * length;
28 }
29 }

11.12 Explain the difference between method overloading and method overriding.

11.13 If a method in a subclass has the same signature as a method in its superclass with the
same return type, is the method overridden or overloaded?

11.14 If a method in a subclass has the same signature as a method in its superclass with a
different return type, will this be a problem?

11.15 If a method in a subclass has the same name as a method in its superclass with differ-
ent parameter types, is the method overridden or overloaded?

11.16 What is the benefit of using the @Override annotation?

11.6 The Object Class and Its toString() Method
Every class in Java is descended from the java.lang.Object class.

If no inheritance is specified when a class is defined, the superclass of the class is Object by
default. For example, the following two class definitions are the same:

✓Point✓Check

Key
Point

public class ClassName {
...

}

public class ClassName extends Object {
...

}

Equivalent

Classes such as String, StringBuilder, Loan, and GeometricObject are implicitly
subclasses of Object (as are all the main classes you have seen in this book so far). It is

11.7 Polymorphism 421

important to be familiar with the methods provided by the Object class so that you can use
them in your classes. This section introduces the toString method in the Object class.

The signature of the toString() method is:

public String toString()

Invoking toString() on an object returns a string that describes the object. By default, it
returns a string consisting of a class name of which the object is an instance, an at sign (@),
and the object’s memory address in hexadecimal. For example, consider the following code
for the Loan class defined in Listing 10.2:

Loan loan = new Loan();
System.out.println(loan.toString());

The output for this code displays something like Loan@15037e5. This message is not very
helpful or informative. Usually you should override the toString method so that it returns a
descriptive string representation of the object. For example, the toString method in the
Object class was overridden in the GeometricObject class in lines 46–49 in Listing 11.1
as follows:

public String toString() {
return "created on " + dateCreated + "\ncolor: " + color +

" and filled: " + filled;
}

Note
You can also pass an object to invoke System.out.println(object) or
System.out.print(object). This is equivalent to invoking
System.out.println(object.toString()) or
System.out.print(object.toString()). Thus, you could replace
System.out.println(loan.toString()) with
System.out.println(loan).

11.7 Polymorphism
Polymorphism means that a variable of a supertype can refer to a subtype object.

The three pillars of object-oriented programming are encapsulation, inheritance, and poly-
morphism. You have already learned the first two. This section introduces polymorphism.

First, let us define two useful terms: subtype and supertype. A class defines a type. A type
defined by a subclass is called a subtype, and a type defined by its superclass is called a
supertype. Therefore, you can say that Circle is a subtype of GeometricObject and
GeometricObject is a supertype for Circle.

The inheritance relationship enables a subclass to inherit features from its superclass with
additional new features. A subclass is a specialization of its superclass; every instance of a
subclass is also an instance of its superclass, but not vice versa. For example, every circle is a
geometric object, but not every geometric object is a circle. Therefore, you can always pass an
instance of a subclass to a parameter of its superclass type. Consider the code in Listing 11.5.

LISTING 11.5 PolymorphismDemo.java
1 public class PolymorphismDemo {
2 /** Main method */
3 public static void main(String[] args) {

toString()

string representation

print object

subtype
supertype

Key
Point

422 Chapter 11 Inheritance and Polymorphism

polymorphic call

polymorphic call

Created on Mon Mar 09 19:25:20 EDT 2011. Color is white
Created on Mon Mar 09 19:25:20 EDT 2011. Color is black

The method displayObject (line 12) takes a parameter of the GeometricObject type.
You can invoke displayObject by passing any instance of GeometricObject (e.g., new
CircleFromSimpleGeometricObject(1, "red", false) and new Rectangle-

FromSimpleGeometricObject(1, 1, "black", false) in lines 5–8). An object of a
subclass can be used wherever its superclass object is used. This is commonly known as
polymorphism (from a Greek word meaning “many forms”). In simple terms, polymorphism
means that a variable of a supertype can refer to a subtype object.

11.8 Dynamic Binding
A method can be implemented in several classes along the inheritance chain. The JVM
decides which method is invoked at runtime.

A method can be defined in a superclass and overridden in its subclass. For example, the
toString() method is defined in the Object class and overridden in GeometricObject.
Consider the following code:

Object o = new GeometricObject();
System.out.println(o.toString());

Which toString() method is invoked by o? To answer this question, we first introduce two
terms: declared type and actual type. A variable must be declared a type. The type that
declares a variable is called the variable’s declared type. Here o’s declared type is Object. A
variable of a reference type can hold a null value or a reference to an instance of the declared
type. The instance may be created using the constructor of the declared type or its subtype.
The actual type of the variable is the actual class for the object referenced by the variable.
Here o’s actual type is GeometricObject, because o references an object created using new
GeometricObject(). Which toString() method is invoked by o is determined by o’s
actual type. This is known as dynamic binding.

Dynamic binding works as follows: Suppose an object o is an instance of classes C1, C2,
. . ., Cn-1, and Cn, where C1 is a subclass of C2, C2 is a subclass of C3, . . ., and Cn-1 is a sub-
class of Cn, as shown in Figure 11.2. That is, Cn is the most general class, and C1 is the most
specific class. In Java, Cn is the Object class. If o invokes a method p, the JVM searches
for the implementation of the method p in C1, C2, . . ., Cn-1, and Cn, in this order, until it is
found. Once an implementation is found, the search stops and the first-found implementa-
tion is invoked.

what is polymorphism?

declared type

actual type

dynamic binding

4 // Display circle and rectangle properties
5
6
7
8
9 }
10
11 /** Display geometric object properties */
12 public static void {
13 System.out.println("Created on " + object.getDateCreated() +
14 ". Color is " + object.getColor());
15 }
16 }

displayObject(SimpleGeometricObject object)

(1, 1, "black", true));
displayObject(new RectangleFromSimpleGeometricObject

(1, "red", false));
displayObject(new CircleFromSimpleGeometricObject

Key
Point

11.8 Dynamic Binding 423

Listing 11.6 gives an example to demonstrate dynamic binding.

LISTING 11.6 DynamicBindingDemo.java
1 public class DynamicBindingDemo {
2 public static void main(String[] args) {
3
4 m(new Student());
5 m(new Person());
6 m(new Object());
7 }
8
9 public static void {
10 System.out.println(x.toString());
11 }
12 }
13
14 class {
15 }
16
17 class {
18 @Override
19 public String {
20 return "Student";
21 }
22 }
23
24 class {
25 @Override
26 public String {
27 return "Person";
28 }
29 }

toString()

Person extends Object

toString()

Student extends Person

GraduateStudent extends Student

m(Object x)

m(new GraduateStudent());

Polymorphism and dynamic
binding demo

polymorphic call

dynamic binding

.

java.lang.Object
If o is an instance of C1, o is also an
instance of C2, C3, …, Cn-1, and Cn

Cn Cn-1 C2 C1

FIGURE 11.2 The method to be invoked is dynamically bound at runtime.

Student
Student
Person
java.lang.Object@130c19b

Method m (line 9) takes a parameter of the Object type. You can invoke m with any object
(e.g., new GraduateStudent(), new Student(), new Person(), and new Object())
in lines 3–6).

When the method m(Object x) is executed, the argument x’s toString method is
invoked. x may be an instance of GraduateStudent, Student, Person, or Object. The
classes GraduateStudent, Student, Person, and Object have their own implementa-
tions of the toString method. Which implementation is used will be determined by x’s
actual type at runtime. Invoking m(new GraduateStudent()) (line 3) causes the
toString method defined in the Student class to be invoked.

Invoking m(new Student()) (line 4) causes the toString method defined in the
Student class to be invoked; invoking m(new Person()) (line 5) causes the toString

VideoNote

override toString()

override toString()

424 Chapter 11 Inheritance and Polymorphism

matching vs. binding

✓Point✓Check

method defined in the Person class to be invoked; and invoking m(new Object()) (line 6)
causes the toString method defined in the Object class to be invoked.

Matching a method signature and binding a method implementation are two separate
issues. The declared type of the reference variable decides which method to match at compile
time. The compiler finds a matching method according to the parameter type, number of para-
meters, and order of the parameters at compile time. A method may be implemented in sev-
eral classes along the inheritance chain. The JVM dynamically binds the implementation of
the method at runtime, decided by the actual type of the variable.

11.17 What is polymorphism? What is dynamic binding?

11.18 Describe the difference between method matching and method binding.

11.19 Can you assign new int[50], new Integer[50], new String[50], or new
Object[50], into a variable of Object[] type?

11.20 What is wrong in the following code?

1 public class Test {
2 public static void main(String[] args) {
3 Integer[] list1 = {12, 24, 55, 1};
4 Double[] list2 = {12.4, 24.0, 55.2, 1.0};
5 int[] list3 = {1, 2, 3};
6 printArray(list1);
7 printArray(list2);
8 printArray(list3);
9 }
10
11 public static void printArray(Object[] list) {
12 for (Object o: list)
13 System.out.print(o + " ");
14 System.out.println();
15 }
16 }

11.21 Show the output of the following code:

public class Test {
public static void main(String[] args) {

new Person().printPerson();
new Student().printPerson();

}
}

class Student extends Person {
@Override
public String getInfo() {

return "Student";
}

}

class Person {
public String getInfo() {

return "Person";
}

public void printPerson() {
System.out.println(getInfo());

}
}

(a)

public class Test {
public static void main(String[] args) {

new Person().printPerson();
new Student().printPerson();

}
}

class Student extends Person {
String getInfo() {

return "Student";
}

}

class Person {
String getInfo() {

return "Person";
}

public void printPerson() {
System.out.println(getInfo());

}
}

private

private

(b)

11.9 Casting Objects and the instanceof Operator 425

11.22 Show the output of following program:

1 public class Test {
2 public static void main(String[] args) {
3 A a = new A(3);
4 }
5 }
6
7 class A extends B {
8 public A(int t) {
9 System.out.println("A's constructor is invoked");
10 }
11 }
12
13 class B {
14 public B() {
15 System.out.println("B's constructor is invoked");
16 }
17 }

Is the no-arg constructor of Object invoked when new A(3) is invoked?

11.9 Casting Objects and the instanceof Operator
One object reference can be typecast into another object reference. This is called
casting object.

In the preceding section, the statement

m(new Student());

assigns the object new Student() to a parameter of the Object type. This statement is
equivalent to

Object o = new Student(); // Implicit casting
m(o);

The statement Object o = new Student(), known as implicit casting, is legal because an
instance of Student is an instance of Object.

Suppose you want to assign the object reference o to a variable of the Student type using
the following statement:

Student b = o;

In this case a compile error would occur. Why does the statement Object o = new Stu-
dent() work but Student b = o doesn’t? The reason is that a Student object is always
an instance of Object, but an Object is not necessarily an instance of Student. Even
though you can see that o is really a Student object, the compiler is not clever enough to
know it. To tell the compiler that o is a Student object, use explicit casting. The syntax is
similar to the one used for casting among primitive data types. Enclose the target object type
in parentheses and place it before the object to be cast, as follows:

Student b = (Student)o; // Explicit casting

It is always possible to cast an instance of a subclass to a variable of a superclass (known as
upcasting), because an instance of a subclass is always an instance of its superclass. When
casting an instance of a superclass to a variable of its subclass (known as downcasting),
explicit casting must be used to confirm your intention to the compiler with the

casting object

implicit casting

Key
Point

explicit casting

upcasting

downcasting

426 Chapter 11 Inheritance and Polymorphism

(SubclassName) cast notation. For the casting to be successful, you must make sure that
the object to be cast is an instance of the subclass. If the superclass object is not an instance
of the subclass, a runtime ClassCastException occurs. For example, if an object is not
an instance of Student, it cannot be cast into a variable of Student. It is a good practice,
therefore, to ensure that the object is an instance of another object before attempting a cast-
ing. This can be accomplished by using the instanceof operator. Consider the following
code:

... // Some lines of code
/** Perform casting if myObject is an instance of Circle */
if (myObject instanceof Circle) {
System.out.println("The circle diameter is " +
(.getDiameter());

...
}

You may be wondering why casting is necessary. The variable myObject is declared
Object. The declared type decides which method to match at compile time. Using
myObject.getDiameter() would cause a compile error, because the Object class does
not have the getDiameter method. The compiler cannot find a match for
myObject.getDiameter(). Therefore, it is necessary to cast myObject into the Circle
type to tell the compiler that myObject is also an instance of Circle.

Why not define myObject as a Circle type in the first place? To enable generic pro-
gramming, it is a good practice to define a variable with a supertype, which can accept a value
of any subtype.

Note
instanceof is a Java keyword. Every letter in a Java keyword is in lowercase.

Tip
To help understand casting, you may also consider the analogy of fruit, apple, and
orange, with the Fruit class as the superclass for Apple and Orange. An apple is a
fruit, so you can always safely assign an instance of Apple to a variable for Fruit.
However, a fruit is not necessarily an apple, so you have to use explicit casting to assign
an instance of Fruit to a variable of Apple.

Listing 11.7 demonstrates polymorphism and casting. The program creates two objects
(lines 5–6), a circle and a rectangle, and invokes the displayObject method to display them
(lines 9–10). The displayObject method displays the area and diameter if the object is a
circle (line 15), and the area if the object is a rectangle (lines 21–22).

LISTING 11.7 CastingDemo.java
1 public class CastingDemo {
2 /** Main method */
3 public static void main(String[] args) {
4 // Create and initialize two objects
5 Object object1 = new CircleFromSimpleGeometricObject(1);
6 Object object2 = new RectangleFromSimpleGeometricObject(1, 1);
7
8 // Display circle and rectangle
9
10
11 }
12

displayObject(object2);
displayObject(object1);

(Circle)myObject)

Object myObject = new Circle();

ClassCastException

instanceof

lowercase keywords

casting analogy

11.9 Casting Objects and the instanceof Operator 427

13 /** A method for displaying an object */
14 public static void {
15 if () {
16 System.out.println("The circle area is " +
17 ((CircleFromSimpleGeometricObject)object).getArea());
18 System.out.println("The circle diameter is " +
19 ((CircleFromSimpleGeometricObject)object).getDiameter());
20 }
21 else if (
22) {
23 System.out.println("The rectangle area is " +
24 ((RectangleFromSimpleGeometricObject)object).getArea());
25 }
26 }
27 }

RectangleFromSimpleGeometricObject
object instanceof

object instanceof CircleFromSimpleGeometricObject
displayObject(Object object)

The circle area is 3.141592653589793
The circle diameter is 2.0
The rectangle area is 1.0

The displayObject(Object object) method is an example of generic programming. It
can be invoked by passing any instance of Object.

The program uses implicit casting to assign a Circle object to object1 and a
Rectangle object to object2 (lines 5–6), then invokes the displayObject method to dis-
play the information on these objects (lines 9–10).

In the displayObject method (lines 14–26), explicit casting is used to cast the object to
Circle if the object is an instance of Circle, and the methods getArea and getDiameter
are used to display the area and diameter of the circle.

Casting can be done only when the source object is an instance of the target class. The pro-
gram uses the instanceof operator to ensure that the source object is an instance of the tar-
get class before performing a casting (line 15).

Explicit casting to Circle (lines 17, 19) and to Rectangle (line 24) is necessary because
the getArea and getDiameter methods are not available in the Object class.

Caution
The object member access operator (.) precedes the casting operator. Use parentheses
to ensure that casting is done before the . operator, as in

((Circle)object).getArea());

Casting a primitive type value is different from casting an object reference. Casting a primi-
tive type value returns a new value. For example:

int age = 45;
byte newAge = (int)age; // A new value is assigned to newAge

However, casting an object reference does not create a new object. For example:

Object o = new Circle();
Circle c = (Circle)o; // No new object is created

Now reference variables o and c point to the same object.

polymorphic call

polymorphic call

precedes casting

428 Chapter 11 Inheritance and Polymorphism

✓Point✓Check 11.23 Indicate true or false for the following statements:

■ You can always successfully cast an instance of a subclass to a superclass.

■ You can always successfully cast an instance of a superclass to a subclass.

11.24 For the GeometricObject and Circle classes in Listings 11.1 and 11.2, answer
the following questions:

a. Are the following Boolean expressions true or false?
Circle circle = new Circle(1);
GeometricObject object1 = new GeometricObject();
(circle instanceof GeometricObject)
(object1 instanceof GeometricObject)
(circle instanceof Circle)
(object1 instanceof Circle)

b. Can the following statements be compiled?
Circle circle = new Circle(5);
GeometricObject object = circle;

c. Can the following statements be compiled?
GeometricObject object = new GeometricObject();
Circle circle = (Circle)object;

11.25 Suppose that Fruit, Apple, Orange, GoldenDelicious, and McIntosh are
defined in the following inheritance hierarchy:

Fruit

Apple

McIntosh

Orange

GoldenDelicious

Assume that the following code is given:

Fruit fruit = new GoldenDelicious();
Orange orange = new Orange();

Answer the following questions:

a. Is fruit instanceof Fruit?

b. Is fruit instanceof Orange?

c. Is fruit instanceof Apple?

d. Is fruit instanceof GoldenDelicious?

e. Is fruit instanceof McIntosh?

f. Is orange instanceof Orange?

11.10 The Object’s equals Method 429

g. Is orange instanceof Fruit?

h. Is orange instanceof Apple?

i. Suppose the method makeAppleCider is defined in the Apple class. Can fruit
invoke this method? Can orange invoke this method?

j. Suppose the method makeOrangeJuice is defined in the Orange class. Can
orange invoke this method? Can fruit invoke this method?

k. Is the statement Orange p = new Apple() legal?

l. Is the statement McIntosh p = new Apple() legal?

m. Is the statement Apple p = new McIntosh() legal?

11.26 What is wrong in the following code?

1 public class Test {
2 public static void main(String[] args) {
3 Object fruit = new Fruit();
4 Object apple = (Apple)fruit;
5 }
6 }
7
8 class Apple extends Fruit {
9 }
10
11 class Fruit {
12 }

11.10 The Object’s equals Method
Like the toString() method, the equals(Object) method is another method
defined in the Object class.

Another method defined in the Object class that is often used is the equals method. Its sig-
nature is

public boolean equals(Object o)

This method tests whether two objects are equal. The syntax for invoking it is:

object1.equals(object2);

The default implementation of the equals method in the Object class is:

public boolean equals(Object obj) {
return (this == obj);

}

This implementation checks whether two reference variables point to the same object using
the == operator. You should override this method in your custom class to test whether two dis-
tinct objects have the same content.

The equals method is overridden in many classes in the Java API, such as
java.lang.String and java.util.Date, to compare whether the contents of two objects
are equal. You have already used the equals method to compare two strings in Section 9.2,
The String Class. The equals method in the String class is inherited from the Object
class and is overridden in the String class to test whether two strings are identical in content.

Key
Point

equals(Object)

430 Chapter 11 Inheritance and Polymorphism

You can override the equals method in the Circle class to compare whether two circles
are equal based on their radius as follows:

public boolean equals(Object o) {
if (o instanceof Circle) {
return radius == ((Circle)o).radius;

}
else

return false;
}

Note
The == comparison operator is used for comparing two primitive data type values or for
determining whether two objects have the same references. The equals method is
intended to test whether two objects have the same contents, provided that the method
is overridden in the defining class of the objects. The == operator is stronger than the
equals method, in that the == operator checks whether the two reference variables
refer to the same object.

Caution
Using the signature equals(SomeClassName obj) (e.g., equals(Circle c))
to override the equals method in a subclass is a common mistake. You should use
equals(Object obj). See CheckPoint Question 11.28.

11.27 Does every object have a toString method and an equals method? Where do they
come from? How are they used? Is it appropriate to override these methods?

11.28 When overriding the equals method, a common mistake is mistyping its signature in
the subclass. For example, the equals method is incorrectly written as
equals(Circle circle), as shown in (a) in following the code; instead, it should
be equals(Object circle), as shown in (b). Show the output of running class
Test with the Circle class in (a) and in (b), respectively.

vs. equals==

equals(Object)

✓Point✓Check

Key
Point

The ArrayList class

class Circle {
double radius;

public boolean equals() {
return this.radius == circle.radius;

}
}

Circle circle

public class Test {
public static void main(String[] args) {
Object circle1 = new Circle();
Object circle2 = new Circle();
System.out.println(circle1.equals(circle2));

}
}

(a)

class Circle {
double radius;

public boolean equals() {
return this.radius ==
((Circle)circle).radius;

}
}

Object circle

(b)

11.11 The ArrayList Class
An ArrayList object can be used to store a list of objects.

Now we are ready to introduce a very useful class for storing objects. You can create an array
to store objects. But, once the array is created, its size is fixed. Java provides the ArrayList

VideoNote

11.11 The ArrayList Class 431

java.util.ArrayList<E>

+ArrayList()

+add(o: E): void

+add(index: int, o: E): void

+clear(): void

+contains(o: Object): boolean

+get(index: int): E

+indexOf(o: Object): int

+isEmpty(): boolean

+lastIndexOf(o: Object): int

+remove(o: Object): boolean

+size(): int

+remove(index: int): boolean

+set(index: int, o: E): E

Appends a new element o at the end of this list.

Adds a new element o at the specified index in this list.

Removes all the elements from this list.

Returns true if this list contains the element o.

Returns the element from this list at the specified index.

Returns the index of the first matching element in this list.

Returns true if this list contains no elements.

Returns the index of the last matching element in this list.

Removes the element o from this list.

Returns the number of elements in this list.

Removes the element at the specified index.

Sets the element at the specified index.

Creates an empty list.

FIGURE 11.3 An ArrayList stores an unlimited number of objects.

ArrayList is known as a generic class with a generic type E. You can specify a concrete
type to replace E when creating an ArrayList. For example, the following statement creates
an ArrayList and assigns its reference to variable cities. This ArrayList object can be
used to store strings.

ArrayList<String> cities = new ArrayList<String>();

The following statement creates an ArrayList and assigns its reference to variable
dates. This ArrayList object can be used to store dates.

ArrayList<java.util.Date> dates = new ArrayList<java.util.Date> ();

Note
In JDK 7, the statement

ArrayList list = new ArrayList ();

can be simplified by

ArrayList list = new ArrayList ();

The concrete type is no longer required in the constructor thanks to a feature called type
inference. The compiler is able to infer the type from the variable declaration. More dis-
cussions on generics including how to define custom generic classes and methods will
be introduced in Chapter 21, Generics.

Listing 11.8 gives an example of using ArrayList to store objects.

LISTING 11.8 TestArrayList.java
1 import java.util.ArrayList;
2

<><AConcreteType>

<AConcreteType><AConcreteType>

type inference

import ArrayList

class, which can be used to store an unlimited number of objects. Figure 11.3 shows some
methods in ArrayList.

432 Chapter 11 Inheritance and Polymorphism

3 public class TestArrayList {
4 public static void main(String[] args) {
5 // Create a list to store cities
6
7
8 // Add some cities in the list
9
10 // cityList now contains [London]
11 cityList.add("Denver");
12 // cityList now contains [London, Denver]
13 cityList.add("Paris");
14 // cityList now contains [London, Denver, Paris]
15 cityList.add("Miami");
16 // cityList now contains [London, Denver, Paris, Miami]
17 cityList.add("Seoul");
18 // Contains [London, Denver, Paris, Miami, Seoul]
19 cityList.add("Tokyo");
20 // Contains [London, Denver, Paris, Miami, Seoul, Tokyo]
21
22 System.out.println("List size? " +);
23 System.out.println("Is Miami in the list? " +
24);
25 System.out.println("The location of Denver in the list? "
26 +);
27 System.out.println("Is the list empty? " +
28); // Print false
29
30 // Insert a new city at index 2
31 cityList.add(2, "Xian");
32 // Contains [London, Denver, Xian, Paris, Miami, Seoul, Tokyo]
33
34 // Remove a city from the list
35
36 // Contains [London, Denver, Xian, Paris, Seoul, Tokyo]
37
38 // Remove a city at index 1
39 cityList.remove(1);
40 // Contains [London, Xian, Paris, Seoul, Tokyo]
41
42 // Display the contents in the list
43 System.out.println(cityList.toString());
44
45 // Display the contents in the list in reverse order
46 for (int i = cityList.size() - 1; i >= 0; i––)
47 System.out.print(+ " ");
48 System.out.println();
49
50 // Create a list to store two circles
51 ArrayList<CircleFromSimpleGeometricObject> list
52 = new ArrayList<CircleFromSimpleGeometricObject>();
53
54 // Add two circles
55 list.add(new CircleFromSimpleGeometricObject(2));
56 list.add(new CircleFromSimpleGeometricObject(3));
57
58 // Display the area of the first circle in the list
59 System.out.println("The area of the circle? " +
60 ((CircleFromSimpleGeometricObject)list.get(0)).getArea());
61 }
62 }

cityList.get(i)

cityList.remove("Miami");

cityList.isEmpty()

cityList.indexOf("Denver")

cityList.contains("Miami")

cityList.size()

cityList.add("London");

ArrayList<String> cityList = new ArrayList<String>();create ArrayList

add element

list size

contains element?

element index

is empty?

remove element

remove element

toString()

get element

create ArrayList

11.11 The ArrayList Class 433

List size? 6
Is Miami in the list? True
The location of Denver in the list? 1
Is the list empty? false
[London, Xian, Paris, Seoul, Tokyo]
Tokyo Seoul Paris Xian London
The area of the circle? 12.566370614359172

Since the ArrayList is in the java.util package, it is imported in line 1. The program
creates an ArrayList of strings using its no-arg constructor and assigns the reference to
cityList (line 6). The add method (lines 9–19) adds strings to the end of list. So, after
cityList.add("London") (line 9), the list contains

[London]

After cityList.add("Denver") (line 11), the list contains

[London, Denver]

After adding Paris, Miami, Seoul, and Tokyo (lines 13–19), the list contains

[London, Denver, Paris, Miami, Seoul, Tokyo]

Invoking size() (line 22) returns the size of the list, which is currently 6. Invoking
contains("Miami") (line 24) checks whether the object is in the list. In this case, it returns
true, since Miami is in the list. Invoking indexOf("Denver") (line 26) returns the index of
Denver in the list, which is 1. If Denverwere not in the list, it would return -1. The isEmpty()
method (line 28) checks whether the list is empty. It returns false, since the list is not empty.

The statement cityList.add(2, "Xian") (line 31) inserts an object into the list at the
specified index. After this statement, the list becomes

[London, Denver, Xian, Paris, Miami, Seoul, Tokyo]

The statement cityList.remove("Miami") (line 35) removes the object from the list.
After this statement, the list becomes

[London, Denver, Xian, Paris, Seoul, Tokyo]

The statement cityList.remove(1) (line 39) removes the object at the specified index
from the list. After this statement, the list becomes

[London, Xian, Paris, Seoul, Tokyo]

The statement in line 43 is same as

System.out.println(cityList);

The toString() method returns a string representation of the list in the form of
[e0.toString(), e1.toString(), ..., ek.toString()], where e0, e1, . . . , and
ek are the elements in the list.

The get(index) method (line 47) returns the object at the specified index.
ArrayList objects can be used like arrays, but there are many differences. Table 11.1 lists

their similarities and differences.
Once an array is created, its size is fixed. You can access an array element using the

square-bracket notation (e.g., a[index]). When an ArrayList is created, its size is 0.

add(Object)

size()

add(index, Object)

remove(Object)

remove(index)

toString()

getIndex()

array vs. ArrayList

434 Chapter 11 Inheritance and Polymorphism

TABLE 11.1 Differences and Similarities between Arrays and ArrayList

Operation Array ArrayList

Creating an array/ArrayList String[] a = new String[10] ArrayList<String> list = new ArrayList<>();

Accessing an element a[index] list.get(index);

Updating an element a[index] = "London"; list.set(index, "London");

Returning size a.length list.size();

Adding a new element list.add("London");

Inserting a new element list.add(index, "London");

Removing an element list.remove(index);

Removing an element list.remove(Object);

Removing all elements list.clear();

create an array list

contained in list?
add to list

You cannot use the get and set methods if the element is not in the list. It is easy to add,
insert, and remove elements in a list, but it is rather complex to add, insert, and remove ele-
ments in an array. You have to write code to manipulate the array in order to perform these
operations.

Suppose you want to create an ArrayList for storing integers. Can you use the following
code to create a list?

ArrayList<int> list = new ArrayList<int>();

No. This will not work because the elements stored in an ArrayList must be of an object
type. You cannot use a primitive data type such as int to replace a generic type. However,
you can create an ArrayList for storing Integer objects as follows:

ArrayList<Integer> list = new ArrayList<Integer>();

Listing 11.9 gives a program that prompts the user to enter a sequence of numbers and dis-
plays the distinct numbers in the sequence. Assume that the input ends with 0 and 0 is not
counted as a number in the sequence.

LISTING 11.9 DistinctNumbers.java
1 import java.util.ArrayList;
2 import java.util.Scanner;
3
4 public class DistinctNumbers {
5 public static void main(String[] args) {
6 ArrayList<Integer> list = new ArrayList<Integer>();
7
8 Scanner input = new Scanner(System.in);
9 System.out.print("Enter integers (input ends with 0): ");
10 int value;
11
12 do {
13 value = input.nextInt(); // Read a value from the input
14
15 if (! && value != 0)
16 // Add the value if it is not in the list
17 } while (value != 0);

list.add(value);
list.contains(value)

11.11 The ArrayList Class 435

18
19 // Display the distinct numbers
20 for (int i = 0; i < ; i++)
21 System.out.print(+ " ");
22 }
23 }

list.get(i)
list.size()

Enter numbers (input ends with 0):
The distinct numbers are: 1 2 3 6 4 5

1 2 3 2 1 6 3 4 5 4 5 1 2 3 0

The program creates an ArrayList for Integer objects (line 6) and repeatedly reads a value in
the loop (lines 12–17). For each value, if it is not in the list (line 15), add it to the list (line 16). You
can rewrite this program using an array to store the elements rather than using an ArrayList.
However, it is simpler to implement this program using an ArrayList for two reasons.

■ First, the size of an ArrayList is flexible so you don’t have to specify its size in
advance. When creating an array, its size must be specified.

■ Second, ArrayList contains many useful methods. For example, you can test
whether an element is in the list using the contains method. If you use an array,
you have to write additional code to implement this method.

11.29 How do you do the following?

a. Create an ArrayList for storing double values?

b. Append an object to a list?

c. Insert an object at the beginning of a list?

d. Find the number of objects in a list?

e. Remove a given object from a list?

f. Remove the last object from the list?

g. Check whether a given object is in a list?

h. Retrieve an object at a specified index from a list?

11.30 Identify the errors in the following code.

ArrayList<String> list = new ArrayList<String> ();
list.add("Denver");
list.add("Austin");
list.add(new java.util.Date());
String city = list.get(0);
list.set(3, "Dallas");
System.out.println(list.get(3));

11.31 Suppose the ArrayList list contains duplicate elements. Does the following code
correctly remove the element from the array list? If not, correct the code.

for (int i = 0; i < list.size(); i++)
list.remove(element);

11.32 Explain why the following code displays [1, 3] rather than [2, 3].

ArrayList<Integer> list = new ArrayList<Integer>();
list.add(1);

✓Point✓Check

436 Chapter 11 Inheritance and Polymorphism

Key
Point

The MyStack class

array list

stack empty?

get stack size

peek stack

remove

Returns true if this stack is empty.

Returns the number of elements in this stack.

Returns the top element in this stack without removing it.

Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

A list to store elements.

MyStack

+isEmpty(): boolean

+getSize(): int

+peek(): Object

+pop(): Object

+push(o: Object): void

-list: ArrayList<Object>

FIGURE 11.4 The MyStack class encapsulates the stack storage and provides the operations
for manipulating the stack.

push

list.add(2);
list.add(3);
list.remove(1);
System.out.println(list);

11.12 Case Study: A Custom Stack Class
This section designs a stack class for holding objects.

Section 10.9 presented a stack class for storing int values. This section introduces a stack
class to store objects. You can use an ArrayList to implement Stack, as shown in Listing
11.10. The UML diagram for the class is shown in Figure 11.4.VideoNote

LISTING 11.10 MyStack.java
1 import java.util.ArrayList;
2
3 {
4
5
6 {
7 return list.isEmpty();
8 }
9
10 {
11 return list.size();
12 }
13
14 {
15 return list.get(getSize() - 1);
16 }
17
18 {
19 Object o = list.get(getSize() - 1);
20 list.remove(getSize() - 1);
21 return o;
22 }
23
24 {
25 list.add(o);
26 }
27

public void push(Object o)

public Object pop()

public Object peek()

public int getSize()

public boolean isEmpty()

private ArrayList<Object> list = new ArrayList<Object>();
public class MyStack

11.13 The protected Data and Methods 437

28 @Override
29 {
30 return "stack: " + list.toString();
31 }
32 }

An array list is created to store the elements in the stack (line 4). The isEmpty() method
(lines 6–8) returns list.isEmpty(). The getSize() method (lines 10–12) returns
list.size(). The peek() method (lines 14–16) retrieves the element at the top of the stack
without removing it. The end of the list is the top of the stack. The pop() method (lines
18–22) removes the top element from the stack and returns it. The push(Object element)
method (lines 24–26) adds the specified element to the stack. The toString() method (lines
28–31) defined in the Object class is overridden to display the contents of the stack by
invoking list.toString(). The toString() method implemented in ArrayList returns
a string representation of all the elements in an array list.

Design Guide
In Listing 11.10, MyStack contains ArrayList. The relationship between MyStack
and ArrayList is composition. While inheritance models an is-a relationship, compo-
sition models a has-a relationship. You could also implement MyStack as a subclass of
ArrayList (see Programming Exercise 11.4). Using composition is better, however,
because it enables you to define a completely new stack class without inheriting the
unnecessary and inappropriate methods from ArrayList.

11.13 The protected Data and Methods
A protected member of a class can be accessed from a subclass.

So far you have used the private and public keywords to specify whether data fields and
methods can be accessed from outside of the class. Private members can be accessed only
from inside of the class, and public members can be accessed from any other classes.

Often it is desirable to allow subclasses to access data fields or methods defined in the
superclass, but not to allow nonsubclasses to access these data fields and methods. To accom-
plish this, you can use the protected keyword. This way you can access protected data
fields or methods in a superclass from its subclasses.

The modifiers private, protected, and public are known as visibility or accessibility
modifiers because they specify how classes and class members are accessed. The visibility of
these modifiers increases in this order:

Visibility increases

private, default (no modifier), protected, public

Table 11.2 summarizes the accessibility of the members in a class. Figure 11.5 illustrates how
a public, protected, default, and private datum or method in class C1 can be accessed from a
class C2 in the same package, from a subclass C3 in the same package, from a subclass C4 in
a different package, and from a class C5 in a different package.

Use the private modifier to hide the members of the class completely so that they cannot
be accessed directly from outside the class. Use no modifiers (the default) in order to allow
the members of the class to be accessed directly from any class within the same package but
not from other packages. Use the protected modifier to enable the members of the class to
be accessed by the subclasses in any package or classes in the same package. Use the public
modifier to enable the members of the class to be accessed by any class.

Your class can be used in two ways: (1) for creating instances of the class and (2) for defin-
ing subclasses by extending the class. Make the members private if they are not intended

public String toString()

composition
is-a
has-a

why protected?

Key
Point

438 Chapter 11 Inheritance and Polymorphism

for use from outside the class. Make the members public if they are intended for the users of
the class. Make the fields or methods protected if they are intended for the extenders of the
class but not for the users of the class.

The private and protected modifiers can be used only for members of the class. The
public modifier and the default modifier (i.e., no modifier) can be used on members of the
class as well as on the class. A class with no modifier (i.e., not a public class) is not accessi-
ble by classes from other packages.

Note
A subclass may override a protected method defined in its superclass and change its vis-
ibility to public. However, a subclass cannot weaken the accessibility of a method
defined in the superclass. For example, if a method is defined as public in the superclass,
it must be defined as public in the subclass.

TABLE 11.2 Data and Methods Visibility

Modifier
on members

in a class

Accessed
from the

same class

Accessed
from the

same package

Accessed from
a subclass in a

different package

Accessed
from a different

package

public ✓ ✓ ✓ ✓

protected ✓ ✓ ✓ –

default (no modifier) ✓ ✓ – –

private ✓ – – –

public class C1 {
public int x;
protected int y;
int z;
private int u;

protected void m() {
 }
}

package p1;

package p2;

public class C2 {
 C1 o = new C1();
 can access o.x;
 can access o.y;
 can access o.z;
 cannot access o.u;

 can invoke o.m();
}

public class C3
extends C1 {

 can access x;
 can access y;
 can access z;
 cannot access u;

 can invoke m();
}

public class C4
extends C1 {

 can access x;
 can access y;
 cannot access z;
 cannot access u;

 can invoke m();
}

public class C5 {
 C1 o = new C1();
 can access o.x;
 cannot access o.y;
 cannot access o.z;
 cannot access o.u;

 cannot invoke o.m();
}

FIGURE 11.5 Visibility modifiers are used to control how data and methods are accessed.

change visibility

11.14 Preventing Extending and Overriding 439

11.33 What modifier should you use on a class so that a class in the same package can
access it, but a class in a different package cannot access it?

11.34 What modifier should you use so that a class in a different package cannot access the
class, but its subclasses in any package can access it?

11.35 In the following code, the classes A and B are in the same package. If the question
marks in (a) are replaced by blanks, can class B be compiled? If the question marks
are replaced by private, can class B be compiled? If the question marks are
replaced by protected, can class B be compiled?

public class A {
int i;

void m() {
...

}
}

?

?

package p1;

(a)

public class B extends A {
public void m1(String[] args) {
System.out.println(i);
m();

}
}

package p1;

(b)

11.36 In the following code, the classes A and B are in different packages. If the question
marks in (a) are replaced by blanks, can class B be compiled? If the question marks
are replaced by private, can class B be compiled? If the question marks are
replaced by protected, can class B be compiled?

public class A {
int i;

void m() {
...

}
}

?

?

package p1;

(a)

public class B extends A {
public void m1(String[] args) {
System.out.println(i);
m();

}
}

package p2;

(b)

11.14 Preventing Extending and Overriding
Neither a final class nor a final method can be extended. A final data field is a
constant.

You may occasionally want to prevent classes from being extended. In such cases, use the
final modifier to indicate that a class is final and cannot be a parent class. The Math class is
a final class. The String, StringBuilder, and StringBuffer classes are also final
classes. For example, the following class A is final and cannot be extended:

public class A {
// Data fields, constructors, and methods omitted

}

final

Key
Point

✓Point✓Check

440 Chapter 11 Inheritance and Polymorphism

You also can define a method to be final; a final method cannot be overridden by its sub-
classes.

For example, the following method m is final and cannot be overridden:

public class Test {
// Data fields, constructors, and methods omitted

public void m() {
// Do something

}
}

Note
The modifiers public, protected, private, static, abstract, and final are
used on classes and class members (data and methods), except that the final modi-
fier can also be used on local variables in a method. A final local variable is a constant
inside a method.

11.37 How do you prevent a class from being extended? How do you prevent a method
from being overridden?

11.38 Indicate true or false for the following statements:

a. A protected datum or method can be accessed by any class in the same package.

b. A protected datum or method can be accessed by any class in different packages.

c. A protected datum or method can be accessed by its subclasses in any package.

d. A final class can have instances.

e. A final class can be extended.

f. A final method can be overridden.

KEY TERMS

final

✓Point✓Check

actual type 422
casting objects 425
constructor chaining 415
declared type 422
dynamic binding 422
inheritance 408
instanceof 426
is-a relationship 437
method overriding 419
multiple inheritance 414

override 419
polymorphism 422
protected 437
single inheritance 414
subclass 408
subtype 421
superclass 408
supertype 421
type inference 431

CHAPTER SUMMARY

1. You can define a new class from an existing class. This is known as class inheritance.
The new class is called a subclass, child class, or extended class. The existing class is
called a superclass, parent class, or base class.

Chapter Summary 441

2. A constructor is used to construct an instance of a class. Unlike properties and meth-
ods, the constructors of a superclass are not inherited in the subclass. They can be
invoked only from the constructors of the subclasses, using the keyword super.

3. A constructor may invoke an overloaded constructor or its superclass’s constructor.
The call must be the first statement in the constructor. If none of them is invoked
explicitly, the compiler puts super() as the first statement in the constructor, which
invokes the superclass’s no-arg constructor.

4. To override a method, the method must be defined in the subclass using the same sig-
nature and the same return type as in its superclass.

5. An instance method can be overridden only if it is accessible. Thus, a private method
cannot be overridden because it is not accessible outside its own class. If a method
defined in a subclass is private in its superclass, the two methods are completely
unrelated.

6. Like an instance method, a static method can be inherited. However, a static method
cannot be overridden. If a static method defined in the superclass is redefined in a
subclass, the method defined in the superclass is hidden.

7. Every class in Java is descended from the java.lang.Object class. If no super-
class is specified when a class is defined, its superclass is Object.

8. If a method’s parameter type is a superclass (e.g., Object), you may pass an object to
this method of any of the parameter’s subclasses (e.g., Circle or String). This is
known as polymorphism.

9. It is always possible to cast an instance of a subclass to a variable of a superclass,
because an instance of a subclass is always an instance of its superclass. When
casting an instance of a superclass to a variable of its subclass, explicit casting
must be used to confirm your intention to the compiler with the (SubclassName)
cast notation.

10. A class defines a type. A type defined by a subclass is called a subtype and a type
defined by its superclass is called a supertype.

11. When invoking an instance method from a reference variable, the actual type of the
variable decides which implementation of the method is used at runtime. This is
known as dynamic binding.

12. You can use obj instanceof AClass to test whether an object is an instance of a
class.

13. You can use the ArrayList class to create an object to store a list of objects.

14. You can use the protected modifier to prevent the data and methods from being
accessed by nonsubclasses from a different package.

15. You can use the final modifier to indicate that a class is final and cannot be
extended and to indicate that a method is final and cannot be overridden.

442 Chapter 11 Inheritance and Polymorphism

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 11.2–11.4
11.1 (The Triangle class) Design a class named Triangle that extends

GeometricObject. The class contains:

■ Three double data fields named side1, side2, and side3 with default values
1.0 to denote three sides of the triangle.

■ A no-arg constructor that creates a default triangle.
■ A constructor that creates a triangle with the specified side1, side2, and

side3.
■ The accessor methods for all three data fields.
■ A method named getArea() that returns the area of this triangle.
■ A method named getPerimeter() that returns the perimeter of this triangle.
■ A method named toString() that returns a string description for the triangle.

For the formula to compute the area of a triangle, see Programming Exercise 2.15.
The toString() method is implemented as follows:

return "Triangle: side1 = " + side1 + " side2 = " + side2 +
" side3 = " + side3;

Draw the UML diagrams for the classes Triangle and GeometricObject

and implement the classes. Write a test program that prompts the user to enter
three sides of the triangle, a color, and a Boolean value to indicate whether the
triangle is filled. The program should create a Triangle object with these
sides and set the color and filled properties using the input. The program
should display the area, perimeter, color, and true or false to indicate whether it
is filled or not.

Sections 11.5–11.14
11.2 (The Person, Student, Employee, Faculty, and Staff classes) Design a

class named Person and its two subclasses named Student and Employee.
Make Faculty and Staff subclasses of Employee. A person has a name,
address, phone number, and email address. A student has a class status (freshman,
sophomore, junior, or senior). Define the status as a constant. An employee has an
office, salary, and date hired. Use the MyDate class defined in Programming Exer-
cise 10.14 to create an object for date hired. A faculty member has office hours
and a rank. A staff member has a title. Override the toString method in each
class to display the class name and the person’s name.

Draw the UML diagram for the classes and implement them. Write a test program
that creates a Person, Student, Employee, Faculty, and Staff, and invokes
their toString() methods.

11.3 (Subclasses of Account) In Programming Exercise 8.7, the Account class
was defined to model a bank account. An account has the properties account
number, balance, annual interest rate, and date created, and methods to deposit
and withdraw funds. Create two subclasses for checking and saving accounts.
A checking account has an overdraft limit, but a savings account cannot be
overdrawn.

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 443

New Account class

Draw the UML diagram for the classes and then implement them. Write a test pro-
gram that creates objects of Account, SavingsAccount, and
CheckingAccount and invokes their toString() methods.

11.4 (Maximum element in ArrayList) Write the following method that returns the
maximum value in an ArrayList of integers. The method returns null if the list
is null or the list size is 0.

public static Integer max(ArrayList<Integer> list)

Write a test program that prompts the user to enter a sequence of numbers ending
with 0, and invokes this method to return the largest number in the input.

11.5 (The Course class) Rewrite the Course class in Listing 10.6. Use an ArrayList
to replace an array to store students. You should not change the original contract of
the Course class (i.e., the definition of the constructors and methods should not
be changed).

11.6 (Use ArrayList) Write a program that creates an ArrayList and adds a Loan
object, a Date object, a string, a JFrame object, and a Circle object to the list,
and use a loop to display all the elements in the list by invoking the object’s
toString() method.

11.7 (Shuffle ArrayList) Write the following method that shuffles the elements in an
ArrayList of integers.

public static void shuffle(ArrayList<Integer> list)

**11.8 (New Account class) An Account class was specified in Programming Exercise
8.7. Design a new Account class as follows:

■ Add a new data field name of the String type to store the name of the cus-
tomer.

■ Add a new constructor that constructs an account with the specified name, id,
and balance.

■ Add a new data field named transactions whose type is ArrayList
that stores the transaction for the accounts. Each transaction is an instance
of the Transaction class. The Transaction class is defined as shown in
Figure 11.6.

Transaction

The get and set methods for these data fields are
provided in the class, but omitted in the UML diagram
for brevity.

The date of this transaction.

The type of the transaction, such as 'W' for withdrawal, 'D'
 for deposit.

The amount of the transaction.

The new balance after this transaction.

Construct a Transaction with the specified date, type,
 balance, and description.

The description of this transaction.

+Transaction(type: char,
 amount: double, balance:
 double, description: String)

-date: java.util.Date

-type: char

-amount: double

-balance: double

-description: String

FIGURE 11.6 The Transaction class describes a transaction for a bank account.

VideoNote

444 Chapter 11 Inheritance and Polymorphism

Enter the array size n:
The random array is
0011
0011
1101
1010
The largest row index: 2
The largest column index: 2, 3

4

11.10 (Implement MyStack using inheritance) In Listing 11.10, MyStack is imple-
mented using composition. Define a new stack class that extends ArrayList.

Draw the UML diagram for the classes and then implement MyStack. Write a test
program that prompts the user to enter five strings and displays them in reverse
order.

11.11 (Sort ArrayList) Write the following method that sorts an ArrayList of numbers:

public static void sort(ArrayList<Integer> list)

Write a test program that prompts the user to enter 5 numbers, stores them in an
array list, and displays them in increasing order.

11.12 (Sum ArrayList) Write the following method that returns the sum of all numbers
in an ArrayList:

public static double sum(ArrayList<Double> list)

Write a test program that prompts the user to enter 5 numbers, stores them in an
array list, and displays their sum.

■ Modify the withdraw and deposit methods to add a transaction to the
transactions array list.

■ All other properties and methods are the same as in Programming Exercise 8.7.

Write a test program that creates an Account with annual interest rate 1.5%, bal-
ance 1000, id 1122, and name George. Deposit $30, $40, and $50 to the account
and withdraw $5, $4, and $2 from the account. Print an account summary that
shows account holder name, interest rate, balance, and all transactions.

*11.9 (Largest rows and columns) Write a program that randomly fills in 0s and 1s into
an n-by-n matrix, prints the matrix, and finds the rows and columns with the most
1s. (Hint: Use two ArrayLists to store the row and column indices with the most
1s.) Here is a sample run of the program:

GUI BASICS

Objectives
■ To distinguish between Swing and AWT (§12.2).

■ To describe the Java GUI API hierarchy (§12.3).

■ To create user interfaces using frames, panels, and simple GUI
components (§12.4).

■ To understand the role of layout managers and use the FlowLayout,
GridLayout, and BorderLayout managers to lay out components in a
container (§12.5).

■ To use JPanel to group components in a subcontainer (§12.6).

■ To create objects for colors using the Color class (§12.7).

■ To create objects for fonts using the Font class (§12.8).

■ To apply common features such as borders, tool tips, fonts, and colors on
Swing components (§12.9).

■ To decorate the border of GUI components (§12.9).

■ To create image icons using the ImageIcon class (§12.10).

■ To create and use buttons using the JButton class (§12.11).

■ To create and use check boxes using the JCheckBox class (§12.12).

■ To create and use radio buttons using the JRadioButton class (§12.13).

■ To create and use labels using the JLabel class (§12.14).

■ To create and use text fields using the JTextField class (§12.15).

CHAPTER

12

446 Chapter 12 GUI Basics

12.1 Introduction
Java GUI is an excellent pedagogical tool for learning object-oriented programming.

The design of the API for Java GUI programming is an excellent example of how the object-
oriented principle is applied. This chapter serves two purposes. First, it presents the basics of
Java GUI programming. Second, it uses GUI to demonstrate OOP. Specifically, this chapter
introduces the framework of the Java GUI API and discusses GUI components and their rela-
tionships, containers and layout managers, colors, fonts, borders, image icons, and tool tips. It
also introduces some of the most frequently used GUI components.

12.2 Swing vs. AWT
AWT GUI components are replaced by more versatile and stable Swing GUI
components.

We used simple GUI examples to demonstrate OOP in Section 8.6.3, Displaying GUI Com-
ponents. We used the GUI components such as JButton, JLabel, JTextField,
JRadioButton, and JComboBox. Why do the GUI component classes have the prefix J?
Instead of JButton, why not name it simply Button? In fact, there is a class already named
Button in the java.awt package.

When Java was introduced, the GUI classes were bundled in a library known as the
Abstract Windows Toolkit (AWT). AWT is fine for developing simple graphical user inter-
faces, but not for developing comprehensive GUI projects. In addition, AWT is prone to
platform-specific bugs. The AWT user-interface components were replaced by a more
robust, versatile, and flexible library known as Swing components. Swing components are
painted directly on canvases using Java code, except for components that are subclasses of
java.awt.Window or java.awt.Panel, which must be drawn using native GUI on a spe-
cific platform. Swing components depend less on the target platform and use less of the
native GUI resource. For this reason, Swing components that don’t rely on native GUI are
referred to as lightweight components, and AWT components are referred to as heavyweight
components.

To distinguish new Swing component classes from their AWT counterparts, the Swing
GUI component classes are named with a prefixed J. Although AWT components are still
supported in Java, it is better to learn how to program using Swing components, because the
AWT user-interface components will eventually fade away. This book uses Swing GUI com-
ponents exclusively.

12.1 Why are the Swing GUI classes named with the prefix J?

12.2 Explain the difference between AWT GUI components and Swing GUI components.

12.3 The Java GUI API
The GUI API contains classes that can be classified into three groups: component
classes, container classes, and helper classes.

The hierarchical relationships of the Java GUI API are shown in Figure 12.1. Recall that the
triangular arrow denotes the inheritance relationship, the diamond denotes the composition
relationship, and the filled diamond denotes the exclusive composition relationship. The
object composition relationship was introduced in Section 10.7.

The subclasses of Component are called component classes for creating the user interface.
The classes, such as JFrame, JPanel, and JApplet, are called container classes used to
contain other components. The classes, such as Graphics, Color, Font, FontMetrics,
and Dimension, are called helper classes used to support GUI components.

Key
Point

Key
Point

AWT

Swing components

lightweight component

heavyweight component

why prefix J?

✓Point✓Check

Key
Point

component class

container class

helper class

12.3 The Java GUI API 447

Dimension

Font

FontMetrics

Component

Graphics

Object Color

Container

Panel Applet

Frame

Dialog

Window

JComponent

JApplet

JFrame

JDialog

Swing Components
in the javax.swing
package

Swing GUI
components such as
JButton, JLabel,
JTextField, JPanel,
etc.

Lightweight

Heavyweight

Classes in the java.awt
package except that
Applet is in the

java.applet package

1

LayoutManager

*

FIGURE 12.1 Java GUI programming utilizes the classes shown in this hierarchical diagram.

Note
The JFrame, JApplet, JDialog, and JComponent classes and their subclasses are
grouped in the javax.swing package. Applet is in the java.applet class. All the
other classes in Figure 12.1 are grouped in the java.awt package.

12.3.1 Component Classes
An instance of Component can be displayed on the screen. Component is the root class of all
the user-interface classes including container classes, and JComponent is the root class of all
the lightweight Swing components. Both Component and JComponent are abstract classes
(abstract classes will be introduced in Chapter 15). For now, all you need to know is that
abstract classes are the same as classes except that you cannot create instances using the new
operator. For example, you cannot use new JComponent() to create an instance of
JComponent. However, you can use the constructors of concrete subclasses of JComponent
to create JComponent instances. It is important to become familiar with the class inheritance
hierarchy. For example, the following statements all display true:

JButton jbtOK = new JButton("OK");
System.out.println(jbtOK instanceof JButton);
System.out.println(jbtOK instanceof JComponent);
System.out.println(jbtOK instanceof Container);
System.out.println(jbtOK instanceof Component);
System.out.println(jbtOK instanceof Object);

12.3.2 Container Classes
An instance of Container can hold instances of Component. A container is called a top-
level container if it can be displayed without being embedded in another container. Window,
Frame, Dialog, JFrame, and JDialog are top-level containers. Window, Panel, Applet,
Frame, and Dialog are the container classes for AWT components. To work with Swing
components, use Container, JFrame, JDialog, JApplet, and JPanel, as described in
Table 12.1.

top-level container

abstract class

448 Chapter 12 GUI Basics

TABLE 12.1 GUI Container Classes

Container Class Description

java.awt.Container is used to hold components. Frames, panels, and applets are its subclasses.

javax.swing.JFrame is a top-level container for holding other Swing user-interface components in Java GUI applications.

javax.swing.JPanel is an invisible container for grouping user-interface components. Panels can be nested. You can place
panels inside another panel. JPanel is also often used as a canvas to draw graphics.

javax.swing.JApplet is a base class for creating a Java applet using Swing components.

javax.swing.JDialog is a popup window generally used as a temporary window to receive additional information from the
user or to provide notification to the user.

12.3.3 GUI Helper Classes
The helper classes, such as Graphics, Color, Font, FontMetrics, Dimension, and
LayoutManager, are not subclasses of Component. They are used to describe the properties
of GUI components, such as graphics context, colors, fonts, and dimension, as described in
Table 12.2.

✓Point✓Check

TABLE 12.2 GUI Helper Classes

Helper Class Description

java.awt.Graphics is an abstract class that provides the methods for drawing strings, lines, and simple shapes.

java.awt.Color deals with the colors of GUI components. For example, you can specify background or foreground
colors in components like JFrame and JPanel, or you can specify colors of lines, shapes, and
strings in drawings.

java.awt.Font specifies fonts for the text and drawings on GUI components. For example, you can specify the
font type (e.g., SansSerif), style (e.g., bold), and size (e.g., 24 points) for the text on a button.

java.awt.FontMetrics is an abstract class used to get the properties of the fonts.

java.awt.Dimension encapsulates the width and height of a component (in integer precision) in a single object.

java.awt.LayoutManager specifies how components are arranged in a container.

Note
The helper classes are in the java.awt package. The Swing components do not
replace all the classes in the AWT, only the AWT GUI component classes (e.g.,
Button, TextField, TextArea). The AWT helper classes are still useful in GUI
programming.

12.3 Which class is the root of the Java GUI component classes? Is a container class a sub-
class of Component? Which class is the root of the Swing GUI component classes?

12.4 Which of the following statements have syntax errors?

Component c1 = new Component();
JComponent c2 = new JComponent();
Component c3 = new JButton();
JComponent c4 = new JButton();

12.4 Frames 449

12.4 Frames
A frame is a window for holding other GUI components.

To create a user interface, you need to create either a frame or an applet to hold the user-
interface components. This section introduces frames. Creating Java applets will be intro-
duced in Chapter 18.

12.4.1 Creating a Frame
To create a frame, use the JFrame class, as shown in Figure 12.2.

Key
Point

The program in Listing 12.1 creates a frame.

LISTING 12.1 MyFrame.java
1 import javax.swing.JFrame;
2
3 public class MyFrame {
4 public static void main(String[] args) {
5 JFrame frame = new JFrame("MyFrame"); // Create a frame
6 frame.setSize(400, 300); // Set the frame size
7 // Center a frame
8 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
9 frame.setVisible(true); // Display the frame
10 }
11 }

The frame is not displayed until the frame.setVisible(true) method is invoked.
frame.setSize(400, 300) specifies that the frame is 400 pixels wide and 300 pixels
high. If the setSize method is not used, the frame will be sized to display just the title bar.
Since the setSize and setVisible methods are both defined in the Component class, they
are inherited by the JFrame class. Later you will see that these methods are also useful in
many other subclasses of Component.

When you run the MyFrame program, a window will be displayed on the screen (see
Figure 12.3a).

Invoking setLocationRelativeTo(null) (line 7) centers the frame on the screen.
Invoking setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) (line 8) tells the pro-
gram to terminate when the frame is closed. If this statement is not used, the program does not
terminate when the frame is closed. In that case, you have to stop the program by pressing
Ctrl+C at the DOS prompt window in Windows or stop the process by using the kill command

frame.setLocationRelativeTo(null);

import package

create frame
set size
center frame
close upon exit
display the frame

Creates a default frame with no title.

Creates a frame with the specified title.

Sets the size of the frame.

Sets the upper-left-corner location of the frame.

Automatically sets the frame size to hold the components in the
frame.

Sets true to display the frame.

Specifies the operation when the frame is closed.

Sets the location of the frame relative to the specified component.
If the component is null, the frame is centered on the screen.

+JFrame()

+JFrame(title: String)

+setSize(width: int, height: int): void

+setLocation(x: int, y: int): void

+setVisible(visible: boolean): void

+setDefaultCloseOperation(mode: int): void

+setLocationRelativeTo(c: Component):

+pack(): void

void

javax.swing.JFrame

FIGURE 12.2 The JFrame class is used to create a window for displaying GUI components.

450 Chapter 12 GUI Basics

in UNIX. If you run the program from an IDE such as Eclipse or NetBeans, you need to click
the red Terminate button in the Console pane to stop the program.

Note
Recall that a pixel is the smallest unit of space available for drawing on the screen. You
can think of a pixel as a small rectangle and think of the screen as paved with pixels.
The resolution specifies the number of pixels in horizontal and vertical dimensions of
the screen. The more pixels the screen has, the higher the screen’s resolution. The
higher the resolution, the finer the detail you can see.

Note
You should invoke the setSize(w, h) method before invoking
setLocationRelativeTo(null) to center the frame.

12.4.2 Adding Components to a Frame
The frame shown in Figure 12.3a is empty. Using the add method, you can add components
to the frame, as shown in Listing 12.2.

LISTING 12.2 MyFrameWithComponents.java
1 import javax.swing.*;
2
3 public class MyFrameWithComponents {
4 public static void main(String[] args) {
5 JFrame frame = new JFrame("MyFrameWithComponents");
6
7 // Add a button to the frame
8
9
10
11 frame.setSize(400, 300);
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 frame.setLocationRelativeTo(null); // Center the frame
14 frame.setVisible(true);
15 }
16 }

Each JFrame contains a content pane, which is an instance of java.awt.Container. The
GUI components such as buttons are placed in the content pane in a frame. In earlier versions
of Java, you had to use the getContentPane method in the JFrame class to return the con-
tent pane of the frame, then invoke the content pane’s add method to place a component in the
content pane, as follows:

java.awt.Container container = frame.getContentPane();
container.add(jbtOK);

frame.add(jbtOK);
JButton jbtOK = new JButton("OK");

pixel and resolution

setSize before centering

create a button
add to frame

set size

Title bar

Content
pane

Title bar

Content
pane

(a) (b)

FIGURE 12.3 (a) The program creates and displays a frame with the title MyFrame. (b) An OK button is added to the
frame.

exit upon closing window
center the frame
set visible

12.5 Layout Managers 451

This was cumbersome. Versions of Java since Java 5 allow you to place components in the
content pane by invoking a frame’s add method, as follows:

frame.add(jbtOK);

This feature is called content-pane delegation. Strictly speaking, a component is added to the
content pane of a frame. For simplicity, we say that a component is added to a frame.

In Listing 12.2, an object of JButton was created using new JButton("OK"), and this
object was added to the content pane of the frame (line 9).

The add(Component comp) method defined in the Container class adds an
instance of Component to the container. Since JButton is a subclass of Component, an
instance of JButton is also an instance of Component. To remove a component from a
container, use the remove method. The following statement removes the button from the
container:

container.remove(jbtOK);

When you run the program MyFrameWithComponents, the window will be displayed as in
Figure 12.3b. The button is always centered in the frame and occupies the entire frame no
matter how you resize it. This is because components are put in the frame by the content
pane’s layout manager, and the default layout manager for the content pane places the button
in the center. In the next section, you will use several different layout managers to place com-
ponents in the desired locations.

12.5 How do you create a frame? How do you set the size for a frame? How do you
add components to a frame? What would happen if the statements
frame.setSize(400, 300) and frame.setVisible(true) were swapped in
Listing 12.2?

12.5 Layout Managers
Each container contains a layout manager, which is an object responsible for laying
out the GUI components in the container.

In many other window systems, the user-interface components are arranged by using hard-
coded pixel measurements. For example, when placing a button at location (10, 10) in a
window using hard-coded pixel measurements, the user interface might look fine on one sys-
tem but be unusable on another. Java’s layout managers provide a level of abstraction that
automatically maps your user interface on all window systems.

The Java GUI components are placed in containers, where they are arranged by the con-
tainer’s layout manager. In the preceding program, you did not specify where to place the OK
button in the frame, but Java knows where to place it, because the layout manager works
behind the scenes to place components in the correct locations. A layout manager is created
using a layout manager class.

Layout managers are set in containers using the setLayout(aLayoutManager) method.
For example, you can use the following statements to create an instance of XLayout and set
it in a container:

LayoutManager layoutManager = new XLayout();
container.setLayout(layoutManager);

This section introduces three basic layout managers: FlowLayout, GridLayout, and
BorderLayout.

content-pane delegation

✓Point✓Check

layout manager

Key
Point

452 Chapter 12 GUI Basics

12.5.1 FlowLayout
FlowLayout is the simplest layout manager. The components are arranged in the container
from left to right in the order in which they were added. When one row is filled, a new row is
started. You can specify the way the components are aligned by using one of three constants:
FlowLayout.RIGHT, FlowLayout.CENTER, or FlowLayout.LEFT. You can also specify
the gap between components in pixels. The class diagram for FlowLayout is shown in
Figure 12.4.

Use FlowLayout

java.awt.FlowLayout

-alignment: int

-hgap: int

-vgap: int

+FlowLayout()

+FlowLayout(alignment: int)

+FlowLayout(alignment: int, hgap:
int, vgap: int)

The alignment of this layout manager (default: CENTER).

The horizontal gap between the components (default: 5 pixels).

The vertical gap between the components (default: 5 pixels).

Creates a default FlowLayout manager.

Creates a FlowLayout manager with a specified alignment.

Creates a FlowLayout manager with a specified alignment,
 horizontal gap, and vertical gap.

The get and set methods for these data
fields are provided in the class, but
omitted in the UML diagram for brevity.

FIGURE 12.4 FlowLayout lays out components row by row.

extends JFrame

set layout

add label
add text field

Listing 12.3 gives a program that demonstrates flow layout. The program adds three labels
and text fields to the frame with a FlowLayout manager, as shown in Figure 12.5.

LISTING 12.3 ShowFlowLayout.java
1 import javax.swing.JLabel;
2 import javax.swing.JTextField;
3 import javax.swing.JFrame;
4 import java.awt.FlowLayout;
5
6 public class ShowFlowLayout {
7 public ShowFlowLayout() {
8 // Set FlowLayout, aligned left with horizontal gap 10
9 // and vertical gap 20 between components
10 setLayout();
11
12 // Add labels and text fields to the frame
13 add(new JLabel("First Name"));
14 add(new JTextField(8));
15 add(new JLabel("MI"));
16 add(new JTextField(1));
17 add(new JLabel("Last Name"));
18 add(new JTextField(8));
19 }
20
21 /** Main method */
22 public static void main(String[] args) {
23 ShowFlowLayout frame = new ShowFlowLayout();
24 frame.setTitle("ShowFlowLayout");
25 frame.setSize(200, 200);

new FlowLayout(FlowLayout.LEFT, 10, 20)

extends JFrame

VideoNote

12.5 Layout Managers 453

26 frame.setLocationRelativeTo(null); // Center the frame
27 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28 frame.setVisible(true);
29 }
30 }

This example creates a program using a style different from the programs in the preceding
section, where frames were created using the JFrame class. This example creates a class named
ShowFlowLayout that extends the JFrame class (line 6). The main method in this program
creates an instance of ShowFlowLayout (line 23). The constructor of ShowFlowLayout con-
structs and places the components in the frame. This is the preferred style of creating GUI
applications—for three reasons:

■ Creating a GUI application means creating a frame, so it is natural to define a frame
to extend JFrame.

■ The frame may be further extended to add new components or functions.

■ The class can be easily reused. For example, you can create multiple frames by creating
multiple instances of the class.

Using one style consistently makes programs easy to read. From now on, most of the GUI main
classes will extend the JFrame class. The constructor of the main class constructs the user inter-
face. The main method creates an instance of the main class and then displays the frame.

Will the program work if line 23 is replaced by the following code?

JFrame frame = new ShowFlowLayout();

Yes. The program will still work because ShowFlowLayout is a subclass of
JFrame and the methods setTitle, setSize, setLocationRelativeTo,
setDefaultCloseOperation, and setVisible (lines 24–28) are all available in the
JFrame class.

In this example, the FlowLayout manager is used to place components in a frame. If you
resize the frame, the components are automatically rearranged to fit. In Figure 12.5a, the first
row has three components, but in Figure 12.5b, the first row has four components, because the
width has been increased.

If you replace the setLayout statement (line 10) with setLayout(new
FlowLayout(FlowLayout.RIGHT, 0, 0)), all the rows of buttons will be right aligned
with no gaps.

An anonymous FlowLayout object was created in the statement (line 10):

setLayout();

which is equivalent to:

FlowLayout layout = new FlowLayout(FlowLayout.LEFT, 10, 20);
setLayout(layout);

new FlowLayout(FlowLayout.LEFT, 10, 20)

create frame

set visible

(a) (b)

FIGURE 12.5 The components are added by the FlowLayout manager to fill in the rows in
the container one after another.

454 Chapter 12 GUI Basics

This code creates an explicit reference to the object layout of the FlowLayout class. The
explicit reference is not necessary, because the object is not directly referenced in the
ShowFlowLayout class.

Suppose you add the same button to the frame ten times; will ten buttons appear in the frame?
No, a GUI component such as a button can be added to only one container and only once in a
container. Adding a button to a container multiple times is the same as adding it once.

Note
GUI components cannot be shared by containers, because only one GUI component can
appear in only one container at a time. Therefore, the relationship between a component
and a container is the composition denoted by a filled diamond, as shown in Figure 12.1.

Caution
Do not forget to put the new operator before a layout manager class when setting a lay-
out style—for example, setLayout(new FlowLayout()).

Note
The constructor ShowFlowLayout() does not explicitly invoke the constructor
JFrame(), but the constructor JFrame() is invoked implicitly. See Section 11.3.2,
Constructor Chaining.

12.5.2 GridLayout
The GridLayout manager arranges components in a grid (matrix) formation. The components
are placed in the grid from left to right, starting with the first row, then the second, and so on, in
the order in which they are added. The class diagram for GridLayout is shown in Figure 12.6.

java.awt.GridLayout

-rows: int

-columns: int

-hgap: int

-vgap: int

+GridLayout()

+GridLayout(rows: int, columns: int)

+GridLayout(rows: int, columns: int,
 hgap: int, vgap: int)

The number of rows in the grid (default: 1).

The number of columns in the grid (default: 1).

The horizontal gap between the components (default: 0).

The vertical gap between the components (default: 0).

Creates a default GridLayout manager.

Creates a GridLayout with a specified number of rows and columns.

Creates a GridLayout manager with a specified number of rows and
 columns, horizontal gap, and vertical gap.

The get and set methods for these data
fields are provided in the class, but
omitted in the UML diagram for brevity.

FIGURE 12.6 GridLayout lays out components in equal-sized cells on a grid.

You can specify the number of rows and columns in the grid. The basic rules are as follows:

■ The number of rows or the number of columns can be zero, but not for both. If one is
zero and the other is nonzero, the nonzero dimension is fixed, while the zero dimen-
sion is determined dynamically by the layout manager. For example, if you specify
zero rows and three columns for a grid that has ten components, GridLayout cre-
ates three fixed columns of four rows, with the last row containing one component. If
you specify three rows and zero columns for a grid that has ten components,
GridLayout creates three fixed rows of four columns, with the last row containing
two components.

12.5 Layout Managers 455

■ If both the number of rows and the number of columns are nonzero, the number of
rows is the dominating parameter; that is, the number of rows is fixed, and the layout
manager dynamically calculates the number of columns. For example, if you specify
three rows and three columns for a grid that has ten components, GridLayout creates
three fixed rows of four columns, with the last row containing two components.

Listing 12.4 gives a program that demonstrates grid layout. The program is similar to the one
in Listing 12.3, except that it adds three labels and three text fields to the frame of
GridLayout instead of FlowLayout, as shown in Figure 12.7.

LISTING 12.4 ShowGridLayout.java
1 import javax.swing.JLabel;
2 import javax.swing.JTextField;
3 import javax.swing.JFrame;
4 import java.awt.GridLayout;
5
6 public class ShowGridLayout extends JFrame {
7 public ShowGridLayout() {
8 // Set GridLayout, 3 rows, 2 columns, and gaps 5 between
9 // components horizontally and vertically
10 setLayout(new GridLayout(3, 2, 5, 5));
11
12 // Add labels and text fields to the frame
13 add(new JLabel("First Name"));
14 add(new JTextField(8));
15 add(new JLabel("MI"));
16 add(new JTextField(1));
17 add(new JLabel("Last Name"));
18 add(new JTextField(8));
19 }
20
21 /** Main method */
22 public static void main(String[] args) {
23 ShowGridLayout frame = new ShowGridLayout();
24 frame.setTitle("ShowGridLayout");
25 frame.setSize(200, 125);
26 frame.setLocationRelativeTo(null); // Center the frame
27 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28 frame.setVisible(true);
29 }
30 }

If you resize the frame, the layout of the components remains unchanged (i.e., the number of
rows and columns does not change, and the gaps don’t change either).

All components are given equal size in the container of GridLayout.
Replacing the setLayout statement (line 10) with setLayout(new GridLayout(3,

10)) would still yield three rows and two columns. The columns parameter is ignored

FIGURE 12.7 The GridLayout manager divides the container into grids; then the compo-
nents are added to fill in the cells row by row.

set layout

add label
add text field

create the frame

set visible

456 Chapter 12 GUI Basics

because the rows parameter is nonzero. The actual number of columns is calculated by the
layout manager.

What would happen if the setLayout statement (line 10) were replaced with
setLayout(new GridLayout(4, 2)) or with setLayout(new GridLayout(2, 2))?
Please try it yourself.

Note
In FlowLayout and GridLayout, the order in which the components are added
to the container is important. The order determines the location of the components
in the container.

12.5.3 BorderLayout
The BorderLayout manager divides a container into five areas: East, South, West, North,
and Center. Components are added to a BorderLayout by using add(Component,
index), where index is a constant BorderLayout.EAST, BorderLayout.SOUTH,
BorderLayout.WEST, BorderLayout.NORTH, or BorderLayout.CENTER. The class dia-
gram for BorderLayout is shown in Figure 12.8.

java.awt.BorderLayout

-hgap: int

-vgap: int

+BorderLayout()

+BorderLayout(hgap: int, vgap: int)

The horizontal gap between the components (default: 0).

The vertical gap between the components (default: 0).

Creates a default BorderLayout manager.

Creates a BorderLayout manager with a specified number of
 horizontal gap, and vertical gap.

The get and set methods for these data
fields are provided in the class, but
omitted in the UML diagram for brevity.

FIGURE 12.8 BorderLayout lays out components in five areas.

FIGURE 12.9 BorderLayout divides the container into five areas, each of which can hold a
component.

The components are laid out according to their preferred sizes and their placement in
the container. The North and South components can stretch horizontally; the East and West
components can stretch vertically; the Center component can stretch both horizontally and
vertically to fill any empty space.

Listing 12.5 gives a program that demonstrates border layout. The program adds five
buttons labeled East, South, West, North, and Center to the frame with a BorderLayout
manager, as shown in Figure 12.9.

LISTING 12.5 ShowBorderLayout.java
1 import javax.swing.JButton;
2 import javax.swing.JFrame;
3 import java.awt.BorderLayout;

12.5 Layout Managers 457

4
5 {
6 public ShowBorderLayout() {
7 // Set BorderLayout with horizontal gap 5 and vertical gap 10
8 setLayout();
9
10 // Add buttons to the frame
11 add(new JButton("East"), BorderLayout.EAST);
12 add(new JButton("South"), BorderLayout.SOUTH);
13 add(new JButton("West"), BorderLayout.WEST);
14 add(new JButton("North"), BorderLayout.NORTH);
15 add(new JButton("Center"), BorderLayout.CENTER);
16 }
17
18 /** Main method */
19 public static void main(String[] args) {
20 ShowBorderLayout frame = new ShowBorderLayout();
21 frame.setTitle("ShowBorderLayout");
22 frame.setSize(300, 200);
23 frame.setLocationRelativeTo(null); // Center the frame
24 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
25 frame.setVisible(true);
26 }
27 }

The buttons are added to the frame (lines 11–15). Note that the add method for BorderLayout
is different from the one for FlowLayout and GridLayout. With BorderLayout, you spec-
ify where to put the components.

It is unnecessary to place components to occupy all the areas. If you remove the East but-
ton from the program and rerun it, you will see that the Center button stretches rightward to
occupy the East area.

Note
BorderLayout interprets the absence of an index specification as
BorderLayout.CENTER. For example, add(component) is the same as
add(Component, BorderLayout.CENTER). If you add two components to a
container of BorderLayout, as follows,

container.add(component1);
container.add(component2);

only the last component is displayed.

12.5.4 Properties of Layout Managers
Layout managers have properties that can be changed dynamically.

■ FlowLayout has alignment, hgap, and vgap properties. You can use the
setAlignment, setHgap, and setVgap methods to specify the alignment and
the horizontal and vertical gaps.

■ GridLayout has the rows, columns, hgap, and vgap properties. You can use
the setRows, setColumns, setHgap, and setVgap methods to specify the
number of rows, the number of columns, and the horizontal and vertical gaps.

■ BorderLayout has the hgap and vgap properties. You can use the setHgap and
setVgap methods to specify the horizontal and vertical gaps.

In the preceding sections an anonymous layout manager is used because the properties of a
layout manager do not change once it is created. If you have to change the properties of a lay-
out manager dynamically, the layout manager must be explicitly referenced by a variable. You

new BorderLayout(5, 10)

public class ShowBorderLayout extends JFrame

set layout

add buttons

create the frame

set visible

458 Chapter 12 GUI Basics

can then change the properties of the layout manager through the variable. For example, the
following code creates a layout manager and sets its properties:

// Create a layout manager
FlowLayout flowLayout = new FlowLayout();

// Set layout properties
flowLayout.setAlignment(FlowLayout.RIGHT);
flowLayout.setHgap(10);
flowLayout.setVgap(20);

12.6 Will the program work if ShowFlowLayout in line 23 in Listing 12.3 is replaced by
JFrame?

Will the program work if ShowGridLayout in line 23 in Listing 12.4 is replaced by
JFrame?

Will the program work if ShowBorderLayout line 20 in Listing 12.5 is replaced by
JFrame?

12.7 Why do you need to use layout managers? What is the default layout manager for a
frame? How do you add a component to a frame?

12.8 Describe FlowLayout. How do you create a FlowLayout manager? How do you
add a component to a FlowLayout container? Is there a limit to the number of com-
ponents that can be added to a FlowLayout container? What are the properties for
setting the horizontal and vertical gaps between the components in the container?
Can you specify alignment?

12.9 Describe GridLayout. How do you create a GridLayout manager? How do you
add a component to a GridLayout container? Is there a limit to the number of com-
ponents that can be added to a GridLayout container? What are the properties for
setting the horizontal and vertical gaps between the components in the container?

12.10 Describe BorderLayout. How do you create a BorderLayout manager? How do
you add a component to a BorderLayout container? What are the properties for set-
ting the horizontal and vertical gaps between the components in the container?

12.11 The following program is supposed to display a button in a frame, but nothing is dis-
played. What is the problem?

1 public class Test extends javax.swing.JFrame {
2 public Test() {
3 add(new javax.swing.JButton("OK"));
4 }
5
6 public static void main(String[] args) {
7
8 frame.setSize(100, 200);
9 frame.setVisible(true);
10 }
11 }

12.6 Using Panels as Subcontainers
A container can be placed inside another container. Panels can be used as
subcontainers to group GUI components to achieve the desired layout.

Suppose that you want to place ten buttons and a text field in a frame. The buttons are placed
in grid formation, but the text field is placed on a separate row. It is difficult to achieve the
desired look by placing all the components in a single container. With Java GUI program-
ming, you can divide a window into panels. Panels act as subcontainers to group user-
interface components. You add the buttons in one panel, then add the panel to the frame.

javax.swing.JFrame frame = new javax.swing.JFrame();

✓Point✓Check

Key
Point

Use panels as subcontainers
VideoNote

12.6 Using Panels as Subcontainers 459

The Swing version of panel is JPanel. You can use new JPanel() to create a panel with
a default FlowLayout manager or new JPanel(LayoutManager) to create a panel with
the specified layout manager. Use the add(Component) method to add a component to the
panel. For example, the following code creates a panel and adds a button to it:

JPanel p = new JPanel();
p.add(new JButton("OK"));

Panels can be placed inside a frame or inside another panel. The following statement places
panel p in frame f:

f.add(p);

Listing 12.6 gives an example that demonstrates using panels as subcontainers. The program
creates a user interface for a microwave oven, as shown in Figure 12.10.

Button

Frame

Content panel

Panel p2

Panel p1

FIGURE 12.10 The program uses panels to organize components.

LISTING 12.6 TestPanels.java
1 import java.awt.*;
2 import javax.swing.*;
3
4 public class TestPanels extends JFrame {
5 public TestPanels() {
6 // Create panel p1 for the buttons and set GridLayout
7
8
9
10 // Add buttons to the panel
11 for (int i = 1; i <= 9; i++) {
12 (new JButton("" + i));
13 }
14
15 p1.add(new JButton("" + 0));
16 p1.add(new JButton("Start"));
17 p1.add(new JButton("Stop"));
18
19 // Create panel p2 to hold a text field and p1
20
21 (new JTextField("Time to be displayed here"),
22 BorderLayout.NORTH);
23 (p1, BorderLayout.CENTER);
24
25 // Add contents to the frame
26 add(p2, BorderLayout.EAST);
27 add(new JButton("Food to be placed here"),
28 BorderLayout.CENTER);
29 }
30

p2.add

p2.add
JPanel p2 = new JPanel(new BorderLayout());

p1.add

p1.setLayout(new GridLayout(4, 3));
JPanel p1 = new JPanel(); panel p1

panel p2

add p2 to frame

460 Chapter 12 GUI Basics

31 /** Main method */
32 public static void main(String[] args) {
33 TestPanels frame = new TestPanels();
34 frame.setTitle("The Front View of a Microwave Oven");
35 frame.setSize(400, 250);
36 frame.setLocationRelativeTo(null); // Center the frame
37 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
38 frame.setVisible(true);
39 }
40 }

The setLayout method is defined in java.awt.Container. Since JPanel is a subclass of
Container, you can use setLayout to set a new layout manager in the panel (line 8). Lines
7–8 can be replaced by JPanel p1 = new JPanel(new GridLayout(4, 3)).

To achieve the desired layout, the program uses panel p1 of GridLayout to group the
number buttons, the Stop button, and the Start button, and panel p2 of BorderLayout to hold
a text field in the north and p1 in the center. The button representing the food is placed in the
center of the frame, and p2 is placed in the east of the frame.

The statement (lines 21–22)

p2.add(new JTextField("Time to be displayed here"),
BorderLayout.NORTH);

creates an instance of JTextField and adds it to p2. JTextField is a GUI component that
can be used for user input as well as to display values.

Note
It is worthwhile to note that the Container class is the superclass for GUI component
classes, such as JButton. Every GUI component is a container. In theory, you could
use the setLayout method to set the layout in a button and add components to a but-
ton, because all the public methods in the Container class are inherited by JButton,
but for practical reasons you should not use buttons as containers.

12.12 How do you create a panel with a specified layout manager?

12.13 What is the default layout manager for a JPanel? How do you add a component to a
JPanel?

12.14 Can you use the setTitle method in a panel? What is the purpose of using a panel?

12.15 Since a GUI component class such as JButton is a subclass of Container, can you
add components to a button?

12.7 The Color Class
Each GUI component has background and foreground colors. Colors are objects
created from the Color class.

You can set colors for GUI components by using the java.awt.Color class. Colors are made
of red, green, and blue components, each represented by an int value that describes its inten-
sity, ranging from 0 (darkest shade) to 255 (lightest shade). This is known as the RGB model.

You can create a color using the following constructor:

public Color(int r, int g, int b);

in which r, g, and b specify a color by its red, green, and blue components. For example,

Color color = new Color(128, 100, 100);

Note
The arguments r, g, b are between 0 and 255. If a value beyond this range is passed to
the argument, an IllegalArgumentException will occur.

superclass Container

✓Point✓Check

Key
Point

IllegalArgumentException

12.8 The Font Class 461

You can use the setBackground(Color c) and setForeground(Color c) methods
defined in the java.awt.Component class to set a component’s background and foreground
colors. Here is an example of setting the background and foreground of a button:

JButton jbtOK = new JButton("OK");
jbtOK.setBackground(color);
jbtOK.setForeground(new Color(100, 1, 1));

Alternatively, you can use one of the 13 standard colors (BLACK, BLUE, CYAN, DARK_GRAY,
GRAY, GREEN, LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, WHITE, and YELLOW) defined as
constants in java.awt.Color. The following code, for instance, sets the foreground color of
a button to red:

jbtOK.setForeground(Color.RED);

12.16 How do you create a color? What is wrong about creating a Color using new
Color(400, 200, 300)? Which of two colors is darker, new Color(10, 0, 0)
or new Color(200, 0, 0)?

12.17 How do you create a Color object with a random color?

12.18 How do you set a button object jbtOK with blue background?

12.8 The Font Class
Each GUI component has the font property. Fonts are objects created from the Font class.

You can create a font using the java.awt.Font class and set fonts for the components using
the setFont method in the Component class.

The constructor for Font is:

public Font(String name, int style, int size);

You can choose a font name from SansSerif, Serif, Monospaced, Dialog, and
DialogInput, choose a style from Font.PLAIN (0), Font.BOLD (1), Font.ITALIC (2),
and Font.BOLD Font.ITALIC (3), and specify a font size of any positive integer. For
example, the following statements create two fonts and set one font to a button.

Font font1 = new Font("SansSerif", Font.BOLD, 16);
Font font2 = new Font("Serif", Font.BOLD + Font.ITALIC, 12);

JButton jbtOK = new JButton("OK");
jbtOK.setFont(font1);

Tip
If your system supports other fonts, such as “Times New Roman,” you can use the font to
create a Font object. To find the fonts available on your system, you need to obtain
an instance of java.awt.GraphicsEnvironment using its static method
getLocalGraphicsEnvironment(). GraphicsEnvironment is an abstract class
that describes the graphics environment on a particular system. You can use its
getAllFonts() method to obtain all the available fonts on the system and its
getAvailableFontFamilyNames() method to obtain the names of all the available
fonts. For example, the following statements print all the available font names in the system:

GraphicsEnvironment e =
GraphicsEnvironment.getLocalGraphicsEnvironment();

String[] fontnames = e.getAvailableFontFamilyNames();

for (int i = 0; i < fontnames.length; i++)
System.out.println(fontnames[i]);

+

✓Point✓Check

Key
Point

find available fonts

462 Chapter 12 GUI Basics

12.19 How do you create a Font object with font name Courier, size 20, and style bold?

12.20 How do you find all available fonts on your system?

12.9 Common Features of Swing GUI Components
GUI components have common features. They are defined in the superclasses
Component, Container, and JComponent.

So far in this chapter you have used several GUI components (e.g., JFrame, Container,
JPanel, JButton, JLabel, and JTextField). Many more GUI components will be
introduced in this book. It is important to understand the common features of Swing GUI
components. The Component class is the root for all GUI components and containers. All
Swing GUI components (except JFrame, JApplet, and JDialog) are subclasses of
JComponent, as shown in Figure 12.1. Figure 12.11 lists some frequently used methods in
Component, Container, and JComponent for manipulating properties such as font,
color, mouse cursor, size, tool tip text, and border.

A tool tip is text displayed on a component when you move the mouse onto the component.
It is often used to describe the function of a component.

✓Point✓Check

Key
Point

Use Swing common properties

Component

Container

JComponent

tool tip

java.awt.Container

+add(comp: Component): Component

+add(comp: Component, index: int): Component

+remove(comp: Component): void

+getLayout(): LayoutManager

+setLayout(l: LayoutManager): void

Adds a component to the container.

Adds a component to the container with the specified index.

Removes the component from the container.

Returns the layout manager for this container.

Sets the layout manager for this container.

java.awt.Component

-font: java.awt.Font

-background: java.awt.Color

-foreground: java.awt.Color

-preferredSize: java.awt.Dimension

-cursor: java.awt.Cursor
-visible: boolean

+getWidth(): int

+getHeight(): int

+getX(): int

+getY(): int

The font of this component.

The background color of this component.

The foreground color of this component.

The preferred size of this component.

Indicates whether this component is visible.
The mouse cursor shape.

Returns the width of this component.

Returns the height of this component.
getX() and getY() return the coordinate of the

component’s upper-left corner within its parent component.

The get and set methods for these data
fields are provided in the class, but
omitted in the UML diagram for brevity.

javax.swing.JComponent

-toolTipText: String

-border: javax.swing.border.Border

The tool tip text for this component. Tool tip text is displayed when
the mouse points on the component without clicking.

The border for this component.

The get and set methods for these data
fields are provided in the class, but
omitted in the UML diagram for brevity.

FIGURE 12.11 All the Swing GUI components inherit the public methods from Component, Container, and
JComponent.

VideoNote

12.9 Common Features of Swing GUI Components 463

You can set a border for any object of the JComponent class. Swing has several types of
borders. To create a titled border, use new TitledBorder(String title). To create a
line border, use new LineBorder(Color color, int width), where width specifies
the thickness of the line.

Listing 12.7 is an example to demonstrate Swing common features. The example creates a
panel p1 to hold three buttons (line 8) and a panel p2 to hold two labels (line 26), as shown in
Figure 12.12. The background of the button jbtLeft is set to white (line 12) and the fore-
ground of the button jbtCenter is set to green (line 13). The tool tip of the button jbtRight
is set in line 14. Titled borders are set on panels p1 and p2 (lines 18, 37) and line borders are
set on the labels (lines 33–34).

border

Titled border

Titled border

Line border

Having the mouse cursor
over the Right button
displays the tool tip text

Cross-hair cursor

FIGURE 12.12 The font, color, border, and tool tip text are set in the message panel.

The mouse cursor is set to the cross-hair shape in p1 (line 19). The Cursor class contains
the constants for specifying the cursor shape such as DEFAULT_CURSOR(),

CROSSHAIR_CURSOR (), HAND_CURSOR(), MOVE_CURSOR(), TEXT_CURSOR(),
and so on. A Cursor object for the cross-hair cursor is created using new
Cursor(Cursor.CROSSHAIR_CURSOR) (line 19) and this cursor is set for p1. Note that the
default mouse cursor is still used in p2, because the program does not explicitly set a mouse
cursor for p2.

LISTING 12.7 TestSwingCommonFeatures.java
1 import java.awt.*;
2 import javax.swing.*;
3 import javax.swing.border.*;
4
5 public class TestSwingCommonFeatures extends JFrame {
6 public TestSwingCommonFeatures() {
7 // Create a panel to group three buttons
8 JPanel p1 = new JPanel(new FlowLayout(FlowLayout.LEFT, 2, 2));
9 JButton jbtLeft = new JButton("Left");
10 JButton jbtCenter = new JButton("Center");
11 JButton jbtRight = new JButton("Right");
12
13
14
15 p1.add(jbtLeft);
16 p1.add(jbtCenter);
17 p1.add(jbtRight);
18
19
20
21 // Create a font and a line border
22
23 Border lineBorder = new LineBorder(Color.BLACK, 2);

Font largeFont = new Font("TimesRoman", Font.BOLD, 20);

p1.setCursor(new Cursor(Cursor.CROSSHAIR_CURSOR));
p1.setBorder(new TitledBorder("Three Buttons"));

jbtRight.setToolTipText("This is the Right button");
jbtCenter.setForeground(Color.GREEN);
jbtLeft.setBackground(Color.WHITE);

mouse cursor

set background
set foreground
set tool tip text

set titled border
set mouse cursor

create a font
create a border

464 Chapter 12 GUI Basics

24
25 // Create a panel to group two labels
26 JPanel p2 = new JPanel(new GridLayout(1, 2, 5, 5));
27 JLabel jlblRed = new JLabel("Red");
28 JLabel jlblOrange = new JLabel("Orange");
29 jlblRed.setForeground(Color.RED);
30
31
32 jlblOrange.setFont(largeFont);
33
34 jlblOrange.setBorder(lineBorder);
35 p2.add(jlblRed);
36 p2.add(jlblOrange);
37
38
39 // Add two panels to the frame
40 setLayout(new GridLayout(2, 1, 5, 5));
41 add(p1);
42 add(p2);
43 }
44
45 public static void main(String[] args) {
46 // Create a frame and set its properties
47 JFrame frame = new TestSwingCommonFeatures();
48 frame.setTitle("TestSwingCommonFeatures");
49 frame.setSize(300, 150);
50 frame.setLocationRelativeTo(null); // Center the frame
51 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
52 frame.setVisible(true);
53 }
54 }

Note
The same property may have different default values in different components. For example,
the visible property in JFrame is false by default, but it is true in every instance of
JComponent (e.g., JButton and JLabel) by default. To display a JFrame, you have
to invoke setVisible(true) to set the visible property true, but you don’t have
to set this property for a JButton or a JLabel, because it is already true. To make a
JButton or a JLabel invisible, you can invoke setVisible(false). Please run the
program and see the effect after inserting the following two statements in line 38:

jbtLeft.setVisible(false);
jlblRed.setVisible(false);

12.21 How do you set background color, foreground color, font, and tool tip text on a Swing
GUI component?

12.22 Why is the tool tip text not displayed in the following code?

1 import javax.swing.*;
2
3 public class Test extends JFrame {
4 private JButton jbtOK = new JButton("OK");
5
6 public static void main(String[] args) {
7 // Create a frame and set its properties
8 JFrame frame = new Test();
9 frame.setTitle("Logic Error");
10 frame.setSize(200, 100);
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

p2.setBorder(new TitledBorder("Two Labels"));

jlblRed.setBorder(lineBorder);

jlblRed.setFont(largeFont);
jlblOrange.setForeground(Color.ORANGE);

set foreground

set font

set line border

set titled border

property default values

✓Point✓Check

12.10 Image Icons 465

12 frame.setVisible(true);
13 }
14
15 public Test() {
16 jbtOK.setToolTipText("This is a button");
17 add();
18 }
19 }

12.23 Show the output of the following code:

import javax.swing.*;

public class Test {
public static void main(String[] args) {
JButton jbtOK = new JButton("OK");
System.out.println(jbtOK.isVisible());

JFrame frame = new JFrame();
System.out.println(frame.isVisible());

}
}

12.24 What happens if you add a button to a container several times, as shown below? Does
it cause syntax errors? Does it cause runtime errors?

JButton jbt = new JButton();
JPanel panel = new JPanel();
panel.add(jbt);
panel.add(jbt);
panel.add(jbt);

12.10 Image Icons
Image icons can be displayed in many GUI components. Image icons are objects
created using the ImageIcon class.

An icon is a fixed-size picture; typically it is small and used to decorate components. Images
are normally stored in image files. Java currently supports three image formats: GIF (Graph-
ics Interchange Format), JPEG (Joint Photographic Experts Group), and PNG (Portable Net-
work Graphics). The image file names for these types end with .gif, .jpg, and .png,
respectively. If you have a bitmap file or image files in other formats, you can use image-
processing utilities to convert them into the GIF, JPEG, or PNG format for use in Java.

To display an image icon, first create an ImageIcon object using new
javax.swing.ImageIcon(filename). For example, the following statement creates an
icon from an image file us.gif in the image directory under the current class path:

ImageIcon icon = new ImageIcon("image/us.gif");

image/us.gif is located in c:\book\image\us.gif. The back slash (\) is the Windows
file path notation. In UNIX, the forward slash (/) should be used. In Java, the forward
slash (/) is used to denote a relative file path under the Java classpath (e.g., image/us.gif,
as in this example).

Tip
File names are not case sensitive in Windows but are case sensitive in UNIX. To enable your
programs to run on all platforms, name all the image files consistently, using lowercase.

new JButton("OK")

image-file format

create ImageIcon

file path character

naming files consistently

Key
Point

466 Chapter 12 GUI Basics

An image icon can be displayed in a label or a button using new JLabel(imageIcon)
or new JButton(imageIcon). Listing 12.8 demonstrates displaying icons in labels
and buttons. The example creates two labels and two buttons with icons, as shown in
Figure 12.13.

LISTING 12.8 TestImageIcon.java
1 import javax.swing.*;
2 import java.awt.*;
3
4 public class TestImageIcon extends JFrame {
5
6 private ImageIcon myIcon = new ImageIcon("image/my.jpg");
7 private ImageIcon frIcon = new ImageIcon("image/fr.gif");
8 private ImageIcon ukIcon = new ImageIcon("image/uk.gif");
9
10 public TestImageIcon() {
11 setLayout(new GridLayout(1, 4, 5, 5));
12
13 add(new JLabel(myIcon));
14
15 add(new JButton(ukIcon));
16 }
17
18 /** Main method */
19 public static void main(String[] args) {
20 TestImageIcon frame = new TestImageIcon();
21 frame.setTitle("TestImageIcon");
22 frame.setSize(200, 200);
23 frame.setLocationRelativeTo(null); // Center the frame
24 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
25 frame.setVisible(true);
26 }
27 }

Note
Borders and icons can be shared. Thus, you can create a border or icon and use it to set
the border or icon property for any GUI component. For example, the following
statements set a border b for the panels p1 and p2:

p1.setBorder(b);
p2.setBorder(b);

The following statements set an icon in the buttons jbt1 and jbt2:

jbt1.setIcon(icon);
jbt2.setIcon(icon);

add(new JButton(frIcon));

add(new JLabel(usIcon));

private ImageIcon usIcon = new ImageIcon("image/us.gif");create image icons

a label with image

a button with image

sharing borders and icons

FIGURE 12.13 The image icons are displayed in labels and buttons.

12.11 JButton 467

Tip
A splash screen is an image that is displayed while the application is starting up. If your
program takes a long time to load, you may display a splash screen to alert the user. For
example, the following command:

java –splash:image/us.gif TestImageIcon

displays an image while the program TestImageIcon is being loaded.

12.25 How do you create an ImageIcon from the file image/us.gif in the class directory?

12.26 Will the following code display three buttons? Will the buttons display the same icon?

1 import javax.swing.*;
2 import java.awt.*;
3
4 public class Test extends JFrame {
5 public static void main(String[] args) {
6 // Create a frame and set its properties
7 JFrame frame = new Test();
8 frame.setTitle("ButtonIcons");
9 frame.setSize(200, 100);
10 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 frame.setVisible(true);
12 }
13
14 public Test() {
15 ImageIcon usIcon = new ImageIcon("image/us.gif");
16 JButton jbt1 = new JButton(usIcon);
17 JButton jbt2 = new JButton(usIcon);
18
19 JPanel p1 = new JPanel();
20 p1.add(jbt1);
21
22 JPanel p2 = new JPanel();
23 p2.add(jbt2);
24
25 JPanel p3 = new JPanel();
26 p2.add(jbt1);
27
28 add(p1, BorderLayout.NORTH);
29 add(p2, BorderLayout.SOUTH);
30 add(p3, BorderLayout.CENTER);
31 }
32 }

12.27 Can a border or an icon be shared by GUI components?

12.11 JButton
To create a push button, use the JButton class.

We have used JButton in the examples to demonstrate the basics of GUI programming. This
section will introduce more features of JButton. The following sections will introduce GUI
components JCheckBox, JRadioButton, JLabel, JTextField, and JPasswordField.
More GUI components such as JTextArea, JComboBox, JList, JScrollBar, and
JSlider will be introduced in Chapter 17. The relationship of these classes is pictured in
Figure 12.14.

splash screen

✓Point✓Check

Key
Point

468 Chapter 12 GUI Basics

Note
Throughout this book, the prefixes jbt, jchk, jrb, jlbl, jtf, jpf, jta, jcbo,
jlst, jscb, and jsld are used to name reference variables for JButton,
JCheckBox, JRadioButton, JLabel, JTextField, JPasswordField,
JTextArea, JComboBox, JList, JScrollBar, and JSlider.

A button is a component that triggers an action when clicked. Swing provides regular buttons,
toggle buttons, check box buttons, and radio buttons. The common features of these buttons
are defined in javax.swing.AbstractButton, as shown in Figure 12.15.

AbstractButtonComponent Container JComponent

JToggleButton

JTextComponent

JComboBox

JList

JScrollBar

JSlider

JLabel

JButton

JRadioButton

JTextField

JTextArea

JPasswordField

JCheckBox

FIGURE 12.14 These Swing GUI components are frequently used to create user interfaces.

javax.swing.AbstractButton

-actionCommand: String

-text: String

-icon: javax.swing.Icon

-pressedIcon: javax.swing.Icon

-rolloverIcon: javax.swing.Icon

-mnemonic: int

-horizontalAlignment: int

-horizontalTextPosition: int

-verticalAlignment: int

-verticalTextPosition: int

-borderPainted: boolean

-iconTextGap: int
-selected: boolean

The action command of this button.

The button’s text (i.e., the text label on the button).

The button’s default icon. This icon is also used as the “pressed” and
“disabled” icon if there is no pressed icon set explicitly.

The pressed icon (displayed when the button is pressed).

The rollover icon (displayed when the mouse is over the button).

The mnemonic key value of this button. You can select the button by
pressing the ALT key and the mnemonic key at the same time.

The horizontal alignment of the icon and text (default: CENTER).

The horizontal text position relative to the icon (default: RIGHT).

The vertical alignment of the icon and text (default: CENTER).

The vertical text position relative to the icon (default: CENTER).

Indicates whether the border of the button is painted. By default, a regular
button’s border is painted, but the borders for a check box and a radio
button are not painted.

The gap between the text and the icon on the button.
The state of the button. True if the check box or radio button is selected,

false if not.

javax.swing.JComponent

The get and set methods for these data fields are provided
in the class, but omitted in the UML diagram for brevity.

FIGURE 12.15 AbstractButton defines common features of different types of buttons.

naming convention for
components

AbstractButton

12.11 JButton 469

JButton inherits AbstractButton and provides several constructors to create buttons,
as shown in Figure 12.16.

javax.swing.JButton

javax.swing.AbstractButton

+JButton()

+JButton(icon: javax.swing.Icon)

+JButton(text: String)

+JButton(text: String, icon: Icon)

Creates a default button without any text or icons.

Creates a button with an icon.

Creates a button with text.

Creates a button with text and an icon.

FIGURE 12.16 JButton defines a regular push button.

12.11.1 Icons, Pressed Icons, and Rollover Icons
A button has a default icon, a pressed icon, and a rollover icon. Normally you use the
default icon, because the other icons are for special effects. A pressed icon is displayed
when a button is pressed, and a rollover icon is displayed when the mouse is over the but-
ton but not pressed. For example, Listing 12.9 displays the U.S. flag as a regular icon,
the Canadian flag as a pressed icon, and the British flag as a rollover icon, as shown in
Figure 12.17.

LISTING 12.9 TestButtonIcons.java
 1 import javax.swing.*;
 2
 3 public class TestButtonIcons extends JFrame {
 4 public static void main(String[] args) {
 5 // Create a frame and set its properties
 6 JFrame frame = new TestButtonIcons();
 7 frame.setTitle("ButtonIcons");
 8 frame.setSize(200, 100);
 9 frame.setLocationRelativeTo(null); // Center the frame
10 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 frame.setVisible(true);
12 }
13
14 public TestButtonIcons() {
15 ImageIcon usIcon = new ImageIcon("image/usIcon.gif");
16 ImageIcon caIcon = new ImageIcon("image/caIcon.gif");
17 ImageIcon ukIcon = new ImageIcon("image/ukIcon.gif");
18
19 JButton jbt = new JButton("Click it", usIcon);
20 jbt.setPressedIcon(caIcon);
21 jbt.setRolloverIcon(ukIcon);
22
23 add(jbt);
24 }
25 }

 (a) Default icon (b) Pressed icon (c) Rollover icon

FIGURE 12.17 A button can have several types of icons.

create icons

regular icon
pressed icon
rollover icon

add a button

470 Chapter 12 GUI Basics

12.11.2 Alignments
Horizontal alignment specifies how the icon and text are placed horizontally on a button. You can
set the horizontal alignment using setHorizontalAlignment(int) with one of the five con-
stants LEADING, LEFT, CENTER, RIGHT, or TRAILING, as shown in Figure 12.18. At present,
LEADING and LEFT are the same, and TRAILING and RIGHT are the same. Future implementa-
tion may distinguish them. The default horizontal alignment is AbstractButton.CENTER.

horizontal alignment

Vertical alignment specifies how the icon and text are placed vertically on a button. You
can set the vertical alignment using setVerticalAlignment(int) with one of the three
constants TOP, CENTER, or BOTTOM, as shown in Figure 12.19. The default vertical alignment
is AbstractButton.CENTER.

vertical alignment

12.11.3 Text Positions
Horizontal text position specifies the horizontal position of the text relative to the icon. You
can set the horizontal text position using setHorizontalTextPosition(int) with one of
the five constants LEADING, LEFT, CENTER, RIGHT, or TRAILING, as shown in Figure 12.20.
At present, LEADING and LEFT are the same, and TRAILING and RIGHT are the same.
Future implementation may distinguish them. The default horizontal text position is
AbstractButton.RIGHT.

Vertical text position specifies the vertical position of the text relative to the icon. You can
set the vertical text position using setVerticalTextPosition(int) with one of the three

horizontal text position

vertical text position

Horizontally left Horizontally center Horizontally right

FIGURE 12.18 You can specify how the icon and text are placed on a button horizontally.

Vertically top Vertically center Vertically bottom

FIGURE 12.19 You can specify how the icon and text are placed on a button vertically.

Text positioned left Text positioned center Text positioned right

FIGURE 12.20 You can specify the horizontal position of the text relative to the icon.

12.12 JCheckBox 471

constants TOP, CENTER, or BOTTOM, as shown in Figure 12.21. The default vertical text posi-
tion is AbstractButton.CENTER.

12.28 How do you create a button with the text OK? How do you change text on a button?
How do you set an icon, a pressed icon, and a rollover icon in a button?

12.29 Given a JButton object jbtOK, write statements to set the button’s foreground to
red, background to yellow, mnemonic to K, tool tip text to Click OK to pro-
ceed, horizontal alignment to RIGHT, vertical alignment to BOTTOM, horizontal text
position to LEFT, vertical text position to TOP, and icon text gap to 5.

12.30 List at least five properties defined in the AbstractButton class.

12.12 JCheckBox
To create a check box button, use the JCheckBox class.

A toggle button is a two-state button like a light switch. JToggleButton inherits
AbstractButton and implements a toggle button. Often JToggleButton’s subclasses
JCheckBox and JRadioButton are used to enable the user to toggle a choice on or off. This
section introduces JCheckBox. JRadioButton will be introduced in the next section.

JCheckBox inherits all the properties from AbstractButton, such as text, icon,
mnemonic, verticalAlignment, horizontalAlignment, horizontalTextPosition,
verticalTextPosition, and selected, and provides several constructors to create check
boxes, as shown in Figure 12.22.

✓Point✓Check

Key
Point

toggle button

Text positioned top Text centered
vertically

Text positioned bottom

FIGURE 12.21 You can specify the vertical position of the text relative to the icon.

javax.swing.JToggleButton

javax.swing.AbstractButton

javax.swing.JCheckBox

+JCheckBox()
+JCheckBox(text: String)
+JCheckBox(text: String, selected:
 boolean)
+JCheckBox(icon: Icon)
+JCheckBox(text: String, icon: Icon)
+JCheckBox(text: String, icon: Icon,
 selected: boolean)

Creates a default check box without any text or icon.
Creates a check box with text.
Creates a check box with text and specifies whether the check box is
 initially selected.
Creates a check box with an icon.
Creates a check box with text and an icon.
Creates a check box with text and an icon, and specifies whether the check
 box is initially selected.

FIGURE 12.22 JCheckBox defines a check box button.

472 Chapter 12 GUI Basics

Here is an example for creating a check box with the text Student. Its foreground is red, the
background is white, its mnemonic key is S, and it is initially selected.

JCheckBox jchk = new JCheckBox("Student", true);
jchk.setForeground(Color.RED);
jchk.setBackground(Color.WHITE);
jchk.setMnemonic('S');

The button can also be accessed by using the keyboard mnemonics. Pressing Alt+S is
equivalent to clicking the check box.

To see if a check box is selected, use the isSelected() method.

12.31 How do you create a check box? How do you create a check box with the box
checked initially? How do you determine whether a check box is selected?

12.13 JRadioButton
To create a radio button, use the JRadioButton class.

Radio buttons, also known as option buttons, enable you to choose a single item from a group
of choices. In appearance radio buttons resemble check boxes, but check boxes display a
square that is either checked or blank, whereas radio buttons display a circle that is either
filled (if selected) or blank (if not selected).

JRadioButton inherits AbstractButton and provides several constructors to create
radio buttons, as shown in Figure 12.23. These constructors are similar to the constructors for
JCheckBox.

mnemonics

isSelected?

✓Point✓Check

Key
Point

Here is an example for creating a radio button with the text Student. The code specifies
red foreground, white background, mnemonic key S, and initially selected.

JRadioButton jrb = new JRadioButton("Student", true);
jrb.setForeground(Color.RED);
jrb.setBackground(Color.WHITE);
jrb.setMnemonic('S');

javax.swing.JToggleButton

javax.swing.AbstractButton

javax.swing.JRadioButton

+JRadioButton()

+JRadioButton(text: String)

+JRadioButton(text: String, selected:
 boolean)

+JRadioButton(icon: Icon)

+JRadioButton(text: String, icon: Icon)

+JRadioButton(text: String, icon: Icon,
 selected: boolean)

Creates a default radio button without any text or icon.

Creates a radio button with text.

Creates a radio button with text and specifies whether the radio button is
 initially selected.

Creates a radio button with an icon.

Creates a radio button with text and an icon.

Creates a radio button with text and an icon, and specifies whether the
 radio button is initially selected.

FIGURE 12.23 JRadioButton defines a radio button.

12.14 Labels 473

To group radio buttons, you need to create an instance of java.swing.ButtonGroup
and use the add method to add them to it, as follows:

ButtonGroup group = new ButtonGroup();
group.add(jrb1);
group.add(jrb2);

This code creates a radio-button group for the radio buttons jrb1 and jrb2 so that they are
selected mutually exclusively. Without grouping, jrb1 and jrb2 would be independent.

Note
ButtonGroup is not a subclass of java.awt.Component, so a ButtonGroup
object cannot be added to a container.

To see if a radio button is selected, use the isSelected() method.

12.32 How do you create a radio button? How do you create a radio button with the button
selected initially? How do you group radio buttons together? How do you determine
whether a radio button is selected?

12.14 Labels
To create a label, use the JLabel class.

A label is a display area for a short text, an image, or both. It is often used to label other
components (usually text fields). Figure 12.24 lists the constructors and methods in the
JLabel class.

GUI helper class

✓Point✓Check

Key
Point

javax.swing.JLabel

-text: String

-icon: javax.swing.Icon

-horizontalAlignment: int

-horizontalTextPosition: int

-verticalAlignment: int

-verticalTextPosition: int

-iconTextGap: int

+JLabel()
+JLabel(icon: javax.swing.Icon)
+JLabel(icon: Icon, hAlignment: int)
+JLabel(text: String)
+JLabel(text: String, icon: Icon,
 hAlignment: int)

+JLabel(text: String, hAlignment: int)

javax.swing.JComponent

The label’s text.

The label’s image icon.

The horizontal alignment of the text and icon on the label.

The horizontal text position relative to the icon on the label.

The vertical alignment of the text and icon on the label.

The vertical text position relative to the icon on the label.

The gap between the text and the icon on the label.

Creates a default label without any text or icons.
Creates a label with an icon.
Creates a label with an icon and the specified horizontal alignment.
Creates a label with text.
Creates a label with text, an icon, and the specified horizontal alignment.

Creates a label with text and the specified horizontal alignment.

The get and set methods for these data fields are provided
in the class, but omitted in the UML diagram for brevity.

FIGURE 12.24 JLabel displays text or an icon, or both.

JLabel inherits all the properties from JComponent and has many properties similar to the
ones in JButton, such as text, icon, horizontalAlignment, verticalAlignment,
horizontalTextPosition, verticalTextPosition, and iconTextGap. For example,
the following code displays a label with text and an icon:

474 Chapter 12 GUI Basics

Key
Point

12.33 How do you create a label named Address? How do you change the name on a
label? How do you set an icon in a label?

12.34 Given a JLabel object jlblMap, write statements to set the label’s foreground to
red, background to yellow, mnemonic to M, tool tip text to Map image, horizontal
alignment to RIGHT, vertical alignment to BOTTOM, horizontal text position to LEFT,
vertical text position to TOP, and icon text gap to 5.

12.15 Text Fields
To create a text field, use the JTextField class.

A text field can be used to enter or display a string. JTextField is a subclass of
JTextComponent. Figure 12.25 lists the constructors and methods in JTextField.

-columns: int

-horizontalAlignment: int

+JTextField()

+JTextField(column: int)

+JTextField(text: String)

+JTextField(text: String, columns: int)

The number of columns in this text field.

The horizontal alignment of this text field (default: LEFT).

Creates a default empty text field with number of columns set to 0.

Creates an empty text field with a specified number of columns.

Creates a text field initialized with the specified text.

Creates a text field initialized with the specified text and columns.

-text: String

-editable: boolean
The text contained in this text component.

Indicates whether this text component is editable (default: true).

javax.swing.text.JTextComponent

javax.swing.JTextField

The get and set methods for these data fields are provided
in the class, but omitted in the UML diagram for brevity.

FIGURE 12.25 JTextField enables you to enter or display a string.

✓Point✓Check

JTextField inherits JTextComponent, which inherits JComponent. Here is an exam-
ple of creating a text field with red foreground color and right horizontal alignment:

JTextField jtfMessage = new JTextField("T-Storm");
jtfMessage.setForeground(Color.RED);
jtfMessage.setHorizontalAlignment(JTextField.RIGHT);

To set new text in a text field, use the setText(newText) method. To get the text from a text
field, use the getText() method.

// Create an image icon from an image file
ImageIcon icon = new ImageIcon("image/grapes.gif");

// Create a label with a text, an icon,
// with centered horizontal alignment
JLabel jlbl = new JLabel("Grapes", icon, JLabel.CENTER);

//Set label's text alignment and gap between text and icon
jlbl.setHorizontalTextPosition(JLabel.CENTER);
jlbl.setVerticalTextPosition(JLabel.BOTTOM);
jlbl.setIconTextGap(5);

Chapter Summary 475

JPasswordField

✓Point✓Check

AWT 446
component class 446
container class 446
heavyweight component 446
helper class 446

layout manager 451
lightweight component 446
Swing components 446
splash screen 467
top-level container 447

CHAPTER SUMMARY

1. Every container has a layout manager that is used to position and place components
in the container in the desired locations. Three simple and frequently used layout
managers are FlowLayout, GridLayout, and BorderLayout.

2. You can use a JPanel as a subcontainer to group components to achieve a desired layout.

3. Use the add method to place components in a JFrame or a JPanel. By default, the
frame’s layout is BorderLayout, and the JPanel’s layout is FlowLayout.

4. Colors are made of red, green, and blue components, each represented by an unsigned
byte value that describes its intensity, ranging from 0 (darkest shade) to 255 (lightest
shade). This is known as the RGB model.

5. To create a Color object, use new Color(r, g, b), in which r, g, and b specify a
color by its red, green, and blue components. Alternatively, you can use one of the 13
standard colors (BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN, LIGHT_GRAY,
MAGENTA, ORANGE, PINK, RED, WHITE, YELLOW) defined as constants in
java.awt.Color.

6. Every Swing GUI component is a subclass of javax.swing.JComponent, and
JComponent is a subclass of java.awt.Component. The properties font,
background, foreground, height, width, and preferredSize in
Component are inherited in these subclasses, as are toolTipText and border in
JComponent.

7. You can use borders on any Swing components. You can create an image icon using the
ImageIcon class and display it in a label and a button. Icons and borders can be shared.

8. You can display a text and icon on buttons (JButton, JCheckBox, JRadioButton)
and labels (JLabel).

9. You can specify the horizontal and vertical text alignment in JButton, JCheckBox,
JRadioButton, and JLabel, and the horizontal text alignment in JTextField.

Note
If a text field is used for entering a password, use JPasswordField to replace
JTextField. JPasswordField extends JTextField and hides the input text
with echo characters (e.g., ******). By default, the echo character is *. You can specify
a new echo character using the setEchoChar(char) method.

12.35 How do you create a text field with 10 columns and the default text Welcome to
Java? How do you write the code to check whether a text field is empty?

12.36 How do you create text field for entering passwords?

KEY TERMS

476 Chapter 12 GUI Basics

10. You can specify the horizontal and vertical text position relative to the icon in
JButton, JCheckBox, JRadioButton, and JLabel.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Note
The image icons used in the exercises can be obtained from
www.cs.armstrong.edu/liang/intro9e/book.zip under the image folder.

Sections 12.2–12.6
12.1 (Use the FlowLayout manager) Write a program that meets the following

requirements (see Figure 12.26):

■ Create a frame and set its layout to FlowLayout.
■ Create two panels and add them to the frame.
■ Each panel contains three buttons. The panel uses FlowLayout.

FIGURE 12.26 Exercise 12.1 places the first three buttons in one panel and the other three
buttons in another panel.

(a) (b) (c)

FIGURE 12.27 (a) Exercise 12.5 displays four labels. (b) Exercise 12.6 displays four icons.
(c) Exercise 12.7 displays a tic-tac-toe board with image icons in labels.

download image files

12.2 (Use the BorderLayout manager) Rewrite the preceding program to create
the same user interface, but instead of using FlowLayout for the frame, use
BorderLayout. Place one panel in the south of the frame and the other in the
center.

12.3 (Use the GridLayout manager) Rewrite Programming Exercise 12.1 to add six
buttons into a frame. Use a GridLayout of two rows and three columns for the
frame.

12.4 (Use JPanel to group buttons) Rewrite Programming Exercise 12.1 to create the
same user interface. Instead of creating buttons and panels separately, define a
class that extends the JPanel class. Place three buttons in your panel class, and
create two panels from the user-defined panel class.

12.5 (Display labels) Write a program that displays four lines of text in four labels, as
shown in Figure 12.27a. Add a line border around each label.

www.cs.armstrong.edu/liang/intro9e/test.html
www.cs.armstrong.edu/liang/intro9e/book.zip

Programming Exercises 477

Sections 12.7–12.15
12.6 (Display icons) Write a program that displays four icons in four labels, as shown

in Figure 12.27b. Add a line border around each label.

**12.7 (Game: display a tic-tac-toe board) Display a frame that contains nine labels. A
label may display an image icon for X or an image icon for O, as shown in
Figure 12.27c. What to display is randomly decided. Use the Math.random()
method to generate an integer 0 or 1, which corresponds to displaying an X or O
image icon. These images are in the files x.gif and o.gif.

*12.8 (Swing common features) Display a frame that contains six labels. Set the back-
ground of the labels to white. Set the foreground of the labels to black, blue, cyan,
green, magenta, and orange, respectively, as shown in Figure 12.28a. Set the bor-
der of each label to a line border with the color yellow. Set the font of each label to
Times Roman, bold, and 20 pixels. Set the text and tool tip text of each label to the
name of its foreground color.

*12.9 (Game: display three cards) Display a frame that contains three labels. Each label
displays a card, as shown in Figure 12.28b. The card image files are named 1.png,
2.png, . . ., 54.png (including jokers) and stored in the image/card directory. All
three cards are distinct and selected randomly.

*12.10 (Game: display a checkerboard) Write a program that displays a checkerboard in
which each white and black cell is a JButton with a background black or white,
as shown in Figure 12.28c.

*12.11 (Game: display four cards) Use the same cards from Exercise 12.9 to display a
frame that contains four buttons. All buttons have the same icon from
backCard.png, as shown in Figure 12.29a. The pressed icons are four cards ran-
domly selected from the 54 cards in a deck, as shown in Figure 12.29b.

Display a checkerboard

(a) (b) (c)

FIGURE 12.28 (a) Six labels are placed in the frame. (b) Three cards are randomly selected.
(c) A checkerboard is displayed using buttons.

(c)(b)(a)

FIGURE 12.29 (a) The four buttons have the same icon. (b) Each button’s pressed icon is randomly picked from the
deck. (c) The image icons and texts are displayed in four labels.

VideoNote

478 Chapter 12 GUI Basics

12.12 (Use labels) Write a program that displays the image icon and the text in four
labels, as shown Figure 12.29c.

12.13 (Display 54 cards) Expand Exercise 12.9 to display all 54 cards in 54 labels, nine
per row.

*12.14 (Display random 0 or 1) Write a program that displays a 10-by-10 square matrix,
as shown in Figure 12.30. Each element in the matrix is 0 or 1, randomly gener-
ated. Display each number centered in a label.Display a random matrix

FIGURE 12.30 The program randomly generates 0s and 1s.

VideoNote

GRAPHICS

Objectives
■ To draw graphics using the methods in the Graphics class (§13.2).

■ To override the paintComponent method to draw graphics on a GUI
component (§13.2).

■ To use a panel as a canvas to draw graphics (§13.2).

■ To draw strings, lines, rectangles, ovals, arcs, and polygons (§§13.3,
13.5–13.6).

■ To obtain font properties using FontMetrics and to display a text
centered in a panel (§13.7).

■ To display an image on a GUI component (§13.10).

■ To develop the reusable GUI components FigurePanel,
MessagePanel, StillClock, and ImageViewer (§§13.4, 13.8,
13.9, 13.11).

CHAPTER

13

480 Chapter 13 Graphics

(a) (b) (c)

Key
Point

FIGURE 13.1 You can draw shapes using the drawing methods in the Graphics class.

Key
Point

13.1 Introduction
You can draw custom shapes on a GUI component.

Suppose you want to draw shapes such as a bar chart, a clock, or a stop sign, as shown in
Figure 13.1. How do you do so?

Problem

This chapter describes how to use the methods in the Graphics class to draw strings,
lines, rectangles, ovals, arcs, polygons, and images, and how to develop reusable GUI compo-
nents.

13.2 The Graphics Class
Each GUI component has a graphics context, which is an object of the Graphics
class. The Graphics class contains the methods for drawing various shapes.

The Graphics class provides the methods for drawing strings, lines, rectangles, ovals, arcs,
polygons, and polylines, as shown in Figure 13.2.

Think of a GUI component as a piece of paper and the Graphics object as a pencil or
paintbrush. You can apply the methods in the Graphics class to draw graphics on a GUI
component.

To paint, you need to specify where to paint. Each component has its own coordinate sys-
tem with the origin (0, 0) at the upper-left corner. The x-coordinate increases to the right, and
the y-coordinate increases downward. Note that the Java coordinate system differs from the
conventional coordinate system, as shown in Figure 13.3.

The Graphics class–an abstract class—provides a device-independent graphics interface
for displaying figures and images on the screen on different platforms. Whenever a compo-
nent (e.g., a button, a label, or a panel) is displayed, the JVM automatically creates a
Graphics object for the component on the native platform and passes this object to invoke
the paintComponent method to display the drawings.

The signature of the paintComponent method is as follows:

protected void paintComponent(Graphics g)

This method, defined in the JComponent class, is invoked whenever a component is first dis-
played or redisplayed.

To draw on a component, you need to define a class that extends JPanel and overrides its
paintComponent method to specify what to draw. Listing 13.1 gives an example that draws
a line and a string on a panel, as shown in Figure 13.4.

paintComponent

13.2 The Graphics Class 481

java.awt.Graphics

+setColor(color: Color): void

+setFont(font: Font): void

+drawString(s: String, x: int, y: int): void

+drawLine(x1: int, y1: int, x2: int, y2:
 int): void

+drawRect(x: int, y: int, w: int, h: int):
 void

+fillRect(x: int, y: int, w: int, h: int): void

+drawRoundRect(x: int, y: int, w: int, h: int, aw:
 int, ah: int): void

+fillRoundRect(x: int, y: int, w: int, h: int,
 aw: int, ah: int): void

+draw3DRect(x: int, y: int, w: int, h: int,
 raised: boolean): void

+fill3DRect(x: int, y: int, w: int, h: int,
 raised: boolean): void

+drawOval(x: int, y: int, w: int, h: int):
 void

+fillOval(x: int, y: int, w: int, h: int): void

+drawArc(x: int, y: int, w: int, h: int,
 startAngle: int, arcAngle: int): void

+fillArc(x: int, y: int, w: int, h: int,
 startAngle: int, arcAngle: int): void

+drawPolygon(xPoints: int[], yPoints:
 int[], nPoints: int): void

+fillPolygon(xPoints: int[], yPoints: int[],
 nPoints: int): void

+drawPolygon(g: Polygon): void

+fillPolygon(g: Polygon): void

+drawPolyline(xPoints: int[], yPoints:
 int[], nPoints: int): void

Sets a new color for subsequent drawings.

Sets a new font for subsequent drawings.

Draws a string starting at point (x, y).

Draws a line from (x1, y1) to (x2, y2).

Draws a rectangle with specified upper-left corner point at
(x,y) and width w and height h.

Draws a filled rectangle with specified upper-left corner point
 at (x, y) and width w and height h.

Draws a round-cornered rectangle with specified arc width
aw and arc height ah.

Draws a filled round-cornered rectangle with specified arc
 width aw and arc height ah.

Draws a 3-D rectangle raised above the surface or sunk into
 the surface.

Draws a filled 3-D rectangle raised above the surface or sunk
 into the surface.

Draws an oval bounded by the rectangle specified by the
 parameters x, y, w, and h.

Draws a filled oval bounded by the rectangle specified by the
 parameters x, y, w, and h.

Draws an arc conceived as part of an oval bounded by the
 rectangle specified by the parameters x, y, w, and h.

Draws a filled arc conceived as part of an oval bounded by the
 rectangle specified by the parameters x, y, w, and h.

Draws a closed polygon defined by arrays of x- and
y-coordinates. Each pair of (x[i], y[i])-coordinates is a point.

Draws a filled polygon defined by arrays of x- and
y-coordinates. Each pair of (x[i], y[i])-coordinates is a point.

Draws a closed polygon defined by a Polygon object.

Draws a filled polygon defined by a Polygon object.

Draws a polyline defined by arrays of x- and y-coordinates.
 Each pair of (x[i], y[i])-coordinates is a point.

FIGURE 13.2 The Graphics class contains the methods for drawing strings and shapes.

(0, 0) X axis

Y axis

(x, y)

x

y

Java Coordinate
System

X axis
Conventional
Coordinate
System

(0, 0)

Y axis

FIGURE 13.3 The Java coordinate system is measured in pixels, with (0, 0) at its upper-
left corner.

LISTING 13.1 TestPaintComponent.java
1 import javax.swing.*;
2 import java.awt.Graphics;
3

482 Chapter 13 Graphics

4 public class TestPaintComponent extends JFrame {
5 public TestPaintComponent() {
6 add();
7 }
8
9 public static void main(String[] args) {
10 TestPaintComponent frame = new TestPaintComponent();
11 frame.setTitle("TestPaintComponent");
12 frame.setSize(200, 100);
13 frame.setLocationRelativeTo(null); // Center the frame
14 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15 frame.setVisible(true);
16 }
17 }
18
19
20
21
22
23
24
25
26 }

}
g.drawString("Banner", 0, 40);
g.drawLine(0, 0, 50, 50);
super.paintComponent(g);

protected void paintComponent(Graphics g) {
@Override

class NewPanel extends JPanel {

new NewPanel()create a panel

(0, 0)

(50, 50)

(0, 40) This is a JPanel
object placed
inside a frame

FIGURE 13.4 A line and a string are drawn on a panel.

new panel class

override paintComponent
draw things in the superclass
draw line
draw string

extends JPanel?

The paintComponent method is automatically invoked to paint graphics when the com-
ponent is first displayed or whenever the component needs to be redisplayed. Invoking
super.paintComponent(g) (line 22) invokes the paintComponent method defined in
the superclass. This is necessary to ensure that the viewing area is cleared before a new draw-
ing is displayed. Line 23 invokes the drawLine method to draw a line from (0, 0) to (50, 50).
Line 24 invokes the drawString method to draw the string Banner at location (0, 40).

All the drawing methods have parameters that specify the locations of the subjects to be
drawn. In Java, all measurements are made in pixels.

The JVM invokes paintComponent to draw things on a component. The user should
never invoke paintComponent directly. For this reason, the protected visibility is sufficient
for paintComponent.

Panels are invisible and are used as small containers that group components to achieve a
desired layout. Another important use of JPanel is for drawing. You can draw things on any
Swing GUI component, but normally you should use a JPanel as a canvas upon which to
draw things. What happens if you replace JPanel with JLabel in line 19 as follows?

class NewPanel extends {

The program will work, but it is not preferred, because JLabel is designed for creating a
label, not for drawing. For consistency, this book will define a canvas class by subclassing
JPanel.

JLabel

13.3 Drawing Strings, Lines, Rectangles, and Ovals 483

Tip
Some textbooks define a canvas class by subclassing JComponent. The problem with
doing that is if you want to set a background in the canvas, you have to write the code
to paint the background color. A simple setBackground(Color color) method
will not set a background color in a JComponent.

13.1 Suppose that you want to draw a new message below an existing message. Should the
x-coordinate, y-coordinate, or both increase or decrease?

13.2 How is a Graphics object created?

13.3 How is the paintComponent method invoked? How can a program invoke this
method?

13.4 Why is the paintComponent method protected? What happens if you change it
to public or private in a subclass? Why is super.paintComponent(g)
invoked in line 22 in Listing 13.1?

13.5 Can you draw things on any Swing GUI component? Why should you use a panel as
a canvas for drawings rather than a label or a button?

13.3 Drawing Strings, Lines, Rectangles, and Ovals
You can draw strings, lines, rectangles, and ovals in a graphics context.

The drawString(String s, int x, int y) method draws a string starting at the point
(x, y), as shown in Figure 13.5a.

The drawLine(int x1, int y1, int x2, int y2) method draws a straight line
from point (x1, y1) to point (x2, y2), as shown in Figure 13.5b.

extends JComponent?

✓Point✓Check

(0, 0) (getWidth(), 0)

(getWidth(), getHeight())(0, getHeight())

(x, y) s is displayed here

(0, 0) (getWidth(), 0)

(getWidth(), getHeight())(0, getHeight())

(x1, y1)

(x2, y2)

(b) drawLine(a) drawString

FIGURE 13.5 (a) The drawString(s, x, y) method draws a string starting at (x, y). (b) The drawLine(x1, y1,
x2, y2) method draws a line between two specified points.

Java provides six methods for drawing the outline of rectangles or rectangles filled with
color. You can draw or fill plain rectangles, round-cornered rectangles, or three-dimensional
rectangles.

The drawRect(int x, int y, int w, int h) method draws a plain rectangle, and
the fillRect(int x, int y, int w, int h) method draws a filled rectangle. The
parameters x and y represent the upper-left corner of the rectangle, and w and h are its width
and height (see Figure 13.6).

The drawRoundRect(int x, int y, int w, int h, int aw, int ah) method
draws a round-cornered rectangle, and the fillRoundRect(int x, int y, int w, int
h, int aw, int ah) method draws a filled round-cornered rectangle. Parameters x, y, w,
and h are the same as in the drawRect method, parameter aw is the horizontal diameter of the
arcs at the corner, and ah is the vertical diameter of the arcs at the corner (see Figure 13.7a).

Key
Point

drawString

drawLine

drawRect

fillRect

drawRoundRect

fillRoundRect

484 Chapter 13 Graphics

In other words, aw and ah are the width and the height of the oval that produces a quarter-
circle at each corner.

The draw3DRect(int x, int y, int w, int h, boolean raised) method
draws a 3-D rectangle and the fill3DRect(int x, int y, int w, int h, boolean
raised) method draws a filled 3-D rectangle. The parameters x, y, w, and h are the same as
in the drawRect method. The last parameter, a Boolean value, indicates whether the rectan-
gle is raised above the surface or sunk into the surface.

Depending on whether you wish to draw an oval in outline or filled solid, you can use
either the drawOval(int x, int y, int w, int h) method or the fillOval(int x,
int y, int w, int h) method. An oval is drawn based on its bounding rectangle. Para-
meters x and y indicate the top-left corner of the bounding rectangle, and w and h indicate the
width and height, respectively, of the bounding rectangle, as shown in Figure 13.7b.

13.6 Describe the methods for drawing strings, lines, and the methods for drawing/filling
rectangles, round-cornered rectangles, 3-D rectangles, and ovals.

13.7 Draw a thick line from (10, 10) to (70, 30). You can draw several lines next to each
other to create the effect of one thick line.

13.8 Draw/fill a rectangle of width 100 and height 50 with the upper-left corner
at (10, 10).

13.9 Draw/fill a round-cornered rectangle with width 100, height 200, corner horizontal
diameter 40, and corner vertical diameter 20.

13.10 Draw/fill a circle with radius 30.

13.11 Draw/fill an oval with width 50 and height 100.

(x, y)

w

h

(a) Plain rectangle

h

(x, y)

w

(b) Filled rectangle

FIGURE 13.6 (a) The drawRect(x, y, w, h) method draws a rectangle. (b) The fillRect(x, y, w, h) method
draws a filled rectangle.

draw3DRect

fill3DRect

drawOval

fillOval

✓Point✓Check

w

h

w

h

(a) drawRoundRect (b) drawOval

(x, y)(x, y)
aw/2

ah/2

FIGURE 13.7 (a) The drawRoundRect(x, y, w, h, aw, ah) method draws a round-
cornered rectangle. (b) The drawOval(x, y, w, h) method draws an oval based on its
bounding rectangle.

13.4 Case Study: The FigurePanel Class 485

13.4 Case Study: The FigurePanel Class
This case study develops the FigurePanel class for displaying various figures.

This example develops a useful class for displaying various figures. The class enables the user
to set the figure type and specify whether the figure is filled, and it displays the figure on a
panel. The UML diagram for the class is shown in Figure 13.8. The panel can display lines,
rectangles, round-cornered rectangles, and ovals. Which figure to display is decided by the
type property. If the filled property is true, the rectangle, round-cornered rectangle, and
oval are filled in the panel.

Key
Point

FigurePanel

+LINE = 1

+RECTANGLE = 2

+ROUND_RECTANGLE = 3

+OVAL = 4

-type: int

-filled: boolean

+FigurePanel()

+FigurePanel(type: int)

+FigurePanel(type: int, filled: boolean)

+getType(): int

+setType(type: int): void

+isFilled(): boolean

+setFilled(filled: boolean): void

javax.swing.JPanel

LINE, RECTANGLE,
ROUND_RECTANGLE, and OVAL are
constants, indicating the figure type.

Specifies the figure type (default: 1).

Specifies whether the figure is filled (default: false).

Creates a default figure panel.

Creates a figure panel with the specified type.

Creates a figure panel with the specified type and filled property.

Returns the figure type.

Sets a new figure type.

Checks whether the figure is filled with a color.

Sets a new filled property.

FIGURE 13.8 FigurePanel displays various types of figures on the panel.

The UML diagram serves as the contract for the FigurePanel class. The user can use the
class without knowing how the class is implemented. Let us begin by writing a program in
Listing 13.2 that uses the class to display six figure panels, as shown in Figure 13.9.

LISTING 13.2 TestFigurePanel.java
1 import java.awt.*;
2 import javax.swing.*;
3
4 public class TestFigurePanel extends JFrame {
5 public TestFigurePanel() {
6 setLayout(new GridLayout(2, 3, 5, 5));
7 add(new FigurePanel(FigurePanel.LINE));
8 add(new FigurePanel(FigurePanel.RECTANGLE));
9 add(new FigurePanel(FigurePanel.ROUND_RECTANGLE));
10 add(new FigurePanel(FigurePanel.OVAL));
11 add(new FigurePanel(FigurePanel.RECTANGLE, true));
12 add(new FigurePanel(FigurePanel.ROUND_RECTANGLE, true));
13 }
14
15 public static void main(String[] args) {
16 TestFigurePanel frame = new TestFigurePanel();
17 frame.setSize(400, 200);
18 frame.setTitle("TestFigurePanel");

create figures

The FigurePanel class

VideoNote

486 Chapter 13 Graphics

19 frame.setLocationRelativeTo(null); // Center the frame
20 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21 frame.setVisible(true);
22 }
23 }

FIGURE 13.9 Six FigurePanel objects are created to display six figures.

constants

override
paintComponent(g)

check type

The FigurePanel class is implemented in Listing 13.3. Four constants—LINE,
RECTANGLE, ROUND_RECTANGLE, and OVAL—are declared in lines 6–9. Four types of figures
are drawn according to the type property (line 37). The setColor method (lines 39, 44, 53,
62) sets a new color for the drawing.

LISTING 13.3 FigurePanel.java
1 import java.awt.*;
2 import javax.swing.JPanel;
3
4 public class FigurePanel extends JPanel {
5 // Declare constants
6 public static final int LINE = 1;
7 public static final int RECTANGLE = 2;
8 public static final int ROUND_RECTANGLE = 3;
9 public static final int OVAL = 4;

10
11 private int type = 1;
12 private boolean filled = false;
13
14 /** Construct a default FigurePanel */
15 public FigurePanel() {
16 }
17
18 /** Construct a FigurePanel with the specified type */
19 public FigurePanel(int type) {
20 this.type = type;
21 }
22
23 /** Construct a FigurePanel with the specified type and filled */
24 public FigurePanel(int type, boolean filled) {
25 this.type = type;
26 this.filled = filled;
27 }
28
29 @Override // Draw a figure on the panel
30 protected void paintComponent(Graphics g) {
31 super.paintComponent(g);
32
33 // Get the appropriate size for the figure
34 int width = getWidth();
35 int height = getHeight();
36
37 {
38 case LINE: // Display two cross lines

switch (type)

13.4 Case Study: The FigurePanel Class 487

39
40 (10, 10, width - 10, height - 10);
41 (width - 10, 10, 10, height - 10);
42 break;
43 case RECTANGLE: // Display a rectangle
44 g.setColor(Color.BLUE);
45
46 ((int)(0.1 * width), (int)(0.1 * height),
47 (int)(0.8 * width), (int)(0.8 * height));
48 else

49 ((int)(0.1 * width), (int)(0.1 * height),
50 (int)(0.8 * width), (int)(0.8 * height));
51 break;
52 case ROUND_RECTANGLE: // Display a round-cornered rectangle
53 g.setColor(Color.RED);
54
55 ((int)(0.1 * width), (int)(0.1 * height),
56 (int)(0.8 * width), (int)(0.8 * height), 20, 20);
57 else

58 ((int)(0.1 * width), (int)(0.1 * height),
59 (int)(0.8 * width), (int)(0.8 * height), 20, 20);
60 break;
61 case OVAL: // Display an oval
62 g.setColor(Color.BLACK);
63
64 ((int)(0.1 * width), (int)(0.1 * height),
65 (int)(0.8 * width), (int)(0.8 * height));
66 else

67 ((int)(0.1 * width), (int)(0.1 * height),
68 (int)(0.8 * width), (int)(0.8 * height));
69 }
70 }
71
72 /** Set a new figure type */
73 public void setType(int type) {
74 this.type = type;
75
76 }
77
78 /** Return figure type */
79 public int getType() {
80 return type;
81 }
82
83 /** Set a new filled property */
84 public void setFilled(boolean filled) {
85 this.filled = filled;
86
87 }
88
89 /** Check if the figure is filled */
90 public boolean isFilled() {
91 return filled;
92 }
93
94 @Override // Specify preferred size
95
96
97
98 }

}
return new Dimension(80, 80);

public Dimension getPreferredSize() {

repaint();

repaint();

g.drawOval

g.fillOval
if (filled)

g.drawRoundRect

g.fillRoundRect
if (filled)

g.drawRect

g.fillRect
if (filled)

g.drawLine
g.drawLine
g.setColor(Color.BLACK);

draw lines

fill a rectangle

draw a rectangle

fill round-cornered rect

draw round-cornered rect

fill an oval

draw an oval

repaint panel

repaint panel

override
getPreferredSize()

488 Chapter 13 Graphics

The repaint method (lines 75, 86) is defined in the Component class. Invoking repaint
causes the paintComponent method to be called. The repaint method is invoked to
refresh the viewing area. Typically, you call it if you have new things to display.

Caution
The paintComponent method should never be invoked directly. It is invoked either by
the JVM whenever the viewing area changes or by the repaint method. You should
override the paintComponent method to tell the system how to paint the viewing
area, but never override the repaint method.

Note
The repaint method lodges a request to update the viewing area and returns immedi-
ately. Its effect is asynchronous, meaning that it is up to the JVM to execute the
paintComponent method on a separate thread.

The getPreferredSize() method (lines 95–97), defined in Component, is overridden
in FigurePanel to specify the preferred size for the layout manager to consider when laying
out a FigurePanel object. This property may or may not be considered by the layout man-
ager, depending on its rules. For example, a component uses its preferred size in a container
with a FlowLayout manager, but its preferred size is ignored if it is placed in a container
with a GridLayout manager. It is a good practice to override getPreferredSize() in a
subclass of JPanel to specify a preferred size, because the default width and height for a
JPanel is 0. You will see nothing if a JPanel component with a default 0 width and height
is placed in a FlowLayout container.

13.12 Why should you override the preferredSize method in a subclass of JPanel?

13.13 How do you get and set colors and fonts in a Graphics object?

13.5 Drawing Arcs
An arc is conceived as part of an oval bounded by a rectangle.

The methods to draw or fill an arc are as follows:

drawArc(int x, int y, int w, int h, int startAngle, int arcAngle)
fillArc(int x, int y, int w, int h, int startAngle, int arcAngle)

Parameters x, y, w, and h are the same as in the drawOval method; parameter startAngle
is the starting angle; and arcAngle is the spanning angle (i.e., the angle covered by the arc).
Angles are measured in degrees and follow the usual mathematical conventions (i.e., 0
degrees is in the easterly direction, and positive angles indicate counterclockwise rotation
from the easterly direction); see Figure 13.10.

request repaint using
repaint()

don’t invoke
paintComponent

why override
getPreferredSize()?

✓Point✓Check

Key
Point

(x, y) w

h

arcAngle

startAngle

FIGURE 13.10 The drawArc method draws an arc based on an oval with specified angles.

13.5 Drawing Arcs 489

Listing 13.4 is an example of how to draw arcs; the output is shown in Figure 13.11.

LISTING 13.4 DrawArcs.java
1 import javax.swing.JFrame;
2 import javax.swing.JPanel;
3 import java.awt.Graphics;
4
5 public class DrawArcs extends JFrame {
6 public DrawArcs() {
7 setTitle("DrawArcs");
8 add(new ArcsPanel());
9 }
10
11 /** Main method */
12 public static void main(String[] args) {
13 DrawArcs frame = new DrawArcs();
14 frame.setSize(250, 300);
15 frame.setLocationRelativeTo(null); // Center the frame
16 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
17 frame.setVisible(true);
18 }
19 }
20
21 // The class for drawing arcs on a panel
22 class ArcsPanel extends JPanel {
23 @Override // Draw four blades of a fan
24 {
25
26
27 int xCenter = getWidth() / 2;
28 int yCenter = getHeight() / 2;
29 int radius = (int)(Math.min(getWidth(), getHeight()) * 0.4);
30
31 int x = xCenter - radius;
32 int y = yCenter - radius;
33
34
35
36
37
38 }
39 }

g.fillArc(x, y, 2 * radius, 2 * radius, 270, 30);
g.fillArc(x, y, 2 * radius, 2 * radius, 180, 30);
g.fillArc(x, y, 2 * radius, 2 * radius, 90, 30);
g.fillArc(x, y, 2 * radius, 2 * radius, 0, 30);

super.paintComponent(g);
protected void paintComponent(Graphics g)

(x, y)

30�

FIGURE 13.11 The program draws four filled arcs.

add a panel

override paintComponent

30° arc from 90°
30° arc from 180°
30° arc from 270°

30° arc from 0°

490 Chapter 13 Graphics

Angles may be negative. A negative starting angle sweeps clockwise from the easterly direc-
tion, as shown in Figure 13.12. A negative spanning angle sweeps clockwise from the starting
angle. The following two statements draw the same arc:

g.fillArc(x, y, 2 * radius, 2 * radius, -30, -20);
g.fillArc(x, y, 2 * radius, 2 * radius, -50, 20);

The first statement uses negative starting angle -30 and negative spanning angle -20, as
shown in Figure 13.12a. The second statement uses negative starting angle -50 and positive
spanning angle 20, as shown in Figure 13.12b.

negative degrees

✓Point✓Check

Key
Point

(a) Negative starting angle –30� and
negative spanning angle –20�

–30�

–20�

(b) Negative starting angle –50�
 and positive spanning angle 20�

–50�

20�

FIGURE 13.12 Angles may be negative.

x-coordinates of all points in the polygon.

y-coordinates of all points in the polygon.

The number of points in the polygon.

Creates an empty polygon.

Creates a polygon with the specified points.

Appends a point to the polygon.

Returns true if the specified point (x, y) is
 contained in the polygon.

java.awt.Polygon

+xpoints: int[]

+ypoints: int[]

+npoints: int

+Polygon()

+Polygon(xpoints: int[], ypoints: int[],
 npoints: int)

+addPoint(x: int, y: int): void

+contains(x: int, y: int): boolean

FIGURE 13.13 The Polygon class models a polygon.

13.14 Describe the methods for drawing/filling arcs.

13.15 Draw the upper half of a circle with radius 50.

13.16 Fill the lower half of a circle with radius 50 using the red color.

13.6 Drawing Polygons and Polylines
You can draw a polygon or a polyline that connects a set of points.

To draw a polygon, first create a Polygon object using the Polygon class, as shown in
Figure 13.13.

A polygon is a closed two-dimensional region. This region is bounded by an arbitrary
number of line segments, each being one side (or edge) of the polygon. A polygon comprises
a list of (x, y)-coordinate pairs in which each pair defines a vertex of the polygon, and two
successive pairs are the endpoints of a line that is a side of the polygon. The first and final
points are joined by a line segment that closes the polygon.

13.6 Drawing Polygons and Polylines 491

Here is an example of creating a polygon and adding points into it:

Polygon polygon = new Polygon();
polygon.addPoint(40, 20);
polygon.addPoint(70, 40);
polygon.addPoint(60, 80);
polygon.addPoint(45, 45);
polygon.addPoint(20, 60);

After these points are added, xpoints is {40, 70, 60, 45, 20}, ypoints is {20, 40, 80, 45,
60}, and npoints is 5. xpoints, ypoints, and npoints are public data fields in
Polygon, which is a bad design. If the user changes a Polygon’s npoints data field without
properly changing its xpoints and ypoints data fields, this will cause inconsistent data in
the Polygon object.

To draw or fill a polygon, use one of the following methods in the Graphics class:

drawPolygon(Polygon polygon);
fillPolygon(Polygon polygon);

drawPolygon(int[] xpoints, int[] ypoints, int npoints);
fillPolygon(int[] xpoints, int[] ypoints, int npoints);

For example:

int x[] = {40, 70, 60, 45, 20};
int y[] = {20, 40, 80, 45, 60};
g.drawPolygon(x, y, x.length);

The drawing method opens the polygon by drawing lines between point (x[i], y[i]) and
point (x[i+1], y[i+1]) for i = 0, ... , x.length-1; it closes the polygon by draw-
ing a line between the first and last points (see Figure 13.14a).

(x[0], y[0])

(x[1], y[1])

(x[3], y[3])

(x[4], y[4])

(x[2], y[2])

(a) Polygon (b) Polyline

(x[0], y[0])

(x[1], y[1])

(x[3], y[3])

(x[4], y[4])

(x[2], y[2])

FIGURE 13.14 The drawPolygon method draws a polygon, and the drawPolyLine method draws a polyline.

To draw a polyline, use the drawPolyline(int[] x, int[] y, int nPoints)
method, which draws a sequence of connected lines defined by arrays of x- and y-coordinates.
For example, the following code draws the polyline like the one shown in Figure 13.14b.

int x[] = {40, 70, 60, 45, 20};
int y[] = {20, 40, 80, 45, 60};
g.drawPolyline(x, y, x.length);

Listing 13.5 is an example of how to draw a hexagon, with the output shown in Figure 13.15.

492 Chapter 13 Graphics

LISTING 13.5 DrawPolygon.java
1 import javax.swing.JFrame;
2 import javax.swing.JPanel;
3 import java.awt.Graphics;
4 import java.awt.Polygon;
5
6 public class DrawPolygon extends JFrame {
7 public DrawPolygon() {
8 setTitle("DrawPolygon");
9 add(new PolygonsPanel());
10 }
11
12 /** Main method */
13 public static void main(String[] args) {
14 DrawPolygon frame = new DrawPolygon();
15 frame.setSize(200, 250);
16 frame.setLocationRelativeTo(null); // Center the frame
17 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18 frame.setVisible(true);
19 }
20 }
21
22 // Draw a polygon in the panel
23 class PolygonsPanel extends JPanel {
24 @Override
25 {
26
27
28 int xCenter = getWidth() / 2;
29 int yCenter = getHeight() / 2;
30 int radius = (int)(Math.min(getWidth(), getHeight()) * 0.4);
31
32 // Create a Polygon object
33 Polygon polygon = new Polygon();
34
35 // Add points to the polygon in this order
36 (xCenter + radius, yCenter);
37 ((int)(xCenter + radius *
38 Math.cos(2 * Math.PI / 6)), (int)(yCenter – radius *
39 Math.sin(2 * Math.PI / 6)));
40 polygon.addPoint((int)(xCenter + radius *
41 Math.cos(2 * 2 * Math.PI / 6)), (int)(yCenter – radius *
42 Math.sin(2 * 2 * Math.PI / 6)));
43 polygon.addPoint((int)(xCenter + radius *
44 Math.cos(3 * 2 * Math.PI / 6)), (int)(yCenter – radius *
45 Math.sin(3 * 2 * Math.PI / 6)));

polygon.addPoint
polygon.addPoint

super.paintComponent(g);
protected void paintComponent(Graphics g)

add a panel

paintComponent

add a point

radius

(x, y)
x is xCenter � radius � cos(2	/6)
y is yCenter � radius � sin(2	/6)

(xCenter, yCenter)

2	

6

FIGURE 13.15 The program uses the drawPolygon method to draw a hexagon.

13.7 Centering a String Using the FontMetrics Class 493

46 polygon.addPoint((int)(xCenter + radius *
47 Math.cos(4 * 2 * Math.PI / 6)), (int)(yCenter – radius *
48 Math.sin(4 * 2 * Math.PI / 6)));
49 polygon.addPoint((int)(xCenter + radius *
50 Math.cos(5 * 2 * Math.PI / 6)), (int)(yCenter – radius *
51 Math.sin(5 * 2 * Math.PI / 6)));
52
53 // Draw the polygon
54
55 }
56 }

13.17 Draw a polygon connecting the following points: (20, 40), (30, 50), (40, 90), (90,
10), (10, 30).

13.18 Create a Polygon object and add points (20, 40), (30, 50), (40, 90), (90, 10), (10,
30) in this order. Fill the polygon with the red color. Draw a polyline with a yellow
color to connect all these points.

13.7 Centering a String Using the FontMetrics Class
You can use the FontMetrics class to measure the width and height of a string in the
graphics context.

You can display a string at any location in a panel. Can you display it centered? Yes; to do so,
you need to use the FontMetrics class to measure the exact width and height of the string
for a particular font. FontMetrics can measure the following attributes for a given font (see
Figure 13.16):

■ Leading, pronounced ledding, is the amount of space between lines of text.

■ Ascent is the distance from the baseline to the ascent line. The top of most characters
in the font will be under the ascent line, but some may extend above the ascent line.

■ Descent is the distance from the baseline to the descent line. The bottom of most
descending characters (e.g., j, y, and g) in the font will be above the descent line, but
some may extend below the descent line.

■ Height is the sum of leading, ascent, and descent.

g.drawPolygon(polygon);

ByBaseline
Descent

Leading

AscentHeight

Ascent line

Descent line

FIGURE 13.16 The FontMetrics class can be used to determine the font properties of
characters for a given font.

draw polygon

FontMetrics is an abstract class. To get a FontMetrics object for a specific font, use the
following getFontMetrics methods defined in the Graphics class:

■ public FontMetrics getFontMetrics(Font font)

This method returns the font metrics of the specified font.

■ public FontMetrics getFontMetrics()

✓Point✓Check

Key
Point

494 Chapter 13 Graphics

This method returns the font metrics of the current font.
You can use the following instance methods in the FontMetrics class to obtain the attributes
of a font and the width of a string when it is drawn using the font:

public int getAscent() // Return the ascent
public int getDescent() // Return the descent
public int getLeading() // Return the leading
public int getHeight() // Return the height
public int stringWidth(String str) // Return the width of the string

Listing 13.6 gives an example that displays a message in the center of the panel, as shown in
Figure 13.17.

LISTING 13.6 TestCenterMessage.java
1 import javax.swing.*;
2 import java.awt.*;
3
4 public class TestCenterMessage extends JFrame {
5 public TestCenterMessage() {
6 CenterMessage messagePanel = new CenterMessage();
7 add(messagePanel);
8 messagePanel.setBackground(Color.WHITE);
9 messagePanel.setFont(new Font("Californian FB", Font.BOLD, 30));
10 }
11
12 /** Main method */
13 public static void main(String[] args) {
14 TestCenterMessage frame = new TestCenterMessage();
15 frame.setSize(300, 150);
16 frame.setTitle("CenterMessage");
17 frame.setLocationRelativeTo(null); // Center the frame
18 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19 frame.setVisible(true);
20 }
21 }
22
23 class CenterMessage extends JPanel {
24 @Override /** Paint the message */
25 protected void paintComponent(Graphics g) {
26 super.paintComponent(g);
27
28 // Get font metrics for the current font
29
30
31 // Find the center location to display
32 int stringWidth = ;
33 int stringAscent = ;
34
35 // Get the position of the leftmost character in the baseline
36 int xCoordinate = getWidth() / 2 - stringWidth / 2;
37 int yCoordinate = getHeight() / 2 + stringAscent / 2;
38
39
40 }
41 }

g.drawString("Welcome to Java", xCoordinate, yCoordinate);

fm.getAscent()
fm.stringWidth("Welcome to Java")

FontMetrics fm = g.getFontMetrics();

create a message panel
add a message panel
set background
set font

override paintComponent

get FontMetrics

13.8 Case Study: The MessagePanel Class 495

stringWidth()
getHeight()

stringAscent()

This is a MessagePanel object

(xCoordinate, yCoordinate)
xCoordinate = getWidth / 2 - stringWidth / 2;
yCoordinate = getHeight / 2 - stringAscent / 2;

FIGURE 13.17 The program uses the FontMetrics class to measure the string width and
height and displays it at the center of the panel.

The methods getWidth() and getHeight() (lines 36–37) defined in the Component class
return the component’s width and height, respectively.

Since the message is centered, the first character of the string should be positioned at
(xCoordinate, yCoordinate), as shown in Figure 13.17.

13.19 How do you find the leading, ascent, descent, and height of a font?

13.20 How do you find the exact length in pixels of a string in a Graphics object?

13.8 Case Study: The MessagePanel Class
This case study develops a useful class that displays a message in a panel. The class
enables the user to set the location of the message, center the message, and move the
message a specified interval.

The contract of the MessagePanel class is shown in Figure 13.18.
Let us first write a test program in Listing 13.7 that uses the MessagePanel class to display

four message panels, as shown in Figure 13.19.

LISTING 13.7 TestMessagePanel.java
1 import java.awt.*;
2 import javax.swing.*;
3
4 public class TestMessagePanel extends JFrame {
5 public TestMessagePanel() {
6 MessagePanel messagePanel1 = ;
7 MessagePanel messagePanel2 = new MessagePanel("Java is fun");
8 MessagePanel messagePanel3 = new MessagePanel("Java is cool");
9 MessagePanel messagePanel4 = new MessagePanel("I love Java");
10
11 messagePanel2.setFont(new Font("Courier", Font.BOLD, 20));
12 messagePanel3.setFont(new Font("Times", Font.ITALIC, 20));
13 messagePanel4.setFont(new Font("Californian FB", Font.PLAIN, 20));
14
15 messagePanel2.setBackground(Color.CYAN);
16 messagePanel3.setBackground(Color.GREEN);
17 messagePanel4.setBackground(Color.WHITE);

messagePanel1.setBackground(Color.RED);

messagePanel1.setFont(new Font("SansSerif", Font.ITALIC, 20));

new MessagePanel("Welcome to Java")

✓Point✓Check

Key
Point

The MessagePanel class
VideoNote

create message panel

set font

set background

496 Chapter 13 Graphics

The rest of this section explains how to implement the MessagePanel class. Since you can
use the class without knowing how it is implemented, you may skip the implementation if
you wish.

add message panel

skip implementation?

FIGURE 13.19 TestMessagePanel uses MessagePanel to display four message panels.

18 messagePanel1.setCentered(true);
19
20 setLayout(new GridLayout(2, 2));
21 add(messagePanel1);
22 add(messagePanel2);
23 add(messagePanel3);
24 add(messagePanel4);
25 }
26
27 public static void main(String[] args) {
28 TestMessagePanel frame = new TestMessagePanel();
29 frame.setSize(300, 200);
30 frame.setTitle("TestMessagePanel");
31 frame.setLocationRelativeTo(null); // Center the frame
32 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
33 frame.setVisible(true);
34 }
35 }

-xCoordinate: int

-yCoordinate: int

-centered: boolean

-interval: int

+moveLeft(): void

+moveUp(): void

+moveDown(): void

javax.swing.JPanel

MessagePanel

The x-coordinate for the message.

The y-coordinate for the message.

Specifies whether the message is displayed centered.

The message to be displayed.

The interval to move the message in the panel.

Constructs a default message panel.

Constructs a message panel with a specified string.

Moves the message to the left.

Moves the message to the right.

Moves the message up.

Moves the message down.

-message: String

+MessagePanel()

+MessagePanel(message: String)

+moveRight(): void

The get and set methods for these
data fields are provided in the class, but
omitted in the UML diagram for brevity.

FIGURE 13.18 MessagePanel displays a message on the panel.

13.8 Case Study: The MessagePanel Class 497

The MessagePanel class is implemented in Listing 13.8. The program seems long but is
actually simple, because most of the methods are get and set methods, and each method is
relatively short and easy to read.

LISTING 13.8 MessagePanel.java
1 import java.awt.FontMetrics;
2 import java.awt.Dimension;
3 import java.awt.Graphics;
4 import javax.swing.JPanel;
5
6 {
7 /** The message to be displayed */
8 private String message = "Welcome to Java";
9
10 /** The x-coordinate where the message is displayed */
11 private int xCoordinate = 20;
12
13 /** The y-coordinate where the message is displayed */
14 private int yCoordinate = 20;
15
16 /** Indicate whether the message is displayed in the center */
17 private boolean centered;
18
19 /** The interval for moving the message horizontally
20 * and vertically */
21 private int interval = 10;
22
23 /** Construct with default properties */
24 {
25 }
26
27 /** Construct a message panel with a specified message */
28 {
29 this.message = message;
30 }
31
32 /** Return message */
33 public String getMessage() {
34 return message;
35 }
36
37 /** Set a new message */
38 public void setMessage(String message) {
39 this.message = message;
40
41 }
42
43 /** Return xCoordinator */
44 public int getXCoordinate() {
45 return xCoordinate;
46 }
47
48 /** Set a new xCoordinator */
49 public void setXCoordinate(int x) {
50 this.xCoordinate = x;
51 repaint();
52 }
53
54 /** Return yCoordinator */

repaint();

public MessagePanel(String message)

public MessagePanel()

public class MessagePanel extends JPanel

repaint panel

repaint panel

498 Chapter 13 Graphics

55 public int getYCoordinate() {
56 return yCoordinate;
57 }
58
59 /** Set a new yCoordinator */
60 public void setYCoordinate(int y) {
61 this.yCoordinate = y;
62 repaint();
63 }
64
65 /** Return centered */
66 public boolean isCentered() {
67 return centered;
68 }
69
70 /** Set true or false to tell whether the message is centered */
71 public void setCentered(boolean centered) {
72 this.centered = centered;
73 repaint();
74 }
75
76 /** Return interval */
77 public int getInterval() {
78 return interval;
79 }
80
81 /** Set a new interval */
82 public void setInterval(int interval) {
83 this.interval = interval;
84 repaint();
85 }
86
87 @Override /** Paint the message */
88 protected void paintComponent(Graphics g) {
89 super.paintComponent(g);
90
91 {
92 // Get font metrics for the current font
93 FontMetrics fm = g.getFontMetrics();
94
95 // Find the center location to display
96 int stringWidth = fm.stringWidth(message);
97 int stringAscent = fm.getAscent();
98 // Get the position of the leftmost character in the baseline
99 xCoordinate = getWidth() / 2 - stringWidth / 2;

100 yCoordinate = getHeight() / 2 + stringAscent / 2;
101 }
102
103 g.drawString(message, xCoordinate, yCoordinate);
104 }
105
106 /** Move the message left */
107 public void moveLeft() {
108 xCoordinate -= interval;
109 repaint();
110 }
111
112 /** Move the message right */
113 public void moveRight() {
114 xCoordinate += interval;

if (centered)

repaint panel

repaint panel

repaint panel

override paintComponent

check centered

13.8 Case Study: The MessagePanel Class 499

115 repaint();
116 }
117
118 /** Move the message up */
119 public void moveUp() {
120 yCoordinate -= interval;
121 repaint();
122 }
123
124 /** Move the message down */
125 public void moveDown() {
126 yCoordinate += interval;
127 repaint();
128 }
129
130 @Override /** Override get method for preferredSize */
131 public Dimension getPreferredSize() {
132 return new Dimension(200, 30);
133 }
134 }

The paintComponent method displays the message centered, if the centered property
is true (line 91). message is initialized to Welcome to Java in line 8. If it were not
initialized, a NullPointerException runtime error would occur when you created
a MessagePanel using the no-arg constructor, because message would be null in
line 103.

Caution
The MessagePanel class uses the properties xCoordinate and yCoordinate to
specify the position of the message displayed on the panel. Do not use the property
names x and y, because they are already defined in the Component class to return the
position of the component in the parent’s coordinate system using getX() and
getY().

Note
The Component class has the setBackground, setForeground, and setFont
methods. These methods are for setting colors and fonts for the entire component. If
you wanted to draw several messages in a panel with different colors and fonts, you
would have to use the setColor and setFont methods in the Graphics class to
set the color and font for the current drawing.

Note
A key feature of Java programming is the reuse of classes. Throughout this book,
reusable classes are developed and later reused. MessagePanel is an example, as are
Loan in Listing 10.2 and FigurePanel in Listing 13.3. MessagePanel can be
reused whenever you need to display a message on a panel. To make your class reusable
in a wide range of applications, you should provide a variety of ways to use it.
MessagePanel provides many properties and methods that will be used in several
examples in the book.

13.21 If message is not initialized in line 8 in Listing 13.8, MessagePanel.java, what will
happen when you create a MessagePanel using its no-arg constructor?

13.22 The following program is supposed to display a message on a panel, but nothing is
displayed. There are problems in lines 2 and 15. Correct them.

✓Point✓Check

override
getPreferredSize

design classes for reuse

500 Chapter 13 Graphics

1 public class TestDrawMessage extends javax.swing.JFrame {
2 public void TestDrawMessage() {
3 add(new DrawMessage());
4 }
5
6 public static void main(String[] args) {
7 javax.swing.JFrame frame = new TestDrawMessage();
8 frame.setSize(100, 200);
9 frame.setVisible(true);
10 }
11 }
12
13 class DrawMessage extends javax.swing.JPanel {
14 @Override
15 protected void PaintComponent(java.awt.Graphics g) {
16 super.paintComponent(g);
17 g.drawString("Welcome to Java", 20, 20);
18 }
19 }

13.9 Case Study: The StillClock Class
This case study develops a class that displays a clock on a panel.

The contract of the StillClock class is shown in Figure 13.20.
Key

Point

The StillClock class

-hour: int

-minute: int

-second: int

javax.swing.JPanel

StillClock

The hour in the clock.

The minute in the clock.

The second in the clock.

Constructs a default clock for the current time.

Constructs a clock with a specified time.

Sets hour, minute, and second to current time.

+StillClock()

+StillClock(hour: int, minute: int,
 second: int)

+setCurrentTime(): void

The get and set methods for these
data fields are provided in the class, but
omitted in the UML diagram for brevity.

FIGURE 13.20 StillClock displays an analog clock.

Let us first write a test program in Listing 13.9 that uses the StillClock class to display
an analog clock and uses the MessagePanel class to display the hour, minute, and second in
a panel, as shown in Figure 13.21a.

LISTING 13.9 DisplayClock.java
1 import java.awt.*;
2 import javax.swing.*;
3
4 public class DisplayClock extends JFrame {

VideoNote

13.9 Case Study: The StillClock Class 501

5 public DisplayClock() {
6 // Create an analog clock for the current time
7
8
9 // Display hour, minute, and second in the message panel
10
11
12 messagePanel.setCentered(true);
13 messagePanel.setForeground(Color.blue);
14 messagePanel.setFont(new Font("Courier", Font.BOLD, 16));
15
16 // Add the clock and message panel to the frame
17 add(clock);
18 add(messagePanel, BorderLayout.SOUTH);
19 }
20
21 public static void main(String[] args) {
22 DisplayClock frame = new DisplayClock();
23 frame.setTitle("DisplayClock");
24 frame.setSize(300, 350);
25 frame.setLocationRelativeTo(null); // Center the frame
26 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
27 frame.setVisible(true);
28 }
29 }

":" + clock.getMinute() + ":" + clock.getSecond());
MessagePanel messagePanel = new MessagePanel(clock.getHour() +

StillClock clock = new StillClock();

(a)

handLength

(xCenter, yCenter)

(xEnd, yEnd)

12

6

9 3

(0, 0)

(b)

FIGURE 13.21 (a) The DisplayClock program displays a clock that shows the current
time. (b) The endpoint of a clock hand can be determined, given the spanning angle, the
hand length, and the center point.

The rest of this section explains how to implement the StillClock class. Since you can use
the class without knowing how it is implemented, you may skip the implementation if you
wish.

To draw a clock, you need to draw a circle and three hands for the second, minute, and
hour. To draw a hand, you need to specify the two ends of the line. As shown in Figure
13.21b, one end is the center of the clock at (xCenter, yCenter); the other end, at
(xEnd, yEnd), is determined by the following formula:

xEnd = xCenter + handLength × sin(θ)
yEnd = yCenter - handLength × cos(θ)

Since there are 60 seconds in one minute, the angle for the second hand is

second × (2π/60)

create a clock

create a message panel

add a clock
add a message panel

skip implementation?

implementation

502 Chapter 13 Graphics

The position of the minute hand is determined by the minute and second. The exact minute
value combined with seconds is minute + second/60. For example, if the time is 3 min-
utes and 30 seconds, the total minutes are 3.5. Since there are 60 minutes in one hour, the
angle for the minute hand is

(minute + second/60) × (2π/60)

Since one circle is divided into 12 hours, the angle for the hour hand is

(hour + minute/60 + second/(60 × 60)) × (2π/12)

For simplicity in computing the angles of the minute hand and hour hand, you can omit the
seconds, because they are negligibly small. Therefore, the endpoints for the second hand,
minute hand, and hour hand can be computed as:

xSecond = xCenter + secondHandLength × sin(second × (2π/60))
ySecond = yCenter - secondHandLength × cos(second × (2π/60))
xMinute = xCenter + minuteHandLength × sin(minute × (2π/60))
yMinute = yCenter - minuteHandLength × cos(minute × (2π/60))
xHour = xCenter + hourHandLength × sin((hour + minute/60) × (2π/12))
yHour = yCenter - hourHandLength × cos((hour + minute/60) × (2π/12))

The StillClock class is implemented in Listing 13.10.

LISTING 13.10 StillClock.java
1 import java.awt.*;
2 import javax.swing.*;
3 import java.util.*;
4
5 public class StillClock extends JPanel {
6 private int hour;
7 private int minute;
8 private int second;
9
10 /** Construct a default clock with the current time*/
11 {
12 setCurrentTime();
13 }
14
15 /** Construct a clock with specified hour, minute, and second */
16 {
17 this.hour = hour;
18 this.minute = minute;
19 this.second = second;
20 }
21
22 /** Return hour */
23 public int getHour() {
24 return hour;
25 }
26
27 /** Set a new hour */
28 public void setHour(int hour) {
29 this.hour = hour;
30 repaint();
31 }
32
33 /** Return minute */

public StillClock(int hour, int minute, int second)

public StillClock()

repaint panel

13.9 Case Study: The StillClock Class 503

34 public int getMinute() {
35 return minute;
36 }
37
38 /** Set a new minute */
39 public void setMinute(int minute) {
40 this.minute = minute;
41 repaint();
42 }
43
44 /** Return second */
45 public int getSecond() {
46 return second;
47 }
48
49 /** Set a new second */
50 public void setSecond(int second) {
51 this.second = second;
52 repaint();
53 }
54
55 @Override /** Draw the clock */
56 protected void paintComponent(Graphics g) {
57 super.paintComponent(g);
58
59 // Initialize clock parameters
60 int clockRadius =
61 (int)(Math.min(getWidth(), getHeight()) * 0.8 * 0.5);
62 int xCenter = getWidth() / 2;
63 int yCenter = getHeight() / 2;
64
65 // Draw circle
66 g.setColor(Color.BLACK);
67 g.drawOval(xCenter - clockRadius, yCenter - clockRadius,
68 2 * clockRadius, 2 * clockRadius);
69 g.drawString("12", xCenter - 5, yCenter - clockRadius + 12);
70 g.drawString("9", xCenter - clockRadius + 3, yCenter + 5);
71 g.drawString("3", xCenter + clockRadius - 10, yCenter + 3);
72 g.drawString("6", xCenter - 3, yCenter + clockRadius - 3);
73
74 // Draw second hand
75 int sLength = (int)(clockRadius * 0.8);
76 int xSecond = (int)(xCenter + sLength *
77 Math.sin(second * (2 * Math.PI / 60)));
78 int ySecond = (int)(yCenter - sLength *
79 Math.cos(second * (2 * Math.PI / 60)));
80 g.setColor(Color.red);
81 g.drawLine(xCenter, yCenter, xSecond, ySecond);
82
83 // Draw minute hand
84 int mLength = (int)(clockRadius * 0.65);
85 int xMinute = (int)(xCenter + mLength *
86 Math.sin(minute * (2 * Math.PI / 60)));
87 int yMinute = (int)(yCenter - mLength *
88 Math.cos(minute * (2 * Math.PI / 60)));
89 g.setColor(Color.blue);
90 g.drawLine(xCenter, yCenter, xMinute, yMinute);
91
92 // Draw hour hand
93 int hLength = (int)(clockRadius * 0.5);

repaint panel

repaint panel

override paintComponent

504 Chapter 13 Graphics

94 int xHour = (int)(xCenter + hLength *
95 Math.sin((hour % 12 + minute / 60.0) * (2 * Math.PI / 12)));
96 int yHour = (int)(yCenter - hLength *
97 Math.cos((hour % 12 + minute / 60.0) * (2 * Math.PI / 12)));
98 g.setColor(Color.green);
99 g.drawLine(xCenter, yCenter, xHour, yHour);
100 }
101
102 public void setCurrentTime() {
103 // Construct a calendar for the current date and time
104 Calendar calendar = new GregorianCalendar();
105
106 // Set current hour, minute, and second
107 this.hour = calendar.get(Calendar.HOUR_OF_DAY);
108 this.minute = calendar.get(Calendar.MINUTE);
109 this.second = calendar.get(Calendar.SECOND);
110 }
111
112 @Override
113 public Dimension getPreferredSize() {
114 return new Dimension(200, 200);
115 }
116 }

The program enables the clock size to adjust as the frame resizes. Every time you resize the
frame, the paintComponent method is automatically invoked to paint a new clock. The
paintComponent method displays the clock in proportion to the panel width (getWidth())
and height (getHeight()) (lines 60–63 in StillClock).

13.10 Displaying Images
You can draw images in a graphics context.

You learned how to create image icons and display them in labels and buttons in Section 12.10,
Image Icons. For example, the following statements create an image icon and display it in a label:

ImageIcon imageIcon = new ImageIcon("image/us.gif");
JLabel jlblImage = new JLabel(imageIcon);

An image icon displays a fixed-size image. To display an image in a flexible size, you need to
use the java.awt.Image class. An image can be created from an image icon using the
getImage() method as follows:

Image image = imageIcon.getImage();

Using a label as an area for displaying images is simple and convenient, but you don’t have
much control over how the image is displayed. A more flexible way to display images is to
use the drawImage method of the Graphics class on a panel. Four versions of the
drawImage method are shown in Figure 13.22.

ImageObserver specifies a GUI component for receiving notifications of image informa-
tion as the image is constructed. To draw images using the drawImage method in a Swing
component, such as JPanel, override the paintComponent method to tell the component
how to display the image in the panel.

Listing 13.11 gives the code that displays an image from image/us.gif. The file
image/us.gif (line 20) is under the class directory. An Image object is obtained in line 21.
The drawImage method displays the image to fill in the whole panel, as shown in
Figure 13.23.

get current time

override
getPreferredSize

Key
Point

13.10 Displaying Images 505

LISTING 13.11 DisplayImage.java
1 import java.awt.*;
2 import javax.swing.*;
3
4 public class DisplayImage extends JFrame {
5 public DisplayImage() {
6
7 }
8
9 public static void main(String[] args) {
10 JFrame frame = new DisplayImage();
11 frame.setTitle("DisplayImage");
12 frame.setSize(300, 300);
13 frame.setLocationRelativeTo(null); // Center the frame
14 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15 frame.setVisible(true);
16 }
17 }
18
19
20 private

21 private

22
23 @Override /** Draw image on the panel */
24
25 super.paintComponent(g);
26
27 if (image != null)
28
29 }
30 }

g.drawImage(image, 0, 0, getWidth(), getHeight(), this);

protected void paintComponent(Graphics g) {

Image image = imageIcon.getImage();
ImageIcon imageIcon = new ImageIcon("image/us.gif");

class ImagePanel extends JPanel {

add(new ImagePanel());

java.awt.Graphics

+drawImage(image: Image, x: int, y: int,
 bgcolor: Color, observer:
 ImageObserver): void

+drawImage(image: Image, x: int, y: int,
 observer: ImageObserver): void

+drawImage(image: Image, x: int, y: int,
 width: int, height: int, observer:
 ImageObserver): void

+drawImage(image: Image, x: int, y: int,
 width: int, height: int, bgcolor: Color,
 observer: ImageObserver): void

Draws the image in a specified location. The image's top-left corner is at
 (x, y) in the graphics context's coordinate space. Transparent pixels in
 the image are drawn in the specified color bgcolor. The observer is the
 object on which the image is displayed. The image is cut off if it is
 larger than the area it is being drawn on.
Same as the preceding method except that it does not specify a background
 color.

Draws a scaled version of the image that can fill all of the available space
 in the specified rectangle.

Same as the preceding method except that it provides a solid background
 color behind the image being drawn.

FIGURE 13.22 You can apply the drawImage method on a Graphics object to display an image on a GUI component.

FIGURE 13.23 An image is displayed in a panel.

add panel

panel class
create image icon
get image

override paintComponent

draw image

506 Chapter 13 Graphics

13.11 Case Study: The ImageViewer Class
This case study develops the ImageViewer class for displaying an image in a panel.

Displaying an image is a common task in Java programming. This case study develops a
reusable component named ImageViewer that displays an image on a panel. The class con-
tains the properties image, stretched, xCoordinate, and yCoordinate, with associated
accessor and mutator methods, as shown in Figure 13.24.

You can use images in Swing components such as JLabel and JButton, but these images
are not stretchable. The image in an ImageViewer can be stretched.

Let us write a test program in Listing 13.12 that displays six images using the
ImageViewer class. Figure 13.25 shows a sample run of the program.

LISTING 13.12 SixFlags.java
1 import javax.swing.*;
2 import java.awt.*;
3
4 public class SixFlags extends JFrame {
5 public SixFlags() {
6 Image image1 = new ImageIcon("image/us.gif").getImage();
7 Image image2 = new ImageIcon("image/ca.gif").getImage();
8 Image image3 = new ImageIcon("image/india.gif").getImage();
9 Image image4 = new ImageIcon("image/uk.gif").getImage();
10 Image image5 = new ImageIcon("image/china.gif").getImage();
11 Image image6 = new ImageIcon("image/norway.gif").getImage();
12
13 setLayout(new GridLayout(2, 0, 5, 5));
14 add(new ImageViewer(image1));
15 add(new ImageViewer(image2));
16 add(new ImageViewer(image3));
17 add(new ImageViewer(image4));
18 add(new ImageViewer(image5));
19 add(new ImageViewer(image6));
20 }
21
22 public static void main(String[] args) {
23 SixFlags frame = new SixFlags();
24 frame.setTitle("SixFlags");
25 frame.setSize(400, 320);
26 frame.setLocationRelativeTo(null); // Center the frame

Key
Point

stretchable image

create image

create image viewer

-image: Image

-stretched: boolean

-xCoordinate: int

-yCoordinate: int

+ImageViewer()

+ImageViewer(image: Image)

javax.swing.JPanel

Image in the image viewer.

True if the image is stretched in the viewer.

x-coordinate of the upper-left corner of the image in the viewer.

y-coordinate of the upper-left corner of the image in the viewer.

Constructs an image viewer with no image.

Constructs an image viewer with the specified image.

ImageViewer

The get and set methods for these
data fields are provided in the class, but
omitted in the UML diagram for brevity.

FIGURE 13.24 The ImageViewer class displays an image on a panel.

13.11 Case Study: The ImageViewer Class 507

27 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28 frame.setVisible(true);
29 }
30 }

The ImageViewer class is implemented in Listing 13.13. (Note: You may skip the imple-
mentation.) The accessor and mutator methods for the properties image, stretched,
xCoordinate, and yCoordinate are easy to implement. The paintComponent method
(lines 27–36) displays the image on the panel. Line 30 ensures that the image is not null
before displaying it. Line 31 checks whether the image is stretched or not.

LISTING 13.13 ImageViewer.java
1 import java.awt.*;
2 import javax.swing.*;
3
4 {
5 /** Hold value of property image */
6 private java.awt.Image image;
7
8 /** Hold value of property stretched */
9 private boolean stretched = true;
10
11 /** Hold value of property xCoordinate */
12 private int xCoordinate;
13
14 /** Hold value of property yCoordinate */
15 private int yCoordinate;
16
17 /** Construct an empty image viewer */
18 public ImageViewer() {
19 }
20
21 /** Construct an image viewer for a specified Image object */
22 public ImageViewer(Image image) {
23 this.image = image;
24 }
25
26 @Override
27 {
28 super.paintComponent(g);
29
30
31 if ()
32 g.drawImage(image, xCoordinate, yCoordinate,
33 getWidth(), getHeight(), this);
34 else

35 g.drawImage(image, xCoordinate, yCoordinate, this);
36 }

isStretched()
if (image != null)

protected void paintComponent(Graphics g)

public class ImageViewer extends JPanel

FIGURE 13.25 Six images are displayed in six ImageViewer components.

implementation
skip implementation?

properties

constructor

constructor

image null?

stretched

nonstretched

508 Chapter 13 Graphics

37
38 /** Return value of property image */
39 public java.awt.Image getImage() {
40 return image;
41 }
42
43 /** Set a new value for property image */
44 public void setImage(java.awt.Image image) {
45 this.image = image;
46 repaint();
47 }
48
49 /** Return value of property stretched */
50 public boolean isStretched() {
51 return stretched;
52 }
53
54 /** Set a new value for property stretched */
55 public void setStretched(boolean stretched) {
56 this.stretched = stretched;
57 repaint();
58 }
59
60 /** Return value of property xCoordinate */
61 public int getXCoordinate() {
62 return xCoordinate;
63 }
64
65 /** Set a new value for property xCoordinate */
66 public void setXCoordinate(int xCoordinate) {
67 this.xCoordinate = xCoordinate;
68 repaint();
69 }
70
71 /** Return value of property yCoordinate */
72 public int getYCoordinate() {
73 return yCoordinate;
74 }
75
76 /** Set a new value for property yCoordinate */
77 public void setYCoordinate(int yCoordinate) {
78 this.yCoordinate = yCoordinate;
79 repaint();
80 }
81 }

13.23 How do you create an Image object from the ImageIcon object?

13.24 How do you create an ImageIcon object from an Image object?

13.25 Describe the drawImage method in the Graphics class.

13.26 Explain the differences between displaying images in a JLabel and in a JPanel.

13.27 Which package contains ImageIcon, and which contains Image?

CHAPTER SUMMARY

1. Each component has its own coordinate system with the origin (0, 0) at the upper-
left corner of the window. In Java, the x-coordinate increases to the right, and the y-
coordinate increases downward.

✓Point✓Check

Programming Exercises 509

2. Whenever a component (e.g., a button, a label, or a panel) is displayed, the JVM
automatically creates a Graphics object for the component on the native platform
and passes this object to invoke the paintComponent method to display the
drawings.

3. Normally you use JPanel as a canvas. To draw on a JPanel, you create a new class
that extends JPanel and overrides the paintComponent method to tell the panel
how to draw graphics.

4. Invoking super.paintComponent(g) is necessary to ensure that the viewing area
is cleared before a new drawing is displayed. The user can request the component to
be redisplayed by invoking the repaint() method defined in the Component class.
Invoking repaint() causes paintComponent to be invoked by the JVM. The user
should never invoke paintComponent directly. For this reason, the protected visi-
bility is sufficient for paintComponent.

5. The Component class has the setBackground, setForeground, and setFont
methods. These methods are used to set colors and fonts for the entire component. If
you want to draw several messages in a panel with different colors and fonts, you
have to use the setColor and setFont methods in the Graphics class to set the
color and font for the current drawing.

6. FontMetrics can be used to compute the exact length and width of a string,
which is helpful for measuring the size of a string in order to display it in the right
position.

7. To display an image, first create an image icon. You can then use ImageIcon’s
getImage() method to get an Image object for the image and draw the image using
the drawImage method in the java.awt.Graphics class.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 13.2–13.7
*13.1 (Display a grid) Write a program that displays a grid, as shown in

Figure 13.26a. Use red color for vertical lines and blue for horizontals.

**13.2 (Create a custom button class) Develop a custom button class named
OvalButton that extends JButton and displays the button text inside an oval.
Figure 13.26b shows two buttons created using the OvalButton class.

*13.3 (Display a checkerboard) Programming Exercise 12.10 displays a checkerboard
in which each white and black cell is a JButton. Rewrite a program that draws a
checkerboard on a JPanel using the drawing methods in the Graphics class, as
shown in Figure 13.26c. Use the drawRect method to draw each cell in the
checkerboard.

*13.4 (Display a multiplication table) Write a program that displays a multiplication
table in a panel using the drawing methods, as shown in Figure 13.27a.

3 * 33 * 3

www.cs.armstrong.edu/liang/intro9e/test.html

510 Chapter 13 Graphics

**13.5 (Display numbers in a triangular pattern) Write a program that displays numbers
in a triangular pattern, as shown in Figure 13.27b. The number of lines in the dis-
play changes to fit the window as the window resizes.

**13.6 (Improve FigurePanel) The FigurePanel class in Listing 13.3 can display
lines, rectangles, round-cornered rectangles, and ovals. Add appropriate
new code in the class to display arcs and polygons. Write a test program to
display the shapes as shown in Figure 13.28a using the new FigurePanel
class.

**13.7 (Display a tic-tac-toe board) Create a custom panel that displays X, O, or nothing.
What to display is randomly decided whenever a panel is repainted. Use the
Math.random() method to generate an integer 0, 1, or 2, which corresponds to
displaying X, O, or nothing. Create a frame that contains nine custom panels, as
shown in Figure 13.28b.

**13.8 (Draw an octagon) Write a program that draws an octagon, as shown in
Figure 13.28c.

(a) (b)

FIGURE 13.27 (a) Exercise 13.4 displays a multiplication table. (b) Exercise 13.5 displays
numbers in a triangle formation.

(a) (b) (c)

FIGURE 13.26 (a) Exercise 13.1 displays a grid. (b) Exercise 13.2 displays two objects of
OvalButton. (c) Exercise 13.3 displays a checkerboard.

Programming Exercises 511

*13.9 (Create four fans) Write a program that places four fans in a frame of
GridLayout with two rows and two columns, as shown in Figure 13.29a.

*13.10 (Display a cylinder) Write a program that draws a cylinder, as shown in Figure 13.29b.

*13.11 (Plot the square function) Write a program that draws a diagram for the function

(see Figure 13.29c).

Hint: Add points to a polygon p using the following loop:

double scaleFactor = 0.1;

for (int x = -100; x <= 100; x++) {
p.addPoint(x + 200, 200 - (int)(scaleFactor * x * x));

}

Connect the points using g.drawPolyline(p.xpoints, p.ypoints,

p.npoints) for a Graphics object g. p.xpoints returns an array of x-
coordinates, p.ypoints an array of y-coordinates, and p.npoints the number
of points in Polygon object p.

**13.12 (Plot the sine and cosine functions) Write a program that plots the sine function in
red and cosine in blue, as shown in Figure 13.30a.

f(x) = x2

(a) (b) (c)

FIGURE 13.28 (a) Four panels of geometric figures are displayed in a frame of GridLayout. (b) TicTacToe cells ran-
domly display X, O, or nothing. (c) Exercise 13.8 draws an octagon.

(a) (b) (c)

FIGURE 13.29 (a) Exercise 13.9 draws four fans. (b) Exercise 13.10 draws a cylinder. (c) Exercise 13.11 draws a dia-
gram for function f(x) = x2.

Plot a function

VideoNote

512 Chapter 13 Graphics

Hint: The Unicode for π is \u03c0. To display �2π, use
g.drawString("-2\u03c0", x, y). For a trigonometric function like
sin(x), x is in radians. Use the following loop to add the points to a polygon p:

for (int x = -170; x <= 170; x++) {
p.addPoint(x + 200,
100 – (int)(50 * Math.sin((x / 100.0) * 2 * Math.PI)));

}

�2π is at (100, 100), the center of the axis is at (200, 100), and 2π is at (300,
100). Use the drawPolyline method in the Graphics class to connect the
points.

**13.13 (Paint a smiley face) Write a program that paints a smiley face, as shown in
Figure 13.30b.

(a) (b)

FIGURE 13.30 (a) Exercise 13.12 plots the sine/cosine functions. (b) Exercise 13.13 paints a
smiley face.

Plot a bar chart

**13.14 (Display a bar chart) Write a program that uses a bar chart to display the percent-
ages of the overall grade represented by projects, quizzes, midterm exams, and the
final exam, as shown in Figure 13.1a. Suppose that projects take 20 percent and
are displayed in red, quizzes take 10 percent and are displayed in blue, midterm
exams take 30 percent and are displayed in green, and the final exam takes 40 per-
cent and is displayed in orange.

**13.15 (Display a pie chart) Write a program that uses a pie chart to display the percent-
ages of the overall grade represented by projects, quizzes, midterm exams, and the
final exam, as shown in Figure 13.31a. Suppose that projects take 20 percent and
are displayed in red, quizzes take 10 percent and are displayed in blue, midterm
exams take 30 percent and are displayed in green, and the final exam takes 40 per-
cent and is displayed in orange.

13.16 (Obtain font information) Write a program that displays the message Java is fun
in a panel. Set the panel’s font to TimesRoman, bold, and 20 pixel. Display
the font’s leading, ascent, descent, height, and the string width as a tool tip text for
the panel, as shown in Figure 13.31b.

13.17 (Game: hangman) Write a program that displays a drawing for the popular hang-
man game, as shown in Figure 13.31c.

VideoNote

Programming Exercises 513

13.18 (Use the StillClock class) Write a program that displays two clocks. The hour,
minute, and second values are 4, 20, 45 for the first clock and 22, 46, 15 for the
second clock, as shown in Figure 13.32a.

*13.19 (Random time) Modify the StillClock class with three new Boolean properties—
hourHandVisible, minuteHandVisible, and secondHandVisible—and
their associated accessor and mutator methods. You can use the set methods to
make a hand visible or invisible. Write a test program that displays only the hour and
minute hands. The hour and minute values are randomly generated. The hour is
between 0 and 11, and the minute is either 0 or 30, as shown in Figure 13.32b.

**13.20 (Draw a detailed clock) Modify the StillClock class in Section 13.9 to draw the
clock with more details on the hours and minutes, as shown in Figure 13.1b.

**13.21 (Display a tic-tac-toe board with images) Rewrite Programming Exercise 12.7 to
display an image in a JPanel instead of displaying an image icon in a JLabel.

*13.22 (Display a STOP sign) Write a program that displays a STOP sign, as shown in
Figure 13.1c. The hexagon is in red and the sign is in white. (Hint: See Listing 13.5,
DrawPolygon.java, and Listing 13.6, TestCenterMessage.java.)

(a) (b) (c)

FIGURE 13.31 (a) Exercise 13.15 uses a pie chart to show the percentages of projects, quizzes, midterm exams, and final
exam in the overall grade. (b) Exercise 13.16 displays font properties in a tool tip text. (c) Exercise 13.17 draws a sketch
for the hangman game.

(a) (b) (c) (d)

FIGURE 13.32 (a) Exercise 13.18 displays two clocks. (b) Exercise 13.19 displays a clock with random hour and minute
values. (c) Exercise 13.23 displays a rectanguloid. (d) Exercise 13.24 simulates a bean machine.

514 Chapter 13 Graphics

13.23 (Display a rectanguloid) Write a program that displays a rectanguloid, as shown
in Figure 13.32c. The cube should grow and shrink as the frame grows or shrinks.

**13.24 (Game: bean machine) Write a program that displays a bean machine intro-
duced in Programming Exercise 6.21. The bean machine should be centered in a
resizable panel, as shown in Figure 13.32d.

**13.25 (Geometry: display an n-sided regular polygon) Define a subclass of JPanel,
named RegularPolygonPanel, to paint an n-sided regular polygon. The class
contains a property named numberOfSides, which specifies the number of sides
in the polygon. The polygon is centered in the panel. The size of the polygon is
proportional to the size of the panel. Create a pentagon, hexagon, heptagon,
octagon, nonagon, and decagon from RegularPolygonPanel and display them
in a frame, as shown in Figure 13.33a.

Sections 13.8–13.11
13.26 (Use the MessagePanel class) Write a program that displays four messages, as

shown in Figure 13.33b.

**13.27 (Geometry: strategic point of a polygon) The strategic point of a polygon is a
point inside the polygon that has the shortest total distance to all vertices. Write
a program that finds and displays the strategic point, as shown in Figure 13.33c.
Your program should pass the coordinates of the polygon’s vertices clockwise
from the command line as follows:

java Exercise13_27 x1 y1 x2 y2 x3 y3 . . .

The program displays the polygon and its strategic point in the frame. (Hint: To
find the strategic point, consider every pixel point inside the polygon to see if it
is a strategic point. Use the contains method to check whether a point is inside
the polygon.)

**13.28 (Draw an arrow line) Write a static method that draws an arrow line from a
starting point to an ending point using the following method header:

public static void drawArrowLine(int x1, int y1,
int x2, int y2, Graphics g)

Write a test program that randomly draws an arrow line, as shown in Figure
13.34a. Whenever you resize the frame, a new arrow line is drawn.

*13.29 (Two circles and their distance) Write a program that draws two filled circles
with radius 15 pixels, centered at random locations, with a line connecting the
two circles. The distance between the two centers is displayed on the line, as
shown in Figure 13.34b-c. Whenever you resize the frame, the circles are redis-
played in new random locations.

(a) (b) (c)

FIGURE 13.33 (a) Exercise 13.25 displays several n-sided polygons. (b) Exercise 13.26 uses MessagePanel to display
four strings. (c) The polygon and its strategic point are displayed.

Programming Exercises 515

*13.30 (Connect two circles) Write a program that draws two filled circles with radius 15
pixels, centered at random locations, with a line connecting the two circles. The
line should not cross inside the circles, as shown in Figure 13.34d-e. When you
resize the frame, the circles are redisplayed in new random locations.

*13.31 (Geometry: Inside a polygon?) Write a program that passes the coordinates of five
points from the command line as follows:

java Exercise13_31 x1 y1 x2 y2 x3 y3 x4 y4 x5 y5

The first four points form a polygon, and the program displays the polygon in a
panel and a message in a label that indicates whether the fifth point is inside the
polygon, as shown in Figure 13.35a.

(a) (b)

(c) (d) (e)

FIGURE 13.34 (a) The program displays an arrow line. (b-c) Exercise13.29 connects the centers of two filled circles.
(d-e) Exercise13.30 connects two circles from their perimeter.

(a) (b)

(c) (d)

FIGURE 13.35 (a) The polygon and a point are displayed. (b-d) Two rectangles are
displayed.

516 Chapter 13 Graphics

*13.32 (Geometry: two rectangles) Write a program that passes the center coordinates,
width, and height of two rectangles from the command line as follows:

java Exercise13_32 x1 y1 w1 h1 x2 y2 w2 h2

The program displays the rectangles in a panel and a message indicating whether
the two are overlapping, whether one is contained in the other, or whether they
don’t overlap, as shown in Figure 13.35b-d. Display the message in a label. See
Programming Exercise 10.13 for checking the relationship between two rectangles.

EXCEPTION HANDLING
AND TEXT I/O

Objectives
■ To get an overview of exceptions and exception handling (§14.2).

■ To explore the advantages of using exception handling (§14.2).

■ To distinguish exception types: Error (fatal) vs. Exception (nonfatal)
and checked vs. unchecked (§14.3).

■ To declare exceptions in a method header (§14.4.1).

■ To throw exceptions in a method (§14.4.2).

■ To write a try-catch block to handle exceptions (§14.4.3).

■ To explain how an exception is propagated (§14.4.3).

■ To obtain information from an exception object (§14.4.4).

■ To develop applications with exception handling (§14.4.5).

■ To use the finally clause in a try-catch block (§14.5).

■ To use exceptions only for unexpected errors (§14.6).

■ To rethrow exceptions in a catch block (§14.7).

■ To create chained exceptions (§14.8).

■ To define custom exception classes (§14.9).

■ To discover file/directory properties, to delete and rename files/directories,
and to create directories using the File class (§14.10).

■ To write data to a file using the PrintWriter class (§14.11.1).

■ To read data from a file using the Scanner class (§14.11.2).

■ To understand how data is read using a Scanner (§14.11.3).

■ To develop a program that replaces text in a file (§14.11.4).

■ To open files using a file dialog box (§14.12).

■ To read data from the Web (§14.13).

CHAPTER

14

518 Chapter 14 Exception Handling and Text I/O

Key
Point

Key
Point

14.1 Introduction
Exception handling enables a program to deal with exceptional situations and
continue its normal execution.

Runtime errors occur while a program is running if the JVM detects an operation that is
impossible to carry out. For example, if you access an array using an index that is out of
bounds, you will get a runtime error with an ArrayIndexOutOfBoundsException. If you
enter a double value when your program expects an integer, you will get a runtime error with
an InputMismatchException.

In Java, runtime errors are thrown as exceptions. An exception is an object that represents
an error or a condition that prevents execution from proceeding normally. If the exception is
not handled, the program will terminate abnormally. How can you handle the exception so
that the program can continue to run or else terminate gracefully? This chapter introduces this
subject and text input and output.

14.2 Exception-Handling Overview
Exceptions are thrown from a method. The caller of the method can catch and handle
the exception.

To demonstrate exception handling, including how an exception object is created and thrown,
let’s begin with the example in Listing 14.1, which reads in two integers and displays their
quotient.

LISTING 14.1 Quotient.java
1 import java.util.Scanner;
2
3 public class Quotient {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6
7 // Prompt the user to enter two integers
8 System.out.print("Enter two integers: ");
9 int number1 = input.nextInt();
10 int number2 = input.nextInt();
11
12 System.out.println(number1 + " / " + number2 + " is " +
13 ());
14 }
15 }

number1 / number2

exception

Exception-handling
advantages

reads two integers

integer division

Enter two integers:
5 / 2 is 2

5 2

Enter two integers:
Exception in thread "main" java.lang.ArithmeticException: / by zero
at Quotient.main(Quotient.java:11)

3 0

If you entered 0 for the second number, a runtime error would occur, because you cannot
divide an integer by 0. (Recall that a floating-point number divided by 0 does not raise an
exception.) A simple way to fix this error is to add an if statement to test the second number,
as shown in Listing 14.2.

VideoNote

14.2 Exception-Handling Overview 519

reads two integers

test number2

Enter two integers:
Divisor cannot be zero

5 0

To demonstrate the concept of exception handling, we can rewrite Listing 14.2 to compute a
quotient using a method, as shown in Listing 14.3.

LISTING 14.3 QuotientWithMethod.java
1 import java.util.Scanner;
2
3 public class QuotientWithMethod {
4
5 if (number2 == 0) {
6 System.out.println("Divisor cannot be zero");
7
8 }
9
10 return number1 / number2;
11 }
12
13 public static void main(String[] args) {
14 Scanner input = new Scanner(System.in);
15
16 // Prompt the user to enter two integers
17 System.out.print("Enter two integers: ");
18 int number1 = input.nextInt();
19 int number2 = input.nextInt();
20
21
22 System.out.println(number1 + " / " + number2 + " is "
23 + result);
24 }
25 }

int result = quotient(number1, number2);

System.exit(1);

public static int quotient(int number1, int number2) { quotient method

terminate the program

LISTING 14.2 QuotientWithIf.java
1 import java.util.Scanner;
2
3 public class QuotientWithIf {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6
7 // Prompt the user to enter two integers
8 System.out.print("Enter two integers: ");
9 int number1 = input.nextInt();
10 int number2 = input.nextInt();
11
12 if (number2 != 0)
13 System.out.println(number1 + " / " + number2
14 + " is " + ());
15 else

16 System.out.println("Divisor cannot be zero ");
17 }
18 }

number1 / number2

reads two integers

invoke method

520 Chapter 14 Exception Handling and Text I/O

Enter two integers:
Divisor cannot be zero

5 0

The method quotient (lines 4–11) returns the quotient of two integers. If number2 is 0, it
cannot return a value, so the program is terminated in line 7. This is clearly a problem. You
should not let the method terminate the program—the caller should decide whether to termi-
nate the program.

How can a method notify its caller an exception has occurred? Java enables a method to
throw an exception that can be caught and handled by the caller. Listing 14.3 can be rewritten,
as shown in Listing 14.4.

LISTING 14.4 QuotientWithException.java
1 import java.util.Scanner;
2
3 public class QuotientWithException {
4
5 if (number2 == 0)
6
7
8 return number1 / number2;
9 }
10
11 public static void main(String[] args) {
12 Scanner input = new Scanner(System.in);
13
14 // Prompt the user to enter two integers
15 System.out.print("Enter two integers: ");
16 int number1 = input.nextInt();
17 int number2 = input.nextInt();
18
19
20
21 System.out.println(number1 + " / " + number2 + " is "
22 + result);
23 }
24
25 System.out.println("Exception: an integer " +
26 "cannot be divided by zero ");
27 }
28
29 System.out.println("Execution continues ...");
30 }
31 }

catch (ArithmeticException ex) {

int result = quotient(number1, number2);
try {

throw new ArithmeticException("Divisor cannot be zero");

public static int quotient(int number1, int number2) {quotient method

throw exception

reads two integers

try block
invoke method

catch block

Enter two integers:
5 / 3 is 1
Execution continues ...

5 3

Enter two integers:
5 / 3 is 1

5 3

If an
Arithmetic
Exception
occurs

14.2 Exception-Handling Overview 521

Enter two integers:
Exception: an integer cannot be divided by zero
Execution continues ...

5 0

If number2 is 0, the method throws an exception (line 6) by executing

throw new ArithmeticException("Divisor cannot be zero");

The value thrown, in this case new ArithmeticException("Divisor cannot be zero"),
is called an exception. The execution of a throw statement is called throwing an exception. The
exception is an object created from an exception class. In this case, the exception class is
java.lang.ArithmeticException. The constructor ArithmeticException(str) is
invoked to construct an exception object, where str is a message that describes the exception.

When an exception is thrown, the normal execution flow is interrupted. As the name sug-
gests, to “throw an exception” is to pass the exception from one place to another. The state-
ment for invoking the method is contained in a try block and a catch block. The try block
(lines 19–23) contains the code that is executed in normal circumstances. The exception is
caught by the catch block. The code in the catch block is executed to handle the exception.
Afterward, the statement (line 29) after the catch block is executed.

The throw statement is analogous to a method call, but instead of calling a method, it calls
a catch block. In this sense, a catch block is like a method definition with a parameter that
matches the type of the value being thrown. Unlike a method, however, after the catch block
is executed, the program control does not return to the throw statement; instead, it executes
the next statement after the catch block.

The identifier ex in the catch–block header

catch (ArithmeticException ex)

acts very much like a parameter in a method. Thus, this parameter is referred to as a
catch–block parameter. The type (e.g., ArithmeticException) preceding ex specifies
what kind of exception the catch block can catch. Once the exception is caught, you can
access the thrown value from this parameter in the body of a catch block.

In summary, a template for a try-throw-catch block may look like this:

try {
Code to run;
A statement or a method that may throw an exception;
More code to run;

}
catch (type ex) {
Code to process the exception;

}

An exception may be thrown directly by using a throw statement in a try block, or by invok-
ing a method that may throw an exception.

The main method invokes quotient (line 20). If the quotient method executes normally,
it returns a value to the caller. If the quotient method encounters an exception, it throws the
exception back to its caller. The caller’s catch block handles the exception.

Now you can see the advantage of using exception handling: It enables a method to throw
an exception to its caller, enabling the caller to handle the exception. Without this capability,
the called method itself must handle the exception or terminate the program. Often the called
method does not know what to do in case of error. This is typically the case for the library
methods. The library method can detect the error, but only the caller knows what needs to be

throw statement

exception
throwing exception

handle exception

catch–block parameter

advantage

522 Chapter 14 Exception Handling and Text I/O

done when an error occurs. The key benefit of exception handling is separating the detection
of an error (done in a called method) from the handling of an error (done in the calling
method).

Many library methods throw exceptions. Listing 14.5 gives an example that handles an
InputMismatchException when reading an input.

LISTING 14.5 InputMismatchExceptionDemo.java
1 import java.util.*;
2
3 public class InputMismatchExceptionDemo {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6 boolean continueInput = true;
7
8 do {
9 {
10 System.out.print("Enter an integer: ");
11
12
13 // Display the result
14 System.out.println(
15 "The number entered is " + number);
16
17 continueInput = false;
18 }
19
20 System.out.println("Try again. (" +
21 "Incorrect input: an integer is required)");
22 input.nextLine(); // Discard input
23 }
24 } while (continueInput);
25 }
26 }

catch (InputMismatchException ex) {

int number = input.nextInt();

try

create a Scanner

try block

catch block

Enter an integer:
Try again. (Incorrect input: an integer is required)
Enter an integer:
The number entered is 4

4

3.5

When executing input.nextInt() (line 11), an InputMismatchException occurs if
the input entered is not an integer. Suppose 3.5 is entered. An InputMismatchException
occurs and the control is transferred to the catch block. The statements in the catch block
are now executed. The statement input.nextLine() in line 22 discards the current input
line so that the user can enter a new line of input. The variable continueInput controls the
loop. Its initial value is true (line 6), and it is changed to false (line 17) when a valid input
is received. Once a valid input is received, there is no need to continue the input.

14.1 What is the advantage of using exception handling?

14.2 Which of the following statements will throw an exception?

System.out.println(1 / 0);
System.out.println(1.0 / 0);

✓Point✓Check

If an
InputMismatch
Exception
occurs

14.3 Exception Types 523

14.3 Point out the problem in the following code. Does the code throw any exceptions?

long value = Long.MAX_VALUE + 1;
System.out.println(value);

14.4 What does the JVM do when an exception occurs? How do you catch an exception?

14.5 What is the printout of the following code?

public class Test {
public static void main(String[] args) {
try {
int value = 30;
if (value < 40)
throw new Exception("value is too small");

}
catch (Exception ex) {
System.out.println(ex.getMessage());

}
System.out.println("Continue after the catch block");

}
}

What would be the printout if the line

int value = 30;

were changed to

int value = 50;

14.6 Show the output of the following code.

public class Test {
public static void main(String[] args) {

for (int i = 0; i < 2; i++) {
System.out.print(i + " ");
try {
System.out.println(1 / 0);

}
catch (Exception ex) {
}

}
}

}

public class Test {
public static void main(String[] args) {

try {
for (int i = 0; i < 2; i++) {
System.out.print(i + " ");
System.out.println(1 / 0);

}
}
catch (Exception ex) {
}

}
}

(a) (b)

14.3 Exception Types
Exceptions are objects, and objects are defined using classes. The root class for
exceptions is java.lang.Throwable.

The preceding section used the classes ArithmeticException and InputMismatch-

Exception. Are there any other types of exceptions you can use? Can you define your own
exception classes? Yes. There are many predefined exception classes in the Java API. Figure 14.1
shows some of them, and in Section 14.9 you will learn how to define your own exception
classes.

Key
Point

524 Chapter 14 Exception Handling and Text I/O

Note
The class names Error, Exception, and RuntimeException are somewhat con-
fusing. All three of these classes are exceptions, and all of the errors occur at runtime.

The Throwable class is the root of exception classes. All Java exception classes inherit
directly or indirectly from Throwable. You can create your own exception classes by extend-
ing Exception or a subclass of Exception.

The exception classes can be classified into three major types: system errors, exceptions,
and runtime exceptions.

■ System errors are thrown by the JVM and are represented in the Error class. The
Error class describes internal system errors, though such errors rarely occur. If one
does, there is little you can do beyond notifying the user and trying to terminate the
program gracefully. Examples of subclasses of Error are listed in Table 14.1.

system error

exception

Error

ClassNotFoundException

Many more classes

Many more classes

IOException

RuntimeException

LinkageError

VirtualMachineError

Object Throwable

Exception

Many more classes

ArithmeticException

NullPointerException

IndexOutOfBoundsException

IllegalArgumentException

FIGURE 14.1 Exceptions thrown are instances of the classes shown in this diagram, or of subclasses of one of these classes.

TABLE 14.1 Examples of Subclasses of Error

Class Reasons for Exception

LinkageError A class has some dependency on another class, but the latter class has
changed incompatibly after the compilation of the former class.

VirtualMachineError The JVM is broken or has run out of the resources it needs in order to
continue operating.

TABLE 14.2 Examples of Subclasses of Exception

Class Reasons for Exception

ClassNotFoundException Attempt to use a class that does not exist. This exception would occur, for example, if you tried to
run a nonexistent class using the java command, or if your program were composed of, say,
three class files, only two of which could be found.

IOException Related to input/output operations, such as invalid input, reading past the end of a file, and opening
a nonexistent file. Examples of subclasses of IOException are InterruptedIOException,
EOFException (EOF is short for End of File), and FileNotFoundException.

■ Exceptions are represented in the Exception class, which describes errors caused by
your program and by external circumstances. These errors can be caught and handled
by your program. Examples of subclasses of Exception are listed in Table 14.2.

14.3 Exception Types 525

TABLE 14.3 Examples of Subclasses of RuntimeException

Class Reasons for Exception

ArithmeticException Dividing an integer by zero. Note that floating-point arithmetic
does not throw exceptions (see Appendix E, Special Floating-
Point Values).

NullPointerException Attempt to access an object through a null reference variable.

IndexOutOfBoundsException Index to an array is out of range.

IllegalArgumentException A method is passed an argument that is illegal or inappropriate.

RuntimeException, Error, and their subclasses are known as unchecked exceptions. All
other exceptions are known as checked exceptions, meaning that the compiler forces the
programmer to check and deal with them in a try-catch block or declare it in the method
header. Declaring an exception in the method header will be covered in Section 14.4.

In most cases, unchecked exceptions reflect programming logic errors that are unrecover-
able. For example, a NullPointerException is thrown if you access an object through a
reference variable before an object is assigned to it; an IndexOutOfBoundsException is
thrown if you access an element in an array outside the bounds of the array. These are logic
errors that should be corrected in the program. Unchecked exceptions can occur anywhere in
a program. To avoid cumbersome overuse of try-catch blocks, Java does not mandate that
you write code to catch or declare unchecked exceptions.

14.7 Describe the Java Throwable class, its subclasses, and the types of exceptions.

14.8 What RuntimeException will the following programs throw, if any?

runtime exception

unchecked exception

checked exception

✓Point✓Check

■ Runtime exceptions are represented in the RuntimeException class, which
describes programming errors, such as bad casting, accessing an out-of-bounds
array, and numeric errors. Runtime exceptions are generally thrown by the JVM.
Examples of subclasses are listed in Table 14.3.

public class Test {
public static void main(String[] args) {
System.out.println(1 / 0);

}
}

(a) (b)

public class Test {
public static void main(String[] args) {

int[] list = new int[5];
System.out.println(list[5]);

}
}

public class Test {
public static void main(String[] args) {
String s = "abc";
System.out.println(s.charAt(3));

}
}

(c) (d)

public class Test {
public static void main(String[] args) {
Object o = new Object();
String d = (String)o;

}
}

public class Test {
public static void main(String[] args) {
Object o = null;
System.out.println(o.toString());

}
}

(e) (f)

public class Test {
public static void main(String[] args) {
System.out.println(1.0 / 0);

}
}

526 Chapter 14 Exception Handling and Text I/O

14.4 More on Exception Handling
A handler for an exception is found by propagating the exception backward through a
chain of method calls, starting from the current method.

The preceding sections gave you an overview of exception handling and introduced sev-
eral predefined exception types. This section provides an in-depth discussion of exception
handling.

Java’s exception-handling model is based on three operations: declaring an exception,
throwing an exception, and catching an exception, as shown in Figure 14.2.

Key
Point

declare exception

throw exception

Catch exception

Declare exception

Throw exception

method1() {

try {
 invoke method2;
 }
catch (Exception ex) {

 Process exception;
 }
}

method2() throws Exception {

if (an error occurs) {

throw new Exception();
 }
}

FIGURE 14.2 Exception handling in Java consists of declaring exceptions, throwing exceptions, and catching and pro-
cessing exceptions.

14.4.1 Declaring Exceptions
In Java, the statement currently being executed belongs to a method. The Java interpreter
invokes the main method to start executing a program. Every method must state the types of
checked exceptions it might throw. This is known as declaring exceptions. Because system
errors and runtime errors can happen to any code, Java does not require that you declare
Error and RuntimeException (unchecked exceptions) explicitly in the method. However,
all other exceptions thrown by the method must be explicitly declared in the method header so
that the caller of the method is informed of the exception.

To declare an exception in a method, use the throws keyword in the method header, as in
this example:

public void myMethod() throws IOException

The throws keyword indicates that myMethod might throw an IOException. If the method
might throw multiple exceptions, add a list of the exceptions, separated by commas, after
throws:

public void myMethod()
throws Exception1, Exception2, ..., ExceptionN

Note
If a method does not declare exceptions in the superclass, you cannot override it to
declare exceptions in the subclass.

14.4.2 Throwing Exceptions
A program that detects an error can create an instance of an appropriate exception type and
throw it. This is known as throwing an exception. Here is an example: Suppose the program
detects that an argument passed to the method violates the method contract (e.g., the argument

14.4 More on Exception Handling 527

must be nonnegative, but a negative argument is passed); the program can create an instance
of IllegalArgumentException and throw it, as follows:

IllegalArgumentException ex =
new IllegalArgumentException("Wrong Argument");

throw ex;

Or, if you prefer, you can use the following:

throw new IllegalArgumentException("Wrong Argument");

Note
IllegalArgumentException is an exception class in the Java API. In general,
each exception class in the Java API has at least two constructors: a no-arg con-
structor, and a constructor with a String argument that describes the exception.
This argument is called the exception message, which can be obtained using
getMessage().

Tip
The keyword to declare an exception is throws, and the keyword to throw an exception
is throw.

14.4.3 Catching Exceptions
You now know how to declare an exception and how to throw an exception. When an excep-
tion is thrown, it can be caught and handled in a try-catch block, as follows:

try {
statements; // Statements that may throw exceptions

}
catch (Exception1 exVar1) {
handler for exception1;

}
catch (Exception2 exVar2) {
handler for exception2;

}
...
catch (ExceptionN exVar3) {
handler for exceptionN;

}

If no exceptions arise during the execution of the try block, the catch blocks are skipped.
If one of the statements inside the try block throws an exception, Java skips the

remaining statements in the try block and starts the process of finding the code to handle
the exception. The code that handles the exception is called the exception handler; it is
found by propagating the exception backward through a chain of method calls, starting
from the current method. Each catch block is examined in turn, from first to last, to see
whether the type of the exception object is an instance of the exception class in the catch
block. If so, the exception object is assigned to the variable declared, and the code in the
catch block is executed. If no handler is found, Java exits this method, passes the excep-
tion to the method that invoked the method, and continues the same process to find a han-
dler. If no handler is found in the chain of methods being invoked, the program terminates
and prints an error message on the console. The process of finding a handler is called
catching an exception.

exception message

throws vs. throw

catch exception

exception handler

exception propagation

528 Chapter 14 Exception Handling and Text I/O

Suppose the main method invokes method1, method1 invokes method2, method2

invokes method3, and method3 throws an exception, as shown in Figure 14.3. Consider the
following scenario:

■ If the exception type is Exception3, it is caught by the catch block for han-
dling exception ex3 in method2. statement5 is skipped, and statement6 is
executed.

■ If the exception type is Exception2, method2 is aborted, the control is returned to
method1, and the exception is caught by the catch block for handling exception
ex2 in method1. statement3 is skipped, and statement4 is executed.

■ If the exception type is Exception1, method1 is aborted, the control is returned to
the main method, and the exception is caught by the catch block for handling
exception ex1 in the main method. statement1 is skipped, and statement2 is
executed.

■ If the exception type is not caught in method2, method1, or main, the program ter-
minates, and statement1 and statement2 are not executed.

catch block

order of exception handlers

main method {
 ...

try {
 ...
 invoke method1;
 statement1;
 }

catch (Exception1 ex1) {
 Process ex1;
 }
 statement2;
}

method1 {
 ...

try {
 ...
 invoke method2;
 statement3;
 }

catch (Exception2 ex2) {
 Process ex2;
 }
 statement4;
}

method2 {
 ...

try {
 ...
 invoke method3;
 statement5;
 }

catch (Exception3 ex3) {
 Process ex3;
 }
 statement6;
}

An exception
is thrown in
method3

Call stack

main method main method

method1

main method

method1

main method

method1

method2 method2

method3

FIGURE 14.3 If an exception is not caught in the current method, it is passed to its caller. The process is repeated until
the exception is caught or passed to the main method.

Note
Various exception classes can be derived from a common superclass. If a catch block
catches exception objects of a superclass, it can catch all the exception objects of the
subclasses of that superclass.

Note
The order in which exceptions are specified in catch blocks is important. A compile
error will result if a catch block for a superclass type appears before a catch block for a
subclass type. For example, the ordering in (a) on the next page is erroneous, because
RuntimeException is a subclass of Exception. The correct ordering should be as
shown in (b).

14.4 More on Exception Handling 529

Note
Java forces you to deal with checked exceptions. If a method declares a checked exception
(i.e., an exception other than Error or RuntimeException), you must invoke it in a
try-catch block or declare to throw the exception in the calling method. For example,
suppose that method p1 invokes method p2, and p2 may throw a checked exception
(e.g., IOException); you have to write the code as shown in (a) or (b) below.

try {
...

}
catch () {
...

}
catch () {
...

}

RuntimeException ex

Exception ex

(a) Wrong order (b) Correct order

try {
...

}
catch () {
...

}
catch () {
...

}

Exception ex

RuntimeException ex

void p1() {

p2();
}

...

}

}

catch (IOException ex) {

try {

(a) Catch exception (b) Throw exception

void p1() {

p2();

}

throws IOException

Note
You can use the new JDK 7 multi-catch feature to simplify coding for the exceptions with
the same handling code. The syntax is:

catch (Exception1 | Exception2 | ... | Exceptionk ex) {
// Code to handle exceptions

}

Each exception type is separated from the next with a vertical bar (|). If one of the
exceptions is caught, the handling code is executed.

14.4.4 Getting Information from Exceptions
An exception object contains valuable information about the exception. You may use the fol-
lowing instance methods in the java.lang.Throwable class to get information regarding
the exception, as shown in Figure 14.4. The printStackTrace() method prints stack trace

catch or declare checked
exceptions

JDK 7 multi-catch

methods in Throwable

java.lang.Throwable

+getMessage(): String

+toString(): String

+printStackTrace(): void

+getStackTrace():
 StackTraceElement[]

Returns the message that describes this exception object.

Returns the concatenation of three strings: (1) the full name of the exception
 class; (2) ":" (a colon and a space); (3) the getMessage() method.

Prints the Throwable object and its call stack trace information on the
 console.

Returns an array of stack trace elements representing the stack trace
 pertaining to this exception object.

FIGURE 14.4 Throwable is the root class for all exception objects.

530 Chapter 14 Exception Handling and Text I/O

information on the console. The getStackTrace() method provides programmatic access
to the stack trace information printed by printStackTrace().

Listing 14.6 gives an example that uses the methods in Throwable to display exception
information. Line 4 invokes the sum method to return the sum of all the elements in the array.
There is an error in line 23 that causes the ArrayIndexOutOfBoundsException, a sub-
class of IndexOutOfBoundsException. This exception is caught in the try-catch block.
Lines 7, 8, and 9 display the stack trace, exception message, and exception object and mes-
sage using the printStackTrace(), getMessage(), and toString() methods, as
shown in Figure 14.5. Line 12 brings stack trace elements into an array. Each element repre-
sents a method call. You can obtain the method (line 14), class name (line 15), and exception
line number (line 16) for each element.

invoke sum

printStackTrace()

printStackTrace()

getMessage()

toString()

Using
getStackTrace()

FIGURE 14.5 You can use the printStackTrace(), getMessage(), toString(), and
getStackTrace() methods to obtain information from exception objects.

getMessage()
toString()

LISTING 14.6 TestException.java
1 public class TestException {
2 public static void main(String[] args) {
3 try {
4 System.out.println();
5 }
6 catch (Exception ex) {
7 ex.printStackTrace();
8 System.out.println("\n" + ex.getMessage());
9 System.out.println("\n" + ex.toString());
10
11 System.out.println("\nTrace Info Obtained from getStackTrace");
12 StackTraceElement[] traceElements = ex.getStackTrace();
13 for (int i = 0; i < traceElements.length; i++) {
14 System.out.print("method " + traceElements[i].getMethodName());
15 System.out.print("(" + traceElements[i].getClassName() + ":");
16 System.out.println(traceElements[i].getLineNumber() + ")");
17 }
18 }
19 }
20
21 private static int sum(int[] list) {
22 int result = 0;
23 for (int i = 0; ; i++)i <= list.length

sum(new int[] {1, 2, 3, 4, 5})

14.4 More on Exception Handling 531

24 result += list[i];
25 return result;
26 }
27 }

14.4.5 Example: Declaring, Throwing, and Catching Exceptions
This example demonstrates declaring, throwing, and catching exceptions by modifying the
setRadius method in the Circle class in Listing 8.9, CircleWithPrivateDataFields.java.
The new setRadius method throws an exception if the radius is negative.

Listing 14.7 defines a new circle class named CircleWithException, which is the same
as CircleWithPrivateDataFields except that the setRadius(double newRadius)

method throws an IllegalArgumentException if the argument newRadius is negative.

LISTING 14.7 CircleWithException.java
1 public class CircleWithException {
2 /** The radius of the circle */
3 private double radius;
4
5 /** The number of the objects created */
6 private static int numberOfObjects = 0;
7
8 /** Construct a circle with radius 1 */
9 public CircleWithException() {
10 this(1.0);
11 }
12
13 /** Construct a circle with a specified radius */
14 public CircleWithException(double newRadius) {
15
16 numberOfObjects++;
17 }
18
19 /** Return radius */
20 public double getRadius() {
21 return radius;
22 }
23
24 /** Set a new radius */
25 public void setRadius(double newRadius)
26 {
27 if (newRadius >= 0)
28 radius = newRadius;
29 else

30
31
32 }
33
34 /** Return numberOfObjects */
35 public static int getNumberOfObjects() {
36 return numberOfObjects;
37 }
38
39 /** Return the area of this circle */
40 public double findArea() {
41 return radius * radius * 3.14159;
42 }
43 }

"Radius cannot be negative");
throw new IllegalArgumentException(

throws IllegalArgumentException

setRadius(newRadius);

declare exception

throw exception

532 Chapter 14 Exception Handling and Text I/O

A test program that uses the new Circle class is given in Listing 14.8.

LISTING 14.8 TestCircleWithException.java
1 public class TestCircleWithException {
2 public static void main(String[] args) {
3
4 CircleWithException c1 = new CircleWithException(5);
5 CircleWithException c2 = new CircleWithException(-5);
6 CircleWithException c3 = new CircleWithException(0);
7
8
9 System.out.println(ex);
10
11
12 System.out.println("Number of objects created: " +
13 CircleWithException.getNumberOfObjects());
14 }
15 }

}

catch (IllegalArgumentException ex) {
}

try {
try

catch

java.lang.IllegalArgumentException: Radius cannot be negative
Number of objects created: 1

The original Circle class remains intact except that the class name is changed to
CircleWithException, a new constructor CircleWithException(newRadius) is
added, and the setRadius method now declares an exception and throws it if the radius is
negative.

The setRadius method declares to throw IllegalArgumentException in the method
header (lines 25–32 in CircleWithException.java). The CircleWithException class would
still compile if the throws IllegalArgumentException clause were removed from the
method declaration, since it is a subclass of RuntimeException and every method can
throw RuntimeException (an unchecked exception) regardless of whether it is declared in
the method header.

The test program creates three CircleWithException objects—c1, c2, and c3—to test
how to handle exceptions. Invoking new CircleWithException(-5) (line 5 in Listing 14.8)
causes the setRadiusmethod to be invoked, which throws an IllegalArgumentException,
because the radius is negative. In the catch block, the type of the object ex is
IllegalArgumentException, which matches the exception object thrown by the setRadius
method, so this exception is caught by the catch block.

The exception handler prints a short message, ex.toString() (line 9 in Listing 14.8),
about the exception, using System.out.println(ex).

Note that the execution continues in the event of the exception. If the handlers had not
caught the exception, the program would have abruptly terminated.

The test program would still compile if the try statement were not used, because the method
throws an instance of IllegalArgumentException, a subclass of RuntimeException (an
unchecked exception). If a method throws an exception other than RuntimeException or
Error, the method must be invoked within a try-catch block.

14.9 What is the purpose of declaring exceptions? How do you declare an exception, and
where? Can you declare multiple exceptions in a method header?

14.10 What is a checked exception, and what is an unchecked exception?

14.11 How do you throw an exception? Can you throw multiple exceptions in one throw
statement?

14.12 What is the keyword throw used for? What is the keyword throws used for?

✓Point✓Check

14.4 More on Exception Handling 533

14.13 Suppose that statement2 causes an exception in the following try-catch block:

try {
statement1;

statement3;
}
catch (Exception1 ex1) {
}
catch (Exception2 ex2) {
}

statement4;

Answer the following questions:

■ Will statement3 be executed?

■ If the exception is not caught, will statement4 be executed?

■ If the exception is caught in the catch block, will statement4 be executed?

14.14 What is displayed when the following program is run?

public class Test {
public static void main(String[] args) {
try {
int[] list = new int[10];
System.out.println("list[10] is " + list[10]);

}
catch (ArithmeticException ex) {
System.out.println("ArithmeticException");

}
catch (RuntimeException ex) {
System.out.println("RuntimeException");

}
catch (Exception ex) {
System.out.println("Exception");

}
}

}

14.15 What is displayed when the following program is run?

public class Test {
public static void main(String[] args) {
try {
method();
System.out.println("After the method call");

}
catch (ArithmeticException ex) {
System.out.println("ArithmeticException");

}
catch (RuntimeException ex) {
System.out.println("RuntimeException");

}
catch (Exception e) {
System.out.println("Exception");

}
}

static void method() throws Exception {

statement2;

534 Chapter 14 Exception Handling and Text I/O

System.out.println(1 / 0);
}

}

14.16 What is displayed when the following program is run?

public class Test {
public static void main(String[] args) {
try {
method();
System.out.println("After the method call");

}
catch (RuntimeException ex) {
System.out.println("RuntimeException in main");

}
catch (Exception ex) {
System.out.println("Exception in main");

}
}

static void method() throws Exception {
try {
String s ="abc";
System.out.println(s.charAt(3));

}
catch (RuntimeException ex) {
System.out.println("RuntimeException in method()");

}
catch (Exception ex) {
System.out.println("Exception in method()");

}
}

}

14.17 What does the method getMessage() do?

14.18 What does the method printStackTrace do?

14.19 Does the presence of a try-catch block impose overhead when no exception occurs?

14.20 Correct a compile error in the following code:

public void m(int value) {
if (value < 40)
throw new Exception("value is too small");

}

14.5 The finally Clause
The finally clause is always executed regardless whether an exception occurred or not.

Occasionally, you may want some code to be executed regardless of whether an exception
occurs or is caught. Java has a finally clause that can be used to accomplish this objective.
The syntax for the finally clause might look like this:

try {
statements;

}
catch (TheException ex) {
handling ex;

}

Key
Point

14.6 When to Use Exceptions 535

finally {
finalStatements;

}

The code in the finally block is executed under all circumstances, regardless of whether an
exception occurs in the try block or is caught. Consider three possible cases:

■ If no exception arises in the try block, finalStatements is executed, and the
next statement after the try statement is executed.

■ If a statement causes an exception in the try block that is caught in a catch block, the
rest of the statements in the try block are skipped, the catch block is executed, and
the finally clause is executed. The next statement after the try statement is executed.

■ If one of the statements causes an exception that is not caught in any catch block,
the other statements in the try block are skipped, the finally clause is executed,
and the exception is passed to the caller of this method.

The finally block executes even if there is a return statement prior to reaching the
finally block.

Note
The catch block may be omitted when the finally clause is used.

A common use of the finally clause is in I/O programming. To ensure that a file
is closed under all circumstances, you may place a file closing statement in the
finally block. Text I/O will be introduced later in this chapter.

14.21 Suppose that statement2 causes an exception in the following statement:

try {
statement1;

statement3;
}
catch (Exception1 ex1) {
}
finally {
statement4;

}
statement5;

Answer the following questions:

■ If no exception occurs, will statement4 be executed, and will statement5 be
executed?

■ If the exception is of type Exception1, will statement4 be executed, and will
statement5 be executed?

■ If the exception is not of type Exception1, will statement4 be executed, and
will statement5 be executed?

14.6 When to Use Exceptions
A method should throw an exception if the error needs to be handled by its caller.

The try block contains the code that is executed in normal circumstances. The catch block
contains the code that is executed in exceptional circumstances. Exception handling separates
error-handling code from normal programming tasks, thus making programs easier to read

statement2;

omitting catch block

✓Point✓Check

Key
Point

536 Chapter 14 Exception Handling and Text I/O

and to modify. Be aware, however, that exception handling usually requires more time and
resources, because it requires instantiating a new exception object, rolling back the call stack,
and propagating the exception through the chain of methods invoked to search for the handler.

An exception occurs in a method. If you want the exception to be processed by its caller,
you should create an exception object and throw it. If you can handle the exception in the
method where it occurs, there is no need to throw or use exceptions.

In general, common exceptions that may occur in multiple classes in a project are candi-
dates for exception classes. Simple errors that may occur in individual methods are best han-
dled without throwing exceptions. This can be done by using if statements to check for
errors.

When should you use a try-catch block in the code? Use it when you have to deal with
unexpected error conditions. Do not use a try-catch block to deal with simple, expected sit-
uations. For example, the following code

try {
System.out.println(refVar.toString());

}
catch (NullPointerException ex) {
System.out.println("refVar is null");

}

is better replaced by

if (refVar != null)
System.out.println(refVar.toString());

else

System.out.println("refVar is null");

Which situations are exceptional and which are expected is sometimes difficult to decide. The
point is not to abuse exception handling as a way to deal with a simple logic test.

14.22 The following method checks whether a string is a numeric string:

public static boolean isNumeric(String token) {
try {
Double.parseDouble(token);
return true;

}
catch (java.lang.NumberFormatException ex) {
return false;

}
}

Is it correct? Rewrite it without using exceptions.

14.7 Rethrowing Exceptions
Java allows an exception handler to rethrow the exception if the handler cannot
process the exception or simply wants to let its caller be notified of the exception.

The syntax for rethrowing an exception may look like this:

try {
statements;

}
catch (TheException ex) {

✓Point✓Check

Key
Point

14.8 Chained Exceptions 537

perform operations before exits;

}

The statement throw ex rethrows the exception to the caller so that other handlers in the
caller get a chance to process the exception ex.

14.23 Suppose that statement2 causes an exception in the following statement:

try {
statement1;

statement3;
}
catch (Exception1 ex1) {
}
catch (Exception2 ex2) {
throw ex2;

}
finally {
statement4;

}
statement5;

Answer the following questions:

■ If no exception occurs, will statement4 be executed, and will statement5 be
executed?

■ If the exception is of type Exception1, will statement4 be executed, and will
statement5 be executed?

■ If the exception is of type Exception2, will statement4 be executed, and will
statement5 be executed?

■ If the exception is not Exception1 nor Exception2, will statement4 be exe-
cuted, and will statement5 be executed?

14.8 Chained Exceptions
Throwing an exception along with another exception forms a chained exception.

In the preceding section, the catch block rethrows the original exception. Sometimes, you
may need to throw a new exception (with additional information) along with the original
exception. This is called chained exceptions. Listing 14.9 illustrates how to create and throw
chained exceptions.

LISTING 14.9 ChainedExceptionDemo.java
1 public class ChainedExceptionDemo {
2 public static void main(String[] args) {
3 try {
4 method1();
5 }
6 catch (Exception ex) {
7
8 }
9 }
10

ex.printStackTrace();

statement2;

throw ex;

✓Point✓Check

Key
Point

chained exception

stack trace

538 Chapter 14 Exception Handling and Text I/O

11 public static void method1() throws Exception {
12 try {
13 method2();
14 }
15 catch (Exception ex) {
16
17 }
18 }
19
20 public static void method2() throws Exception {
21
22 }
23 }

throw new Exception("New info from method2");

throw new Exception("New info from method1", ex);chained exception

throw exception

java.lang.Exception: New info from method1
at ChainedExceptionDemo.method1(ChainedExceptionDemo.java:16)
at ChainedExceptionDemo.main(ChainedExceptionDemo.java:4)

Caused by: java.lang.Exception: New info from method2
at ChainedExceptionDemo.method2(ChainedExceptionDemo.java:21)
at ChainedExceptionDemo.method1(ChainedExceptionDemo.java:13)
... 1 more

The main method invokes method1 (line 4), method1 invokes method2 (line 13), and
method2 throws an exception (line 21). This exception is caught in the catch block in
method1 and is wrapped in a new exception in line 16. The new exception is thrown and
caught in the catch block in the main method in line 6. The sample output shows the output
from the printStackTrace() method in line 7. The new exception thrown from method1
is displayed first, followed by the original exception thrown from method2.

14.9 Defining Custom Exception Classes
You can define a custom exception class by extending the java.lang.Exception class.

Java provides quite a few exception classes. Use them whenever possible instead of defining
your own exception classes. However, if you run into a problem that cannot be adequately
described by the predefined exception classes, you can create your own exception class,
derived from Exception or from a subclass of Exception, such as IOException.

In Listing 14.7, CircleWithException.java, the setRadius method throws an exception if
the radius is negative. Suppose you wish to pass the radius to the handler. In that case, you can
define a custom exception class, as shown in Listing 14.10.

LISTING 14.10 InvalidRadiusException.java
1 public class {
2 private double radius;
3
4 /** Construct an exception */
5 {
6 super("Invalid radius " + radius);
7 this.radius = radius;
8 }
9
10 /** Return the radius */
11 public double getRadius() {
12 return radius;
13 }
14 }

public InvalidRadiusException(double radius)

InvalidRadiusException extends Exception

Key
Point

Create custom exception
classes

extends Exception

VideoNote

14.9 Defining Custom Exception Classes 539

This custom exception class extends java.lang.Exception (line 1). The Exception class
extends java.lang.Throwable. All the methods (e.g., getMessage(), toString(), and
printStackTrace()) in Exception are inherited from Throwable. The Exception class
contains four constructors. Among them, the following two constructors are often used:

Line 6 invokes the superclass’s constructor with a message. This message will be set in the
exception object and can be obtained by invoking getMessage() on the object.

Tip
Most exception classes in the Java API contain two constructors: a no-arg constructor
and a constructor with a message parameter.

To create an InvalidRadiusException, you have to pass a radius. Therefore,
the setRadius method in Listing 14.7 can be modified as shown in Listing 14.11.

LISTING 14.11 TestCircleWithCustomException.java
1 public class TestCircleWithCustomException {
2 public static void main(String[] args) {
3 try {
4 new CircleWithCustomException(5);
5 new CircleWithCustomException(-5);
6 new CircleWithCustomException(0);
7 }
8 catch (InvalidRadiusException ex) {
9 System.out.println(ex);
10 }
11
12 System.out.println("Number of objects created: " +
13 CircleWithException.getNumberOfObjects());
14 }
15 }
16
17 class CircleWithCustomException {
18 /** The radius of the circle */
19 private double radius;
20
21 /** The number of objects created */
22 private static int numberOfObjects = 0;
23
24 /** Construct a circle with radius 1 */
25 public CircleWithCustomException() {
26 this(1.0);
27 }
28
29 /** Construct a circle with a specified radius */
30 public CircleWithCustomException(double newRadius)
31 {
32 setRadius(newRadius);
33 numberOfObjects++;
34 }
35
36 /** Return radius */

throws InvalidRadiusException

throws InvalidRadiusException

java.lang.Exception

+Exception()

+Exception(message: String)

Constructs an exception with no message.

Constructs an exception with the specified message.

declare exception

throw exception

540 Chapter 14 Exception Handling and Text I/O

37 public double getRadius() {
38 return radius;
39 }
40
41 /** Set a new radius */
42
43 {
44 if (newRadius >= 0)
45 radius = newRadius;
46 else

47
48 }
49
50 /** Return numberOfObjects */
51 public static int getNumberOfObjects() {
52 return numberOfObjects;
53 }
54
55 /** Return the area of this circle */
56 public double findArea() {
57 return radius * radius * 3.14159;
58 }
59 }

throw new InvalidRadiusException(newRadius);

throws InvalidRadiusException
public void setRadius(double newRadius)

InvalidRadiusException: Invalid radius -5.0
Number of objects created: 0

The setRadius method in CircleWithCustomException throws an InvalidRadius-
Exception when radius is negative (line 47). Since InvalidRadiusException is a checked
exception, the setRadius method must declare it in the method header (line 42). Since the con-
structors for CircleWithCustomException invoke the setRadius method to a set a new
radius and it may throw an InvalidRadiusException, the constructors are declared to throw
InvalidRadiusException (lines 25, 31).

Invoking new CircleWithCustomException(-5) throws an InvalidRadius-
Exception, which is caught by the handler. The handler displays the radius in the exception
object ex.

Tip
Can you define a custom exception class by extending RuntimeException? Yes, but
it is not a good way to go, because it makes your custom exception unchecked. It is bet-
ter to make a custom exception checked, so that the compiler can force these exceptions
to be caught in your program.

14.24 How do you define a custom exception class?

14.25 Suppose the setRadius method throws the InValidRadiusException defined in
Listing 14.10. What is displayed when the following program is run?

public class Test {
public static void main(String[] args) {
try {
method();
System.out.println("After the method call");

}
catch (RuntimeException ex) {
System.out.println("RuntimeException in main");

checked custom exception

✓Point✓Check

14.10 The File Class 541

}
catch (Exception ex) {
System.out.println("Exception in main");

}
}

static void method() throws Exception {
try {
Circle c1 = new Circle(1);
c1.setRadius(-1);
System.out.println(c1.getRadius());

}
catch (RuntimeException ex) {
System.out.println("RuntimeException in method()");

}
catch (Exception ex) {
System.out.println("Exception in method()");
throw ex;

}
}

}

14.10 The File Class
The File class contains the methods for obtaining the properties of a file/directory
and for renaming and deleting a file/directory.

Having learned exception handling, you are ready to step into file processing. Data stored in
the program are temporary; they are lost when the program terminates. To permanently store
the data created in a program, you need to save them in a file on a disk or other permanent
storage device. The file can then be transported and read later by other programs. Since data
are stored in files, this section introduces how to use the File class to obtain file/directory
properties, to delete and rename files/directories, and to create directories. The next section
introduces how to read/write data from/to text files.

Every file is placed in a directory in the file system. An absolute file name (or full name)
contains a file name with its complete path and drive letter. For example,
c:\book\Welcome.java is the absolute file name for the file Welcome.java on the Windows
operating system. Here c:\book is referred to as the directory path for the file. Absolute file
names are machine dependent. On the UNIX platform, the absolute file name may be
/home/liang/book/Welcome.java, where /home/liang/book is the directory path for the
file Welcome.java.

A relative file name is in relation to the current working directory. The complete direc-
tory path for a relative file name is omitted. For example, Welcome.java is a relative file
name. If the current working directory is c:\book, the absolute file name would be
c:\book\Welcome.java.

The File class is intended to provide an abstraction that deals with most of the machine-
dependent complexities of files and path names in a machine-independent fashion. The File
class contains the methods for obtaining file and directory properties and for renaming and
deleting files and directories, as shown in Figure 14.6. However, the File class does not con-
tain the methods for reading and writing file contents.

The file name is a string. The File class is a wrapper class for the file name and its direc-
tory path. For example, new File("c:\\book") creates a File object for the directory
c:\book, and new File("c:\\book\\test.dat") creates a File object for the file
c:\book\test.dat, both on Windows. You can use the File class’s isDirectory() method
to check whether the object represents a directory, and the isFile() method to check
whether the object represents a file.

Key
Point

why file?

absolute file name

directory path

relative file name

542 Chapter 14 Exception Handling and Text I/O

Caution
The directory separator for Windows is a backslash (\). The backslash is a special char-
acter in Java and should be written as \\ in a string literal (see Table 2.6).

Note
Constructing a File instance does not create a file on the machine. You can create a
File instance for any file name regardless whether it exists or not. You can invoke the
exists() method on a File instance to check whether the file exists.

Do not use absolute file names in your program. If you use a file name such as
c:\\book\\Welcome.java, it will work on Windows but not on other platforms. You
should use a file name relative to the current directory. For example, you may create a File
object using new File("Welcome.java") for the file Welcome.java in the current direc-
tory. You may create a File object using new File("image/us.gif") for the file us.gif
under the image directory in the current directory. The forward slash (/) is the Java directory

\ in file names

java.io.File

+File(pathname: String)

+File(parent: String, child: String)

+File(parent: File, child: String)

+exists(): boolean

+canRead(): boolean

+canWrite(): boolean

+isDirectory(): boolean

+isFile(): boolean

+isAbsolute(): boolean

+isHidden(): boolean

+getAbsolutePath(): String

+getCanonicalPath(): String

+getName(): String

+getPath(): String

+getParent(): String

+lastModified(): long

+length(): long

+listFile(): File[]

+delete(): boolean

+renameTo(dest: File): boolean

+mkdir(): boolean

+mkdirs(): boolean

Creates a File object for the specified path name. The path name may be a
 directory or a file.

Creates a File object for the child under the directory parent. The child may be
 a file name or a subdirectory.

Creates a File object for the child under the directory parent. The parent is a
File object. In the preceding constructor, the parent is a string.

Returns true if the file or the directory represented by the File object exists.

Returns true if the file represented by the File object exists and can be read.

Returns true if the file represented by the File object exists and can be written.

Returns true if the File object represents a directory.

Returns true if the File object represents a file.

Returns true if the File object is created using an absolute path name.

Returns true if the file represented in the File object is hidden. The exact
 definition of hidden is system-dependent. On Windows, you can mark a file
 hidden in the File Properties dialog box. On Unix systems, a file is hidden if
 its name begins with a period(.) character.

Returns the complete absolute file or directory name represented by the File
 object.

Returns the same as getAbsolutePath() except that it removes redundant
 names, such as "." and "..", from the path name, resolves symbolic links (on
 Unix), and converts drive letters to standard uppercase (on Windows).

Returns the last name of the complete directory and file name represented by
 the File object. For example, new File("c:\\book\\test.dat").getName() returns
test.dat.

Returns the complete directory and file name represented by the File object.
 For example, new File("c:\\book\\test.dat").getPath() returns c:\book\test.dat.

Returns the complete parent directory of the current directory or the file
 represented by the File object. For example, new
File("c:\\book\\test.dat").getParent() returns c:\book.

Returns the time that the file was last modified.
Returns the size of the file, or 0 if it does not exist or if it is a directory.

Returns the files under the directory for a directory File object.

Deletes the file or directory represented by this File object.The method returns
 true if the deletion succeeds.

Renames the file or directory represented by this File object to the specified name
 represented in dest. The method returns true if the operation succeeds.

Creates a directory represented in this File object. Returns true if the the directory is
 created successfully.

Same as mkdir() except that it creates directory along with its parent directories if
 the parent directories do not exist.

FIGURE 14.6 The File class can be used to obtain file and directory properties, to delete and rename files and directo-
ries, and to create directories.

relative file name

Java directory separator (/)

14.10 The File Class 543

separator, which is the same as on UNIX. The statement new File("image/us.gif")
works on Windows, UNIX, and any other platform.

Listing 14.12 demonstrates how to create a File object and use the methods in the File
class to obtain its properties. The program creates a File object for the file us.gif. This file is
stored under the image directory in the current directory.

LISTING 14.12 TestFileClass.java
1 public class TestFileClass {
2 public static void main(String[] args) {
3
4 System.out.println("Does it exist? " +);
5 System.out.println("The file has " + file.length() + " bytes");
6 System.out.println("Can it be read? " + file.canRead());
7 System.out.println("Can it be written? " + file.canWrite());
8 System.out.println("Is it a directory? " + file.isDirectory());
9 System.out.println("Is it a file? " + file.isFile());
10 System.out.println("Is it absolute? " + file.isAbsolute());
11 System.out.println("Is it hidden? " + file.isHidden());
12 System.out.println("Absolute path is " +
13 file.getAbsolutePath());
14 System.out.println("Last modified on " +
15 new java.util.Date(file.lastModified()));
16 }
17 }

The lastModified() method returns the date and time when the file was last modified,
measured in milliseconds since the beginning of UNIX time (00:00:00 GMT, January 1,
1970). The Date class is used to display it in a readable format in lines 14–15.

Figure 14.7a shows a sample run of the program on Windows, and Figure 14.7b, a sample
run on UNIX. As shown in the figures, the path-naming conventions on Windows are differ-
ent from those on UNIX.

file.exists()
java.io.File file = new java.io.File("image/us.gif"); create a File object

exists()
length()
canRead()
canWrite()
isDirectory()
isFile()
isAbsolute()
isHidden()

getAbsolutePath()

lastModified()

(a) On Windows (b) On UNIX

FIGURE 14.7 The program creates a File object and displays file properties.

14.26 What is wrong about creating a File object using the following statement?

new File("c:\book\test.dat");

14.27 How do you check whether a file already exists? How do you delete a file? How do
you rename a file? Can you find the file size (the number of bytes) using the File
class? How do you create a directory?

✓Point✓Check

544 Chapter 14 Exception Handling and Text I/O

14.28 Can you use the File class for I/O? Does creating a File object create a file on
the disk?

14.11 File Input and Output
Use the Scanner class for reading text data from a file and the PrintWriter class
for writing text data to a file.

A File object encapsulates the properties of a file or a path, but it does not contain the meth-
ods for creating a file or for writing/reading data to/from a file (referred to as data input and
output, or I/O for short). In order to perform I/O, you need to create objects using appropriate
Java I/O classes. The objects contain the methods for reading/writing data from/to a file.
There are two types of files: text and binary. Text files are essentially strings on disk. This sec-
tion introduces how to read/write strings and numeric values from/to a text file using the
Scanner and PrintWriter classes. Binary files will be introduced in Chapter 19.

14.11.1 Writing Data Using PrintWriter
The java.io.PrintWriter class can be used to create a file and write data to a text file.
First, you have to create a PrintWriter object for a text file as follows:

PrintWriter output = new PrintWriter(filename);

Then, you can invoke the print, println, and printf methods on the PrintWriter object
to write data to a file. Figure 14.8 summarizes frequently used methods in PrintWriter.

Key
Point

Write and read data

Listing 14.13 gives an example that creates an instance of PrintWriter and writes two
lines to the file scores.txt. Each line consists of a first name (a string), a middle-name initial
(a character), a last name (a string), and a score (an integer).

LISTING 14.13 WriteData.java

java.io.PrintWriter

Creates a PrintWriter object for the specified file-name string.
Writes a string to the file.

Creates a PrintWriter object for the specified file object.

Writes a character to the file.
Writes an array of characters to the file.
Writes an int value to the file.
Writes a long value to the file.
Writes a float value to the file.
Writes a double value to the file.
Writes a boolean value to the file.

A println method acts like a print method; additionally, it
 prints a line separator. The line-separator string is defined
 by the system. It is \r\n on Windows and \n on Unix.

The printf method was introduced in §3.16, “Formatting
 Console Output.”

+PrintWriter(filename: String)
+print(s: String): void

+PrintWriter(file: File)

+print(c: char): void
+print(cArray: char[]): void
+print(i: int): void
+print(l: long): void
+print(f: float): void
+print(d: double): void
+print(b: boolean): void

Also contains the overloaded
 println methods.

Also contains the overloaded
 printf methods.

FIGURE 14.8 The PrintWriter class contains the methods for writing data to a text file.

VideoNote

 1 public class WriteData {
 2 public static void main(String[] args) throws IoException {
 3 java.io.File file = new java.io.File("scores.txt");
 4 if (file.exists()) {

throws an exception
create File object
file exist?

14.11 File Input and Output 545

Lines 4–7 check whether the file scores.txt exists. If so, exit the program (line 6).
Invoking the constructor of PrintWriter will create a new file if the file does not exist. If

the file already exists, the current content in the file will be discarded without verifying with
the user.

Invoking the constructor of PrintWriter may throw an I/O exception. Java forces you to
write the code to deal with this type of exception. For simplicity, we declare throws
IOException in the main method header (line 2).

You have used the System.out.print, System.out.println, and
System.out.printf methods to write text to the console. System.out is a standard
Java object for the console. You can create PrintWriter objects for writing text to any file
using print, println, and printf (lines 13–16).

The close() method must be used to close the file. If this method is not invoked, the data
may not be saved properly in the file.

14.11.2 Reading Data Using Scanner
The java.util.Scanner class was used to read strings and primitive values from the con-
sole in Section 2.3, Reading Input from the Console. A Scanner breaks its input into tokens
delimited by whitespace characters. To read from the keyboard, you create a Scanner for
System.in, as follows:

Scanner input = new Scanner(System.in);

To read from a file, create a Scanner for a file, as follows:

Scanner input = new Scanner(new File(filename));

Figure 14.9 summarizes frequently used methods in Scanner.
Listing 14.14 gives an example that creates an instance of Scanner and reads data from

the file scores.txt.

LISTING 14.14 ReadData.java

create a file

throws IOException

John T Smith 90
Eric K Jones 85

scores.txt

 5 System.out.println("File already exists");
 6 System.exit(1);
 7 }
 8
 9 // Create a file
10 java.io.PrintWriter output = new java.io.PrintWriter(file);
11
12 // Write formatted output to the file
13 output.print("John T Smith ");
14 output.println(90);
15 output.print("Eric K Jones ");
16 output.println(85);
17
18 // Close the file
19 output.close();
20 }
21 }

create PrintWriter

print data

close file

print method

close file

 1 import java.util.Scanner;
 2
 3 public class ReadData {
 4 public static void main(String[] args) throws Exception {
 5 // Create a File instance
 6 java.io.File file = new java.io.File("scores.txt");
 7
 8 // Create a Scanner for the file

create a file

546 Chapter 14 Exception Handling and Text I/O

java.util.Scanner

+Scanner(source: File)

+Scanner(source: String)

+close()

+hasNext(): boolean

+next(): String

+nextLine(): String

+nextByte(): byte

+nextShort(): short

+nextInt(): int

+nextLong(): long

+nextFloat(): float

+nextDouble(): double

+useDelimiter(pattern: String):
 Scanner

Creates a Scanner that produces values scanned from the specified file.

Creates a Scanner that produces values scanned from the specified string.

Closes this scanner.

Returns true if this scanner has more data to be read.

Returns next token as a string from this scanner.

Returns a line ending with the line separator from this scanner.

Returns next token as a byte from this scanner.

Returns next token as a short from this scanner.

Returns next token as an int from this scanner.

Returns next token as a long from this scanner.

Returns next token as a float from this scanner.

Returns next token as a double from this scanner.

Sets this scanner’s delimiting pattern and returns this scanner.

FIGURE 14.9 The Scanner class contains the methods for scanning data.

Note that new Scanner(String) creates a Scanner for a given string. To create a
Scanner to read data from a file, you have to use the java.io.File class to create an
instance of the File using the constructor new File(filename) (line 6), and use new
Scanner(File) to create a Scanner for the file (line 9).

Invoking the constructor new Scanner(File) may throw an I/O exception, so the main
method declares throws Exception in line 4.

Each iteration in the while loop reads the first name, middle initial, last name, and score
from the text file (lines 12–19). The file is closed in line 22.

It is not necessary to close the input file (line 22), but it is a good practice to do so to
release the resources occupied by the file.

14.11.3 How Does Scanner Work?
The nextByte(), nextShort(), nextInt(), nextLong(), nextFloat(),
nextDouble(), and next() methods are known as token-reading methods, because they
read tokens separated by delimiters. By default, the delimiters are whitespace. You can use the
useDelimiter(String regex) method to set a new pattern for delimiters.

File class

throws Exception

close file

token-reading method

change delimiter

 9 Scanner input = new Scanner(file);
10
11 // Read data from a file
12 while (input.hasNext()) {
13 String firstName = input.next();
14 String mi = input.next();
15 String lastName = input.next();
16 int score = input.nextInt();
17 System.out.println(
18 firstName + " " + mi + " " + lastName + " " + score);
19 }
20
21 // Close the file
22 input.close();
23 }
24 }

John T Smith 90
Eric K Jones 85

scores.txt

create a Scanner

has next?
read items

close file

14.11 File Input and Output 547

How does an input method work? A token-reading method first skips any delimiters (white-
space by default), then reads a token ending at a delimiter. The token is then automatically
converted into a value of the byte, short, int, long, float, or double type for nextByte(),
nextShort(), nextInt(), nextLong(), nextFloat(), and nextDouble(), respectively.
For the next() method, no conversion is performed. If the token does not match the expected
type, a runtime exception java.util.InputMismatchException will be thrown.

Both methods next() and nextLine() read a string. The next() method reads a string
delimited by delimiters, and nextLine() reads a line ending with a line separator.

Note
The line-separator string is defined by the system. It is \r\n on Windows and \n on
UNIX. To get the line separator on a particular platform, use

String lineSeparator = System.getProperty("line.separator");

If you enter input from a keyboard, a line ends with the Enter key, which corresponds to
the \n character.

The token-reading method does not read the delimiter after the token. If the nextLine()
method is invoked after a token-reading method, this method reads characters that start from
this delimiter and end with the line separator. The line separator is read, but it is not part of the
string returned by nextLine().

Suppose a text file named test.txt contains a line

34 567

After the following code is executed,

Scanner input = new Scanner(new File("test.txt"));
int intValue = input.nextInt();
String line = input.nextLine();

intValue contains 34 and line contains the characters ' ', 5, 6, and 7.
What happens if the input is entered from the keyboard? Suppose you enter 34, press the

Enter key, then enter 567 and press the Enter key for the following code:

Scanner input = new Scanner(System.in);
int intValue = input.nextInt();
String line = input.nextLine();

You will get 34 in intValue and an empty string in line. Why? Here is the reason. The
token-reading method nextInt() reads in 34 and stops at the delimiter, which in this case is
a line separator (the Enter key). The nextLine() method ends after reading the line separa-
tor and returns the string read before the line separator. Since there are no characters before
the line separator, line is empty.

You can read data from a file or from the keyboard using the Scanner class. You can also
scan data from a string using the Scanner class. For example, the following code

Scanner input = new Scanner("13 14");
int sum = input.nextInt() + input.nextInt();
System.out.println("Sum is " + sum);

displays

The sum is 27

InputMismatchException

next() vs. nextLine()

line separator

behavior of nextLine()

input from file

input from keyboard

scan a string

548 Chapter 14 Exception Handling and Text I/O

14.11.4 Case Study: Replacing Text
Suppose you are to write a program named ReplaceText that replaces all occurrences of a
string in a text file with a new string. The file name and strings are passed as command-line
arguments as follows:

java ReplaceText sourceFile targetFile oldString newString

For example, invoking

java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

replaces all the occurrences of StringBuilder by StringBuffer in the file
FormatString.java and saves the new file in t.txt.

Listing 14.15 gives the program. The program checks the number of arguments passed to
the main method (lines 7–11), checks whether the source and target files exist (lines 14–25),
creates a Scanner for the source file (line 28), creates a PrintWriter for the target file, and
repeatedly reads a line from the source file (line 32), replaces the text (line 33), and writes a
new line to the target file (line 34). You must close the output file (line 38) to ensure that data
are saved to the file properly.

LISTING 14.15 ReplaceText.java
1 import java.io.*;
2 import java.util.*;
3
4 public class ReplaceText {
5 public static void main(String[] args) throws Exception {
6 // Check command-line parameter usage
7 if (args.length != 4) {
8 System.out.println(
9 "Usage: java ReplaceText sourceFile targetFile oldStr newStr");
10 System.exit(1);
11 }
12
13 // Check if source file exists
14
15 if () {
16 System.out.println("Source file " + args[0] + " does not exist");
17 System.exit(2);
18 }
19
20 // Check if target file exists
21
22 if () {
23 System.out.println("Target file " + args[1] + " already exists");
24 System.exit(3);
25 }
26
27 // Create a Scanner for input and a PrintWriter for output
28
29 PrintWriter output = new PrintWriter(targetFile);
30
31 while () {
32 String s1 = input.nextLine();
33 String s2 = s1.replaceAll(args[2], args[3]);
34 output.println(s2);
35 }
36

input.hasNext()

Scanner input = new Scanner(sourceFile);

targetFile.exists()
File targetFile = new File(args[1]);

!sourceFile.exists()
File sourceFile = new File(args[0]);

check command usage

source file exists?

target file exists?

create a Scanner
create a PrintWriter

has next?
read a line

14.12 File Dialogs 549

37 input.close();
38 output.close();
39 }
40 }

In a normal situation, the program is terminated after a file is copied. The program is termi-
nated abnormally if the command-line arguments are not used properly (lines 7–11), if the
source file does not exist (lines 14–18), or if the target file already exists (lines 22–25). The
exit status code 1, 2, and 3 are used to indicate these abnormal terminations (lines 10, 17, 24).

14.29 How do you create a PrintWriter to write data to a file? What is the reason to
declare throws Exception in the main method in Listing 14.13, WriteData.java?
What would happen if the close() method were not invoked in Listing 14.13?

14.30 Show the contents of the file temp.txt after the following program is executed.

public class Test {
public static void main(String[] args) throws Exception {
java.io.PrintWriter output = new
java.io.PrintWriter("temp.txt");

output.printf("amount is %f %e\r\n", 32.32, 32.32);
output.printf("amount is %5.4f %5.4e\r\n", 32.32, 32.32);
output.printf("%6b\r\n", (1 > 2));
output.printf("%6s\r\n", "Java");
output.close();

}
}

14.31 How do you create a Scanner to read data from a file? What is the reason to define
throws Exception in the main method in Listing 14.14, ReadData.java? What
would happen if the close() method were not invoked in Listing 14.14?

14.32 What will happen if you attempt to create a Scanner for a nonexistent file? What
will happen if you attempt to create a PrintWriter for an existing file?

14.33 Is the line separator the same on all platforms? What is the line separator on Windows?

14.34 Suppose you enter 45 57.8 789, then press the Enter key. Show the contents of the
variables after the following code is executed.

Scanner input = new Scanner(System.in);
int intValue = input.nextInt();
double doubleValue = input.nextDouble();
String line = input.nextLine();

14.35 Suppose you enter 45, press the Enter key, 57.8, press the Enter key, 789, and press
the Enter key. Show the contents of the variables after the following code is executed.

Scanner input = new Scanner(System.in);
int intValue = input.nextInt();
double doubleValue = input.nextDouble();
String line = input.nextLine();

14.12 File Dialogs
JFileChooser is a GUI component for displaying a file dialog.

Java provides the javax.swing.JFileChooser class for displaying a file dialog, as shown
in Figure 14.10. From this dialog box, the user can choose a file.

✓Point✓Check

Key
Point

close file

550 Chapter 14 Exception Handling and Text I/O

Listing 14.16 gives a program that prompts the user to choose a file and displays its con-
tents on the console.

LISTING 14.16 ReadFileUsingJFileChooser.java
1 import java.util.Scanner;
2 import javax.swing.JFileChooser;
3
4 public class ReadFileUsingJFileChooser {
5 public static void main(String[] args) throws Exception {
6
7 if (
8 ==) {
9 // Get the selected file
10 java.io.File file = ;
11
12 // Create a Scanner for the file
13 Scanner input = new Scanner(file);
14
15 // Read text from the file
16 while (input.hasNext()) {
17 System.out.println(input.nextLine());
18 }
19
20 // Close the file
21 input.close();
22 }
23 else {
24 System.out.println("No file selected");
25 }
26 }
27 }

The program creates a JFileChooser in line 6. The showOpenDialog(null) method dis-
plays a dialog box, as shown in Figure 14.10. The method returns an int value, either
APPROVE_OPTION or CANCEL_OPTION, which indicates whether the Open button or the
Cancel button was clicked.

The getSelectedFile() method (line 10) returns the selected file from the file dialog
box. Line 13 creates a scanner for the file. The program continuously reads the lines from the
file and displays them to the console (lines 16–18).

14.36 How do you create a File Open dialog box? What is returned from invoking
getSelectFile() on a JFileChooser object?

fileChooser.getSelectedFile()

JFileChooser.APPROVE_OPTION
fileChooser.showOpenDialog(null)

JFileChooser fileChooser = new JFileChooser();create a JFileChooser
display file chooser
check status

getSelectedFile

showOpenDialog

FIGURE 14.10 JFileChooser can be used to display a file dialog for opening a file.

✓Point✓Check

APPROVE_OPTION

getSelectedFile

14.13 Reading Data from the Web 551

14.13 Reading Data from the Web
Just like you can read data from a file on your computer, you can read data from a file
on the Web.

In addition to reading data from a local file on a computer or file server, you can also access
data from a file that is on the Web if you know the file’s URL (Uniform Resource Locator—
the unique address for a file on the Web). For example, www.google.com/index.html is the URL
for the file index.html located on the Google Web server. When you enter the URL in a Web
browser, the Web server sends the data to your browser, which renders the data graphically.
Figure 14.11 illustrates how this process works.

For an application program to read data from a URL, you first need to create a URL object
using the java.net.URL class with this constructor:

public URL(String spec) throws MalformedURLException

For example, the following statement creates a URL object for http://www.google
.com/index.html.

1 try {
2 URL url = new URL("http://www.google.com/index.html");
3 }
4 catch (MalformedURLException ex) {
5 ex.printStackTrace();
6 }

A MalformedURLException is thrown if the URL string has a syntax error. For example,
the URL string “http: www.google.com/index.html” would cause a MalformedURLException
runtime error because two slashes (//) are required after the colon (:). Note that the
http:// prefix is required for the URL class to recognize a valid URL. It would be wrong if
you replace line 2 with the following code:

URL url = new URL("www.google.com/index.html");

After a URL object is created, you can use the openStream() method defined in the URL
class to open an input stream and use this stream to create a Scanner object as follows:

Scanner input = new Scanner(url.openStream());

Now you can read the data from the input stream just like from a local file. The example in
Listing 14.17 prompts the user to enter a URL and displays the size of the file.

LISTING 14.17 ReadFileFromURL.java
1 import java.util.Scanner;
2

/

Key
Point

Internet

Client Server

Web
Server

Local files

Web
Browser

Application
Program

FIGURE 14.11 The client retrieves files from a Web server.

www.google.com/index.html
http://www.google.com/index.html
http://www.google.com/index.html
http://www.google.com/index.html

552 Chapter 14 Exception Handling and Text I/O

3 public class ReadFileFromURL {
4 public static void main(String[] args) {
5 System.out.print("Enter a URL: ");
6
7
8 try {
9
10 int count = 0;
11
12 while (input.hasNext()) {
13
14 count += line.length();
15 }
16
17 System.out.println("The file size is " + count + " bytes");
18 }
19
20 System.out.println("Invalid URL");
21 }
22 catch (java.io.IOException ex) {
23 System.out.println("I/O Errors: no such file");
24 }
25 }
26 }

catch (java.net.MalformedURLException ex) {

String line = input.nextLine();

Scanner input = new Scanner(url.openStream());

java.net.URL url = new java.net.URL(URLString);

String URLString = new Scanner(System.in).next();enter a URL

create a URL object

create a Scanner object
more to read?
read a line

MalformedURLException

IOException

Enter a URL:
The file size is 1469 bytes

http://cs.armstrong.edu/liang/data/Lincoln.txt

Enter a URL:
The file size is 190006 bytes

http://www.yahoo.com

The program prompts the user to enter a URL string (line 6) and creates a URL object (line 9).
The constructor will throw a java.net.MalformedURLException (line 19) if the URL
isn’t formed correctly.

The program creates a Scanner object from the input stream for the URL (line 11). If the
URL is formed correctly but does not exist, an IOException will be thrown (line 22). For
example, http://google.com/index1.html uses the appropriate form, but the URL itself does not
exist. An IOException would be thrown if this URL was used for this program.

14.37 How do you create a Scanner object for reading text from a URL?

KEY TERMS

MalformedURLException

✓Point✓Check

absolute file name 541
chained exception 537
checked exception 525
declare exception 526
directory path 541

exception 518
exception propagation 527
relative file name 541
throw exception 526
unchecked exception 525

http://cs.armstrong.edu/liang/data/Lincoln.txt
http://www.yahoo.com
http://google.com/index1.html

Chapter Summary 553

CHAPTER SUMMARY

1. Exception handling enables a method to throw an exception to its caller.

2. A Java exception is an instance of a class derived from java.lang.Throwable.
Java provides a number of predefined exception classes, such as Error, Exception,
RuntimeException, ClassNotFoundException, NullPointerException,
and ArithmeticException. You can also define your own exception class by
extending Exception.

3. Exceptions occur during the execution of a method. RuntimeException and Error
are unchecked exceptions; all other exceptions are checked.

4. When declaring a method, you have to declare a checked exception if the method
might throw it, thus telling the compiler what can go wrong.

5. The keyword for declaring an exception is throws, and the keyword for throwing an
exception is throw.

6. To invoke the method that declares checked exceptions, enclose it in a try statement.
When an exception occurs during the execution of the method, the catch block
catches and handles the exception.

7. If an exception is not caught in the current method, it is passed to its caller. The
process is repeated until the exception is caught or passed to the main method.

8. Various exception classes can be derived from a common superclass. If a catch
block catches the exception objects of a superclass, it can also catch all the exception
objects of the subclasses of that superclass.

9. The order in which exceptions are specified in a catch block is important. A compile
error will result if you specify an exception object of a class after an exception object
of the superclass of that class.

10. When an exception occurs in a method, the method exits immediately if it does not
catch the exception. If the method is required to perform some task before exiting,
you can catch the exception in the method and then rethrow it to its caller.

11. The code in the finally block is executed under all circumstances, regardless of
whether an exception occurs in the try block or whether an exception is caught if
it occurs.

12. Exception handling separates error-handling code from normal programming tasks,
thus making programs easier to read and to modify.

13. Exception handling should not be used to replace simple tests. You should perform
simple test using if statements whenever possible, and reserve exception handling
for dealing with situations that cannot be handled with if statements.

14. The File class is used to obtain file properties and manipulate files. It does not con-
tain the methods for creating a file or for reading/writing data from/to a file.

554 Chapter 14 Exception Handling and Text I/O

FIGURE 14.12 The program performs arithmetic operations and detects input errors.

15. You can use Scanner to read string and primitive data values from a text file and use
PrintWriter to create a file and write data to a text file.

16. The JFileChooser class can be used to display file dialogs for choosing files.

17. You can read from a file on the Web using the URL class.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 14.2–14.9
*14.1 (NumberFormatException) Listing 9.5, Calculator.java, is a simple command-

line calculator. Note that the program terminates if any operand is nonnumeric.
Write a program with an exception handler that deals with nonnumeric
operands; then write another program without using an exception handler to
achieve the same objective. Your program should display a message that informs
the user of the wrong operand type before exiting (see Figure 14.12).

*14.2 (InputMismatchException) Write a program that prompts the user to read
two integers and displays their sum. Your program should prompt the user to
read the number again if the input is incorrect.

*14.3 (ArrayIndexOutOfBoundsException) Write a program that meets the fol-
lowing requirements:

■ Creates an array with 100 randomly chosen integers.
■ Prompts the user to enter the index of the array, then displays the corre-

sponding element value. If the specified index is out of bounds, display the
message Out of Bounds.

*14.4 (IllegalArgumentException) Modify the Loan class in Listing 10.2 to
throw IllegalArgumentException if the loan amount, interest rate, or num-
ber of years is less than or equal to zero.

*14.5 (IllegalTriangleException) Programming Exercise 11.1 defined the
Triangle class with three sides. In a triangle, the sum of any two sides is
greater than the other side. The Triangle class must adhere to this rule. Create
the IllegalTriangleException class, and modify the constructor of the

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 555

Triangle class to throw an IllegalTriangleException object if a triangle
is created with sides that violate the rule, as follows:

/** Construct a triangle with the specified sides */
public Triangle(double side1, double side2, double side3)
throws IllegalTriangleException {
// Implement it

}

*14.6 (NumberFormatException) Listing 9.2 implements the hexToDecimal(String
hexString) method, which converts a hex string into a decimal number.
Implement the hexToDecimal method to throw a NumberFormatException
if the string is not a hex string.

*14.7 (NumberFormatException) Programming Exercise 9.8 specifies the
binaryToDecimal(String binaryString) method, which converts a
binary string into a decimal number. Implement the binaryToDecimal method
to throw a NumberFormatException if the string is not a binary string.

*14.8 (HexFormatException) Exercise 14.6 implements the hexToDecimal method
to throw a NumberFormatException if the string is not a hex string. Define a
custom exception called HexFormatException. Implement the hexToDecimal
method to throw a HexFormatException if the string is not a hex string.

*14.9 (BinaryFormatException) Exercise 14.7 implements the binaryToDecimal
method to throw a BinaryFormatException if the string is not a binary string.
Define a custom exception called BinaryFormatException. Implement the
binaryToDecimal method to throw a BinaryFormatException if the string
is not a binary string.

*14.10 (OutOfMemoryError) Write a program that causes the JVM to throw an
OutOfMemoryError and catches and handles this error.

Sections 14.10–14.12
**14.11 (Remove text) Write a program that removes all the occurrences of a specified

string from a text file. For example, invoking

java Exercise14_11 John filename

removes the string John from the specified file. Your program should get the
arguments from the command line.

**14.12 (Reformat Java source code) Write a program that converts the Java source code
from the next-line brace style to the end-of-line brace style. For example, the
following Java source in (a) uses the next-line brace style. Your program con-
verts it to the end-of-line brace style in (b).

public class Test
{

public static void main(String[] args)
{

// Some statements
}

}

public class Test {
public static void main(String[] args) {

// Some statements
}

}

(a) Next-line brace style (b) End-of-line brace style

HexFormatException

VideoNote

556 Chapter 14 Exception Handling and Text I/O

Your program can be invoked from the command line with the Java source-
code file as the argument. It converts the Java source code to a new format. For
example, the following command converts the Java source-code file Test.java
to the end-of-line brace style.

java Exercise14_12 Test.java

*14.13 (Count characters, words, and lines in a file) Write a program that will count
the number of characters, words, and lines in a file. Words are separated by
whitespace characters. The file name should be passed as a command-line
argument, as shown in Figure 14.13.

FIGURE 14.13 The program displays the number of characters, words, and lines in the
given file.

*14.14 (Process scores in a text file) Suppose that a text file contains an unspecified
number of scores separated by blanks. Write a program that prompts the user to
enter the file, reads the scores from the file, and displays their total and average.
Scores are separated by blanks.

*14.15 (Write/read data) Write a program to create a file named Exercise14_15.txt if
it does not exist. Write 100 integers created randomly into the file using text
I/O. Integers are separated by spaces in the file. Read the data back from the
file and display the sorted data.

**14.16 (Replace text) Listing 14.15, ReplaceText.java, gives a program that replaces
text in a source file and saves the change into a new file. Revise the program
to save the change into the original file. For example, invoking

java Exercise14_16 file oldString newString

replaces oldString in the source file with newString.

***14.17 (Game: hangman) Rewrite Exercise 9.25. The program reads the words
stored in a text file named hangman.txt. Words are delimited by spaces.

**14.18 (Add package statement) Suppose you have Java source files under the direc-
tories chapter1, chapter2, . . . , chapter34. Write a program to insert the
statement package chapteri; as the first line for each Java source file
under the directory chapteri. Suppose chapter1, chapter2, . . . ,
chapter34 are under the root directory srcRootDirectory. The root
directory and chapteri directory may contain other folders and files. Use
the following command to run the program:

java Exercise14_18 srcRootDirectory

*14.19 (Count words) Write a program that counts the number of words in President
Abraham Lincoln’s Gettysburg address from http://cs.armstrong.edu/liang/
data/Lincoln.txt.

http://cs.armstrong.edu/liang/data/Lincoln.txt
http://cs.armstrong.edu/liang/data/Lincoln.txt

Programming Exercises 557

**14.20 (Remove package statement) Suppose you have Java source files under the direc-
tories chapter1, chapter2, . . . , chapter34. Write a program to remove the
statement package chapteri; in the first line for each Java source file under
the directory chapteri. Suppose chapter1, chapter2, . . . , chapter34 are
under the root directory srcRootDirectory. The root directory and chapteri
directory may contain other folders and files. Use the following command to run
the program:

java Exercise14_20 srcRootDirectory

**14.21 (Display a graph) A graph consists of vertices and edges that connect vertices.
Write a program that reads a graph from a file and displays it on a panel. The
first line in the file contains a number that indicates the number of vertices (n).
The vertices are labeled as 0, 1, . . . , n-1. Each subsequent line, with the format
u x y v1 v2 ..., describes that the vertex u is located at position (x, y) with
edges (u, v1), (u, v2), and so on. Figure 14.14a gives an example of the file for
a graph. Your program prompts the user to enter the name of the file, reads data
from the file, and displays the graph on a panel, as shown in Figure 14.14b.
Write another program that reads data from a Web URL such as
http://cs.armstrong.edu/liang/data/graph.txt. This program should prompt the user to
enter the URL for the file.

File
6
0 30 30 1 2
1 90 30 0 3
2 30 90 0 3 4
3 90 90 1 2 4 5
4 30 150 2 3 5
5 90 150 3 4

0

2 3

1

4

(a) (b)

5

FIGURE 14.14 Exercise 14.21 reads the information about the graph and displays it visually.

**14.22 (Replace text) Revise Exercise 14.16 to replace a string in a file with a new
string for all files in the specified directory using the command:

java Exercise14_22 dir oldString newString

**14.23 (Process scores in a text file on the Web) Suppose that the text file on the Web
http://cs.armstrong.edu/liang/data/Scores.txt contains an unspecified number of
scores. Write a program that reads the scores from the file and displays their
total and average. Scores are separated by blanks.

*14.24 (Create large dataset) Create a data file with 1,000 lines. Each line in the file
consists of a faculty member’s first name, last name, rank, and salary. The fac-
ulty member’s first name and last name for the ith line are FirstNamei and Last-
Namei. The rank is randomly generated as assistant, associate, and full. The
salary is randomly generated as a number with two digits after the decimal
point. The salary for an assistant professor should be in the range from 50,000 to

http://cs.armstrong.edu/liang/data/graph.txt
http://cs.armstrong.edu/liang/data/Scores.txt

558 Chapter 14 Exception Handling and Text I/O

80,000, for associate professor from 60,000 to 110,000, and for full professor
from 75,000 to 130,000. Save the file in Salary.txt. Here are some sample data:

FirstName1 LastName1 assistant 60055.95

FirstName2 LastName2 associate 81112.45

. . .

FirstName1000 LastName1000 full 92255.21

*14.25 (Process large dataset) A university posts its employees’ salaries at
http://cs.armstrong.edu/liang/data/Salary.txt. Each line in the file consists of a fac-
ulty member’s first name, last name, rank, and salary (see Exercise 14.24).
Write a program to display the total salary for assistant professors, associate
professors, full professors, and all faculty, respectively, and display the average
salary for assistant professors, associate professors, full professors, and all fac-
ulty, respectively.

**14.26 (Create a directory) Write a program that prompts the user to enter a directory
name and creates a directory using the File’s mkdirs method. The program
displays the message “Directory created successfully” if a directory is created or
“Directory already exists” if the directory already exists.

**14.27 (Replace words) Suppose you have a lot of files in a directory that contain words
Exercisei_ j, where i and j are digits. Write a program that pads a 0 before i if i
is a single digit and 0 before j if j is a single digit. For example, the word
Exercise2_1 in a file will be replaced by Exercise02_01. In Java, when you
pass the symbol * from the command line, it refers to all files in the directory
(see Supplement III.AC). Use the following command to run your program.

java Exercise14_27 *

**14.28 (Rename files) Suppose you have a lot of files in a directory named Exercisei_ j,
where i and j are digits. Write a program that pads a 0 before i if i is a single
digit. For example, a file named Exercise2_1 in a directory will be renamed to
Exercise02_1. In Java, when you pass the symbol * from the command line, it
refers to all files in the directory (see Supplement III.AC). Use the following
command to run your program.

java Exercise14_28 *

**14.29 (Rename files) Suppose you have a lot of files in a directory named Exercisei_ j,
where i and j are digits. Write a program that pads a 0 before j if j is a single
digit. For example, a file named Exercise2_1 in a directory will be renamed to
Exercise2_01. In Java, when you pass the symbol * from the command line, it
refers to all files in the directory (see Supplement III.AC). Use the following
command to run your program.

java Exercise14_29 *

http://cs.armstrong.edu/liang/data/Salary.txt

ABSTRACT CLASSES
AND INTERFACES

Objectives
■ To design and use abstract classes (§15.2).

■ To generalize numeric wrapper classes, BigInteger, and BigDecimal
using the abstract Number class (§15.3).

■ To process a calendar using the Calendar and GregorianCalendar

classes (§15.4).

■ To specify common behavior for objects using interfaces (§15.5).

■ To define interfaces and define classes that implement interfaces (§15.5).

■ To define a natural order using the Comparable interface (§15.6).

■ To make objects cloneable using the Cloneable interface (§15.7).

■ To explore the similarities and differences among concrete classes,
abstract classes, and interfaces (§15.8).

■ To design the Rational class for processing rational numbers (§15.9).

CHAPTER

15

560 Chapter 15 Abstract Classes and Interfaces

Key
Point

Key
Point

15.1 Introduction
A superclass defines common behavior for related subclasses. An interface can be
used to define common behavior for classes (including unrelated classes).

You have learned how to write simple programs to create and display GUI components. Can
you write the code to respond to user actions, such as clicking a button to perform an action?

In order to write such code, you have to know about interfaces. An interface is for defining
common behavior for classes (including unrelated classes). Before discussing interfaces, we
introduce a closely related subject: abstract classes.

15.2 Abstract Classes
An abstract class cannot be used to create objects. An abstract class can contain
abstract methods, which are implemented in concrete subclasses.

In the inheritance hierarchy, classes become more specific and concrete with each new sub-
class. If you move from a subclass back up to a superclass, the classes become more general
and less specific. Class design should ensure that a superclass contains common features of its
subclasses. Sometimes a superclass is so abstract that it cannot have any specific instances.
Such a class is referred to as an abstract class.

In Chapter 11, GeometricObject was defined as the superclass for Circle and
Rectangle. GeometricObject models common features of geometric objects. Both
Circle and Rectangle contain the getArea() and getPerimeter() methods for com-
puting the area and perimeter of a circle and a rectangle. Since you can compute areas and
perimeters for all geometric objects, it is better to define the getArea() and
getPerimeter() methods in the GeometricObject class. However, these methods cannot
be implemented in the GeometricObject class, because their implementation depends on
the specific type of geometric object. Such methods are referred to as abstract methods and
are denoted using the abstract modifier in the method header. After you define the methods
in GeometricObject, it becomes an abstract class. Abstract classes are denoted using the
abstract modifier in the class header. In UML graphic notation, the names of abstract
classes and their abstract methods are italicized, as shown in Figure 15.1. Listing 15.1 gives
the source code for the new GeometricObject class.

LISTING 15.1 GeometricObject.java
1 public class GeometricObject {
2 private String color = "white";
3 private boolean filled;
4 private java.util.Date dateCreated;
5
6 /** Construct a default geometric object */
7 protected GeometricObject() {
8 dateCreated = new java.util.Date();
9 }
10
11 /** Construct a geometric object with color and filled value */
12 protected GeometricObject(String color, boolean filled) {
13 dateCreated = new java.util.Date();
14 this.color = color;
15 this.filled = filled;
16 }
17
18 /** Return color */
19 public String getColor() {
20 return color;

abstract

problem

interface

Abstract GeometricObject
class

abstract class

abstract method

abstract modifier

abstract class

VideoNote

15.2 Abstract Classes 561

21 }
22
23 /** Set a new color */
24 public void setColor(String color) {
25 this.color = color;
26 }
27
28 /** Return filled. Since filled is boolean,
29 * the get method is named isFilled */
30 public boolean isFilled() {
31 return filled;
32 }
33
34 /** Set a new filled */
35 public void setFilled(boolean filled) {
36 this.filled = filled;
37 }
38
39 /** Get dateCreated */
40 public java.util.Date getDateCreated() {

-color: String

-filled: boolean

-dateCreated: java.util.Date

#GeometricObject()
#GeometricObject(color: string,
 filled: boolean)
+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

The # sign indicates
protected modifier

+Circle()

+Circle(radius: double)

+getRadius(): double

+setRadius(radius: double): void

+getDiameter(): double

-radius: double

Circle

-width: double
-height: double

+Rectangle()
+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double,
 color: string, filled: boolean)
+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

Rectangle

Abstract class name is italicized

Abstract methods
are italicized Methods getArea and getPerimeter are

overridden in Circle and Rectangle.
Superclass methods are generally omitted
in the UML diagram for subclasses.

GeometricObject

+getArea(): double

+getPerimeter(): double

+Circle(radius: double, color: string,
 filled: boolean)

FIGURE 15.1 The new GeometricObject class contains abstract methods.

562 Chapter 15 Abstract Classes and Interfaces

41 return dateCreated;
42 }
43
44 @Override
45 public String toString() {
46 return "created on " + dateCreated + "\ncolor: " + color +
47 " and filled: " + filled;
48 }
49
50 /** Abstract method getArea */
51
52
53 /** Abstract method getPerimeter */
54
55 }

Abstract classes are like regular classes, but you cannot create instances of abstract classes
using the new operator. An abstract method is defined without implementation. Its imple-
mentation is provided by the subclasses. A class that contains abstract methods must be
defined as abstract.

The constructor in the abstract class is defined as protected, because it is used only by sub-
classes. When you create an instance of a concrete subclass, its superclass’s constructor is
invoked to initialize data fields defined in the superclass.

The GeometricObject abstract class defines the common features (data and methods)
for geometric objects and provides appropriate constructors. Because you don’t know how to
compute areas and perimeters of geometric objects, getArea and getPerimeter are
defined as abstract methods. These methods are implemented in the subclasses. The
implementation of Circle and Rectangle is the same as in Listings 15.2 and 15.3, except
that they extend the GeometricObject class defined in this chapter.

LISTING 15.2 Circle.java
1 public class Circle {
2 // Same as lines 3-48 in Listing 11.2, so omitted
3 }

LISTING 15.3 Rectangle.java
1 public class Rectangle {
2 // Same as lines 3-51 in Listing 11.3, so omitted
3 }

15.2.1 Why Abstract Methods?
You may be wondering what advantage is gained by defining the methods getArea and
getPerimeter as abstract in the GeometricObject class. The example in Listing 15.4
shows the benefits of defining them in the GeometricObject class. The program creates two
geometric objects, a circle and a rectangle, invokes the equalArea method to check whether
they have equal areas, and invokes the displayGeometricObject method to display them.

LISTING 15.4 TestGeometricObject.java
1 public class TestGeometricObject {
2 /** Main method */
3 public static void main(String[] args) {
4 // Create two geometric objects
5
6 GeometricObject geoObject2 = new Rectangle(5, 3);

GeometricObject geoObject1 = new Circle(5);

extends GeometricObject

extends GeometricObject

public abstract double getPerimeter();

public abstract double getArea();abstract method

abstract method

why protected constructor?

implementing Circle
implementing Rectangle

extends abstract
GeometricObject

extends abstract
GeometricObject

create a circle
create a rectangle

15.2 Abstract Classes 563

7
8 System.out.println("The two objects have the same area? " +
9);
10
11 // Display circle
12 displayGeometricObject(geoObject1);
13
14 // Display rectangle
15 displayGeometricObject(geoObject2);
16 }
17
18 /** A method for comparing the areas of two geometric objects */
19 public static

20 {
21 return object1.getArea() == object2.getArea();
22 }
23
24 /** A method for displaying a geometric object */
25 public static void {
26 System.out.println();
27 System.out.println("The area is " + object.getArea());
28 System.out.println("The perimeter is " + object.getPerimeter());
29 }
30 }

displayGeometricObject(GeometricObject object)

GeometricObject object2)
boolean equalArea(GeometricObject object1,

equalArea(geoObject1, geoObject2)

equalArea

displayGeometricObject

The two objects have the same area? false

The area is 78.53981633974483
The perimeter is 31.41592653589793

The area is 15.0
The perimeter is 16.0

The methods getArea() and getPerimeter() defined in the GeometricObject class
are overridden in the Circle class and the Rectangle class. The statements (lines 5–6)

GeometricObject geoObject1 = new Circle(5);
GeometricObject geoObject2 = new Rectangle(5, 3);

create a new circle and rectangle and assign them to the variables geoObject1 and
geoObject2. These two variables are of the GeometricObject type.

When invoking equalArea(geoObject1, geoObject2) (line 9), the getArea()
method defined in the Circle class is used for object1.getArea(), since geoObject1 is
a circle, and the getArea() method defined in the Rectangle class is used for
object2.getArea(), since geoObject2 is a rectangle.

Similarly, when invoking displayGeometricObject(geoObject1) (line 12), the
methods getArea() and getPerimeter() defined in the Circle class are used, and
when invoking displayGeometricObject(geoObject2) (line 15), the methods
getArea and getPerimeter defined in the Rectangle class are used. The JVM dynami-
cally determines which of these methods to invoke at runtime, depending on the actual
object that invokes the method.

Note that you could not define the equalArea method for comparing whether two geo-
metric objects have the same area if the getArea method were not defined in
GeometricObject. Now you have seen the benefits of defining the abstract methods in
GeometricObject.

why abstract methods?

564 Chapter 15 Abstract Classes and Interfaces

✓Point✓Check

15.2.2 Interesting Points about Abstract Classes
The following points about abstract classes are worth noting:

■ An abstract method cannot be contained in a nonabstract class. If a subclass of an
abstract superclass does not implement all the abstract methods, the subclass must be
defined as abstract. In other words, in a nonabstract subclass extended from an
abstract class, all the abstract methods must be implemented. Also note that abstract
methods are nonstatic.

■ An abstract class cannot be instantiated using the new operator, but you can still
define its constructors, which are invoked in the constructors of its subclasses. For
instance, the constructors of GeometricObject are invoked in the Circle class
and the Rectangle class.

■ A class that contains abstract methods must be abstract. However, it is possible to
define an abstract class that doesn’t contain any abstract methods. In this case, you
cannot create instances of the class using the new operator. This class is used as a
base class for defining subclasses.

■ A subclass can be abstract even if its superclass is concrete. For example, the Object
class is concrete, but its subclasses, such as GeometricObject, may be abstract.

■ A subclass can override a method from its superclass to define it as abstract. This is
very unusual, but it is useful when the implementation of the method in the superclass
becomes invalid in the subclass. In this case, the subclass must be defined as abstract.

■ You cannot create an instance from an abstract class using the new operator, but an
abstract class can be used as a data type. Therefore, the following statement, which
creates an array whose elements are of the GeometricObject type, is correct.

GeometricObject[] objects = new GeometricObject[10];

You can then create an instance of GeometricObject and assign its reference to
the array like this:

objects[0] = new Circle();

15.1 Which of the following classes defines a legal abstract class?

abstract method in abstract
class

object cannot be created from
abstract class

abstract class without abstract
method

superclass of abstract class
may be concrete

concrete method overridden
to be abstract

abstract class as type

class A {
abstract void unfinished() {
}

}

(a)

public class abstract A {
abstract void unfinished();

}

(b)

class A {
abstract void unfinished();

}

(c)

abstract class A {
protected void unfinished();

}

(d)

abstract class A {
abstract void unfinished();

}

(e)

abstract class A {
abstract int unfinished();

}

(f)

15.3 Case Study: the Abstract Number Class 565

15.2 The getArea and getPerimeter methods may be removed from the
GeometricObject class. What are the benefits of defining getArea and
getPerimeter as abstract methods in the GeometricObject class?

15.3 True or false?

a. An abstract class can be used just like a nonabstract class except that you cannot
use the new operator to create an instance from the abstract class.

b. An abstract class can be extended.

c. A subclass of a nonabstract superclass cannot be abstract.

d. A subclass cannot override a concrete method in a superclass to define it as abstract.

e. An abstract method must be nonstatic.

15.3 Case Study: the Abstract Number Class
Number is an abstract superclass for numeric wrapper classes, BigInteger, and
BigDecimal.

Section 10.12 introduced numeric wrapper classes and Section 10.14 introduced the
BigInteger and BigDecimal classes. These classes have common methods
byteValue(), shortValue(), intValue(), longValue(), floatValue(), and
doubleValue() for returning a byte, short, int, long, float, and double value from
an object of these classes. These common methods are actually defined in the Number class,
which is a superclass for the numeric wrapper classes, BigInteger, and BigDecimal, as
shown in Figure 15.2.

Double Float Long Integer Short Byte BigInteger BigDecimal

java.lang.Number

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float

+doubleValue():double

FIGURE 15.2 The Number class is an abstract superclass for Double, Float, Long, Integer, Short, Byte,
BigInteger and BigDecimal.

Since the intValue(), longValue(), floatValue(), and doubleValue() methods
cannot be implemented in the Number class, they are defined as abstract methods in the
Number class. The Number class is therefore an abstract class. The byteValue() and
shortValue() method are implemented from the intValue() method as follows:

public byte byteValue() {
return (byte)intValue();

}

Key
Point

566 Chapter 15 Abstract Classes and Interfaces

public short shortValue() {
return (short)intValue();

}

With Number defined as the superclass for the numeric classes, we can define methods to per-
form common operations for numbers. Listing 15.5 gives a program that finds the largest
number in a list of Number objects.

LISTING 15.5 LargestNumbers.java
1 import java.util.ArrayList;
2 import java.math.*;
3
4 public class LargestNumbers {
5 public static void main(String[] args) {
6 ArrayList<Number> list = new ArrayList<Number>();
7 list.add(45); // Add an integer
8 list.add(3445.53); // Add a double
9 // Add a BigInteger
10 list.add(new BigInteger("3432323234344343101"));
11 // Add a BigDecimal
12 list.add(new BigDecimal("2.0909090989091343433344343"));
13
14 System.out.println("The largest number is " +
15 getLargestNumber(list));
16 }
17
18 public static Number getLargestNumber(ArrayList<Number> list) {
19 if (list == null || list.size() == 0)
20 return null;
21
22 Number number = list.get(0);
23 for (int i = 1; i < list.size(); i++)
24 if (number.doubleValue() < list.get(i).doubleValue())
25 number = list.get(i);
26
27 return number;
28 }
29 }

create an array list
add number to list

invoke getLargestNumber

doubleValue

The largest number is 3432323234344343101

The program creates an ArrayList of Number objects (line 6). It adds an Integer object, a
Double object, a BigInteger object, and a BigDecimal object to the list (lines 7–12). Note
that 45 is automatically converted into an Integer object and added to the list in line 7 and
that 3445.53 is automatically converted into a Double object and added to the list in line 8
using autoboxing.

Invoking the getLargestNumber method returns the largest number in the list (line 15).
The getLargestNumber method returns null if the list is null or the list size is 0 (lines
19–20). To find the largest number in the list, the numbers are compared by invoking their
doubleValue() method (line 24). The doubleValue() method is defined in the Number
class and implemented in the concrete subclass of Number. If a number is an Integer object,
the Integer’s doubleValue() is invoked. If a number is a BigDecimal object, the
BigDecimal’s doubleValue() is invoked.

If the doubleValue() method is not defined in the Number class. You will not be able to
find the largest number among different types of numbers using the Number class.

15.4 Case Study: Calendar and GregorianCalendar 567

✓Point✓Check15.4 Why do the following two lines of code compile but cause a runtime error?

Number numberRef = new Integer(0);
Double doubleRef = (Double)numberRef;

15.5 Why do the following two lines of code compile but cause a runtime error?

Number[] numberArray = new Integer[2];
numberArray[0] = new Double(1.5);

15.6 Show the output of the following code.

public class Test {
public static void main(String[] args) {
Number x = 3;
System.out.println(x.intValue());
System.out.println(x.doubleValue());

}
}

15.7 What is wrong in the following code? (Note that the compareTo method for the
Integer and Double classes was introduced in Section 10.12.)

public class Test {
public static void main(String[] args) {
Number x = new Integer(3);
System.out.println(x.intValue());
System.out.println(x.compareTo(new Integer(4)));

}
}

15.8 What is wrong in the following code?

public class Test {
public static void main(String[] args) {
Number x = new Integer(3);
System.out.println(x.intValue());
System.out.println((Integer)x.compareTo(new Integer(4)));

}
}

15.4 Case Study: Calendar and GregorianCalendar
GregorianCalendar is a concrete subclass of the abstract class Calendar.

An instance of java.util.Date represents a specific instant in time with millisecond
precision. java.util.Calendar is an abstract base class for extracting detailed calendar
information, such as the year, month, date, hour, minute, and second. Subclasses of Calendar
can implement specific calendar systems, such as the Gregorian calendar, the lunar calendar,
and the Jewish calendar. Currently, java.util.GregorianCalendar for the Gregorian
calendar is supported in Java, as shown in Figure 15.3. The add method is abstract in the
Calendar class, because its implementation is dependent on a concrete calendar system.

You can use new GregorianCalendar() to construct a default GregorianCalendar
with the current time and new GregorianCalendar(year, month, date) to construct
a GregorianCalendar with the specified year, month, and date. The month parameter
is 0 based—that is, 0 is for January.

Key
Point

Calendar and
GregorianCalendar
classes

VideoNote

abstract add method

constructing calendar

568 Chapter 15 Abstract Classes and Interfaces

The get(int field) method defined in the Calendar class is useful for extracting the
date and time information from a Calendar object. The fields are defined as constants, as
shown in Table 15.1.

+GregorianCalendar()

+GregorianCalendar(year: int,
month: int, dayOfMonth: int)

+GregorianCalendar(year: int,
month: int, dayOfMonth: int,
hour:int, minute: int, second: int)

Constructs a GregorianCalendar for the current time.

Constructs a GregorianCalendar for the specified year, month, and
date.

Constructs a GregorianCalendar for the specified year, month, date,
hour, minute, and second. The month parameter is 0-based, that
is, 0 is for January.

#Calendar()

+get(field: int): int

+set(field: int, value: int): void

+set(year: int, month: int,
dayOfMonth: int): void

+getActualMaximum(field: int): int

+add(field: int, amount: int): void

+getTime(): java.util.Date

+setTime(date: java.util.Date): void

Constructs a default calendar.

Returns the value of the given calendar field.

Sets the given calendar to the specified value.

Sets the calendar with the specified year, month, and date. The month
parameter is 0-based; that is, 0 is for January.

Returns the maximum value that the specified calendar field could have.

Adds or subtracts the specified amount of time to the given calendar field.

Returns a Date object representing this calendar’s time value (million
second offset from the UNIX epoch).

Sets this calendar’s time with the given Date object.

java.util.Calendar

java.util.GregorianCalendar

FIGURE 15.3 The abstract Calendar class defines common features of various calendars.

get(field)

TABLE 15.1 Field Constants in the Calendar Class

Constant Description

YEAR The year of the calendar.

MONTH The month of the calendar, with 0 for January.

DATE The day of the calendar.

HOUR The hour of the calendar (12-hour notation).

HOUR_OF_DAY The hour of the calendar (24-hour notation).

MINUTE The minute of the calendar.

SECOND The second of the calendar.

DAY_OF_WEEK The day number within the week, with 1 for Sunday.

DAY_OF_MONTH Same as DATE.

DAY_OF_YEAR The day number in the year, with 1 for the first day of the year.

WEEK_OF_MONTH The week number within the month, with 1 for the first week.

WEEK_OF_YEAR The week number within the year, with 1 for the first week.

AM_PM Indicator for AM or PM (0 for AM and 1 for PM).

Listing 15.6 gives an example that displays the date and time information for the current time.

LISTING 15.6 TestCalendar.java
1 import java.util.*;
2

15.4 Case Study: Calendar and GregorianCalendar 569

3 public class TestCalendar {
4 public static void main(String[] args) {
5 // Construct a Gregorian calendar for the current date and time
6
7 System.out.println("Current time is " + new Date());
8 System.out.println("YEAR: " + calendar.get(Calendar.YEAR));
9 System.out.println("MONTH: " + calendar.get(Calendar.MONTH));
10 System.out.println("DATE: " + calendar.get(Calendar.DATE));
11 System.out.println("HOUR: " + calendar.get(Calendar.HOUR));
12 System.out.println("HOUR_OF_DAY: " +
13 calendar.get(Calendar.HOUR_OF_DAY));
14 System.out.println("MINUTE: " + calendar.get(Calendar.MINUTE));
15 System.out.println("SECOND: " + calendar.get(Calendar.SECOND));
16 System.out.println("DAY_OF_WEEK: " +
17 calendar.get(Calendar.DAY_OF_WEEK));
18 System.out.println("DAY_OF_MONTH: " +
19 calendar.get(Calendar.DAY_OF_MONTH));
20 System.out.println("DAY_OF_YEAR: " +
21 calendar.get(Calendar.DAY_OF_YEAR));
22 System.out.println("WEEK_OF_MONTH: " +
23 calendar.get(Calendar.WEEK_OF_MONTH));
24 System.out.println("WEEK_OF_YEAR: " +
25 calendar.get(Calendar.WEEK_OF_YEAR));
26 System.out.println("AM_PM: " + calendar.get(Calendar.AM_PM));
27
28 // Construct a calendar for September 11, 2001
29
30 String[] dayNameOfWeek = {"Sunday", "Monday", "Tuesday", "Wednesday",
31 "Thursday", "Friday", "Saturday"};
32 System.out.println("September 11, 2001 is a " +
33 dayNameOfWeek[calendar1.get(Calendar.DAY_OF_WEEK) - 1]);
34 }
35 }

Calendar calendar1 = new GregorianCalendar(2001, 8, 11);

Calendar calendar = new GregorianCalendar(); calendar for current time

extract fields in calendar

Current time is Sun Nov 27 17:48:15 EST 2011
YEAR: 2011
MONTH: 10
DATE: 27
HOUR: 5
HOUR_OF_DAY: 17
MINUTE: 48
SECOND: 15
DAY_OF_WEEK: 1
DAY_OF_MONTH: 27
DAY_OF_YEAR: 331
WEEK_OF_MONTH: 5
WEEK_OF_YEAR: 49
AM_PM: 1
September 11, 2001 is a Tuesday

The set(int field, value) method defined in the Calendar class can be used to set a
field. For example, you can use calendar.set(Calendar.DAY_OF_MONTH, 1) to set the
calendar to the first day of the month.

The add(field, value) method adds the specified amount to a given field. For exam-
ple, add(Calendar.DAY_OF_MONTH, 5) adds five days to the current time of the calen-
dar. add(Calendar.DAY_OF_MONTH, -5) subtracts five days from the current time of
the calendar.

create a calendar

set(field, value)

add(field, amount)

570 Chapter 15 Abstract Classes and Interfaces

getActualMaximum(field)

setTime(date)

getTime()

✓Point✓Check

Key
Point

The concept of interface

interface inheritance

To obtain the number of days in a month, use calendar

.getActualMaximum(Calendar.DAY_OF_MONTH). For example, if the calendar were
for March, this method would return 31.

You can set a time represented in a Date object for the calendar by invoking
calendar.setTime(date) and retrieve the time by invoking calendar.getTime().

15.9 Can you create a Calendar object using the Calendar class?

15.10 Which method in the Calendar class is abstract?

15.11 How do you create a Calendar object for the current time?

15.12 For a Calendar object c, how do you get its year, month, date, hour, minute, and second?

15.5 Interfaces
An interface is a class-like construct that contains only constants and abstract methods.

In many ways an interface is similar to an abstract class, but its intent is to specify common
behavior for objects of related classes or unrelated classes. For example, using appropriate
interfaces, you can specify that the objects are comparable, edible, and/or cloneable.

To distinguish an interface from a class, Java uses the following syntax to define an interface:

modifier InterfaceName {
/** Constant declarations */
/** Abstract method signatures */

}

Here is an example of an interface:

/** Describe how to eat */

}

An interface is treated like a special class in Java. Each interface is compiled into a sepa-
rate bytecode file, just like a regular class. You can use an interface more or less the same way
you use an abstract class. For example, you can use an interface as a data type for a reference
variable, as the result of casting, and so on. As with an abstract class, you cannot create an
instance from an interface using the new operator.

You can use the Edible interface to specify whether an object is edible. This is accom-
plished by letting the class for the object implement this interface using the implements key-
word. For example, the classes Chicken and Fruit in Listing 15.7 (lines 20, 39) implement
the Edible interface. The relationship between the class and the interface is known as
interface inheritance. Since interface inheritance and class inheritance are essentially the
same, we will simply refer to both as inheritance.

LISTING 15.7 TestEdible.java
1 public class TestEdible {
2 public static void main(String[] args) {
3 Object[] objects = {new Tiger(), new Chicken(), new Apple()};
4 for (int i = 0; i < objects.length; i++) {
5 if (objects[i] instanceof Edible)
6 System.out.println(((Edible)objects[i]).howToEat());
7
8 if (objects[i] instanceof Animal) {
9 System.out.println(((Animal)objects[i]).sound());
10 }

public abstract String howToEat();

public interface Edible {

interface

VideoNote

15.5 Interfaces 571

11 }
12 }
13 }
14
15 abstract class Animal {
16 /** Return animal sound */
17 public abstract String sound();
18 }
19
20
21 @Override
22
23 return "Chicken: Fry it";
24 }
25
26 @Override
27 public String sound() {
28 return "Chicken: cock-a-doodle-doo";
29 }
30 }
31
32 class Tiger extends Animal {
33 @Override
34 public String sound() {
35 return "Tiger: RROOAARR";
36 }
37 }
38
39
40 // Data fields, constructors, and methods omitted here
41 }
42
43 class Apple extends Fruit {
44 @Override
45
46 return "Apple: Make apple cider";
47 }
48 }
49
50 class Orange extends Fruit {
51 @Override
52
53 return "Orange: Make orange juice";
54 }
55 }

public String howToEat() {

public String howToEat() {

abstract class Fruit implements Edible {

public String howToEat() {

class Chicken extends Animal implements Edible {

Animal class

implements Edible

howToEat()

Tiger: RROOAARR
Chicken: Fry it
Chicken: cock-a-doodle-doo
Apple: Make apple cider

This example uses several classes and interfaces. Their inheritance relationship is shown in
Figure 15.4.

The Animal class defines the sound method (line 17). It is an abstract method and will be
implemented by a concrete animal class.

The Chicken class implements Edible to specify that chickens are edible. When a class
implements an interface, it implements all the methods defined in the interface with the exact

Tiger class

implements Edible

Apple class

Orange class

572 Chapter 15 Abstract Classes and Interfaces

signature and return type. The Chicken class implements the howToEat method (lines
22–24). Chicken also extends Animal to implement the sound method (lines 27–29).

The Fruit class implements Edible. Since it does not implement the howToEat method,
Fruit must be denoted as abstract (line 39). The concrete subclasses of Fruit must
implement the howToEat method. The Apple and Orange classes implement the howToEat
method (lines 45, 52).

The main method creates an array with three objects for Tiger, Chicken, and Apple
(line 3), and invokes the howToEat method if the element is edible (line 6) and the sound
method if the element is an animal (line 9).

In essence, the Edible interface defines common behavior for edible objects. All edible
objects have the howToEat method.

Note
Since all data fields are public static final and all methods are public
abstract in an interface, Java allows these modifiers to be omitted. Therefore the fol-
lowing interface definitions are equivalent:

«interface»
Edible

+howToEat(): String

Tiger

Animal

+sound(): String

Fruit Chicken

Orange Apple

FIGURE 15.4 Edible is a supertype for Chicken and Fruit. Animal is a supertype for
Chicken and Tiger. Fruit is a supertype for Orange and Apple.

common behavior

omitting modifiers

accessing constants

SwingConstants

✓Point✓Check

public interface T {
final int K = 1;

void p();
}

public abstract

public static
Equivalent

public interface T {
int K = 1;

void p();
}

Tip
A constant defined in an interface can be accessed using the syntax
InterfaceName.CONSTANT_NAME (e.g., T.K). It is a good practice to define com-
mon constants that are shared by many classes in an interface. For example, the con-
stants LEFT, CENTER, RIGHT, LEADING, TRAILING, TOP, and BOTTOM used in
AbstractButton are also used in many other Swing components. These constants are
centrally defined in the javax.swing.SwingConstants interface. All Swing GUI
components implement SwingConstants. You can reference the constants through
SwingConstants or a GUI component. For example, SwingConstants.CENTER is
the same as JButton.CENTER.

15.13 Suppose A is an interface. Can you create an instance using new A()?

15.6 The Comparable Interface 573

15.14 Suppose A is an interface. Can you declare a reference variable x with type A like this?

A x;

15.15 Which of the following is a correct interface?

interface A {
void print() { };

}

abstract interface A {
print();

}

abstract interface A extends I1, I2 {
abstract void print() { };

}

interface A {
void print();

}

(a)

(c)

(b)

(d)

15.16 Explain why SwingConstants.LEFT, AbstractButton.LEFT, JButton.LEFT,
JCheckBox.LEFT, JRadioButton.LEFT, and JLabel.LEFT all have the same value.

15.6 The Comparable Interface
The Comparable interface defines the compareTo method for comparing objects.

Suppose you want to design a generic method to find the larger of two objects of the same
type, such as two students, two dates, two circles, two rectangles, or two squares. In order to
accomplish this, the two objects must be comparable, so the common behavior for the objects
must be comparable. Java provides the Comparable interface for this purpose. The interface
is defined as follows:

// Interface for comparing objects, defined in java.lang
package java.lang;

{

}

The compareTo method determines the order of this object with the specified object o and
returns a negative integer, zero, or a positive integer if this object is less than, equal to, or
greater than o.

The Comparable interface is a generic interface. The generic type E is replaced by a con-
crete type when implementing this interface. Many classes in the Java library implement
Comparable to define a natural order for objects. The classes Byte, Short, Integer, Long,
Float, Double, Character, BigInteger, BigDecimal, Calendar, String, and Date

all implement the Comparable interface. For example, the Integer, BigInteger,
String, and Date classes are defined as follows in the Java API:

public int compareTo(E o);
public interface Comparable<E>

Key
Point

public class Integer extends Number
{

// class body omitted

@Override
public int compareTo(Integer o) {
// Implementation omitted

}
}

implements Comparable<Integer>
public class BigInteger extends Number

{
// class body omitted

@Override
public int compareTo(BigInteger o) {
// Implementation omitted

}
}

implements Comparable<BigInteger>

java.lang.Comparable

574 Chapter 15 Abstract Classes and Interfaces

Thus, numbers are comparable, strings are comparable, and so are dates. You can use the
compareTo method to compare two numbers, two strings, and two dates. For example, the
following code

1 System.out.println(new Integer(3).compareTo(new Integer(5)));
2 System.out.println("ABC".compareTo("ABE"));
3 java.util.Date date1 = new java.util.Date(2013, 1, 1);
4 java.util.Date date2 = new java.util.Date(2012, 1, 1);
5 System.out.println(date1.compareTo(date2));

displays

-1
-2
1

Line 1 displays a negative value since 3 is less than 5. Line 2 displays a negative value since
ABC is less than ABE. Line 5 displays a positive value since date1 is greater than date2.

Let n be an Integer object, s be a String object, and d be a Date object. All the fol-
lowing expressions are true.

create an array
sort the array

public class String extends Object
{

// class body omitted

@Override
public int compareTo(String o) {
// Implementation omitted

}
}

implements Comparable<String>
public class Date extends Object

{
// class body omitted

@Override
public int compareTo(Date o) {
// Implementation omitted

}
}

implements Comparable<Date>

n instanceof Integer
n instanceof Object
n instanceof Comparable

s instanceof String
s instanceof Object
s instanceof Comparable

d instanceof java.util.Date
d instanceof Object
d instanceof Comparable

Since all Comparable objects have the compareTo method, the
java.util.Arrays.sort(Object[]) method in the Java API uses the compareTo
method to compare and sorts the objects in an array, provided that the objects are instances of
the Comparable interface. Listing 15.8 gives an example of sorting an array of strings and an
array of BigInteger objects.

LISTING 15.8 SortComparableObjects.java
1 import java.math.*;
2
3 public class SortComparableObjects {
4 public static void main(String[] args) {
5
6
7 for (String city: cities)
8 System.out.print(city + " ");
9 System.out.println();
10
11 ,BigInteger[] hugeNumbers = {new BigInteger("2323231092923992")

java.util.Arrays.sort(cities);
String[] cities = {"Savannah", "Boston", "Atlanta", "Tampa"};

create an array

15.6 The Comparable Interface 575

12 new BigInteger("432232323239292"),
13 new BigInteger("54623239292")};
14
15 for (BigInteger number: hugeNumbers)
16 System.out.print(number + " ");
17 }
18 }

java.util.Arrays.sort(hugeNumbers);

Atlanta Boston Savannah Tampa
54623239292 432232323239292 2323231092923992

The program creates an array of strings (line 5) and invokes the sort method to sort the
strings (line 6). The program creates an array of BigInteger objects (lines 11–13) and
invokes the sort method to sort the BigInteger objects (line 14).

You cannot use the sort method to sort an array of Rectangle objects, because
Rectangle does not implement Comparable. However, you can define a new rectangle
class that implements Comparable. The instances of this new class are comparable. Let this
new class be named ComparableRectangle, as shown in Listing 15.9.

LISTING 15.9 ComparableRectangle.java
1 public class ComparableRectangle extends Rectangle
2 {
3 /** Construct a ComparableRectangle with specified properties */
4 public ComparableRectangle(double width, double height) {
5 super(width, height);
6 }
7
8 @Override // Implement the compareTo method defined in Comparable
9 {
10 if (getArea() > o.getArea())
11 return 1;
12 else if (getArea() < o.getArea())
13 return -1;
14 else

15 return 0;
16 }
17
18 @Override // Implement the toString method in GeometricObject
19 public String toString() {
20 return super.toString() + " Area: " + getArea();
21 }
22 }

ComparableRectangle extends Rectangle and implements Comparable, as shown in
Figure 15.5. The keyword implements indicates that ComparableRectangle inherits all
the constants from the Comparable interface and implements the methods in the interface.
The compareTo method compares the areas of two rectangles. An instance of
ComparableRectangle is also an instance of Rectangle, GeometricObject, Object,
and Comparable.

You can now use the sort method to sort an array of ComparableRectangle objects, as
in Listing 15.10.

public int compareTo(ComparableRectangle o)

implements Comparable<ComparableRectangle>

sort the array

implements Comparable

implement compareTo

implement toString

576 Chapter 15 Abstract Classes and Interfaces

create an array

sort the array

Width: 3.4 Height: 5.4 Area: 18.36
Width: 1.4 Height: 25.4 Area: 35.559999999999995
Width: 7.4 Height: 35.4 Area: 261.96
Width: 13.24 Height: 55.4 Area: 733.496

An interface provides another form of generic programming. It would be difficult to use a
generic sort method to sort the objects without using an interface in this example, because
multiple inheritance would be necessary to inherit Comparable and another class, such as
Rectangle, at the same time.

The Object class contains the equals method, which is intended for the subclasses of the
Object class to override in order to compare whether the contents of the objects are the same.
Suppose that the Object class contains the compareTo method, as defined in the
Comparable interface; the sort method can be used to compare a list of any objects.
Whether a compareTo method should be included in the Object class is debatable. Since the
compareTo method is not defined in the Object class, the Comparable interface is defined
in Java to enable objects to be compared if they are instances of the Comparable interface. It
is strongly recommended (though not required) that compareTo should be consistent with
equals. That is, for two objects o1 and o2, o1.compareTo(o2) == 0 if and only if
o1.equals(o2) is true.

15.17 True or false? If a class implements Comparable, the object of the class can invoke
the compareTo method.

benefits of interface

✓Point✓Check

Notation:
The interface name and the
method names are italicized.
The dashed lines and hollow
triangles are used to point to
the interface.

ComparableRectangle

Rectangle

GeometricObject

+compareTo(o: ComparableRectangle): int

java.lang.Comparable<ComparableRectangle>
«interface»

FIGURE 15.5 ComparableRectangle extends Rectangle and implements Comparable.

LISTING 15.10 SortRectangles.java
1 public class SortRectangles {
2 public static void main(String[] args) {
3
4 new ComparableRectangle(3.4, 5.4),
5 new ComparableRectangle(13.24, 55.4),
6 new ComparableRectangle(7.4, 35.4),
7 new ComparableRectangle(1.4, 25.4)};
8
9 for (Rectangle rectangle: rectangles) {
10 System.out.print(rectangle + " ");
11 System.out.println();
12 }
13 }
14 }

java.util.Arrays.sort(rectangles);

ComparableRectangle[] rectangles = {

15.7 The Cloneable Interface 577

15.18 Which of the following is the correct method header for the compareTo method in
the String class?

public int compareTo(String o)
public int compareTo(Object o)

15.19 Can the following code be compiled? Why?

Integer n1 = new Integer(3);
Object n2 = new Integer(4);
System.out.println(n1.compareTo(n2));

15.20 You can define the compareTo method in a class without implementing the
Comparable interface. What are the benefits of implementing the Comparable
interface?

15.21 True or false? If a class implements Comparable, the object of the class can invoke
the compareTo method.

15.7 The Cloneable Interface
The Cloneable interface defines the compareTo method for comparing objects.

Often it is desirable to create a copy of an object. To do this, you need to use the clone
method and understand the Cloneable interface.

An interface contains constants and abstract methods, but the Cloneable interface is a
special case. The Cloneable interface in the java.lang package is defined as follows:

package java.lang;

public interface Cloneable {
}

This interface is empty. An interface with an empty body is referred to as a marker interface.
A marker interface does not contain constants or methods. It is used to denote that a class pos-
sesses certain desirable properties. A class that implements the Cloneable interface is
marked cloneable, and its objects can be cloned using the clone() method defined in the
Object class.

Many classes in the Java library (e.g., Date, Calendar, and ArrayList) implement
Cloneable. Thus, the instances of these classes can be cloned. For example, the following code

1 Calendar calendar = new GregorianCalendar(2013, 2, 1);
2 Calendar calendar1 = calendar;
3 Calendar calendar2 = (Calendar)calendar.clone();
4 System.out.println("calendar == calendar1 is " +
5 (calendar == calendar1));
6 System.out.println("calendar == calendar2 is " +
7 (calendar == calendar2));
8 System.out.println("calendar.equals(calendar2) is " +
9 calendar.equals(calendar2));

displays

calendar == calendar1 is true
calendar == calendar2 is false
calendar.equals(calendar2) is true

In the preceding code, line 2 copies the reference of calendar to calendar1, so calendar
and calendar1 point to the same Calendar object. Line 3 creates a new object that is the

Key
Point

java.lang.Cloneable

marker interface

578 Chapter 15 Abstract Classes and Interfaces

clone of calendar and assigns the new object’s reference to calendar2. calendar2 and
calendar are different objects with the same contents.

The following code

1 ArrayList<Double> list1 = new ArrayList<Double>();
2 list1.add(1.5);
3 list1.add(2.5);
4 list1.add(3.5);
5 ArrayList<Double> list2 = (ArrayList<Double>)list1.clone();
6 ArrayList<Double> list3 = list1;
7 list2.add(4.5);
8 list3.remove(1.5);
9 System.out.println("list1 is " + list1);
10 System.out.println("list2 is " + list2);
11 System.out.println("list3 is " + list3);

displays

list1 is [2.5, 3.5]
list2 is [1.5, 2.5, 3.5, 4.5]
list3 is [2.5, 3.5]

In the preceding code, line 5 creates a new object that is the clone of list1 and assigns the
new object’s reference to list2. list2 and list1 are different objects with the same con-
tents. Line 6 copies the reference of list1 to list3, so list1 and list3 point to the same
ArrayList object. Line 7 adds 4.5 into list2. Line 8 removes 1.5 from list3. Since
list1 and list3 point to the same ArrayList, line 9 and 11 display the same content.

You can clone an array using the clone method. For example, the following code

1 int[] list1 = {1, 2};
2 int[] list2 = list1.clone();
3 list1[0] = 7;
4 list2[1] = 8;
5 System.out.println("list1 is " + list1[0] + ", " + list1[1]);
6 System.out.println("list2 is " + list2[0] + ", " + list2[1]);

displays

list1 is 7, 2

list2 is 1, 8

To define a custom class that implements the Cloneable interface, the class must override
the clone() method in the Object class. Listing 15.11 defines a class named House that
implements Cloneable and Comparable.

LISTING 15.11 House.java
1 public class {
2 private int id;
3 private double area;
4 private java.util.Date whenBuilt;
5
6 public House(int id, double area) {
7 this.id = id;
8 this.area = area;
9 whenBuilt = new java.util.Date();
10 }
11
12 public int getId() {

House implements Cloneable, Comparable<House>

clone arrays

how to implement Cloneable

15.7 The Cloneable Interface 579

13 return id;
14 }
15
16 public double getArea() {
17 return area;
18 }
19
20 public java.util.Date getWhenBuilt() {
21 return whenBuilt;
22 }
23
24 @Override /** Override the protected clone method defined in
25 the Object class, and strengthen its accessibility */
26 throws CloneNotSupportedException {
27
28 }
29
30 @Override // Implement the compareTo method defined in Comparable
31
32 if (area > o.area)
33 return 1;
34 else if (area < o.area)
35 return -1;
36 else

37 return 0;
38 }
39 }

The House class implements the clone method (lines 26–28) defined in the Object
class. The header is:

protected native Object clone() throws CloneNotSupportedException;

The keyword native indicates that this method is not written in Java but is implemented
in the JVM for the native platform. The keyword protected restricts the method to be
accessed in the same package or in a subclass. For this reason, the House class must override
the method and change the visibility modifier to public so that the method can be used in
any package. Since the clone method implemented for the native platform in the Object
class performs the task of cloning objects, the clone method in the House class simply
invokes super.clone(). The clone method defined in the Object class may throw
CloneNotSupportedException.

The House class implements the compareTo method (lines 31–38) defined in the
Comparable interface. The method compares the areas of two houses.

You can now create an object of the House class and create an identical copy from it,
as follows:

House house1 = new House(1, 1750.50);
House house2 = (House)house1.clone();

house1 and house2 are two different objects with identical contents. The clone method in
the Object class copies each field from the original object to the target object. If the field is
of a primitive type, its value is copied. For example, the value of area (double type) is
copied from house1 to house2. If the field is of an object, the reference of the field is copied.
For example, the field whenBuilt is of the Date class, so its reference is copied into
house2, as shown in Figure 15.6. Therefore, house1.whenBuilt == house2.when-

Built is true, although house1 == house2 is false. This is referred to as a shallow copy
rather than a deep copy, meaning that if the field is of an object type, the object’s reference is
copied rather than its contents.

public int compareTo(House o) {

return super.clone();
public Object clone() This exception is thrown if

House does not implement
Cloneable

CloneNotSupportedException

shallow copy

deep copy

580 Chapter 15 Abstract Classes and Interfaces

To perform a deep copy for a House object, replace the clone() method in lines 26–27
with the following code:

public Object clone() throws CloneNotSupportedException {
// Perform a shallow copy
House houseClone = (House)super.clone();
// Deep copy on whenBuilt
houseClone.whenBuilt = (java.util.Date)(whenBuilt.clone());
return houseClone;

}

or

public Object clone() {
try {
// Perform a shallow copy
House houseClone = (House)super.clone();
// Deep copy on whenBuilt
houseClone.whenBuilt = (java.util.Date)(whenBuilt.clone());
return houseClone;

}

catch (CloneNotSupportedException ex) {
return null;

}
}

Now if you clone a House object in the following code:

House house1 = new House(1, 1750.50);
House house2 = (House)house1.clone();

house1.whenBuilt == house2.whenBuilt will be false. house1 and house2 refer-
ence two different Date objects.

15.22 Can you invoke the clone() method to clone an object if the class for the object
does not implement the java.lang.Cloneable? Does the Date class imple-
ment Cloneable?

15.23 What would happen if the House class (defined in Listing 15.9) did not override the
clone() method or if House did not implement java.lang.Cloneable?

deep copy

✓Point✓Check

house2: House

id = 1

area = 1750.50

whenBuilt

Memory

house2 = house1.clone()

reference

date object contents

whenBuilt: Date

Memory

1

1750.50

1

1750.50

house1: House

id = 1

area = 1750.50

whenBuilt

reference

FIGURE 15.6 The default clone method performs a shallow copy.

15.8 Interfaces vs. Abstract Classes 581

15.24 Show the printout of the following code:

java.util.Date date = new java.util.Date();
java.util.Date date1 = date;
java.util.Date date2 = (java.util.Date)(date.clone());
System.out.println(date == date1);
System.out.println(date == date2);
System.out.println(date.equals(date2));

15.25 Show the printout of the following code:

ArrayList<String> list = new ArrayList<String>();
list.add("New York");
ArrayList<String> list1 = list;
ArrayList<String> list2 = (ArrayList<String>)(list.clone());
list.add("Atlanta");
System.out.println(list == list1);
System.out.println(list == list2);
System.out.println("list is " + list);
System.out.println("list1 is " + list1);
System.out.println("list2.get(0) is " + list2.get(0));
System.out.println("list2.size() is " + list2.size());

15.26 What is wrong in the following code?

public class Test {
public static void main(String[] args) {
GeometricObject x = new Circle(3);
GeometricObject y = x.clone();
System.out.println(x == y);

}
}

15.8 Interfaces vs. Abstract Classes
A class can implement multiple interfaces, but it can only extend one superclass.

An interface can be used more or less the same way as an abstract class, but defining an inter-
face is different from defining an abstract class. Table 15.2 summarizes the differences.

TABLE 15.2 Interfaces vs. Abstract Classes

Variables Constructors Methods

Abstract class No restrictions. Constructors are invoked by subclasses through constructor
chaining. An abstract class cannot be instantiated using
the new operator.

No restrictions.

Interface All variables must be
public static final.

No constructors. An interface cannot be instantiated using
the new operator.

All methods must be public
abstract instance methods

Java allows only single inheritance for class extension but allows multiple extensions for
interfaces. For example,

public class NewClass BaseClass
Interface1, . . ., InterfaceN {

. . .
}

implements

extends

Key
Point

single inheritance

multiple inheritance

582 Chapter 15 Abstract Classes and Interfaces

An interface can inherit other interfaces using the extends keyword. Such an interface is
called a subinterface. For example, NewInterface in the following code is a subinterface of
Interface1, . . . , and InterfaceN.

public NewInterface Interface1, . . . , InterfaceN {
// constants and abstract methods

}

A class implementing NewInterface must implement the abstract methods defined in
NewInterface, Interface1, . . . , and InterfaceN. An interface can extend other inter-
faces but not classes. A class can extend its superclass and implement multiple interfaces.

All classes share a single root, the Object class, but there is no single root for interfaces.
Like a class, an interface also defines a type. A variable of an interface type can reference any
instance of the class that implements the interface. If a class implements an interface, the
interface is like a superclass for the class. You can use an interface as a data type and cast a
variable of an interface type to its subclass, and vice versa. For example, suppose that c is an
instance of Class2 in Figure 15.7. c is also an instance of Object, Class1, Interface1,
Interface1_1, Interface1_2, Interface2_1, and Interface2_2.

extendsinterface

subinterface

naming convention

is-a relationship

is-kind-of relationship

interface preferred

Interface2_1Interface1Interface1_1

Interface1_2

Class1Object Class2

Interface2_2

FIGURE 15.7 Class1 implements Interface1; Interface1 extends Interface1_1
and Interface1_2. Class2 extends Class1 and implements Interface2_1 and
Interface2_2.

Note
Class names are nouns. Interface names may be adjectives or nouns.

Design Guide
Abstract classes and interfaces can both be used to specify common behavior of objects.
How do you decide whether to use an interface or a class? In general, a strong is-a rela-
tionship that clearly describes a parent-child relationship should be modeled using
classes. For example, Gregorian calendar is a calendar, so the relationship between the
class java.util.GregorianCalendar and java.util.Calendar is modeled
using class inheritance. A weak is-a relationship, also known as an is-kind-of relation-
ship, indicates that an object possesses a certain property. A weak is-a relationship can
be modeled using interfaces. For example, all strings are comparable, so the String
class implements the Comparable interface.

In general, interfaces are preferred over abstract classes because an interface can
define a common supertype for unrelated classes. Interfaces are more flexible than

15.8 Interfaces vs. Abstract Classes 583

classes. Consider the Animal class. Suppose the howToEat method is defined in the
Animal class, as follows:

abstract class Animal {
;

}

Two subclasses of Animal are defined as follows:

class Chicken extends Animal {
@Override

{
return "Fry it";

}
}

class Duck extends Animal {
@Override

{
return "Roast it";

}
}

Given this inheritance hierarchy, polymorphism enables you to hold a reference to a Chicken
object or a Duck object in a variable of type Animal, as in the following code:

public static void main(String[] args) {

eat(animal);

eat(animal);
}

public static void eat(Animal animal) {

}

The JVM dynamically decides which howToEat method to invoke based on the actual object
that invokes the method.

You can define a subclass of Animal. However, there is a restriction: The subclass must be
for another animal (e.g., Turkey).

Interfaces don’t have this restriction. Interfaces give you more flexibility than classes,
because you don’t have to make everything fit into one type of class. You may define the
howToEat() method in an interface and let it serve as a common supertype for other classes.
For example,

public static void main(String[] args) {

eat(stuff);

eat(stuff);

eat(stuff);
}

stuff = new Broccoli();

stuff = new Duck();

Edible stuff = new Chicken();

animal.howToEat();

animal = new Duck();

Animal animal = new Chicken();

public String howToEat()

String howToEat()public

public abstract String howToEat()
Animal class

Chicken class

Duck class

584 Chapter 15 Abstract Classes and Interfaces

public static void eat(Edible stuff) {

}

interface Edible {
;

}

class Chicken implements Edible {
@Override

{
return "Fry it";

}
}

class Duck implements Edible {
@Override

{
return "Roast it";

}
}

class Broccoli implements Edible {
@Override

{
return "Stir-fry it";

}
}

To define a class that represents edible objects, simply let the class implement the Edible
interface. The class is now a subtype of the Edible type, and any Edible object can be
passed to invoke the eat method.

15.27 Give an example to show why interfaces are preferred over abstract classes.

15.28 Define the terms abstract classes and interfaces. What are the similarities and differ-
ences between abstract classes and interfaces?

15.28 True or false?

a. An interface is compiled into a separate bytecode file.

b. An interface can have static methods.

c. An interface can extend one or more interfaces.

d. An interface can extend an abstract class.

e. An abstract class can extend an interface.

15.9 Case Study: The Rational Class
This section shows how to design the Rational class for representing and processing
rational numbers.

A rational number has a numerator and a denominator in the form a/b, where a is the numer-
ator and b the denominator. For example, 1/3, 3/4, and 10/4 are rational numbers.

A rational number cannot have a denominator of 0, but a numerator of 0 is fine. Every inte-
ger i is equivalent to a rational number i/1. Rational numbers are used in exact computations
involving fractions—for example, 1/3 = 0.33333. . . . This number cannot be precisely
represented in floating-point format using either the data type double or float. To obtain
the exact result, we must use rational numbers.

public String howToEat()

public String howToEat()

public String howToEat()

public String howToEat()

stuff.howToEat();

Broccoli class

✓Point✓Check

Key
Point

Edible interface

Chicken class

Duck class

15.9 Case Study: The Rational Class 585

Java provides data types for integers and floating-point numbers, but not for rational num-
bers. This section shows how to design a class to represent rational numbers.

Since rational numbers share many common features with integers and floating-point
numbers, and Number is the root class for numeric wrapper classes, it is appropriate to define
Rational as a subclass of Number. Since rational numbers are comparable, the Rational
class should also implement the Comparable interface. Figure 15.8 illustrates the Rational
class and its relationship to the Number class and the Comparable interface.

1

Add, Subtract, Multiply, Divide

java.lang.Number

java.lang.Comparable<Rational>

Rational

Rational

1

-numerator: long
-denominator: long

+Rational()

+getDenominator(): long
+add(secondRational: Rational):
 Rational

+subtract(secondRational:
 Rational): Rational

+multiply(secondRational:
 Rational): Rational

+divide(secondRational:
 Rational): Rational
+toString(): String

-gcd(n: long, d: long): long

+getNumerator(): long

+Rational(numerator: long,
 denominator: long)

The numerator of this rational number.

Creates a rational number with numerator 0 and denominator 1.

Creates a rational number with a specified numerator and
 denominator.

Returns the numerator of this rational number.
Returns the denominator of this rational number.
Returns the addition of this rational number with another.

Returns the subtraction of this rational number with another.

Returns the multiplication of this rational number with another.

Returns the division of this rational number with another.

Returns a string in the form “numerator/denominator.” Returns
the numerator if denominator is 1.
Returns the greatest common divisor of n and d.

The denominator of this rational number.

FIGURE 15.8 The properties, constructors, and methods of the Rational class are illustrated in UML.

A rational number consists of a numerator and a denominator. There are many equivalent
rational numbers—for example, 1/3 = 2/6 = 3/9 = 4/12. The numerator and the
denominator of 1/3 have no common divisor except 1, so 1/3 is said to be in lowest terms.

To reduce a rational number to its lowest terms, you need to find the greatest common
divisor (GCD) of the absolute values of its numerator and denominator, then divide both the
numerator and denominator by this value. You can use the method for computing the GCD of
two integers n and d, as suggested in Listing 4.9, GreatestCommonDivisor.java. The numer-
ator and denominator in a Rational object are reduced to their lowest terms.

As usual, let us first write a test program to create two Rational objects and test its meth-
ods. Listing 15.12 is a test program.

LISTING 15.12 TestRationalClass.java
1 public class TestRationalClass {
2 /** Main method */
3 public static void main(String[] args) {
4 // Create and initialize two rational numbers r1 and r2

586 Chapter 15 Abstract Classes and Interfaces

5
6
7
8 // Display results
9 System.out.println(r1 + " + " + r2 + " = " +);
10 System.out.println(r1 + " - " + r2 + " = " +);
11 System.out.println(r1 + " * " + r2 + " = " +);
12 System.out.println(r1 + " / " + r2 + " = " +);
13 System.out.println(r2 + " is " +);
14 }
15 }

r2.doubleValue()
r1.divide(r2)
r1.multiply(r2)
r1.subtract(r2)
r1.add(r2)

Rational r2 = new Rational(2, 3);
Rational r1 = new Rational(4, 2);create a Rational

create a Rational

add

2 + 2/3 = 8/3
2 - 2/3 = 4/3
2 * 2/3 = 4/3
2 / 2/3 = 3
2/3 is 0.6666666666666666

The main method creates two rational numbers, r1 and r2 (lines 5–6), and displays the
results of r1 + r2, r1 - r2, r1 x r2, and r1 / r2 (lines 9–12). To perform r1 + r2,
invoke r1.add(r2) to return a new Rational object. Similarly, invoke r1.subtract(r2)
for r1 - r2, r1.multiply(r2) for r1 x r2 , and r1.divide(r2) for r1 / r2.

The doubleValue() method displays the double value of r2 (line 13). The double-
Value() method is defined in java.lang.Number and overridden in Rational.

Note that when a string is concatenated with an object using the plus sign (+), the object’s
string representation from the toString() method is used to concatenate with the string. So
r1 + " + " + r2 + " = " + r1.add(r2) is equivalent to r1.toString() + " + "
+ r2.toString() + " = " + r1.add(r2).toString().

The Rational class is implemented in Listing 15.13.

LISTING 15.13 Rational.java
1 {
2 // Data fields for numerator and denominator
3 private long numerator = 0;
4 private long denominator = 1;
5
6 /** Construct a rational with default properties */
7 {
8 this(0, 1);
9 }
10
11 /** Construct a rational with specified numerator and denominator */
12 {
13 long gcd = gcd(numerator, denominator);
14 this.numerator = ((denominator > 0) ? 1 : -1) * numerator / gcd;
15 this.denominator = Math.abs(denominator) / gcd;
16 }
17
18 /** Find GCD of two numbers */
19 private static long gcd(long n, long d) {
20 long n1 = Math.abs(n);
21 long n2 = Math.abs(d);
22 int gcd = 1;

public Rational(long numerator, long denominator)

public Rational()

public class Rational extends Number implements Comparable<Rational>

15.9 Case Study: The Rational Class 587

23
24 for (int k = 1; k <= n1 && k <= n2; k++) {
25 if (n1 % k == 0 && n2 % k == 0)
26 gcd = k;
27 }
28
29 return gcd;
30 }
31
32 /** Return numerator */
33 public long getNumerator() {
34 return numerator;
35 }
36
37 /** Return denominator */
38 public long getDenominator() {
39 return denominator;
40 }
41
42 /** Add a rational number to this rational */
43 {
44 long n = numerator * secondRational.getDenominator() +
45 denominator * secondRational.getNumerator();
46 long d = denominator * secondRational.getDenominator();
47 return new Rational(n, d);
48 }
49
50 /** Subtract a rational number from this rational */
51 {
52 long n = numerator * secondRational.getDenominator()
53 - denominator * secondRational.getNumerator();
54 long d = denominator * secondRational.getDenominator();
55 return new Rational(n, d);
56 }
57
58 /** Multiply a rational number by this rational */
59 {
60 long n = numerator * secondRational.getNumerator();
61 long d = denominator * secondRational.getDenominator();
62 return new Rational(n, d);
63 }
64
65 /** Divide a rational number by this rational */
66 {
67 long n = numerator * secondRational.getDenominator();
68 long d = denominator * secondRational.numerator;
69 return new Rational(n, d);
70 }
71
72 @Override
73 public String toString() {
74 if (denominator == 1)
75 return numerator + "";
76 else

77 return numerator + "/" + denominator;
78 }
79
80 @Override // Override the equals method in the Object class
81 public boolean equals(Object other) {
82 if ((this.subtract((Rational)(other))).getNumerator() == 0)

public Rational divide(Rational secondRational)

public Rational multiply(Rational secondRational)

public Rational subtract(Rational secondRational)

public Rational add(Rational secondRational) a
b + c

d = ad + bc
bd

a
b - c

d = ad - bc
bd

a
b * c

d = ac
bd

a
b � c

d = ad
bc

588 Chapter 15 Abstract Classes and Interfaces

83 return true;
84 else

85 return false;
86 }
87
88 @Override // Implement the abstract intValue method in Number
89 public int intValue() {
90 return (int)doubleValue();
91 }
92
93 @Override // Implement the abstract floatValue method in Number
94 public float floatValue() {
95 return (float)doubleValue();
96 }
97
98 @Override // Implement the doubleValue method in Number
99 public double doubleValue() {
100 return numerator * 1.0 / denominator;
101 }
102
103 @Override // Implement the abstract longValue method in Number
104 public long longValue() {
105 return (long)doubleValue();
106 }
107
108 @Override // Implement the compareTo method in Comparable
109 public int compareTo(Rational o) {
110 if (this.subtract(o).getNumerator() > 0)
111 return 1;
112 else if (this.subtract(o).getNumerator() < 0)
113 return -1;
114 else

115 return 0;
116 }
117 }

The rational number is encapsulated in a Rational object. Internally, a rational number is
represented in its lowest terms (line 13), and the numerator determines its sign (line 14). The
denominator is always positive (line 15).

The gcd method (lines 19–30 in the Rational class) is private; it is not intended for use
by clients. The gcd method is only for internal use by the Rational class. The gcd method
is also static, since it is not dependent on any particular Rational object.

The abs(x) method (lines 20–21 in the Rational class) is defined in the Math class and
returns the absolute value of x.

Two Rational objects can interact with each other to perform add, subtract, multiply, and
divide operations. These methods return a new Rational object (lines 43–70).

The methods toString and equals in the Object class are overridden in the Rational
class (lines 72–86). The toString() method returns a string representation of a Rational
object in the form numerator/denominator, or simply numerator if denominator is 1.
The equals(Object other) method returns true if this rational number is equal to the
other rational number.

The abstract methods intValue, longValue, floatValue, and doubleValue in the
Number class are implemented in the Rational class (lines 88–106). These methods return
the int, long, float, and double value for this rational number.

The compareTo(Rational other) method in the Comparable interface is imple-
mented in the Rational class (lines 108–116) to compare this rational number to the other
rational number.

15.9 Case Study: The Rational Class 589

Tip
The get methods for the properties numerator and denominator are provided in
the Rational class, but the set methods are not provided, so, once a Rational
object is created, its contents cannot be changed. The Rational class is immutable.
The String class and the wrapper classes for primitive type values are also
immutable.

Tip
The numerator and denominator are represented using two variables. It is possible to
use an array of two integers to represent the numerator and denominator (see Pro-
gramming Exercise 15.16). The signatures of the public methods in the Rational
class are not changed, although the internal representation of a rational number is
changed. This is a good example to illustrate the idea that the data fields of a class
should be kept private so as to encapsulate the implementation of the class from the
use of the class.

The Rational class has serious limitations and can easily overflow. For example, the fol-
lowing code will display an incorrect result, because the denominator is too large.

public class Test {
public static void main(String[] args) {
Rational r1 = new Rational(1, 123456789);
Rational r2 = new Rational(1, 123456789);
Rational r3 = new Rational(1, 123456789);
System.out.println("r1 * r2 * r3 is " +
r1.multiply(r2.multiply(r3)));

}
}

immutable

r1 * r2 * r3 is -1/2204193661661244627

To fix it, you can implement the Rational class using the BigInteger for numerator and
denominator (see Programming Exercise 15.21).

15.30 Show the printout of the following code?

Rational r1 = new Rational(-2, 6);
System.out.println(r1.getNumerator());
System.out.println(r1.getDenominator());
System.out.println(r1.intValue());
System.out.println(r1.doubleValue());

15.31 Why is the following code wrong?

Rational r1 = new Rational(-2, 6);
Object r2 = new Rational(1, 45);
System.out.println(r2.compareTo(r1));

15.32 Why is the following code wrong?

Object r1 = new Rational(-2, 6);
Rational r2 = new Rational(1, 45);
System.out.println(r2.compareTo(r1));

✓Point✓Check

encapsulation

overflow

590 Chapter 15 Abstract Classes and Interfaces

abstract class 560
abstract method 560
deep copy 579
interface 560

marker interface 577
shallow copy 579
subinterface 582

CHAPTER SUMMARY

1. Abstract classes are like regular classes with data and methods, but you cannot create
instances of abstract classes using the new operator.

2. An abstract method cannot be contained in a nonabstract class. If a subclass of an
abstract superclass does not implement all the inherited abstract methods of the
superclass, the subclass must be defined as abstract.

3. A class that contains abstract methods must be abstract. However, it is possible to
define an abstract class that doesn’t contain any abstract methods.

4. A subclass can be abstract even if its superclass is concrete.

5. An interface is a class-like construct that contains only constants and abstract meth-
ods. In many ways, an interface is similar to an abstract class, but an abstract class can
contain constants and abstract methods as well as variables and concrete methods.

6. An interface is treated like a special class in Java. Each interface is compiled into a
separate bytecode file, just like a regular class.

7. The java.lang.Comparable interface defines the compareTo method. Many
classes in the Java library implement Comparable.

8. The java.lang.Cloneable interface is a marker interface. An object of the class
that implements the Cloneable interface is cloneable.

9. A class can extend only one superclass but can implement one or more interfaces.

10. An interface can extend one or more interfaces.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 15.2–15.3
**15.1 (Plot functions using abstract methods) Write an abstract class that draws the

diagram for a function. The class is defined as follows:

public abstract class AbstractDrawFunction extends JPanel {
/** Polygon to hold the points */
private Polygon p = new Polygon();

KEY TERMS

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 591

protected AbstractDrawFunction () {
drawFunction();

}

/** Return the y-coordinate */
abstract double f(double x);

/** Obtain points for x-coordinates 100, 101, . . ., 300 */
public void drawFunction() {
for (int x = -100; x <= 100; x++) {
p.addPoint(x + 200, 200 - (int)f(x));

}
}

@Override /** Draw axes, labels, and connect points */
protected void paintComponent(Graphics g) {
// To be completed by you

}
}

Test the class with the following functions:

a. f(x) = x2;
b. f(x) = sin(x);
c. f(x) = cos(x);
d. f(x) = tan(x);
e. f(x) = cos(x) + 5sin(x);
f. f(x) = 5cos(x) + sin(x);
g. f(x) = log(x) + x2;

For each function, create a class that extends the AbstractDrawFunction
class and implements the f method. Figure 15.9 displays the drawings for the
first three functions.

FIGURE 15.9 Exercise 15.1 draws the square, sine, and cosine functions.

**15.2 (Triangle class) Design a new Triangle class that extends the abstract
GeometricObject class. Draw the UML diagram for the classes Triangle
and GeometricObject and then implement the Triangle class. Write a test
program that prompts the user to enter three sides of the triangle, a color, and a
Boolean value to indicate whether the triangle is filled. The program should cre-
ate a Triangle object with these sides and set the color and filled properties
using the input. The program should display the area, perimeter, color, and true
or false to indicate whether it is filled or not.

592 Chapter 15 Abstract Classes and Interfaces

*15.3 (Shuffle ArrayList) Write the following method that shuffles an ArrayList of
numbers:

public static void shuffle(ArrayList<Number> list)

*15.4 (Sort ArrayList) Write the following method that sorts an ArrayList of numbers.

public static void sort(ArrayList<Number> list)

**15.5 (Display a calendar) Write a program that displays the calendar for the current
month, as shown in Figure 15.10. Use labels, and set text on the labels to display
the calendar. Use the GregorianCalendar class to obtain the information for
the month, year, first day of the month, and number of days in the month.

**15.6 (Display calendars) Rewrite the PrintCalendar class in Listing 5.12 to dis-
play a calendar for a specified month using the Calendar and
GregorianCalendar classes. Your program receives the month and year
from the command line. For example:

java Exercise15_06 1 2012

This displays the calendar shown in Figure 15.11.

JLabel

JPanel with
GridLayout

Each cell is
a JLabel

FIGURE 15.10 The program displays the calendar for the current month.

FIGURE 15.11 The program displays a calendar for January 2012.

You also can run the program without the year. In this case, the year is the cur-
rent year. If you run the program without specifying a month and a year, the
month is the current month.

Programming Exercises 593

Sections 15.4–15.8
*15.7 (Enable GeometricObject comparable) Modify the GeometricObject

class to implement the Comparable interface, and define a static max method
in the GeometricObject class for finding the larger of two
GeometricObject objects. Draw the UML diagram and implement the new
GeometricObject class. Write a test program that uses the max method to find
the larger of two circles and the larger of two rectangles.

*15.8 (The ComparableCircle class) Define a class named ComparableCircle
that extends Circle and implements Comparable. Draw the UML diagram and
implement the compareTo method to compare the circles on the basis of area.
Write a test class to find the larger of two instances of ComparableCircle
objects.

*15.9 (The Colorable interface) Design an interface named Colorable with a
void method named howToColor(). Every class of a colorable object must
implement the Colorable interface. Design a class named Square that
extends GeometricObject and implements Colorable. Implement
howToColor to display the message Color all four sides.

Draw a UML diagram that involves Colorable, Square, and
GeometricObject. Write a test program that creates an array of five
GeometricObjects. For each object in the array, invoke its howToColor
method if it is colorable.

*15.10 (Revise the MyStack class) Rewrite the MyStack class in Listing 11.9 to per-
form a deep copy of the list field.

*15.11 (Enable Circle comparable) Rewrite the Circle class in Listing 15.2 to
extend GeometricObject and implement the Comparable interface. Over-
ride the equals method in the Object class. Two Circle objects are equal if
their radii are the same. Draw the UML diagram that involves Circle,
GeometricObject, and Comparable.

*15.12 (Enable Rectangle comparable) Rewrite the Rectangle class in Listing 15.3
to extend GeometricObject and implement the Comparable interface. Over-
ride the equals method in the Object class. Two Rectangle objects are
equal if their areas are the same. Draw the UML diagram that involves
Rectangle, GeometricObject, and Comparable.

*15.13 (The Octagon class) Write a class named Octagon that extends
GeometricObject and implements the Comparable and Cloneable inter-
faces. Assume that all eight sides of the octagon are of equal size. The area can
be computed using the following formula:

Draw the UML diagram that involves Octagon, GeometricObject,
Comparable, and Cloneable. Write a test program that creates an Octagon
object with side value 5 and displays its area and perimeter. Create a new object
using the clone method and compare the two objects using the compareTo
method.

*15.14 (Sum the areas of geometric objects) Write a method that sums the areas of all
the geometric objects in an array. The method signature is:

public static double sumArea(GeometricObject[] a)

Write a test program that creates an array of four objects (two circles and two
rectangles) and computes their total area using the sumArea method.

area = (2 + 4/22)*side*side

Redesign the Rectangle
class

VideoNote

594 Chapter 15 Abstract Classes and Interfaces

*15.15 (Enable the Course class cloneable) Rewrite the Course class in Listing 10.6
to add a clone method to perform a deep copy on the students field.

Section 15.9
*15.16 (Demonstrate the benefits of encapsulation) Rewrite the Rational class in

Listing 15.13 using a new internal representation for the numerator and denom-
inator. Create an array of two integers as follows:

private long[] r = new long[2];

Use r[0] to represent the numerator and r[1] to represent the denominator.
The signatures of the methods in the Rational class are not changed, so a
client application that uses the previous Rational class can continue to use this
new Rational class without being recompiled.

*15.17 (Use BigInteger for the Rational class) Redesign and implement the
Rational class in Listing 15.11 using BigInteger for the numerator and
denominator.

*15.18 (Create a rational-number calculator) Write a program similar to Listing 9.5, Cal-
culator.java. Instead of using integers, use rationals, as shown in Figure 15.12a.
You will need to use the splitmethod in the String class, introduced in Section
9.2.6, Converting, Replacing, and Splitting Strings, to retrieve the numerator
string and denominator string, and convert strings into integers using the
Integer.parseInt method.

x-axis

y-axis

2 + 3i

3 - 2i

(a) (b)

FIGURE 15.12 (a) The program takes three arguments (operand1, operator, and operand2) from the command line and
displays the expression and the result of the arithmetic operation. (b) A complex number can be interpreted as a point in
a plane.

*15.19 (Math: The Complex class) A complex number is a number in the form
where a and b are real numbers and i is The numbers a and b are known
as the real part and imaginary part of the complex number, respectively. You can
perform addition, subtraction, multiplication, and division for complex numbers
using the following formulas:

(a + bi)/(c + di) = (ac + bd)/(c2 + d2) + (bc - ad)i/(c2 + d2)

(a + bi)* (c + di) = (ac - bd) + (bc + ad)i

a + bi - (c + di) = (a - c) + (b - d)i

a + bi + c + di = (a + c) + (b + d)i

2- ˛1.
a + bi,

Programming Exercises 595

You can also obtain the absolute value for a complex number using the fol-
lowing formula:

(A complex number can be interpreted as a point on a plane by identifying the
(a,b) values as the coordinates of the point. The absolute value of the complex
number corresponds to the distance of the point to the origin, as shown in Figure
15.12b.)

Design a class named Complex for representing complex numbers and the
methods add, subtract, multiply, divide, and abs for performing complex-
number operations, and override toString method for returning a string
representation for a complex number. The toString method returns (a + bi)
as a string. If b is 0, it simply returns a.

Provide three constructors Complex(a, b), Complex(a), and
Complex(). Complex() creates a Complex object for number 0 and
Complex(a) creates a Complex object with 0 for b. Also provide the
getRealPart() and getImaginaryPart() methods for returning the real
and imaginary part of the complex number, respectively.

Write a test program that prompts the user to enter two complex numbers
and displays the result of their addition, subtraction, multiplication, and divi-
sion. Here is a sample run:

�a + bi � = 2a2 + b2

Enter the first complex number:
Enter the second complex number:
(3.5 + 5.5i) + (-3.5 + 1.0i) = 0.0 + 6.5i
(3.5 + 5.5i) - (-3.5 + 1.0i) = 7.0 + 4.5i
(3.5 + 5.5i) * (-3.5 + 1.0i) = -17.75 + -15.75i
(3.5 + 5.5i) / (-3.5 + 1.0i) = -0.5094 + -1.7i
|(3.5 + 5.5i)| = 6.519202405202649

-3.5 1
3.5 5.5

**15.20 (Mandelbrot fractal) Mandelbrot fractal is a well-known image created from a
Mandelbrot set (see Figure 15.13a). A Mandelbrot set is defined using the fol-
lowing iteration:

c is a complex number and the starting point of iteration is For a given
c, the iteration will produce a sequence of complex numbers:

It can be shown that the sequence either tends to infin-
ity or stays bounded, depending on the value of c. For example, if c is 0, the
sequence is which is bounded. If c is i, the sequence is

which is bounded. If c is the
sequence is which is unbounded. It is known that if
the absolute value of a complex value in the sequence is greater than 2, then
the sequence is unbounded. The Mandelbrot set consists of the c value such
that the sequence is bounded. For example, 0 and i are in the Mandelbrot set. A
Mandelbrot image can be created using the following code:

1 class MandelbrotCanvas extends JPanel {
2 final static int COUNT_LIMIT = 60;

z i

{0, 1 + i, 1 + 3i, c },
1 + i,{0, i, - ˛1 + i, - ˛i, - ˛1 + i, i,c },

{0, 0, c },

{z0, z1,c , zn,c }.

z0 = 0.

zn+1 = z2
n + c

596 Chapter 15 Abstract Classes and Interfaces

(a) (b)

FIGURE 15.13 A Mandelbrot image is shown in (a) and a Julia set image is shown in (b).

3
4 @Override /** Paint a Mandelbrot image */
5 protected void paintComponent(Graphics g) {
6 super.paintComponent(g);
7
8 for (double x = -2.0; x < 2.0; x += 0.01)
9 for (double y = -2.0; y < 2.0; y += 0.01) {
10 int c = count(new Complex(x, y));
11 if (c == COUNT_LIMIT)
12 g.setColor(Color.BLACK); // c is in a Mandelbrot set
13 else

14 g.setColor(new Color(
15 c * 77 % 256, c * 58 % 256, c * 159 % 256));
16
17 g.drawRect((int)(x * 100) + 200, (int)(y * 100) + 200,
18 1, 1); // Fill a tiny rectangle with the specified color
19 }
20 }
21
22 /** Return the iteration count */
23 static int count(Complex c) {
24 Complex z = new Complex(0, 0); // z0
25
26 for (int i = 0; i < COUNT_LIMIT; i++) {
27 z = z.multiply(z).add(c); // Get z1, z2, . . .
28 if (z.abs() > 2) return i; // The sequence is unbounded
29 }
30
31 return COUNT_LIMIT; // Indicate a bounded sequence
32 }
33 }

The count(Complex c) method (lines 23–32) computes z1, z2, . . ., z60. If none
of their absolute values exceeds 2, we assume c is in the Mandelbrot set. Of
course, there could always be an error, but 60 (COUNT_LIMIT) iterations usually
are enough. Once we find that the sequence is unbounded, the method returns the

Programming Exercises 597

iteration count (line 28). The method returns COUNT_LIMIT if the sequence is
bounded (line 31).

The loop in lines 8–9 examines each point (x, y) for and
with interval 0.01 to see if its corresponding complex number

is in the Mandelbrot set (line 10). If so, paint the point black (line
12). If not, set a color that is dependent on its iteration count (line 15). Note that
the point is painted in a square with width u and height 1. All the points are
scaled and mapped to a grid of 400-by-400 pixels (lines 14–15). Note that the
values 77, 58, and 159 are set arbitrarily. You may set different numbers to get
new colors.

Complete the program to draw a Mandelbrot image, as shown in Figure
15.13a.

**15.21 (Julia set) The preceding exercise describes Mandelbrot sets. The Mandelbrot
set consists of the complex c value such that the sequence is
bounded with fixed and c varying. If we fix c and vary the
point (x, y) is said to be in a Julia set for a fixed complex value c, if the func-
tion stays bounded. Revise Exercise 15.20 to draw a Julia set
as shown in Figure 15.13b. Note that you only need to revise the count
method by using a fixed c value

15.22 (Use the Rational class) Write a program that computes the following sum-
mation series using the Rational class:

You will discover that the output is incorrect because of integer overflow (too
large). To fix this problem, see Programming Exercise 15.17.

1

2
+

2

3
+

3

4
+ c +

98

99
+

99

100

(- ˛0.3 + 0.6i).

zn+1 = z2
n + c

z0 (= x + yi),z0

zn+1 = z2
n + c

c = x + yi
- ˛2 6 y 6 2

- ˛2 6 x 6 2

This page intentionally left blank

EVENT-DRIVEN
PROGRAMMING

Objectives
■ To get a taste of event-driven programming (§16.1).

■ To describe events, event sources, and event classes (§16.2).

■ To define listener classes, register listener objects with the source object,
and write the code to handle events (§16.3).

■ To define listener classes using inner classes (§16.4).

■ To define listener classes using anonymous inner classes (§16.5).

■ To explore various coding styles for creating and registering listener
classes (§16.6).

■ To develop a GUI application for a loan calculator (§16.7).

■ To write programs to deal with MouseEvents (§16.8).

■ To simplify coding for listener classes using listener interface adapters
(§16.9).

■ To write programs to deal with KeyEvents (§16.10).

■ To use the javax.swing.Timer class to control animations (§16.11).

CHAPTER

16

600 Chapter 16 Event-Driven Programming

16.1 Introduction
You can write code to process events such as a button click or a timer.

Suppose you want to write a GUI program that lets the user enter a loan amount, annual inter-
est rate, and number of years and click the Compute Payment button to obtain the monthly pay-
ment and total payment, as shown in Figure 16.1a. How do you accomplish the task? You have
to use event-driven programming to write the code to respond to the button-clicking event.

Key
Point

problem

Suppose you want to write a program that animates a rising flag, as shown in Figure 16.1b–d.
How do you accomplish the task? There are several ways to program this. An effective one is to
use a timer in event-driven programming, which is the subject of this chapter.

Before delving into event-driven programming, it is helpful to get a taste using a simple
example. The example displays two buttons in a frame, as shown in Figure 16.2.

To respond to a button click, you need to write the code to process the button-clicking
action. The button is an event source object—where the action originates. You need to create
an object capable of handling the action event on a button. This object is called an event
listener, as shown in Figure 16.3.

Not all objects can be listeners for an action event. To be a listener of an action event, two
requirements must be met:

1. The object must be an instance of the ActionListener interface. This interface
defines the common behavior for all action listeners.

2. The ActionListener object listener must be registered with the event source
object using the method source.addActionListener(listener).

problem

ActionListener interface

addActionListener
(listener)

(a) (d)(c)(b)

FIGURE 16.1 (a) The program computes loan payments. (b)–(d) A flag is rising upward.

(a) (b)

FIGURE 16.2 (a) The program displays two buttons. (b) A message is displayed in the con-
sole when a button is clicked.

listenereventbutton

Clicking a button
fires an action event

An event is
an object

(Event source object) (Event object)

The listener object
processes the event

(Event listener object)

FIGURE 16.3 A listener object processes the event fired from the source object.

16.1 Introduction 601

The ActionListener interface contains the actionPerformed method for processing the
event. Your listener class must override this method to respond to the event. Listing 16.1 gives
the code that processes the ActionEvent on the two buttons. When you click the OK button,
the message “OK button clicked” is displayed. When you click the Cancel button, the mes-
sage “Cancel button clicked” is displayed, as shown in Figure 16.2.

LISTING 16.1 HandleEvent.java
1 import javax.swing.*;
2 import java.awt.event.*;
3
4 public class {
5 public HandleEvent() {
6 // Create two buttons
7 JButton jbtOK = new JButton("OK");
8 JButton jbtCancel = new JButton("Cancel");
9
10 // Create a panel to hold buttons
11 JPanel panel = new JPanel();
12 panel.add(jbtOK);
13 panel.add(jbtCancel);
14
15 add(panel); // Add panel to the frame
16
17 // Register listeners
18
19 CancelListenerClass listener2 = new CancelListenerClass();
20
21 jbtCancel.addActionListener(listener2);
22 }
23
24 public static void main(String[] args) {
25
26 frame.setTitle("Handle Event");
27 frame.setSize(200, 150);
28 frame.setLocation(200, 100);
29 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
30 frame.setVisible(true);
31 }
32 }
33
34 class {
35 @Override
36 public void actionPerformed(ActionEvent e) {
37 System.out.println("OK button clicked");
38 }
39 }
40
41 class {
42 @Override
43 public void actionPerformed(ActionEvent e) {
44 System.out.println("Cancel button clicked");
45 }
46 }

Two listener classes are defined in lines 34–46. Each listener class implements
ActionListener to process ActionEvent. The object listener1 is an instance of
OKListenerClass (line 18), which is registered with the button jbtOK (line 20). When the
OK button is clicked, the actionPerformed(ActionEvent) method (line 36) in

CancelListenerClass implements ActionListener

OKListenerClass implements ActionListener

JFrame frame = new HandleEvent();

jbtOK.addActionListener(listener1);

OKListenerClass listener1 = new OKListenerClass();

HandleEvent extends JFrame

create listener

register listener

listener class

process event

listener class

process event

602 Chapter 16 Event-Driven Programming

OKListenerClass is invoked to process the event. The object listener2 is an instance of
CancelListenerClass (line 19), which is registered with the button jbtCancel in line
21. When the Cancel button is clicked, the actionPerformed(ActionEvent) method
(line 43) in CancelListenerClass is invoked to process the event.

You now have seen a glimpse of event-driven programming in Java. You probably have
many questions, such as why a listener class is defined to implement the ActionListener.
The following sections will give you all the answers.

16.2 Events and Event Sources
An event is an object created from an event source. Firing an event means to create an
event and delegate the listener to handle the event.

When you run a Java GUI program, the program interacts with the user, and the events drive
its execution. This is called event-driven programming. An event can be defined as a signal to
the program that something has happened. Events are triggered either by external user
actions, such as mouse movements, button clicks, and keystrokes, or by internal program
activities, such as a timer. The program can choose to respond to or ignore an event. The
example in the preceding section gave you a taste of event-driven programming.

The component that creates an event and fires it is called the event source object, or simply
source object or source component. For example, a button is the source object for a button-
clicking action event. An event is an instance of an event class. The root class of the event
classes is java.util.EventObject. The hierarchical relationships of some event classes
are shown in Figure 16.4.

Key
Point

event-driven programming
event

fire event

event source object

source object

An event object contains whatever properties are pertinent to the event. You can identify
the source object of an event using the getSource() instance method in the EventObject
class. The subclasses of EventObject deal with specific types of events, such as action
events, window events, component events, mouse events, and key events. The first three
columns in Table 16.1 list some external user actions, source objects, and event types fired.
For example, when clicking a button, the button creates and fires an ActionEvent, as indi-
cated in the first line of this table. Here the button is an event source object and an
ActionEvent is the event object fired by the source object, as shown in Figure 16.2.

Note
If a component can fire an event, any subclass of the component can fire the same type
of event. For example, every GUI component can fire MouseEvent and KeyEvent,
since Component is the superclass of all GUI components.

event object

getSource()

AWTEvent

ActionEvent

ListSelectionEvent

EventObject

AdjustmentEvent

ComponentEvent

ItemEvent

TextEvent

ContainerEvent

FocusEvent

InputEvent

PaintEvent

WindowEvent

MouseEvent

KeyEvent

ChangeEvent

FIGURE 16.4 An event is an object of the EventObject class.

16.3 Listeners, Registrations, and Handling Events 603

TABLE 16.1 User Action, Source Object, Event Type, Listener Interface, and Handler

User Action Source Object Event Type Fired Listener Interface Listener Interface Methods

Click a button JButton ActionEvent ActionListener actionPerformed(ActionEvent e)

Press Enter in a text field JTextField ActionEvent ActionListener actionPerformed(ActionEvent e)

Select a new item JComboBox ActionEvent

ItemEvent

ActionListener

ItemListener

actionPerformed(ActionEvent e)

itemStateChanged(ItemEvent e)

Check or uncheck JRadioButton ActionEvent

ItemEvent

ActionListener

ItemListener

actionPerformed(ActionEvent e)

itemStateChanged(ItemEvent e)

Check or uncheck JCheckBox ActionEvent

ItemEvent

ActionListener

ItemListener

actionPerformed(ActionEvent e)

itemStateChanged(ItemEvent e)

Select a new item JComboBox ActionEvent

ItemEvent

ActionListener

ItemListener

actionPerformed(ActionEvent e)

itemStateChanged(ItemEvent e)

Mouse pressed Component MouseEvent MouseListener mousePressed(MouseEvent e)

Mouse released mouseReleased(MouseEvent e)

Mouse clicked mouseClicked(MouseEvent e)

Mouse entered mouseEntered(MouseEvent e)

Mouse exited mouseExited(MouseEvent e)

Mouse moved MouseMotionListener mouseMoved(MouseEvent e)

Mouse dragged mouseDragged(MouseEvent e)

Key pressed Component KeyEvent KeyListener keyPressed(KeyEvent e)

Key released keyReleased(KeyEvent e)

Key typed keyTyped(KeyEvent e)

Note
All the event classes in Figure 16.4 are included in the java.awt.event package
except ListSelectionEvent and ChangeEvent, which are in the
javax.swing.event package. AWT events were originally designed for AWT com-
ponents, but many Swing components fire them.

16.1 What is an event source object? What is an event object? Describe the relationship
between an event source object and an event object.

16.2 Can a button fire a MouseEvent? Can a button fire a KeyEvent? Can a button fire an
ActionEvent?

16.3 Listeners, Registrations, and Handling Events
A listener is an object that must be registered with an event source object, and it must
be an instance of an appropriate event-handling interface.

Java uses a delegation-based model for event handling: a source object fires an event, and an
object interested in the event handles it. The latter object is called an event listener or simply
listener. For an object to be a listener for an event on a source object, two things are needed,
as shown in Figure 16.5.

1. The listener object must be an instance of the corresponding event-listener interface to
ensure that the listener has the correct method for processing the event. Java provides a
listener interface for every type of event. The listener interface is usually named
XListener for XEvent, with the exception of MouseMotionListener. The last

✓Point✓Check

Key
Point

event listener
event delegation

event-listener interface

XListener/XEvent

604 Chapter 16 Event-Driven Programming

three columns in Table 16.1 list event types, the corresponding listener interfaces, and
the methods defined in the listener interfaces. The listener interface contains the
method(s), known as the event handler(s), for processing the event. For example, as
shown in the first line of this table, the corresponding listener interface for
ActionEvent is ActionListener; each listener for ActionEvent should imple-
ment the ActionListener interface; the ActionListener interface contains the
handler actionPerformed(ActionEvent) for processing an ActionEvent.

2. The listener object must be registered by the source object. Registration methods
depend on the event type. For ActionEvent, the method is addActionListener. In
general, the method is named addXListener for XEvent. A source object may fire
several types of events, and for each event the source object maintains a list of regis-
tered listeners and notifies them by invoking the handler of the listener object to
respond to the event, as shown in Figure 16.6. (Note that this figure shows the internal
implementation of a source class. You don’t have to know how a source class such as
JButton is implemented in order to use it, but this knowledge will help you understand
the Java event-driven programming framework.)

event handler

register listener

Trigger an event

(2) Register by invoking
source.addXListener(listener);

(a) A generic source object with a generic listener

(1) A listener object is an
 instance of a listener interface

(b) A JButton source object with an ActionListener

(1) An action event listener is an
 instance of ActionListener

User
Action

source: SourceClass

+addXListener(listener: XListener) +handler(event: XEvent)

(2) Register by invoking
source.addActionListener(listener);

source: javax.swing.JButton

+addActionListener(listener: ActionListener) +actionPerformed(event: ActionEvent)

listener: CustomListenerClass

listener: ListenerClass

«interface»
XListener

«interface»
java.awt.event.ActionListener

FIGURE 16.5 A listener must be an instance of a listener interface and must be registered with a source object.

(a) Internal function of a generic source object

source: SourceClass

+addXListener(XListener listener)

event: XEvent listener1
listener2
...
listenern

Store in a list

Invoke
listener1.handler(event)
listener2.handler(event)
...
listenern.handler(event)

An event is
triggered

(b) Internal function of a JButton object

source: javax.swing.JButton

+addActionListener(ActionListener listener)

event: ActionEvent listener1
listener2
...
listenern

An event is
triggered

Invoke
listener1.actionPerformed(event)
listener2.actionPerformed(event)
...
listenern.actionPerformed(event)

Store in a list

FIGURE 16.6 The source object notifies the listeners of the event by invoking the listener object’s handler.

16.3 Listeners, Registrations, and Handling Events 605

Let’s revisit Listing 16.1, HandleEvent.java. Since a JButton object fires ActionEvent,
a listener object for ActionEvent must be an instance of ActionListener, so the listener
class implements ActionListener in line 34. The source object invokes
addActionListener(listener) to register a listener, as follows:

JButton jbtOK = new JButton("OK"); // Line 7 in Listing 16.1

OKListenerClass listener1
= new OKListenerClass(); // Line 18 in Listing 16.1

// Line 20 in Listing 16.1

When you click the button, the JButton object fires an ActionEvent and passes it to invoke
the listener’s actionPerformed method to handle the event.

The event object contains information pertinent to the event, which can be obtained using
the methods, as shown in Figure 16.7. For example, you can use e.getSource() to obtain
the source object that fired the event. For an action event, you can use e.getWhen() to
obtain the time when the event occurred.

jbtOK.addActionListener(listener1);

create source object

create listener object

register listener

java.util.EventObject

+getSource(): Object

java.awt.event.ActionEvent

+getActionCommand(): String

+getModifiers(): int

+getWhen(): long

java.awt.event.AWTEvent

Returns the command string associated with this action. For a
 button, its text is the command string.

Returns the modifier keys held down during this action event.

Returns the timestamp when this event occurred. The time is the
 number of milliseconds since January 1, 1970, 00:00:00 GMT.

Returns the source object for the event.

FIGURE 16.7 You can obtain useful information from an event object.

FIGURE 16.8 The user clicks the Enlarge and Shrink buttons to enlarge and shrink the size
of the circle.

We now write a program that uses two buttons to control the size of a circle, as shown in
Figure 16.8.

We will develop this program incrementally. First we will write the program in Listing 16.2
that displays the user interface with a circle in the center (line 14) and two buttons on the bot-
tom (line 15).

first version

606 Chapter 16 Event-Driven Programming

LISTING 16.2 ControlCircleWithoutEventHandling.java
1 import javax.swing.*;
2 import java.awt.*;
3
4 public class ControlCircleWithoutEventHandling extends JFrame {
5 private JButton jbtEnlarge = new JButton("Enlarge");
6 private JButton jbtShrink = new JButton("Shrink");
7
8
9 public ControlCircleWithoutEventHandling() {
10 JPanel panel = new JPanel(); // Use the panel to group buttons
11 panel.add(jbtEnlarge);
12 panel.add(jbtShrink);
13
14 this.add(canvas, BorderLayout.CENTER); // Add canvas to center
15 this.add(panel, BorderLayout.SOUTH); // Add buttons to the frame
16 }
17
18 /** Main method */
19 public static void main(String[] args) {
20 JFrame frame = new ControlCircleWithoutEventHandling();
21 frame.setTitle("ControlCircleWithoutEventHandling");
22 frame.setLocationRelativeTo(null); // Center the frame
23 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
24 frame.setSize(200, 200);
25 frame.setVisible(true);
26 }
27 }
28
29 class CirclePanel extends JPanel {
30 private int radius = 5; // Default circle radius
31
32 @Override /** Repaint the circle */
33 protected void paintComponent(Graphics g) {
34 super.paintComponent(g);
35
36
37 }
38 }

How do you use the buttons to enlarge or shrink the circle? When the Enlarge button is clicked,
you want the circle to be repainted with a larger radius. How can you accomplish this? You can
expand the program in Listing 16.2 into Listing 16.3 with the following features:

1. Define a listener class named EnlargeListener that implements ActionListener
(lines 31–36).

2. Create a listener and register it with jbtEnlarge (line 18).

3. Add a method named enlarge() in CirclePanel to increase the radius, then repaint
the panel (lines 42–45).

4. Implement the actionPerformed method in EnlargeListener to invoke
canvas.enlarge() (line 34).

5. To make the reference variable canvas accessible from the actionPerformed
method, define EnlargeListener as an inner class of the ControlCircle class
(lines 31–36). (Inner classes are defined inside another class. We will introduce inner
classes in the next section.)

2 * radius, 2 * radius);
g.drawOval(getWidth() / 2 - radius, getHeight() / 2 - radius,

private CirclePanel canvas = new CirclePanel();

buttons

circle canvas

CirclePanel class

paint the circle

second version

inner class

16.3 Listeners, Registrations, and Handling Events 607

6. To avoid compile errors, the CirclePanel class (lines 38–53) now is also defined as
an inner class in ControlCircle, since another CirclePanel class is already
defined in Listing 16.2.

LISTING 16.3 ControlCircle.java
1 import javax.swing.*;
2 import java.awt.*;
3 import java.awt.event.*;
4
5 public class ControlCircle extends JFrame {
6 private JButton jbtEnlarge = new JButton("Enlarge");
7 private JButton jbtShrink = new JButton("Shrink");
8 private CirclePanel canvas = new CirclePanel();
9
10 public ControlCircle() {
11 JPanel panel = new JPanel(); // Use the panel to group buttons
12 panel.add(jbtEnlarge);
13 panel.add(jbtShrink);
14
15 this.add(canvas, BorderLayout.CENTER); // Add canvas to center
16 this.add(panel, BorderLayout.SOUTH); // Add buttons to the frame
17
18
19 }
20
21 /** Main method */
22 public static void main(String[] args) {
23 JFrame frame = new ControlCircle();
24 frame.setTitle("ControlCircle");
25 frame.setLocationRelativeTo(null); // Center the frame
26 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
27 frame.setSize(200, 200);
28 frame.setVisible(true);
29 }
30
31 // Inner class
32 @Override
33
34
35
36
37
38 // Inner class
39 private int radius = 5; // Default circle radius
40
41 /** Enlarge the circle */
42
43
44
45
46
47 @Override
48 protected void paintComponent(Graphics g) {
49 super.paintComponent(g);
50 g.drawOval(getWidth() / 2 - radius, getHeight() / 2 - radius,
51 2 * radius, 2 * radius);
52 }
53 }
54 }

}
repaint();
radius++;

public void enlarge() {

class CirclePanel extends JPanel {

}
}
canvas.enlarge();

public void actionPerformed(ActionEvent e) {

class EnlargeListener implements ActionListener {

jbtEnlarge.addActionListener(new EnlargeListener());

Listener and its registration

create/register listener

listener class

CirclePanel class

enlarge method

VideoNote

608 Chapter 16 Event-Driven Programming

Similarly, you can add the code for the Shrink button to display a smaller circle when the
Shrink button is clicked.

16.3 Why must a listener be an instance of an appropriate listener interface? Explain how
to register a listener object and how to implement a listener interface.

16.4 Can a source have multiple listeners? Can a listener listen to multiple sources? Can a
source be a listener for itself?

16.5 How do you implement a method defined in the listener interface? Do you need to
implement all the methods defined in the listener interface?

16.6 What method do you use to get the timestamp for an action event?

16.4 Inner Classes
An inner class, or nested class, is a class defined within the scope of another class.
Inner classes are useful for defining listener classes.

We now introduce inner classes in this section and anonymous inner classes in the next sec-
tion and use them to define listener classes. First let us see the code in Figure 16.9. The code
in Figure 16.9a defines two separate classes, Test and A. The code in Figure 16.9b defines A
as an inner class in Test.

The class InnerClass defined inside OuterClass in Figure 16.9c is another example of
an inner class. An inner class may be used just like a regular class. Normally, you define a class
as an inner class if it is used only by its outer class. An inner class has the following features:

■ An inner class is compiled into a class named
OuterClassName$InnerClassName.class. For example, the inner class A in
Test is compiled into Test$A.class in Figure 16.9b.

■ An inner class can reference the data and methods defined in the outer class in which it
nests, so you need not pass the reference of an object of the outer class to the constructor
of the inner class. For this reason, inner classes can make programs simple and concise.

the Shrink button

✓Point✓Check

Key
Point

public class Test {
...

// Inner class

}
}
...

public class A {

// OuterClass.java: inner class demo
public class OuterClass {
private int data;

/** A method in the outer class */
public void m() {
// Do something

}

// An inner class
class InnerClass {
/** A method in the inner class */
public void mi() {
// Directly reference data and method
// defined in its outer class

}
}

}

m();
data++;

(b) (c)

FIGURE 16.9

public class Test {
...

}

}
...

public class A {

(a)

Inner classes combine dependent classes into the primary class.

16.5 Anonymous Class Listeners 609

✓Point✓Check

For example, canvas is defined in ControlCircle in Listing 16.3 (line 8). It can be
referenced in the inner class EnlargeListener in line 34.

■ An inner class can be defined with a visibility modifier subject to the same visibility
rules applied to a member of the class.

■ An inner class can be defined as static. A static inner class can be accessed
using the outer class name. A static inner class cannot access nonstatic members
of the outer class.

■ Objects of an inner class are often created in the outer class. But you can also create
an object of an inner class from another class. If the inner class is nonstatic, you must
first create an instance of the outer class, then use the following syntax to create an
object for the inner class:

OuterClass.InnerClass innerObject = outerObject.new InnerClass();

■ If the inner class is static, use the following syntax to create an object for it:

OuterClass.InnerClass innerObject = new OuterClass.InnerClass();

A simple use of inner classes is to combine dependent classes into a primary class. This reduces
the number of source files. It also makes class files easy to organize, since they are all named with
the primary class as the prefix. For example, rather than creating the two source files Test.java
and A.java in Figure 16.9a, you can merge class A into class Test and create just one source file,
Test.java in Figure 16.9b. The resulting class files are Test.class and Test$A.class.

Another practical use of inner classes is to avoid class-naming conflicts. Two versions of
CirclePanel are defined in Listings 16.2 and 16.3. You can define them as inner classes to
avoid a conflict.

A listener class is designed specifically to create a listener object for a GUI component
(e.g., a button). The listener class will not be shared by other applications and therefore is
appropriate to be defined inside the frame class as an inner class.

16.7 Can an inner class be used in a class other than the class in which it nests?

16.8 Can the modifiers public, private, and static be used for inner classes?

16.5 Anonymous Class Listeners
An anonymous inner class is an inner class without a name. It combines defining an
inner class and creating an instance of the class into one step.

Inner-class listeners can be shortened using anonymous inner classes. The inner class in
Listing 16.3 can be replaced by an anonymous inner class as shown below.

public ControlCircle() {
// Omitted

jbtEnlarge.addActionListener(
new);

}

class EnlargeListener
implements ActionListener {

@Override
public void actionPerformed(ActionEvent e) {

canvas.enlarge();
}

}

EnlargeListener()

public ControlCircle() {
// Omitted

jbtEnlarge.addActionListener(
new class EnlargeListener

implements ActionListener {
@Override
public void actionPerformed(ActionEvent e) {

canvas.enlarge();
}

});
}

()

(a) Inner class EnlargeListener (b) Anonymous inner class

Key
Point

anonymous inner class

610 Chapter 16 Event-Driven Programming

The syntax for an anonymous inner class is:

new SuperClassName/InterfaceName() {
// Implement or override methods in superclass or interface

// Other methods if necessary
}

Since an anonymous inner class is a special kind of inner class, it is treated like an inner class
with the following features:

■ An anonymous inner class must always extend a superclass or implement an inter-
face, but it cannot have an explicit extends or implements clause.

■ An anonymous inner class must implement all the abstract methods in the superclass
or in the interface.

■ An anonymous inner class always uses the no-arg constructor from its superclass to
create an instance. If an anonymous inner class implements an interface, the con-
structor is Object().

■ An anonymous inner class is compiled into a class named
OuterClassName$n.class. For example, if the outer class Test has two anony-
mous inner classes, they are compiled into Test$1.class and Test$2.class.

Listing 16.4 gives an example that handles the events from four buttons, as shown in
Figure 16.10.

LISTING 16.4 AnonymousListenerDemo.java
1 import javax.swing.*;
2 import java.awt.event.*;
3
4 public class AnonymousListenerDemo extends JFrame {
5 public AnonymousListenerDemo() {
6 // Create four buttons
7 JButton jbtNew = new JButton("New");
8 JButton jbtOpen = new JButton("Open");
9 JButton jbtSave = new JButton("Save");
10 JButton jbtPrint = new JButton("Print");
11
12 // Create a panel to hold buttons
13 JPanel panel = new JPanel();
14 panel.add(jbtNew);
15 panel.add(jbtOpen);
16 panel.add(jbtSave);
17 panel.add(jbtPrint);
18
19 add(panel);

Anonymous listener

FIGURE 16.10 The program handles the events from four buttons.

VideoNote

16.5 Anonymous Class Listeners 611

20
21 // Create and register anonymous inner-class listener
22 jbtNew.addActionListener(
23 @Override
24
25
26
27
28);
29
30 jbtOpen.addActionListener(new ActionListener() {
31 @Override
32 public void actionPerformed(ActionEvent e) {
33 System.out.println("Process Open");
34 }
35 }
36);
37
38 jbtSave.addActionListener(
39 @Override
40 public void actionPerformed(ActionEvent e) {
41 System.out.println("Process Save");
42 }
43 }
44);
45
46 jbtPrint.addActionListener(
47 @Override
48 public void actionPerformed(ActionEvent e) {
49 System.out.println("Process Print");
50 }
51 }
52);
53 }
54
55 /** Main method */
56 public static void main(String[] args) {
57 JFrame frame = new AnonymousListenerDemo();
58 frame.setTitle("AnonymousListenerDemo");
59 frame.setLocationRelativeTo(null); // Center the frame
60 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
61
62 frame.setVisible(true);
63 }
64 }

The program creates four listeners using anonymous inner classes (lines 22–52). Without
using anonymous inner classes, you would have to create four separate classes. An anony-
mous listener works the same way as an inner class listener. The program is condensed using
an anonymous inner class.

Anonymous inner classes are compiled into OuterClassName$#.class, where # starts
at 1 and is incremented for each anonymous class the compiler encounters. In this example,
the anonymous inner classes are compiled into AnonymousListenerDemo$1.class,
AnonymousListenerDemo$2.class, AnonymousListenerDemo$3.class, and
AnonymousListenerDemo$4.class.

Instead of using the setSize method to set the size for the frame, the program uses the
pack() method (line 61), which automatically sizes the frame according to the size of the
components placed in it.

frame.pack();

new ActionListener() {

new ActionListener() {

}
}
System.out.println("Process New");

public void actionPerformed(ActionEvent e) {

new ActionListener() {
anonymous listener
handle event

pack()

612 Chapter 16 Event-Driven Programming

16.9 If class A is an inner class in class B, what is the .class file for A? If class B contains
two anonymous inner classes, what are the .class file names for these two classes?

16.10 What is wrong in the following code?

✓Point✓Check

Key
Point

import java.swing.*;
import java.awt.*;

public class Test extends JFrame {
public Test() {
JButton jbtOK = new JButton("OK");
add(jbtOK);

}

private class Listener
implements ActionListener {

public void actionPerform
(ActionEvent e) {

System.out.println
(jbtOK.getActionCommand());

}
}

/** Main method omitted */
}

import java.awt.event.*;
import javax.swing.*;

public class Test extends JFrame {
public Test() {
JButton jbtOK = new JButton("OK");
add(jbtOK);
jbtOK.addActionListener(

new ActionListener() {
public void actionPerformed

(ActionEvent e) {
System.out.println
(jbtOK.getActionCommand());

}
} // Something missing here

}

/** Main method omitted */
}

(b)(a)

16.11 What is the difference between the setSize(width, height) method and the
pack() method in JFrame?

16.6 Alternative Ways of Defining Listener Classes
Using an inner class or an anonymous inner class is preferred for defining listener
classes.

There are many other ways to define the listener classes. For example, you can rewrite Listing
16.4 by creating just one listener, register the listener with the buttons, and let the listener
detect the event source—that is, which button fires the event—as shown in Listing 16.5.

LISTING 16.5 DetectSourceDemo.java
1 import javax.swing.*;
2 import java.awt.event.*;
3
4 public class DetectSourceDemo extends JFrame {
5 // Create four buttons
6 private JButton jbtNew = new JButton("New");
7 private JButton jbtOpen = new JButton("Open");
8 private JButton jbtSave = new JButton("Save");
9 private JButton jbtPrint = new JButton("Print");
10
11 public DetectSourceDemo() {
12 // Create a panel to hold buttons
13 JPanel panel = new JPanel();
14 panel.add(jbtNew);
15 panel.add(jbtOpen);
16 panel.add(jbtSave);
17 panel.add(jbtPrint);
18

16.6 Alternative Ways of Defining Listener Classes 613

19 add(panel);
20
21 // Create a listener
22 ButtonListener listener = new ButtonListener();
23
24 // Register listener with buttons
25 jbtNew.addActionListener(listener);
26 jbtOpen.addActionListener(listener);
27 jbtSave.addActionListener(listener);
28 jbtPrint.addActionListener(listener);
29 }
30
31 class ButtonListener implements ActionListener {
32 @Override
33 public void actionPerformed(ActionEvent e) {
34
35 System.out.println("Process New");
36
37 System.out.println("Process Open");
38
39 System.out.println("Process Save");
40
41 System.out.println("Process Print");
42 }
43 }
44
45 /** Main method */
46 public static void main(String[] args) {
47 JFrame frame = new DetectSourceDemo();
48 frame.setTitle("DetectSourceDemo");
49 frame.setLocationRelativeTo(null); // Center the frame
50 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
51
52 frame.setVisible(true);
53 }
54 }

This program defines just one inner listener class (lines 31–43), creates a listener from the
class (line 22), and registers it to four buttons (lines 25–28). When a button is clicked, the but-
ton fires an ActionEvent and invokes the listener’s actionPerformed method. The
actionPerformed method checks the source of the event using the getSource() method
for the event (lines 34, 36, 38, 40) and determines which button fired the event.

Defining one listener class for handling a large number of events is efficient. In this case,
you create just one listener object. Using anonymous inner classes, you would create four lis-
tener objects.

You could also rewrite Listing 16.4 by defining the custom frame class that implements
ActionListener, as shown in Listing 16.6.

LISTING 16.6 FrameAsListenerDemo.java
1 import javax.swing.*;
2 import java.awt.event.*;
3
4 public class FrameAsListenerDemo extends JFrame
5 {
6 // Create four buttons
7 private JButton jbtNew = new JButton("New");
8 private JButton jbtOpen = new JButton("Open");
9 private JButton jbtSave = new JButton("Save");

implements ActionListener

frame.pack();

else if (e.getSource() == jbtPrint)

else if (e.getSource() == jbtSave)

else if (e.getSource() == jbtOpen)

if (e.getSource() == jbtNew)

create listener

register listener

listener class

handle event

implement ActionListener

614 Chapter 16 Event-Driven Programming

10 private JButton jbtPrint = new JButton("Print");
11
12 public FrameAsListenerDemo() {
13 // Create a panel to hold buttons
14 JPanel panel = new JPanel();
15 panel.add(jbtNew);
16 panel.add(jbtOpen);
17 panel.add(jbtSave);
18 panel.add(jbtPrint);
19
20 add(panel);
21
22 // Register listener with buttons
23
24 jbtOpen.addActionListener(this);
25 jbtSave.addActionListener(this);
26 jbtPrint.addActionListener(this);
27 }
28
29 @Override /** Implement actionPerformed */
30
31 if (e.getSource() == jbtNew)
32 System.out.println("Process New");
33 else if (e.getSource() == jbtOpen)
34 System.out.println("Process Open");
35 else if (e.getSource() == jbtSave)
36 System.out.println("Process Save");
37 else if (e.getSource() == jbtPrint)
38 System.out.println("Process Print");
39 }
40
41 /** Main method */
42 public static void main(String[] args) {
43 JFrame frame = new FrameAsListenerDemo();
44 frame.setTitle("FrameAsListenerDemo");
45 frame.setLocationRelativeTo(null); // Center the frame
46 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
47 frame.pack();
48 frame.setVisible(true);
49 }
50 }

The frame class extends JFrame and implements ActionListener (line 5), so the class is a lis-
tener class for action events. The listener is registered to four buttons (lines 23–26). When a but-
ton is clicked, the button fires an ActionEvent and invokes the listener’s actionPerformed
method. The actionPerformedmethod checks the source of the event using the getSource()
method for the event (lines 31, 33, 35, 37) and determines which button fired the event.

This design is not desirable, however, because it puts too many responsibilities into one
class. It is better to design a listener class that is solely responsible for handling events, which
makes the code easy to read and easy to maintain.

You should define listener classes using either inner classes or anonymous inner classes—
choose whichever produces shorter, clearer, and cleaner code. In general, use anonymous inner
classes if the code in the listener is short and the listener is registered for one event source. Use
inner classes if the code in the listener is long or the listener is registered for multiple event sources.

16.12 Why should you avoid defining the custom frame class that implements
ActionListener?

16.13 What method do you use to get the source object from an event object e?

public void actionPerformed(ActionEvent e) {

jbtNew.addActionListener(this);register listeners

handle event

Which way is preferred?

✓Point✓Check

16.7 Case Study: Loan Calculator 615

16.7 Case Study: Loan Calculator
This case study uses GUI components and events.

Now we will write the program for the loan-calculator problem presented at the beginning of
this chapter. Here are the major steps in the program:

1. Create the user interface, as shown in Figure 16.11.

a. Create a panel of a GridLayout with 5 rows and 2 columns. Add labels and text
fields to the panel. Set the title “Enter loan amount, interest rate, and years” for the
panel.

b. Create another panel with a FlowLayout(FlowLayout.RIGHT) and add a button
to the panel.

c. Add the first panel to the center of the frame and the second panel on the south side
of the frame.

2. Process the event.

Create and register the listener for processing the button-clicking action event. The
handler obtains the user input on the loan amount, interest rate, and number of years,
computes the monthly and total payments, and displays the values in the text fields.

JPanel of
GridLayout (5, 2)

JPanel of Flowlayout
right aligned

FIGURE 16.11 The program computes loan payments.

The complete program is given in Listing 16.7.

LISTING 16.7 LoanCalculator.java
1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4 import javax.swing.border.TitledBorder;
5
6 public class LoanCalculator extends JFrame {
7 // Create text fields for interest rate, years,
8 // loan amount, monthly payment, and total payment
9 private JTextField jtfAnnualInterestRate = new JTextField();
10 private JTextField jtfNumberOfYears = new JTextField();
11 private JTextField jtfLoanAmount = new JTextField();
12 private JTextField jtfMonthlyPayment = new JTextField();
13 private JTextField jtfTotalPayment = new JTextField();
14
15 // Create a Compute Payment button
16 private JButton jbtComputeLoan = new JButton("Compute Payment");

text fields

button

Key
Point

616 Chapter 16 Event-Driven Programming

17
18
19 // Panel p1 to hold labels and text fields
20
21 p1.add(new JLabel("Annual Interest Rate"));
22 p1.add(jtfAnnualInterestRate);
23 p1.add(new JLabel("Number of Years"));
24 p1.add(jtfNumberOfYears);
25 p1.add(new JLabel("Loan Amount"));
26 p1.add(jtfLoanAmount);
27 p1.add(new JLabel("Monthly Payment"));
28 p1.add(jtfMonthlyPayment);
29 p1.add(new JLabel("Total Payment"));
30 p1.add(jtfTotalPayment);
31 p1.setBorder(new
32 TitledBorder("Enter loan amount, interest rate, and years"));
33
34 // Panel p2 to hold the button
35
36 p2.add(jbtComputeLoan);
37
38 // Add the panels to the frame
39 add(p1, BorderLayout.CENTER);
40 add(p2, BorderLayout.SOUTH);
41
42 // Register listener
43
44 }
45
46 /** Handle the Compute Payment button */
47
48 @Override
49 public void actionPerformed(ActionEvent e) {
50 // Get values from text fields
51 double interest =
52 Double.parseDouble();
53 int year = Integer.parseInt(jtfNumberOfYears.getText());
54 double loanAmount =
55 Double.parseDouble(jtfLoanAmount.getText());
56
57 // Create a loan object. Loan defined in Listing 10.2
58
59
60 // Display monthly payment and total payment
61
62
63 jtfTotalPayment.setText(String.format("%.2f",
64 loan.getTotalPayment()));
65 }
66 }
67
68 public static void main(String[] args) {
69 LoanCalculator frame = new LoanCalculator();
70 frame.pack();
71 frame.setTitle("LoanCalculator");
72 frame.setLocationRelativeTo(null); // Center the frame
73 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
74 frame.setVisible(true);
75 }
76 }

loan.getMonthlyPayment()));
jtfMonthlyPayment.setText(String.format("%.2f",

Loan loan = new Loan(interest, year, loanAmount);

jtfAnnualInterestRate.getText()

private class ButtonListener implements ActionListener {

jbtComputeLoan.addActionListener(new ButtonListener());

JPanel p2 = new JPanel(new FlowLayout(FlowLayout.RIGHT));

JPanel p1 = new JPanel(new GridLayout(5, 2));

public LoanCalculator() {

create UI

add to frame

register listener

get input

create loan

set result

16.8 Mouse Events 617

The user interface is created in the constructor (lines 18–44). The button is the source of the
event. A listener is created and registered with the button (line 43).

The ButtonListener class (lines 47–66) implements the actionPerformed method.
When the button is clicked, the actionPerformed method is invoked to get the interest rate
(line 51), number of years (line 53), and loan amount (line 54). Invoking
jtfAnnualInterestRate.getText() returns the string text in the
jtfAnnualInterestRate text field. The Loan class is used for computing the loan payments.
This class was introduced in Listing 10.2, Loan.java. Invoking loan.getMonthlyPayment()
returns the monthly payment for the loan (line 62). The String.format method, introduced in
Section 9.2.11, is used to format a number into a desirable format and returns it as a string (lines
61, 63). Invoking the setText method on a text field sets a string value in the text field (line 61).

16.8 Mouse Events
A mouse event is fired whenever a mouse button is pressed, released, or clicked, the
mouse is moved, or the mouse is dragged onto a component.

The MouseEvent object captures the event, such as the number of clicks associated with it,
the location (the x- and y-coordinates) of the mouse, or which button was pressed, as shown in
Figure 16.12.

+getButton(): int

+getWhen(): long

java.awt.event.InputEvent

java.awt.event.MouseEvent

Returns the timestamp when this event occurred.

Indicates which mouse button has been clicked.

+isShiftDown(): boolean

+isAltDown(): boolean

+isControlDown(): boolean

+isMetaDown(): boolean

Returns true if the Shift key is pressed on this event.

Returns true if the Alt key is pressed on this event.

Returns true if the Control key is pressed on this event.

Returns true if the Meta mouse button is pressed on this event.

+getY(): int

+getClickCount(): int

+getPoint(): java.awt.Point

+getX(): int

Returns the y-coordinate of the mouse point.

Returns the number of mouse clicks associated with this event.

Returns a Point object containing the x- and y-coordinates.

Returns the x-coordinate of the mouse point.

FIGURE 16.12 The MouseEvent class encapsulates information for mouse events.

Since the MouseEvent class inherits InputEvent, you can use the methods defined in
the InputEvent class on a MouseEvent object. For example, the isControlDown()
method detects whether the CTRL key was pressed when a MouseEvent is fired.

Three int constants—BUTTON1, BUTTON2, and BUTTON3—are defined in MouseEvent
to indicate the left, middle, and right mouse buttons. You can use the getButton() method
to detect which button is pressed. For example, getButton() == MouseEvent.BUTTON3
indicates that the right button was pressed.

The java.awt.Point class represents a point on a component. The class contains two
public variables, x and y, for coordinates. To create a Point, use the following constructor:

Point(int x, int y)

detect mouse buttons

Point class

Key
Point

618 Chapter 16 Event-Driven Programming

This constructs a Point object with the specified x- and y-coordinates. Normally, the data
fields in a class should be private, but this class has two public data fields.

Java provides two listener interfaces, MouseListener and MouseMotionListener, to
handle mouse events, as shown in Figure 16.13. Implement the MouseListener interface to
listen for such actions as pressing, releasing, entering, exiting, or clicking the mouse, and
implement the MouseMotionListener interface to listen for such actions as dragging or
moving the mouse.

Invoked after the mouse button has been pressed on the source
 component.

Invoked after the mouse button has been released on the
 source component.

Invoked after the mouse button has been clicked (pressed and
 released) on the source component.

Invoked after the mouse enters the source component.

Invoked after the mouse exits the source component.

Invoked after a mouse button is moved without a button pressed.

Invoked after a mouse button is moved with a button pressed.

+mousePressed(e: MouseEvent): void

+mouseReleased(e: MouseEvent): void

+mouseClicked(e: MouseEvent): void

+mouseEntered(e: MouseEvent): void

+mouseExited(e: MouseEvent): void

+mouseDragged(e: MouseEvent): void

+mouseMoved(e: MouseEvent): void

«interface»
java.awt.event.MouseListener

«interface»
java.awt.event.MouseMotionListener

FIGURE 16.13 The MouseListener interface handles mouse pressed, released, clicked, entered, and exited events. The
MouseMotionListener interface handles mouse dragged and moved events.

To demonstrate using mouse events, we give an example that displays a message in a panel
and enables the message to be moved using a mouse. The message moves as the mouse is
dragged, and it is always displayed at the mouse point. Listing 16.8 gives the program. A sam-
ple run of the program is shown in Figure 16.14.

FIGURE 16.14 You can move the message by dragging the mouse.

LISTING 16.8 MoveMessageDemo.java
1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4
5 public class MoveMessageDemo extends JFrame {
6 public MoveMessageDemo() {

Move message using the
mouse

VideoNote

16.8 Mouse Events 619

7 // Create a MovableMessagePanel instance for moving a message
8
9
10
11 // Place the message panel in the frame
12 add(p);
13 }
14
15 /** Main method */
16 public static void main(String[] args) {
17 MoveMessageDemo frame = new MoveMessageDemo();
18 frame.setTitle("MoveMessageDemo");
19 frame.setSize(200, 100);
20 frame.setLocationRelativeTo(null); // Center the frame
21 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22 frame.setVisible(true);
23 }
24
25 // Inner class: MovableMessagePanel draws a message
26
27 private String message = "Welcome to Java";
28 private int x = 20;
29 private int y = 20;
30
31 /** Construct a panel to draw string s */
32 public MovableMessagePanel(String s) {
33 message = s;
34
35 @Override /** Handle mouse-dragged event */
36
37 // Get the new location and repaint the screen
38 x = e.getX();
39 y = e.getY();
40 repaint();
41 }
42
43 @Override /** Handle mouse-moved event */
44
45 }
46);
47 }
48
49 @Override
50 protected void paintComponent(Graphics g) {
51 super.paintComponent(g);
52 g.drawString(message, x, y);
53 }
54 }
55 }

The MovableMessagePanel class extends JPanel to draw a message (line 26). Addition-
ally, it handles redisplaying the message when the mouse is dragged. This class is defined as
an inner class inside the main class because it is used only in this class. Furthermore, the
inner class is defined as static because it does not reference any instance members of the
main class.

The MouseMotionListener interface contains two handlers, mouseMoved and
mouseDragged, for handling mouse-motion events. When you move the mouse with a button
pressed, the mouseDragged method is invoked to repaint the viewing area and display the

}

public void mouseMoved(MouseEvent e) {

public void mouseDragged(MouseEvent e) {

addMouseMotionListener(new MouseMotionListener() {

static class MovableMessagePanel extends JPanel {

("Welcome to Java");
MovableMessagePanel p = new MovableMessagePanel create a panel

inner class

set a new message
anonymous listener

override handler

new location

repaint

paint message

620 Chapter 16 Event-Driven Programming

message at the mouse point. When you move the mouse without pressing a button, the
mouseMoved method is invoked. Because the listener is interested only in the mouse-dragged
event, the mouseDragged method is implemented (lines 36–41).

The mouseDragged method is invoked when you move the mouse with a button pressed.
This method obtains the mouse location using the getX and getY methods (lines 38–39) in
the MouseEvent class. This becomes the new location for the message. Invoking the
repaint() method (line 40) causes paintComponent to be invoked (line 50), which dis-
plays the message in a new location.

16.14 What method do you use to get the mouse-point position for a mouse event?

16.15 What is the listener interface for mouse pressed, released, clicked, entered, and
exited? What is the listener interface for mouse moved and dragged?

16.9 Listener Interface Adapters
A listener interface adapter is a class that provides the default implementation for all
the methods in the listener interface.

Because the methods in the MouseMotionListener interface are abstract, you must imple-
ment all of them even if your program does not care about some of the events. Java provides
support classes, called listener interface adapters, that provide default implementations for all
the methods in the listener interface. The default implementation is simply an empty body. Java
provides listener interface adapters for every AWT listener interface with multiple handlers. A
listener interface adapter is named XAdapter for XListener. For example, MouseMotionAdapter
is a listener interface adapter for MouseMotionListener. Table 16.2 lists some listener inter-
face adapters used in this book.

✓Point✓Check

TABLE 16.2 Listener Interface Adapters

Adapter Interface

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

KeyAdapter KeyListener

WindowAdapter WindowListener

Using MouseMotionAdapter, the code in lines 34–46 in Listing 16.8 (shown in (a)) can
be replaced by the following code, as shown in (b).

addMouseMotionListener(
new MouseMotionListener() {

@Override /** Handle mouse-dragged event */
public void mouseDragged(MouseEvent e){
x = e.getX();
y = e.getY();
repaint();

}

@Override /** Handle mouse-moved event */
public void mouseMoved(MouseEvent e) {
}

});

addMouseMotionListener(
new {

@Override /** Handle mouse-dragged event */
public void mouseDragged(MouseEvent e){
x = e.getX();
y = e.getY();
repaint();

}
});

MouseMotionAdapter()

(b) Using a listener interface adapter(a) Using a listener interface

Key
Point

listener interface adapter

16.10 Key Events 621

16.16 Why does the ActionListener interface have no listener interface adapter?

16.17 What is the advantage of using a listener interface adapter rather than a listener
interface?

16.10 Key Events
A key event is fired whenever a key is pressed, released, or typed on a component.

Key events enable the use of the keys to control and perform actions or get input from the key-
board. The KeyEvent object describes the nature of the event (namely, that a key has been
pressed, released, or typed) and the value of the key, as shown in Figure 16.15. Java provides
the KeyListener interface to handle key events, as shown in Figure 16.16.

Key
Point

✓Point✓Check

java.awt.event.KeyEvent

+getKeyChar(): char Returns the character associated with the key in this event.

java.awt.event.InputEvent

+getKeyCode(): int Returns the integer key code associated with the key in this event.

FIGURE 16.15 The KeyEvent class encapsulates information about key events.

+keyPressed(e: KeyEvent): void Invoked after a key is pressed on the source component.

+keyTyped(e: KeyEvent): void

+keyReleased(e: KeyEvent): void Invoked after a key is released on the source component.

Invoked after a key is pressed and then released on the source component.

«interface»
java.awt.event.KeyListener

FIGURE 16.16 The KeyListener interface handles key pressed, released, and typed events.

The keyPressed handler is invoked when a key is pressed, the keyReleased handler is
invoked when a key is released, and the keyTyped handler is invoked when a Unicode char-
acter is entered. If a key does not have a Unicode (e.g., function keys, modifier keys, action
keys, and control keys), the keyTyped handler will not be invoked.

Every key event has an associated key character or key code that is returned by the
getKeyChar() or getKeyCode() method in KeyEvent. The key codes are constants
defined in the KeyEvent class. Table 16.3 lists some constants. See the Java API for a
complete list of the constants. For a key of the Unicode character, the key code is the same
as the Unicode value. For the key-pressed and key-released events, getKeyCode() returns
the value as defined in the table. For the key-typed event, getKeyCode() returns
VK_UNDEFINED (0), and getKeyChar() returns the character entered.

The program in Listing 16.9 displays a user-input character. The user can move the
character up, down, left, and right, using the arrow keys VK_UP, VK_DOWN, VK_LEFT, and
VK_RIGHT. Figure 16.17 contains a sample run of the program.

622 Chapter 16 Event-Driven Programming

LISTING 16.9 KeyEventDemo.java
1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4
5 public class KeyEventDemo extends JFrame {
6
7
8 /** Initialize UI */
9 public KeyEventDemo() {
10 // Add the keyboard panel to accept and display user input
11 add(keyboardPanel);
12
13 // Set focus
14
15 }
16
17 /** Main method */
18 public static void main(String[] args) {
19 KeyEventDemo frame = new KeyEventDemo();
20 frame.setTitle("KeyEventDemo");
21 frame.setSize(300, 300);
22 frame.setLocationRelativeTo(null); // Center the frame
23 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
24 frame.setVisible(true);
25 }
26
27 // Inner class: KeyboardPanel for receiving key input
28 static class KeyboardPanel extends JPanel {

keyboardPanel.setFocusable(true);

private KeyboardPanel keyboardPanel = new KeyboardPanel();

FIGURE 16.17 The program responds to key events by displaying a character and moving it
up, down, left, or right.

TABLE 16.3 Key Constants

Constant Description Constant Description

VK_HOME The Home key VK_SHIFT The Shift key

VK_END The End key VK_BACK_SPACE The Backspace key

VK_PGUP The Page Up key VK_CAPS_LOCK The Caps Lock key

VK_PGDN The Page Down key VK_NUM_LOCK The Num Lock key

VK_UP The up-arrow key VK_ENTER The Enter key

VK_DOWN The down-arrow key VK_UNDEFINED The keyCode unknown

VK_LEFT The left-arrow key VK_F1 to VK_F12 The function keys from
F1 to F12VK_RIGHT The right-arrow key

VK_ESCAPE The Esc key VK_0 to VK_9 The number keys from 0 to 9

VK_TAB The Tab key VK_A to VK_Z The letter keys from A to Z

VK_CONTROL The Control key

create a panel

focusable

inner class

16.10 Key Events 623

29 private int x = 100;
30 private int y = 100;
31 private char keyChar = 'A'; // Default key
32
33 public KeyboardPanel() {
34 addKeyListener(
35 @Override
36
37 switch (e.getKeyCode()) {
38 case KeyEvent.VK_DOWN: y += 10; break;
39 case KeyEvent.VK_UP: y -= 10; break;
40 case KeyEvent.VK_LEFT: x -= 10; break;
41 case KeyEvent.VK_RIGHT: x += 10; break;
42 default: keyChar = e.getKeyChar();
43 }
44
45 repaint();
46 }
47);
48 }
49
50 @Override /** Draw the character */
51 protected void paintComponent(Graphics g) {
52 super.paintComponent(g);
53
54 g.setFont(new Font("TimesRoman", Font.PLAIN, 24));
55 g.drawString(String.valueOf(keyChar), x, y);
56 }
57 }
58 }

The KeyboardPanel class extends JPanel to display a character (line 28). This class is
defined as an inner class inside the main class, because it is used only in this class. Further-
more, the inner class is defined as static, because it does not reference any instance members
of the main class.

Because the program gets input from the keyboard, it listens for KeyEvent and extends
KeyAdapter to handle key input (line 34).

When a key is pressed, the keyPressed handler is invoked. The program uses
e.getKeyCode() to obtain the key code and e.getKeyChar() to get the character for the
key. When a nonarrow key is pressed, the character is displayed (line 42). When an arrow key
is pressed, the character moves in the direction indicated by the arrow key (lines 38–41).

Only a focused component can receive KeyEvent. To make a component focusable, set its
focusable property to true (line 14).

Every time the component is repainted, a new font is created for the Graphics object in
line 54. This is not efficient—it would be better to create the font once as a data field.

We can now add more control for our ControlCircle example in Listing 16.3 to
increase/decrease the circle radius by clicking the left/right mouse button or by pressing the
UP and DOWN arrow keys. The new program is given in Listing 16.10.

LISTING 16.10 ControlCircleWithMouseAndKey.java
1 import javax.swing.*;
2 import java.awt.*;
3 import java.awt.event.*;
4
5 public class ControlCircleWithMouseAndKey extends JFrame {
6 private JButton jbtEnlarge = new JButton("Enlarge");
7 private JButton jbtShrink = new JButton("Shrink");

}

public void keyPressed(KeyEvent e) {

new KeyAdapter() { register listener

override handler

get the key pressed

repaint

redraw character

focusable

efficient?

624 Chapter 16 Event-Driven Programming

8 private CirclePanel canvas = new CirclePanel();
9
10 public ControlCircleWithMouseAndKey() {
11 JPanel panel = new JPanel(); // Use the panel to group buttons
12 panel.add(jbtEnlarge);
13 panel.add(jbtShrink);
14
15 this.add(canvas, BorderLayout.CENTER); // Add canvas to center
16 this.add(panel, BorderLayout.SOUTH); // Add buttons to the frame
17
18 jbtEnlarge.addActionListener(new ActionListener() {
19 @Override
20 public void actionPerformed(ActionEvent e) {
21 canvas.enlarge();
22
23 }
24 });
25
26 jbtShrink.addActionListener(new ActionListener() {
27 @Override
28 public void actionPerformed(ActionEvent e) {
29 canvas.shrink();
30
31 }
32 });
33
34 canvas.addMouseListener(new MouseAdapter() {
35 @Override
36 public void mouseClicked(MouseEvent e) {
37
38 canvas.enlarge();
39
40 canvas.shrink();
41 }
42 });
43
44
45 canvas.addKeyListener(new KeyAdapter() {
46 @Override
47 public void keyPressed(KeyEvent e) {
48
49 canvas.enlarge();
50
51 canvas.shrink();
52 }
53 });
54 }
55
56 /** Main method */
57 public static void main(String[] args) {
58 JFrame frame = new ControlCircleWithMouseAndKey();
59 frame.setTitle("ControlCircle");
60 frame.setLocationRelativeTo(null); // Center the frame
61 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
62 frame.setSize(200, 200);
63 frame.setVisible(true);
64 }
65
66 class CirclePanel extends JPanel { // Inner class
67 private int radius = 5; // Default circle radius

else if (e.getKeyCode() == KeyEvent.VK_DOWN)

if (e.getKeyCode() == KeyEvent.VK_UP)

canvas.setFocusable(true);

else if (e.getButton() == MouseEvent.BUTTON3)

if (e.getButton() == MouseEvent.BUTTON1)

canvas.requestFocusInWindow();

canvas.requestFocusInWindow();

create/register listener

request focus

request focus

left button?

right button?

UP pressed?

DOWN pressed?

16.11 Animation Using the Timer Class 625

68
69 /** Enlarge the circle */
70 public void enlarge() {
71 radius++;
72 repaint();
73 }
74
75 /** Shrink the circle */
76 public void shrink() {
77 if (radius >= 1) radius—–;
78 repaint();
79 }
80
81 @Override
82 protected void paintComponent(Graphics g) {
83 super.paintComponent(g);
84 g.drawOval(getWidth() / 2 - radius, getHeight() / 2 - radius,
85 2 * radius, 2 * radius);
86 }
87 }
88 }

A listener for MouseEvent is created to handle mouse-clicked events in lines 34–42. If the
left mouse button is clicked, the circle is enlarged (lines 37–38); if the right mouse button is
clicked, the circle is shrunk (lines 39–40).

A listener for KeyEvent is created to handle key-pressed events in lines 45–53. If the UP
arrow key is pressed, the circle is enlarged (lines 48–49); if the DOWN arrow key is pressed,
the circle is shrunk (lines 50–51).

Invoking setFocusable on canvas makes canvas focusable. However, once a button is
clicked, the canvas is no longer focused. Invoking canvas.requestFocusInWindow()
(lines 22, 30) resets the focus on canvas so that canvas can listen for key events.

16.18 What method do you use to get the timestamp for an action event, a mouse event, or
a key event?

16.19 What method do you use to get the key character for a key event?

16.20 How do you set focus on a component so it can listen for key events?

16.21 Does every key in the keyboard have a Unicode? Is a key code in the KeyEvent class
equivalent to a Unicode?

16.22 Is the keyPressed handler invoked after a key is pressed? Is the keyReleased
handler invoked after a key is released? Is the keyTyped handler invoked after any
key is typed?

16.11 Animation Using the Timer Class
A Timer is a source object that fires ActionEvent at a fixed rate.

Not all source objects are GUI components. The javax.swing.Timer class is a source
component that fires an ActionEvent at a predefined rate. Figure 16.18 lists some of the
methods in the class.

A Timer object serves as the source of an ActionEvent. The listeners must be instances
of ActionListener and registered with a Timer object. You create a Timer object using its
sole constructor with a delay and a listener, where delay specifies the number of milliseconds
between two action events. You can add additional listeners using the addActionListener
method and adjust the delay using the setDelay method. To start the timer, invoke the
start() method; to stop the timer, invoke the stop() method.

MouseEvent

KeyEvent

setFocusable

requestFocusInWindow()

✓Point✓Check

Key
Point

626 Chapter 16 Event-Driven Programming

The Timer class can be used to control animations. Listing 16.11 gives a program that
displays two messages in separate panels (see Figure 16.19). You can use the mouse button to
control the animation speed for each message. The speed increases when the left mouse
button is clicked and decreases when the right button is clicked.

javax.swing.Timer

+Timer(delay: int, listener:
 ActionListener)

+addActionListener(listener:
 ActionListener): void

+start(): void

+stop(): void

+setDelay(delay: int): void

Creates a Timer object with a specified delay in milliseconds and an
ActionListener.

Adds an ActionListener to the timer.

Starts this timer.

Stops this timer.

Sets a new delay value for this timer.

FIGURE 16.18 A Timer object fires an ActionEvent at a fixed rate.

FIGURE 16.19 Two messages move in the panels.

LISTING 16.11 AnimationDemo.java
1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4
5 public class AnimationDemo extends JFrame {
6 public AnimationDemo() {
7 // Create two MovingMessagePanel for displaying two moving messages
8 this.setLayout(new GridLayout(2, 1));
9 add(new MovingMessagePanel("message 1 moving?"));
10 add(new MovingMessagePanel("message 2 moving?"));
11 }
12
13 /** Main method */
14 public static void main(String[] args) {
15 AnimationDemo frame = new AnimationDemo();
16 frame.setTitle("AnimationDemo");
17 frame.setLocationRelativeTo(null); // Center the frame
18 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19 frame.setSize(280, 100);
20 frame.setVisible(true);
21 }
22
23 // Inner class: Displaying a moving message
24 static class MovingMessagePanel extends JPanel {
25 private String message = "Welcome to Java";
26 private int xCoordinate = 0;
27 private int yCoordinate = 20;
28 private Timer timer = new Timer(1000, new TimerListener());

create message panel

create timer

16.11 Animation Using the Timer Class 627

29
30 public MovingMessagePanel(String message) {
31 this.message = message;
32
33 // Start timer for animation
34
35
36 // Control animation speed using mouse buttons
37 this.addMouseListener(new MouseAdapter() {
38 @Override
39 public void mouseClicked(MouseEvent e) {
40 int delay = timer.getDelay();
41 if (e.getButton() == MouseEvent.BUTTON1)
42
43 else if (e.getButton() == MouseEvent.BUTTON3)
44
45 }
46 });
47 }
48
49 @Override /** Paint the message */
50 protected void paintComponent(Graphics g) {
51 super.paintComponent(g);
52
53 if (xCoordinate > getWidth()) {
54 xCoordinate = -20;
55 }
56 xCoordinate += 5;
57 g.drawString(message, xCoordinate, yCoordinate);
58 }
59
60
61 @Override
62 public void actionPerformed(ActionEvent e) {
63 repaint();
64 }
65 }
66 }
67 }

Two instances of MovingMessagePanel are created to display two messages (lines 9–10).
The MovingMessagePanel class extends JPanel to display a message (line 24). This class
is defined as an inner class inside the main class, because it is used only in this class. Further-
more, the inner class is defined as static, because it does not reference any instance members
of the main class.

An inner class listener is defined in line 60 to listen for ActionEvent from a timer. Line
28 creates a Timer for the listener, and the timer is started in line 34. The timer fires an
ActionEvent every 1 second initially, and the listener responds in line 62 to repaint the
panel. When a panel is painted, its x-coordinate is increased (line 56), so the message is dis-
played to the right. When the x-coordinate exceeds the bound of the panel, it is reset to -20
(line 54), so the message continues moving from left to right circularly.

A mouse listener is registered with the panel to listen for the mouse click event (lines
37–46). When the left mouse button is clicked, a new reduced delay time is set for the timer
(lines 41–42). When the right mouse button is clicked, a new increased delay time is set for
the timer (lines 43–44). The minimum delay time is 0 and the maximum can be
Integer.MAX_VALUE, but it is set to 50000 in this program (line 44).

In Section 13.9, Case Study: The StillClock Class, you drew a StillClock to show
the current time. The clock does not tick after it is displayed. What can you do to make the

class TimerListener implements ActionListener {

timer.setDelay(delay < 50000 ? delay + 10 : 50000);

timer.setDelay(delay > 10 ? delay - 10 : 0);

timer.start();

set message

start timer

mouse listener

reset x-coordinate

move message

listener class
event handler
repaint

628 Chapter 16 Event-Driven Programming

clock display a new current time every second? The key to making the clock tick is to repaint
it every second with a new current time. You can use a timer to control the repainting of the
clock with the code in Listing 16.12.

LISTING 16.12 ClockAnimation.java
1 import java.awt.event.*;
2 import javax.swing.*;
3
4 public class ClockAnimation extends JFrame {
5 private StillClock clock = new StillClock();
6
7 public ClockAnimation() {
8 add(clock);
9
10 // Create a timer with delay 1000 ms
11
12
13 }
14
15
16 @Override /** Handle the action event */
17 public void actionPerformed(ActionEvent e) {
18 // Set new time and repaint the clock to display current time
19
20
21 }
22 }
23
24 /** Main method */
25 public static void main(String[] args) {
26 JFrame frame = new ClockAnimation();
27 frame.setTitle("ClockAnimation");
28 frame.setSize(200, 200);
29 frame.setLocationRelativeTo(null); // Center the frame
30 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
31 frame.setVisible(true);
32 }
33 }

The program displays a running clock, as shown in Figure 16.20. ClockAnimation
creates a StillClock (line 5). Line 11 creates a Timer for a ClockAnimation. The timer
is started in line 12. The timer fires an ActionEvent every second, and the listener responds
to set a new time (line 19) and repaint the clock (line 20). The setCurrentTime() method
defined in StillClock sets the current time in the clock.

clock.repaint();
clock.setCurrentTime();

private class TimerListener implements ActionListener {

timer.start();
Timer timer = new Timer(1000, new TimerListener());

Animate a clock

create a clock

FIGURE 16.20 A live clock is displayed in the panel.

create a timer
start timer

listener class

implement handler

set new time
repaint

VideoNote

Chapter Summary 629

16.23 How do you create a timer? How do you start a timer? How do you stop a timer?

16.24 Does the Timer class have a no-arg constructor? Can you add multiple listeners to a
timer?

KEY TERMS

anonymous inner class 609
event 602
event-driven programming 602
event handler 604
event-listener interface 603
event object 602

event source object 602
event listener object 603
inner class 606
listener interface adapter 620
source object 602

CHAPTER SUMMARY

1. The root class of the event classes is java.util.EventObject. The subclasses of
EventObject deal with special types of events, such as action events, window
events, component events, mouse events, and key events. You can identify the source
object of an event by using the getSource() instance method in the EventObject
class. If a component can fire an event, any subclass of the component can fire the
same type of event.

2. The listener object’s class must implement the corresponding event-listener interface.
Java provides a listener interface for every event class. The listener interface is usually
named XListener for XEvent, with the exception of MouseMotionListener. For
example, the corresponding listener interface for ActionEvent is ActionListener;
each listener for ActionEvent should implement the ActionListener interface.
The listener interface contains the method(s), known as the handler(s), which process
the events.

3. The listener object must be registered by the source object. Registration methods
depend on the event type. For ActionEvent, the method is addActionListener.
In general, the method is named addXListener for XEvent.

4. An inner class, or nested class, is defined within the scope of another class. An inner
class can reference the data and methods defined in the outer class in which it nests, so
you need not pass the reference of the outer class to the constructor of the inner class.

5. Listener interface adapters are support classes that provide default implementations
for all the methods in the listener interface. Java provides listener interface adapters
for every AWT listener interface with multiple handlers. A listener interface adapter
is named XAdapter for XListener.

6. A source object may fire several types of events. For each event, the source object
maintains a list of registered listeners and notifies them by invoking the handler on
the listener object to process the event.

7. A MouseEvent is fired whenever a mouse is pressed, released, clicked, entered,
exited, moved, or dragged on a component. The mouse-event object captures the
event, such as the number of clicks associated with it or the location (x- and y-
coordinates) of the mouse point.

✓Point✓Check

630 Chapter 16 Event-Driven Programming

8. Java provides two listener interfaces, MouseListener and MouseMotionListener,
to handle mouse events. Java implements the MouseListener interface to listen
for such actions as mouse pressed, released, clicked, entered, or exited, and the
MouseMotionListener interface to listen for such actions as mouse dragged or
moved.

9. A KeyEvent is fired when a key is pressed, released, or typed. The key value and key
character can be obtained from the key-event object.

10. A listener’s keyPressed handler is invoked when a key is pressed, its
keyReleased handler is invoked when a key is released, and its keyTyped handler
is invoked when a Unicode character key is entered. If a key does not have a Unicode
(e.g., function keys, modifier keys, action keys, and control keys), a listener’s
keyTyped handler will be not be invoked.

11. You can use the Timer class to control Java animations. A timer fires an ActionEvent
at a fixed rate. The listener updates the painting to simulate an animation.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 16.2–16.7
*16.1 (Pick four cards) Write a program that lets the user click the Refresh button to dis-

play four cards from a deck of 52 cards, as shown in Figure 16.21a. (Hint: See
Listing 6.2 on how to draw four cards randomly.)

(a) (c)(b)

FIGURE 16.21 (a) Exercise 16.1 displays four cards randomly. (b) Exercise 16.3 uses the buttons to move the ball.
(c) Exercise 16.4 performs addition, subtraction, multiplication, and division on double numbers.

16.2 (Find which button has been clicked on the console) Add the code to Programming
Exercise 12.1 that will display a message on the console indicating which button
has been clicked.

*16.3 (Move the ball) Write a program that moves the ball in a panel. You should define
a panel class for displaying the ball and provide the methods for moving the ball
left, right, up, and down, as shown in Figure 16.21b. Check the boundary to prevent
the ball from moving out of sight completely.

*16.4 (Create a simple calculator) Write a program to perform addition, subtraction,
multiplication, and division, as shown in Figure 16.21c.

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 631

*16.5 (Create an investment-value calculator) Write a program that calculates the
future value of an investment at a given interest rate for a specified number of
years. The formula for the calculation is:

futureValue = investmentAmount * (1 + monthlyInterestRate)years*12

Use text fields for the investment amount, number of years, and annual interest
rate. Display the future amount in a text field when the user clicks the Calculate
button, as shown in Figure 16.22a.

(a) (c)(b)

FIGURE 16.22 (a) The user enters the investment amount, years, and interest rate to compute
future value. (b) Exercise 16.8 displays the mouse position. (c) Exercise 16.9 uses the arrow
keys to draw the lines.

Sections 16.8–16.9
**16.6 (Alternate two messages) Write a program to rotate with a mouse click the two

messages Java is fun and Java is powerful displayed on a panel.

*16.7 (Set background color using a mouse) Write a program that displays the back-
ground color of a panel as black when the mouse button is pressed and as white
when the mouse button is released.

*16.8 (Display the mouse position) Write two programs, such that one displays the
mouse position when the mouse button is clicked (see Figure 16.22b) and the
other displays the mouse position when the mouse button is pressed and ceases
to display it when the mouse button is released.

Section 16.10
*16.9 (Draw lines using the arrow keys) Write a program that draws line segments

using the arrow keys. The line starts from the center of the frame and draws
toward east, north, west, or south when the right-arrow key, up-arrow key, left-
arrow key, or down-arrow key is pressed, as shown in Figure 16.22c.

**16.10 (Enter and display a string) Write a program that receives a string from the key-
board and displays it on a panel. The Enter key signals the end of a string.
Whenever a new string is entered, it is displayed on the panel.

*16.11 (Display a character) Write a program to get a character input from the key-
board and display the character where the mouse points.

Section 16.11
**16.12 (Display a running fan) Listing 13.4, DrawArcs.java, displays a motionless fan.

Write a program that displays a running fan.

**16.13 (Slide show) Twenty-five slides are stored as image files (slide0.jpg, slide1.jpg,
. . ., slide24.jpg) in the image directory downloadable along with the source
code in the book. The size of each image is Write a Java application800 * 600.

632 Chapter 16 Event-Driven Programming

that automatically displays the slides repeatedly. Each slide is shown for a sec-
ond. The slides are displayed in order. When the last slide finishes, the first
slide is redisplayed, and so on. (Hint: Place a label in the frame and set a slide
as an image icon in the label.)

**16.14 (Raise flag) Write a Java program that animates raising a flag, as shown in
Figure 16.1. (See Section 13.10, Displaying Images, for how to display images.)

**16.15 (Racing car) Write a Java program that simulates car racing, as shown in
Figure 16.23a. The car moves from left to right. When it hits the right end, it
restarts from the left and continues the same process. You can use a timer to
control animation. Redraw the car with a new base coordinates (x, y), as
shown in Figure 16.23b. Also let the user pause/resume the animation with a
button press/release and increase/decrease the car speed by pressing the UP
and DOWN arrow keys.

*16.16 (Display a flashing label) Write a program that displays a flashing label. (Hint:
To make the label flash, you need to repaint the panel alternately with the label
and without it (a blank screen) at a fixed rate. Use a boolean variable to control
the alternation.)

*16.17 (Control a moving label) Modify Listing 16.11, AnimationDemo.java, to con-
trol a moving label using the mouse. The label freezes when the mouse is
pressed, and moves again when the button is released.

Comprehensive
*16.18 (Move a circle using keys) Write a program that moves a circle up, down, left, or

right using the arrow keys.

**16.19 (Geometry: inside a circle?) Write a program that draws a fixed circle centered
at (100, 60) with radius 50. Whenever the mouse is moved, display a message
indicating whether the mouse point is inside the circle at the mouse point or out-
side of it, as shown in Figure 16.24a.Check mouse point location

x x+20 x+40

y

y-20

y-10

y-30

(x,y)

(a) (b)

FIGURE 16.23 (a) Exercise 16.15 displays a moving car. (b) You can redraw a car with a new base point.

(a) (b) (c)

FIGURE 16.24 Detect whether a point is inside a circle, a rectangle, or a polygon.

Animate a rising flag
VideoNote

VideoNote

Programming Exercises 633

**16.20 (Geometry: inside a rectangle?) Write a program that draws a fixed rectangle
centered at (100, 60) with width 100 and height 40. Whenever the mouse is
moved, display a message indicating whether the mouse point is inside the
rectangle at the mouse point or outside of it, as shown in Figure 16.24b. To
detect whether a point is inside a rectangle, use the MyRectangle2D class
defined in Programming Exercise 10.13.

**16.21 (Geometry: inside a polygon?) Write a program that draws a fixed polygon with
points at (40, 20), (70, 40), (60, 80), (45, 45), and (20, 60). Whenever the
mouse is moved, display a message indicating whether the mouse point is inside
the polygon at the mouse point or outside of it, as shown in Figure 16.24c. To
detect whether a point is inside a polygon, use the contains method defined in
the Polygon class (see Figure 13.13).

***16.22 (Game: bean-machine animation) Write a program that animates the bean
machine introduced in Programming Exercise 6.21. The animation terminates
after ten balls are dropped, as shown in Figure 16.25.

***16.23 (Geometry: closest pair of points) Write a program that lets the user click on
the panel to dynamically create points. Initially, the panel is empty. When a
panel has two or more points, highlight the pair of closest points. Whenever a
new point is created, a new pair of closest points is highlighted. Display the
points using small circles and highlight the points using filled circles, as
shown in Figure 16.26a–c. (Hint: store the points in an ArrayList.)

FIGURE 16.25 The balls are dropped into the bean machine.

(a) (d)(c)(b)

FIGURE 16.26 Exercise 16.23 allows the user to create new points with a mouse click and highlights the pair of the closest
points. Exercise 16.24 allows the user to start and stop a clock.

*16.24 (Control a clock) Modify Listing 16.12, ClockAnimation.java, to add the two
methods start() and stop() to start and stop the clock. Write a program
that lets the user control the clock with the Start and Stop buttons, as shown in
Figure 16.26d.

634 Chapter 16 Event-Driven Programming

***16.25 (Game: hit balloons) Write a program that displays a balloon in a random
position in a panel (Figure 16.27a). Use the left- and right-arrow keys to point
the gun left or right to aim at the balloon (Figure 16.27b). Press the up-arrow
key to fire a small ball from the gun (Figure 16.27c–d). Once the ball hits the
balloon, the debris is displayed (Figure 16.27e) and a new balloon is dis-
played in a random location (Figure 16.27f). If the ball misses the balloon, the
ball disappears once it hits the boundary of the panel. You can then press the
up-arrow key to fire another ball. Whenever you press the left- or the right-
arrow key, the gun turns 5 degrees left or right. (Instructors may modify the
game as follows: 1. Display the number of the balloons destroyed; 2. display
a countdown timer (e.g., 60 seconds) and terminate the game once the time
expires; and/or 3. allow the balloon to rise dynamically.)

**16.26 (Move a circle using mouse) Write a program that displays a circle with radius 10
pixels. You can point the mouse inside the circle and drag (i.e., move with mouse
pressed) the circle wherever the mouse goes, as shown in Figure 16.28a–b.

***16.27 (Game: eye-hand coordination) Write a program that displays a circle of radius
10 pixels filled with a random color at a random location on a panel, as shown
in Figure 16.28c. When you click the circle, it disappears and a new random-
color circle is displayed at another random location. After twenty circles are
clicked, display the time spent in the panel, as shown in Figure 16.28d.

(a) (b) (c)

(d) (e) (f)

FIGURE 16.27 (a) A balloon is displayed in a random location. (b) Press the left-/right-
arrow keys to aim at the balloon. (c) Press the up-arrow key to fire a ball. (d) The ball moves
straight toward the balloon. (e) The ball hits the balloon. (f) A new balloon is displayed in a
random position.

(a) (b) (c) (d)

FIGURE 16.28 (a–b) You can point, drag, and move the circle. (c) When you click a circle, a new circle is displayed at a
random location. (d) After 20 circles are clicked, the time spent is displayed in the panel.

Programming Exercises 635

***16.28 (Simulation: self-avoiding random walk) A self-avoiding walk in a lattice is a
path from one point to another that does not visit the same point twice. Self-
avoiding walks have applications in physics, chemistry, and mathematics.
They can be used to model chain-like entities such as solvents and polymers.
Write a program that displays a random path that starts from the center and
ends at a point on the boundary, as shown in Figure 16.29a, or ends at a dead-
end point (i.e., surrounded by four points that have already been visited), as
shown in Figure 16.29b. Assume the size of the lattice is 16 by 16.

***16.29 (Animation: self-avoiding random walk) Revise the preceding exercise to dis-
play the walk step by step in an animation, as shown in Figure 16.29c–d.

**16.30 (Simulation: self-avoiding random walk) Write a simulation program to show
that the chance of getting dead-end paths increases as the grid size increases.
Your program simulates lattices with size from 10 to 80. For each lattice size,
simulate a self-avoiding random walk 10,000 times and display the probabil-
ity of the dead-end paths, as shown in the following sample output:

*16.31 (Geometry: display an n-sided regular polygon) Programming Exercise 13.25
created the RegularPolygonPanel for displaying an n-sided regular poly-
gon. Write a program that displays a regular polygon and uses two buttons
named and to increase or decrease the size of the polygon, as shown
in Figure 16.30a–b. Also enable the user to increase or decrease the size by
clicking the right or left mouse button and by pressing the UP and DOWN
arrow keys.

**16.32 (Geometry: add and remove points) Write a program that lets the user click on
a panel to dynamically create and remove points (see Figure 16.30c). When
the user right-clicks the mouse, a point is created and displayed at the mouse
point. The user can remove a point by pointing to it and left-clicking the
mouse.

**16.33 (Geometry: pendulum) Write a program that animates a pendulum swinging,
as shown in Figure 16.31. Press the UP arrow key to increase the speed and
the DOWN key to decrease it. Press the S key to stop animation and the R key
to resume it.

- ˛1+ ˛1

(a) (b) (c) (d)

FIGURE 16.29 (a) A path ends at a boundary point. (b) A path ends at dead-end point. (c–d) Animation shows the progress
of a path step by step.

For a lattice of size 10, the probability of dead-end paths is 10.6%
For a lattice of size 11, the probability of dead-end paths is 14.0%
. . .
For a lattice of size 80, the probability of dead-end paths is 99.5%

636 Chapter 16 Event-Driven Programming

**16.34 (Game: hangman) Write a program that animates a hangman game swinging,
as shown in Figure 16.32. Press the UP arrow key to increase the speed and
the DOWN arrow key to decrease it. Press the S key to stop animation and the
R key to resume it.

***16.35 (Animation: ball on curve) Write a program that animates a ball moving along
a sine curve, as shown in Figure 16.33. When the ball gets to the right border,
it starts over from the left. Enable the user to resume/pause the animation with
a click on the left/right mouse button.

*16.36 (Flip coins) Write a program that displays heads (H) or tails (T) for each of
nine coins, as shown in Figure 16.34a–b. When a cell is clicked, the coin is
flipped. A cell is a JLabel. Write a custom cell class that extends JLabel

FIGURE 16.31 Exercise 16.33 animates a pendulum swinging.

FIGURE 16.32 The program animates a hangman game swinging.

(a) (b) (c)

FIGURE 16.30 Clicking the or button increases or decreases the number of sides of
a regular polygon in Exercise 16.31. Exercise 16.32 allows the user to create/remove points
dynamically.

- ˛1+ ˛1

Programming Exercises 637

with the mouse listener for handling the clicks. When the program starts, all
cells initially display H.

*16.37 (Two movable vertices and their distances) Write a program that displays two
circles with radius 20 at location (20, 20) and (120, 50) with a line connect-
ing the two circles, as shown in Figure 16.34c. The distance between the cir-
cles is displayed along the line. The user can drag a circle. When that
happens, the circle and its line are moved and the distance between the circles
is updated. Your program should not allow the circles to get too close. Keep
them at least 70 pixels apart between the two circles’ centers.

**16.38 (Draw an arrow line) Write a static method that draws an arrow line from a
starting point to an ending point using the following method header:

public static void drawArrowLine(int x1, int y1,
int x2, int y2, Graphics g)

Write a test program that randomly draws an arrow line when the Draw a Ran-
dom Arrow Line button is clicked, as shown in Figure 16.34d.

**16.39 (Geometry: find the bounding rectangle) Write a program that enables the
user to add and remove points in a two-dimensional plane dynamically, as
shown in Figure 16.35a–b. A minimum bounding rectangle is updated as the
points are added and removed. Assume the radius of each point is 10 pixels.

*16.40 (Display random 0 or 1) Write a program that displays a 10-by-10 square matrix,
as shown in Figure 16.35c. Each element in the matrix is 0 or 1, randomly gen-
erated with a click of the Refresh button. Display each number centered in a
label.

FIGURE 16.33 The program animates a ball travelling along a sine curve.

(a) (b) (c) (d)

FIGURE 16.34 (a–b) Exercise 16.36 enables the user to click a cell to flip a coin. (c) The user can drag the circles.
(d) Exercise 16.38 draws an arrow line randomly.

638 Chapter 16 Event-Driven Programming

(a) (b) (c)

FIGURE 16.35 (a–b) Exercise 16.39 enables the user to add/remove points dynamically and displays the bounding rectangle.
(c) Exercise 16.40 displays 0s and 1s randomly with a click of the Refresh button.

GUI COMPONENTS

Objectives
■ To create graphical user interfaces with various user-interface

components (§§17.2–17.8).

■ To create listeners for JCheckBox, JRadioButton, and JTextField
(§17.2).

■ To enter multiple-line texts using JTextArea (§17.3).

■ To select a single item using JComboBox (§17.4).

■ To select a single or multiple items using JList (§17.5).

■ To select a range of values using JScrollBar (§17.6).

■ To select a range of values using JSlider and explore differences
between JScrollBar and JSlider (§17.7).

■ To display multiple windows in an application (§17.8).

CHAPTER

17

640 Chapter 17 GUI Components

JPanel with
BorderLayout for
a label and a text field

FIGURE 17.1 The program demonstrates check boxes, radio buttons, and text fields.

17.1 Introduction
Swing provides many GUI components for developing a comprehensive user interface.

Previous chapters briefly introduced JButton, JCheckBox, JRadioButton, JLabel,
JTextField, and JPasswordField. This chapter introduces in detail how the events are
processed for these components. We will also introduce JTextArea, JComboBox, JList,
JScrollBar, and JSlider. More GUI components such as JMenu, JToolBar,
JTabbedPane, JSplitPane, JSpinner, JTree, and JTable will be introduced in bonus
Web Chapters 36–40.

17.2 Events for JCheckBox, JRadioButton, and
JTextField
A GUI component may fire many types of events. ActionEvent is commonly
processed for JCheckBox, JRadioButton, and JTextField, and ItemEvent can
be used for JCheckBox and JRadioButton.

In the previous chapter, you learned how to handle an action event for JButton. This section
introduces handling events for check boxes, radio buttons, and text fields.

When a JCheckBox or a JRadioButton is clicked (that is, checked or unchecked), it
fires an ItemEvent and then an ActionEvent. When you press the Enter key on a
JTextField, it fires an ActionEvent.

Listing 17.1 gives a program that demonstrates how to handle events from check boxes,
radio buttons, and text fields. The program displays a label and allows the user to set the col-
ors of the text in the label using radio buttons, set fonts using check boxes, and set new text
entered from a text field, as shown in Figure 17.1.

LISTING 17.1 GUIEventDemo.java
1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4 import javax.swing.border.*;
5
6 public class GUIEventDemo extends JFrame {
7 private JLabel jlblMessage = new JLabel("Hello", JLabel.CENTER);
8
9 // Create check boxes to set the font for the message
10 private JCheckBox jchkBold = new JCheckBox("Bold");
11 private JCheckBox jchkItalic = new JCheckBox("Italic");
12
13 // Create three radio buttons to set message colors
14 private JRadioButton jrbRed = new JRadioButton("Red");
15 private JRadioButton jrbGreen = new JRadioButton("Green");
16 private JRadioButton jrbBlue = new JRadioButton("Blue");
17
18 // Create a text field for setting a new message

Key
Point

Key
Point

create label

create check boxes

create radio buttons

17.2 Events for JCheckBox, JRadioButton, and JTextField 641

19 private JTextField jtfMessage = new JTextField(10);
20
21 public static void main(String[] args) {
22 GUIEventDemo frame = new GUIEventDemo();
23 frame.pack();
24 frame.setTitle("GUIEventDemo");
25 frame.setLocationRelativeTo(null); // Center the frame
26 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
27 frame.setVisible(true);
28 }
29
30 public GUIEventDemo() {
31 jlblMessage.setBorder(new LineBorder(Color.BLACK, 2));
32 add(jlblMessage, BorderLayout.CENTER);
33
34 // Create a panel to hold check boxes
35 JPanel jpCheckBoxes = new JPanel();
36 jpCheckBoxes.setLayout(new GridLayout(2, 1));
37 jpCheckBoxes.add(jchkBold);
38 jpCheckBoxes.add(jchkItalic);
39 add(jpCheckBoxes, BorderLayout.EAST);
40
41 // Create a panel to hold radio buttons
42 JPanel jpRadioButtons = new JPanel();
43 jpRadioButtons.setLayout(new GridLayout(3, 1));
44 jpRadioButtons.add(jrbRed);
45 jpRadioButtons.add(jrbGreen);
46 jpRadioButtons.add(jrbBlue);
47 add(jpRadioButtons, BorderLayout.WEST);
48
49 // Create a radio-button group to group three buttons
50 ButtonGroup group = new ButtonGroup();
51 group.add(jrbRed);
52 group.add(jrbGreen);
53 group.add(jrbBlue);
54
55 // Set initial message color to blue
56 jrbBlue.setSelected(true);
57 jlblMessage.setForeground(Color.blue);
58
59 // Create a panel to hold label and text field
60 JPanel jpTextField = new JPanel();
61 jpTextField.setLayout(new BorderLayout(5, 0));
62 jpTextField.add(
63 new JLabel("Enter a new message"), BorderLayout.WEST);
64 jpTextField.add(jtfMessage, BorderLayout.CENTER);
65 jtfMessage.setHorizontalAlignment(JTextField.RIGHT);
66 add(jpTextField, BorderLayout.NORTH);
67
68 // Set mnemonic keys for check boxes and radio buttons
69 jchkBold.setMnemonic('B');
70 jchkItalic.setMnemonic('I');
71 jrbRed.setMnemonic('E');
72 jrbGreen.setMnemonic('G');
73 jrbBlue.setMnemonic('U');
74
75 // Register listeners with check boxes
76 jchkBold.addActionListener(new ActionListener() {
77 @Override
78 public void actionPerformed(ActionEvent e) {

create text field

create frame
pack frame

create UI

place label

panel for check boxes

panel for radio buttons

group buttons

panel for text field

set mnemonics

register listener

642 Chapter 17 GUI Components

79 setNewFont();
80 }
81 });
82 jchkItalic.addActionListener(new ActionListener() {
83 @Override
84 public void actionPerformed(ActionEvent e) {
85 setNewFont();
86 }
87 });
88
89 // Register listeners for radio buttons
90 jrbRed.addActionListener(new ActionListener() {
91 @Override
92 public void actionPerformed(ActionEvent e) {
93 jlblMessage.setForeground(Color.red);
94 }
95 });
96 jrbGreen.addActionListener(new ActionListener() {
97 @Override
98 public void actionPerformed(ActionEvent e) {
99 jlblMessage.setForeground(Color.green);
100 }
101 });
102 jrbBlue.addActionListener(new ActionListener() {
103 @Override
104 public void actionPerformed(ActionEvent e) {
105 jlblMessage.setForeground(Color.blue);
106 }
107 });
108
109 // Register listener for text field
110 jtfMessage.addActionListener(new ActionListener() {
111 @Override
112 public void actionPerformed(ActionEvent e) {
113 jlblMessage.setText(jtfMessage.getText());
114 jtfMessage.requestFocusInWindow();
115 }
116 });
117 }
118
119 private void setNewFont() {
120 // Determine a font style
121 int fontStyle = Font.PLAIN;
122 fontStyle += (jchkBold.isSelected() ? Font.BOLD : Font.PLAIN);
123 fontStyle += (jchkItalic.isSelected() ? Font.ITALIC : Font.PLAIN);
124
125 // Set font for the message
126 Font font = jlblMessage.getFont();
127 jlblMessage.setFont(
128 new Font(font.getName(), fontStyle, font.getSize()));
129 }
130 }

The program creates a label, check boxes, radio buttons, and a text field (lines 7–19). It
places a label in the center of the frame (lines 31–32), check boxes in the east (lines 35–39),
radio buttons in the west (lines 42–47), and a text field in the north (lines 60–66).

The program also sets mnemonics for check boxes and radio buttons (lines 69–73). You
can use a mouse click or a shortcut key to select a check box or a radio button.

register listener

register listener

register listener

register listener

register listener

set a new font

mnemonic keys

17.2 Events for JCheckBox, JRadioButton, and JTextField 643

The program registers action listeners for check boxes, radio buttons, and the text field
(lines 76–116).

When a check box is checked or unchecked, the listener’s actionPerformed method is
invoked to process the event (lines 79, 85). The current font name and size used in JLabel are
obtained from jlblMessage.getFont() using the getName() and getSize() methods
(line 128). The font styles (Font.BOLD and Font.ITALIC) are specified in the check boxes.
If no font style is selected, the default font style is Font.PLAIN (line 121). The font style is an
integer 0 for Font.PLAIN, 1 for Font.BOLD, and 2 for Font.ITALIC. The font style can be
combined by adding together the integers that represent the fonts (lines 122–123). For example,
Font.BOLD + Font.ITALIC is 3, which represents a combined font of bold and italic.

The setFont method (line 127) defined in the Component class is inherited in the
JLabel class. This method automatically invokes the repaint method. Invoking setFont
on jlblMessage automatically repaints jlblMessage.

A check box fires an ItemEvent and then an ActionEvent when it is clicked. You could
process either the ItemEvent or the ActionEvent to redisplay the message. The program in
this example processes the ActionEvent. If you want to process the ItemEvent, create a
listener for ItemEvent and register it with a check box. The listener must implement the
itemStateChanged handler to process an ItemEvent. For example, the following code
registers an ItemListener with jchkBold:

// To listen for ItemEvent

@Override /** Handle ItemEvent */
{

setNewFont();
}

When a radio button is clicked, its action event listener sets the corresponding foreground
color in jlblMessage (lines 93, 99, 105).

The program creates a ButtonGroup and puts three JRadioButton instances (jrbRed,
jrbGreen, and jrbBlue) in the group (lines 50–53) so they can only be selected exclusively—
the text will be either red or green or blue.

A radio button fires an ItemEvent and then an ActionEvent when it is selected or
deselected. You could process either the ItemEvent or the ActionEvent to choose a color.
This program processes the ActionEvent. As an exercise, rewrite the code using the
ItemEvent.

After you type a new message in the text field and press the Enter key, a new message is
displayed. Pressing the Enter key on the text field triggers an action event. The listener sets a
new message in jlblMessage (line 113).

The requestFocusInWindow() method (line 114) defined in the Component class requests
the component to receive input focus. Thus, jtfMessage.requestFocusInWindow()
requests the input focus on jtfMessage. You will see the cursor on jtfMessage after the
actionPerformed method is invoked.

The pack() method (line 23) automatically sizes the frame according to the size of the
components placed in it.

17.1 Can a JButton, JLabel, JCheckBox, JRadioButton, and JTextField fire an
ActionEvent?

17.2 Can a JButton, JLabel, JCheckBox, JRadioButton, and JTextField fire an
ItemEvent?

17.3 What happens after invoking jtfMessage.requestFocusInWindow()?

});

public void itemStateChanged(ItemEvent e)

jchkBold.addItemListener(new ItemListener() {

register listeners

check boxes

radio buttons

radio button group

ActionEvent for
JTextField

requestFocusInWindow()

pack()

✓Point✓Check

644 Chapter 17 GUI Components

17.3 Text Areas
A JTextArea enables the user to enter multiple lines of text.

If you want to let the user enter multiple lines of text, you may create several instances of
JTextField. A better alternative is to use JTextArea, which enables the user to enter mul-
tiple lines of text. Figure 17.2 lists the constructors and methods in JTextArea.

Key
Point

Like JTextField, JTextArea inherits JTextComponent, which contains the methods
getText, setText, isEditable, and setEditable. You can specify whether a line is
wrapped in the lineWrap property. If lineWrap is true, you can specify how line is wrapped
in the wrapStyleWord property. If wrapStyleWord is true, line is wrapped on words. If it is
false, line is wrapped on characters. The following example creates a text area with 5 rows and
20 columns, line-wrapped on words, red foreground color, and Courier font, bold, 20 pixels.

JTextArea jtaNote = new JTextArea("This is a text area", 5, 20);
jtaNote.setLineWrap(true);
jtaNote.setWrapStyleWord(true);
jtaNote.setForeground(Color.red);
jtaNote.setFont(new Font("Courier", Font.BOLD, 20));

JTextArea does not handle scrolling, but you can create a JScrollPane object to hold an
instance of JTextArea and let JScrollPane handle scrolling for JTextArea, as follows:

// Create a scroll pane to hold text area
JScrollPane scrollPane = new JScrollPane(jtaNote);
add(scrollPane, BorderLayout.CENTER);

Tip
You can place any swing GUI component in a JScrollPane. JScrollPane provides
vertical and horizontal scrolling automatically if the component is too large to fit in the
viewing area.

Listing 17.3 gives a program that displays an image and a text in a label, and a text in a text
area, as shown in Figure 17.3.

wrap line
wrap word

JScrollPane

javax.swing.text.JTextComponent

-columns: int
-rows: int
-tabSize: int
-lineWrap: boolean

-wrapStyleWord: boolean

+JTextArea()
+JTextArea(rows: int, columns: int)
+JTextArea(text: String)
+JTextArea(text: String, rows: int, columns: int)
+append(s: String): void
+insert(s: String, pos: int): void
+replaceRange(s: String, start: int, end: int):
 void
+getLineCount(): int

The number of columns in this text area.
The number of rows in this text area.
The number of characters used to expand tabs (default: 8).
Indicates whether the line in the text area is automatically
 wrapped (default: false).
Indicates whether the line is wrapped on words or characters (default: false).

Creates a default empty text area.
Creates an empty text area with the specified number of rows and columns.
Creates a new text area with the specified text displayed.
Creates a new text area with the specified text and number of rows and columns.
Appends the string to text in the text area.
Inserts string s in the specified position in the text area.
Replaces partial text in the range from position start to end with string s.

Returns the actual number of lines contained in the text area.

javax.swing.JTextArea

The get and set methods for these data fields are provided
in the class, but omitted in the UML diagram for brevity.

FIGURE 17.2 JTextArea enables you to enter or display multiple lines of characters.

17.3 Text Areas 645

Here are the major steps in the program:

1. Define a class named DescriptionPanel that extends JPanel, as shown in Listing 17.2.
This class contains a text area inside a scroll pane, and a label for displaying an image icon
and a title. The class DescriptionPanel will be reused in later examples.

2. Define a class named TextAreaDemo that extends JFrame, as shown in Listing 17.3.
Create an instance of DescriptionPanel and add it to the center of the frame. The rela-
tionship between DescriptionPanel and TextAreaDemo is shown in Figure 17.4.

LISTING 17.2 DescriptionPanel.java
1 import javax.swing.*;
2 import java.awt.*;
3
4 public class DescriptionPanel extends JPanel {
5 /** Label for displaying an image icon and a title */
6 private JLabel jlblImageTitle = new JLabel();
7
8 /** Text area for displaying text */
9 private JTextArea jtaDescription = new JTextArea();
10
11 public DescriptionPanel() {
12 // Center the icon and text and place the text under the icon
13 jlblImageTitle.setHorizontalAlignment(JLabel.CENTER);
14 jlblImageTitle.setHorizontalTextPosition(JLabel.CENTER);
15 jlblImageTitle.setVerticalTextPosition(JLabel.BOTTOM);
16

label

text area

label properties

A label
showing an
image and a
title

A text area
inside a
scroll pane

DescriptionPanel
with BorderLayout

FIGURE 17.3 The program displays an image in a label, a title in a label, and text in the text area.

1 1
TextAreaDemo

javax.swing.JFrame

DescriptionPanel

-jlblImageTitle: JLabel

+setImageIcon(icon: ImageIcon): void

-jtaDescription: JTextArea

+setTitle(title: String): void

+setDescription(text: String): void

javax.swing.JPanel

FIGURE 17.4 TextAreaDemo uses DescriptionPanel to display an image, title, and text
description of a national flag.

646 Chapter 17 GUI Components

17 // Set the font in the label and the text field
18 jlblImageTitle.setFont(new Font("SansSerif", Font.BOLD, 16));
19 jtaDescription.setFont(new Font("Serif", Font.PLAIN, 14));
20
21 // Set lineWrap and wrapStyleWord true for the text area
22
23
24
25
26 // Create a scroll pane to hold the text area
27 JScrollPane scrollPane = new JScrollPane(jtaDescription);
28
29 // Set BorderLayout for the panel, add label and scroll pane
30 setLayout(new BorderLayout(5, 5));
31 add(scrollPane, BorderLayout.CENTER);
32 add(jlblImageTitle, BorderLayout.WEST);
33 }
34
35 /** Set the title */
36 public void setTitle(String title) {
37 jlblImageTitle.setText(title);
38 }
39
40 /** Set the image icon */
41 public void setImageIcon(ImageIcon icon) {
42 jlblImageTitle.setIcon(icon);
43 }
44
45 /** Set the text description */
46 public void setDescription(String text) {
47 jtaDescription.setText(text);
48 }
49 }

The text area is inside a JScrollPane (line 27), which provides scrolling functions for
the text area. Scroll bars automatically appear if there is more text than the physical size of the
text area.

The lineWrap property is set to true (line 22) so that the line is automatically wrapped
when the text cannot fit in one line. The wrapStyleWord property is set to true (line 23) so
that the line is wrapped on words rather than characters. The text area is set as noneditable
(line 24), so you cannot edit the description in the text area.

It is not necessary to create a separate class for DescriptionPanel in this example.
However, this class was created for reuse in the next section, where you will use it to display
a description panel for various images.

LISTING 17.3 TextAreaDemo.java
1 import java.awt.*;
2 import javax.swing.*;
3
4 public class TextAreaDemo extends JFrame {
5 // Declare and create a description panel
6
7
8 public static void main(String[] args) {
9 TextAreaDemo frame = new TextAreaDemo();
10
11 frame.setLocationRelativeTo(null); // Center the frame

frame.pack();

private DescriptionPanel descriptionPanel = new DescriptionPanel();

jtaDescription.setEditable(false);
jtaDescription.setWrapStyleWord(true);
jtaDescription.setLineWrap(true);wrap line

wrap word
read only

scroll pane

create descriptionPanel

create frame

17.4 Combo Boxes 647

12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 frame.setTitle("TextAreaDemo");
14 frame.setVisible(true);
15 }
16
17 public TextAreaDemo() {
18 // Set title, text, and image in the description panel
19 descriptionPanel.setTitle("Canada");
20 String description = "The Canadian national flag...";
21 descriptionPanel.setImageIcon(new ImageIcon("image/ca.gif"));
22 descriptionPanel.setDescription(description);
23
24 // Add the description panel to the frame
25 setLayout(new BorderLayout());
26 add(descriptionPanel, BorderLayout.CENTER);
27 }
28 }

The program in Listing 17.3 creates an instance of DescriptionPanel (line 6) and sets the
title (line 19), image (line 21), and text in the description panel (line 22). DescriptionPanel
is a subclass of JPanel. DescriptionPanel contains a label for displaying an image icon
and a text title, and a text area for displaying a description of the image.

17.4 How do you create a text area with 10 rows and 20 columns?

17.5 How do you insert or append three lines into the text area?

17.6 How do you create a scrollable text area?

17.7 What method do you use to get the text from a text area? How do you get the line
count in the text area?

17.8 How do you specify a line wrap? How do you specify wrapping on characters? How
do you specify wrapping on words?

17.4 Combo Boxes
A combo box, also known as a choice list or drop-down list, contains a list of items
from which the user can choose.

A combo box is useful for limiting a user’s range of choices and avoids the cumbersome val-
idation of data input. Figure 17.5 lists several frequently used constructors and methods in
JComboBox.

The following statements create a combo box with four items, red foreground, white back-
ground, and the second item selected.

create UI

add descriptionPanel

✓Point✓Check

Key
Point

JComboBox jcb = new JComboBox(new Object[]
{"Item 1", "Item 2", "Item3", "Item 4"});

jcb.setForeground(Color.red);
jcb.setBackground(Color.white);
jcb.setSelectedItem("Item 2");

JComboBox can fire ItemEvent and ActionEvent among many other events. Whenever an
item is selected, an ActionEvent is fired. Whenever a new item is selected, JComboBox fires
ItemEvent twice: once for deselecting the previously selected item, and the other for selecting
the currently selected item. Note that no ItemEvent is fired if the current item is reselected. To
respond to an ItemEvent, you need to implement the itemStateChanged(ItemEvent e)
handler for processing a choice. To get data from a JComboBox menu, you can use
getSelectedItem() to return the currently selected item, or the e.getItem()method to get
the item from the itemStateChanged(ItemEvent e) handler.

648 Chapter 17 GUI Components

Listing 17.4 gives a program that lets users view an image and a description of a country’s
flag by selecting the country from a combo box, as shown in Figure 17.6.

javax.swing.JComboBox

javax.swing.JComponent

Creates a default empty combo box.
Creates a combo box that contains the elements in the specified array.
Adds an item to the combo box.
Returns the item at the specified index.
Returns the number of items in the combo box.
Returns the index of the selected item.
Sets the selected index in the combo box.
Returns the selected item.
Sets the selected item in the combo box.
Removes an item from the item list.
Removes the item at the specified index in the combo box.
Removes all the items in the combo box.

+JComboBox()
+JComboBox(items: Object[])
+addItem(item: Object): void
+getItemAt(index: int): Object
+getItemCount(): int
+getSelectedIndex(): int
+setSelectedIndex(index: int): void
+getSelectedItem(): Object
+setSelectedItem(item: Object): void
+removeItem(anObject: Object): void
+removeItemAt(anIndex: int): void
+removeAllItems(): void

Adds an ActionListener for this object.

Adds an ItemListener for this object.

+addActionEvent(listener:
 ActionListener): void
+addItemListener(listener:
 ItemListener) : void

FIGURE 17.5 JComboBox enables you to select an item from a set of items.

DescriptionPanel

Combo box

FIGURE 17.6 Information about a country, including an image and a description of its flag,
is displayed when the country is selected in the combo box.

Here are the major steps in the program:

1. Create the user interface.
Create a combo box with country names as its selection values. Create a
DescriptionPanel object (the DescriptionPanel class was introduced in the pre-
ceding section). Place the combo box in the north of the frame and the description panel
in the center of the frame.

2. Process the event.
Create a listener to implement the itemStateChanged handler to set the flag title,
image, and text in the description panel for the selected country name.

17.4 Combo Boxes 649

LISTING 17.4 ComboBoxDemo.java
1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4
5 public class {
6 // Create an array of Strings for flag titles
7 private = {"Canada", "China", "Denmark",
8 "France", "Germany", "India", "Norway", "United Kingdom",
9 "United States of America"};
10
11 // Declare an ImageIcon array for the national flags of 9 countries
12 private = {
13 new ImageIcon("image/ca.gif"),
14 new ImageIcon("image/china.gif"),
15 new ImageIcon("image/denmark.gif"),
16 new ImageIcon("image/fr.gif"),
17 new ImageIcon("image/germany.gif"),
18 new ImageIcon("image/india.gif"),
19 new ImageIcon("image/norway.gif"),
20 new ImageIcon("image/uk.gif"),
21 new ImageIcon("image/us.gif")
22 };
23
24 // Declare an array of strings for flag descriptions
25 private = new String[9];
26
27 // Declare and create a description panel
28 private DescriptionPanel descriptionPanel = new DescriptionPanel();
29
30 // Create a combo box for selecting countries
31
32
33 public static void main(String[] args) {
34 ComboBoxDemo frame = new ComboBoxDemo();
35 frame.pack();
36 frame.setTitle("ComboBoxDemo");
37 frame.setLocationRelativeTo(null); // Center the frame
38 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
39 frame.setVisible(true);
40 }
41
42 public ComboBoxDemo() {
43 // Set text description
44 flagDescription[0] = "The Canadian national flag...";
45 flagDescription[1] = "Description for China ... ";
46 flagDescription[2] = "Description for Denmark ... ";
47 flagDescription[3] = "Description for France ... ";
48 flagDescription[4] = "Description for Germany ... ";
49 flagDescription[5] = "Description for India ... ";
50 flagDescription[6] = "Description for Norway ... ";
51 flagDescription[7] = "Description for UK ... ";
52 flagDescription[8] = "Description for US ... ";
53
54 // Set the first country (Canada) for display
55 setDisplay(0);
56
57 // Add combo box and description panel to the frame
58 add(jcbo, BorderLayout.NORTH);

private JComboBox jcbo = new JComboBox(flagTitles);

String[] flagDescription

ImageIcon[] flagImage

String[] flagTitles

ComboBoxDemo extends JFrame

country

image icon

description

combo box

create UI

650 Chapter 17 GUI Components

59 add(descriptionPanel, BorderLayout.CENTER);
60
61 // Register listener
62 jcbo.addItemListener(new ItemListener() {
63 @Override /** Handle item selection */
64 public void itemStateChanged(ItemEvent e) {
65 setDisplay(jcbo.getSelectedIndex());
66 }
67 });
68 }
69
70 /** Set display information on the description panel */
71 public void setDisplay(int index) {
72 descriptionPanel.setTitle(flagTitles[index]);
73 descriptionPanel.setImageIcon(flagImage[index]);
74 descriptionPanel.setDescription(flagDescription[index]);
75 }
76 }

The listener listens to ItemEvent from the combo box and implements ItemListener
(lines 62–67). Instead of using ItemEvent, you could rewrite the program to use
ActionEvent for handling combo-box item selection.

The program stores the flag information in three arrays: flagTitles, flagImage, and
flagDescription (lines 7–25). The array flagTitles contains the names of nine coun-
tries, the array flagImage contains images of the nine countries’ flags, and the array
flagDescription contains descriptions of the flags.

The program creates an instance of DescriptionPanel (line 28), which was presented in
Listing 17.2, DescriptionPanel.java. The program creates a combo box with initial values
from flagTitles (line 31). When the user selects an item in the combo box, the
itemStateChanged handler is executed. The handler finds the selected index and sets its
corresponding flag title, flag image, and flag description on the panel.

17.9 How do you create a combo box and add three items to it?

17.10 How do you retrieve an item from a combo box? How do you retrieve a selected item
from a combo box?

17.11 How do you get the number of items in a combo box? How do you retrieve an item at
a specified index in a combo box?

17.12 What events would a JComboBox fire upon selecting a new item?

17.5 Lists
A list is a component that basically performs the same function as a combo box, but it
enables the user to choose a single value or multiple values.

The Swing JList is very versatile. Figure 17.7 lists several frequently used constructors and
methods in JList.

selectionMode is one of the three values (SINGLE_SELECTION,
SINGLE_INTERVAL_SELECTION, and MULTIPLE_INTERVAL_SELECTION) defined in
javax.swing.ListSelectionModel that indicate whether a single item, single-interval
item, or multiple-interval item can be selected. Single selection allows only one item to
be selected. Single-interval selection allows multiple selections, but the selected items
must be contiguous. Multiple-interval selection allows selections of multiple contiguous
items without restrictions, as shown in Figure 17.8. The default value is
MULTIPLE_INTERVAL_SELECTION.

listener

✓Point✓Check

Key
Point

17.5 Lists 651

The following statements create a list with six items, red foreground, white background,
pink selection foreground, black selection background, and visible row count 4.

1 JList jlst = new JList(new String[]
2 {"Item 1", "Item 2", "Item 3", "Item 4", "Item 5", "Item 6"});
3 jlst.setForeground(Color.RED);
4 jlst.setBackground(Color.WHITE);
5 jlst.setSelectionForeground(Color.PINK);
6 jlst.setSelectionBackground(Color.BLACK);
7 jlst.setVisibleRowCount(4);

Lists do not scroll automatically. To make a list scrollable, create a scroll pane and add the list
to it.

JList fires javax.swing.event.ListSelectionEvent to notify the listeners of the
selections. The listener must implement the valueChanged handler in the
javax.swing.event.ListSelectionListener interface to process the event.

Listing 17.5 gives a program that lets users select countries in a list and displays the flags
of the selected countries in the labels. Figure 17.9 shows a sample run of the program.

javax.swing.JComponent

-selectedIndex: int

-selectedIndices: int[]

-selectedValue: Object

-visibleRowCount: int

-selectionForeground: Color

-selectionBackground: Color

-selectionMode: int

+JList()

+JList(items: Object[])

The index of the first selected item.

An array of all of the selected indices in increasing order.

The first selected item in the list.

The number of visible rows displayed without a scrollbar
 (default: 8).

The background color of the selected cells.

The foreground color of the selected cells.

The selection mode for the list.

Creates a default empty list.

Creates a list that contains the elements in the specified array.

+addListSelectionListener(listener:
 ListSelectionListener): void

Adds a ListSelectionListener to this object.

javax.swing.JList

The get and set methods for these data fields are provided
in the class, but omitted in the UML diagram for brevity.

FIGURE 17.7 JList enables you to select multiple items from a set of items.

(a) Single selection (b) Single-interval
 selection

(c) Multiple-interval
 selection

FIGURE 17.8 JList has three selection modes: single selection, single-interval selection,
and multiple-interval selection.

652 Chapter 17 GUI Components

Here are the major steps in the program:

1. Create the user interface.
Create a list with nine country names as selection values, and place the list inside a
scroll pane. Place the scroll pane in the west of the frame. Create nine labels to be used
to display the countries’ flag images. Place the labels in the panel, and place the panel
in the center of the frame.

2. Process the event.
Create a listener to implement the valueChanged method in the
ListSelectionListener interface to set the selected countries’ flag images in the
labels.

LISTING 17.5 ListDemo.java
1 import java.awt.*;
2 import javax.swing.*;
3 import javax.swing.event.*;
4
5 public class ListDemo extends JFrame {
6 final int NUMBER_OF_FLAGS = 9;
7
8 // Declare an array of Strings for flag titles
9 private = {"Canada", "China", "Denmark",

10 "France", "Germany", "India", "Norway", "United Kingdom",
11 "United States of America"};
12
13 // The list for selecting countries
14
15
16 // Declare an ImageIcon array for the national flags of 9 countries
17 private = {
18 new ImageIcon("image/ca.gif"),
19 new ImageIcon("image/china.gif"),
20 new ImageIcon("image/denmark.gif"),
21 new ImageIcon("image/fr.gif"),
22 new ImageIcon("image/germany.gif"),
23 new ImageIcon("image/india.gif"),
24 new ImageIcon("image/norway.gif"),
25 new ImageIcon("image/uk.gif"),
26 new ImageIcon("image/us.gif")
27 };
28

ImageIcon[] imageIcons

private JList jlst = new JList(flagTitles);

String[] flagTitles

JPanel with
GridLayout

An image is
displayed on a
Jlabel

JList inside
a scroll
pane

FIGURE 17.9 When the countries in the list are selected, corresponding images of their flags are displayed in the labels.

17.5 Lists 653

29 // Arrays of labels for displaying images
30 private JLabel[] jlblImageViewer = new JLabel[NUMBER_OF_FLAGS];
31
32 public static void main(String[] args) {
33 ListDemo frame = new ListDemo();
34 frame.setSize(650, 500);
35 frame.setTitle("ListDemo");
36 frame.setLocationRelativeTo(null); // Center the frame
37 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
38 frame.setVisible(true);
39 }
40
41 public ListDemo() {
42 // Create a panel to hold nine labels
43 JPanel p = new JPanel(new GridLayout(3, 3, 5, 5));
44
45 for (int i = 0; i < NUMBER_OF_FLAGS; i++) {
46 p.add(jlblImageViewer[i] = new JLabel());
47 jlblImageViewer[i].setHorizontalAlignment
48 (SwingConstants.CENTER);
49 }
50
51 // Add p and the list to the frame
52 add(p, BorderLayout.CENTER);
53 add(new JScrollPane(jlst), BorderLayout.WEST);
54
55 // Register listeners
56 jlst.addListSelectionListener(new ListSelectionListener() {
57 @Override /** Handle list selection */
58 public void valueChanged(ListSelectionEvent e) {
59 // Get selected indices
60 int[] indices = jlst.getSelectedIndices();
61
62 int i;
63 // Set icons in the labels
64 for (i = 0; i < indices.length; i++) {
65 jlblImageViewer[i].setIcon(imageIcons[indices[i]]);
66 }
67
68 // Remove icons from the rest of the labels
69 for (; i < NUMBER_OF_FLAGS; i++) {
70 jlblImageViewer[i].setIcon(null);
71 }
72 }
73 });
74 }
75 }

The anonymous inner-class listener listens to ListSelectionEvent for handling the selec-
tion of country names in the list (lines 56–73). ListSelectionEvent and
ListSelectionListener are defined in the javax.swing.event package, so this pack-
age is imported into the program (line 3).

The program creates an array of nine labels for displaying flag images for nine countries.
The program loads the images of the nine countries into an image array (lines 17–27) and cre-
ates a list of the nine countries in the same order as in the title array (lines 9–11). Thus, the
index 0 of the image array corresponds to the first country in the list.

The list is placed in a scroll pane (line 53) so that it can be scrolled when the number of
items in the list extends beyond the viewing area.

create frame

create UI

event handler

654 Chapter 17 GUI Components

By default, the selection mode of the list is multiple-interval, which allows the user to
select multiple items from different blocks in the list. When the user selects countries in the
list, the valueChanged handler (lines 58–72) is executed, which gets the indices of the
selected items and sets their corresponding image icons in the label to display the flags.

17.13 How do you create a list with an array of strings?

17.14 How do you set the visible row count in a list?

17.15 What selection modes are available for a list? How do you set a selection mode?

17.16 How do you set the foreground and background color of a list? How do you set the
foreground and background color of the selected items?

17.6 Scroll Bars
JScrollBar is a component that enables the user to select from a range of values.

Figure 17.10 shows a scroll bar. Normally, the user changes the value of the scroll bar by mak-
ing a gesture with the mouse. For example, the user can drag the scroll bar’s bubble up and
down, or click in the scroll bar’s unit-increment or block-increment areas. Keyboard gestures
can also be mapped to the scroll bar. By convention, the Page Up and Page Down keys are
equivalent to clicking in the scroll bar’s block-increment and block-decrement areas.

✓Point✓Check

Key
Point

Minimum value
Block decrement

Bubble

Block increment
Maximum value

Unit decrement Unit increment

FIGURE 17.10 A scroll bar represents a range of values graphically.

Note
The width of the scroll bar’s track corresponds to maximum + visibleAmount.
When a scroll bar is set to its maximum value, the left side of the bubble is at maximum,
and the right side is at maximum + visibleAmount.

JScrollBar has the following properties, as shown in Figure 17.11.
When the user changes the value of the scroll bar, the scroll bar fires an AdjustmentEvent.

A listener class for this event must implement the adjustmentValueChanged handler in the
java.awt.event.AdjustmentListener interface.

Listing 17.6 gives a program that uses horizontal and vertical scroll bars to control a mes-
sage displayed on a panel. The horizontal scroll bar is used to move the message to the left
and the right, and the vertical scroll bar to move it up and down. A sample run of the program
is shown in Figure 17.12.

Here are the major steps in the program:

1. Create the user interface.
Create a MessagePanel object and place it in the center of the frame. Create a vertical
scroll bar and place it in the east of the frame. Create a horizontal scroll bar and place it
in the south of the frame.

17.6 Scroll Bars 655

2. Process the event.
Create listeners to implement the adjustmentValueChanged handler to move the
message according to the bar movement in the scroll bars.

LISTING 17.6 ScrollBarDemo.java
1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4
5 public class ScrollBarDemo extends JFrame {
6 // Create horizontal and vertical scroll bars
7 private JScrollBar jscbHort =

-orientation: int

-maximum: int

-minimum: int

-visibleAmount: int

-value: int

-blockIncrement: int

-unitIncrement: int

+JScrollBar()

+JScrollBar(orientation: int)

+JScrollBar(orientation: int, value:
int, extent: int, min: int, max: int)

Specifies horizontal or vertical style, default is horizontal.

Specifies the maximum value the scroll bar represents when the bubble
reaches the right end of the scroll bar for horizontal style or the
bottom of the scroll bar for vertical style.

Specifies the minimum value the scroll bar represents when the bubble
reaches the left end of the scroll bar for horizontal style or the top of
the scroll bar for vertical style.

Specifies the relative width of the scroll bar’s bubble. The actual width
appearing on the screen is determined by the maximum value and the
value of visibleAmount.

Represents the current value of the scroll bar.

Specifies value added (subtracted) when the user activates the block-
increment (decrement) area of the scroll bar, as shown in Figure
17.10.

Specifies the value added (subtracted) when the user activates the unit-
increment (decrement) area of the scroll bar, as shown in Figure
17.10.

Creates a default vertical scroll bar.

Creates a scroll bar with the specified orientation.

Creates a scroll bar with the specified orientation, value, extent,

+addAdjustmentListener(listener:
 AdjustmentListener): void

Adds an AdjustmentListener to this object.

minimum, and maximum.

javax.swing.JComponent

javax.swing.JScrollBar

The get and set methods for these data fields are provided
in the class, but omitted in the UML diagram for brevity.

FIGURE 17.11 JScrollBar enables you to select from a range of values.

Vertical scroll bar

Horizontal scroll bar

Message panel

FIGURE 17.12 The scroll bars move the message on a panel horizontally and vertically.

horizontal scroll bar

656 Chapter 17 GUI Components

8
9 private JScrollBar jscbVert =
10
11
12 // Create a MessagePanel
13 private MessagePanel messagePanel =
14 new MessagePanel("Welcome to Java");
15
16 public static void main(String[] args) {
17 ScrollBarDemo frame = new ScrollBarDemo();
18 frame.setTitle("ScrollBarDemo");
19 frame.setLocationRelativeTo(null); // Center the frame
20 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21 frame.pack();
22 frame.setVisible(true);
23 }
24
25 public ScrollBarDemo() {
26 // Add scroll bars and message panel to the frame
27 setLayout(new BorderLayout());
28 add(messagePanel, BorderLayout.CENTER);
29 add(jscbVert, BorderLayout.EAST);
30 add(jscbHort, BorderLayout.SOUTH);
31
32 // Register listener for the scroll bars
33
34 @Override
35 public void adjustmentValueChanged(AdjustmentEvent e) {
36 // getValue() and getMaximumValue() return int, but for better
37 // precision, use double
38 double value = jscbHort.getValue();
39 double maximumValue = jscbHort.getMaximum();
40 double newX = (value * messagePanel.getWidth() /
41 maximumValue);
42 messagePanel.setXCoordinate((int)newX);
43 }
44 });
45
46 @Override
47 public void adjustmentValueChanged(AdjustmentEvent e) {
48 // getValue() and getMaximum() return int, but for better
49 // precision, use double
50 double value = jscbVert.getValue();
51 double maximumValue = jscbVert.getMaximum();
52 double newY = (value * messagePanel.getHeight() /
53 maximumValue);
54 messagePanel.setYCoordinate((int)newY);
55 }
56 });
57 }
58 }

The program creates two scroll bars (jscbVert and jscbHort) (lines 7–10) and an instance
of MessagePanel (messagePanel) (lines 13–14). messagePanel is placed in the center of
the frame (line 28); jscbVert and jscbHort are placed in the east and south sections of the
frame (lines 29–30), respectively.

You can specify the orientation of the scroll bar in the constructor or use the
setOrientation method. By default, the property value is 100 for maximum, 0 for
minimum, 10 for blockIncrement, and 10 for visibleAmount.

jscbVert.addAdjustmentListener(new AdjustmentListener() {

jscbHort.addAdjustmentListener(new AdjustmentListener() {

new JScrollBar(JScrollBar.VERTICAL);

new JScrollBar(JScrollBar.HORIZONTAL);
vertical scroll bar

create frame

create UI

add scroll bar

adjustment listener

adjustment listener

17.7 Sliders 657

When the user drags the bubble, or clicks the increment or decrement unit, the value of the
scroll bar changes. An instance of AdjustmentEvent is fired and passed to the listener by
invoking the adjustmentValueChanged handler. The listener for the vertical scroll bar
moves the message up and down (lines 33–44), and the listener for the horizontal bar moves
the message to the right and left (lines 45–56).

The maximum value of the vertical scroll bar corresponds to the height of the panel, and the
maximum value of the horizontal scroll bar corresponds to the width of the panel. The ratio
between the current and maximum values of the horizontal scroll bar is the same as the ratio
between the x value and the width of the message panel. Similarly, the ratio between the
current and maximum values of the vertical scroll bar is the same as the ratio between the y
value and the height of the message panel. The x-coordinate and y-coordinate are set in
response to the scroll bar adjustments (lines 39, 50).

17.17 How do you create a horizontal scroll bar? How do you create a vertical scroll bar?

17.18 What event can a scroll bar fire when the user changes the value on a scroll bar?
What is the corresponding interface for the event? What is the handler defined in the
interface?

17.19 How do you get the value from a scroll bar? How do you get the maximum value
from a scroll bar?

17.7 Sliders
JSlider is similar to JScrollBar, but JSlider has more properties and can
appear in many forms.

Figure 17.13 shows two sliders. JSlider lets the user graphically select a value by sliding a
knob within a bounded interval. The slider can show both major tick marks and minor tick
marks between them. The number of pixels between the tick marks is controlled by the
majorTickSpacing and minorTickSpacing properties. Sliders can be displayed horizon-
tally and/or vertically, with or without ticks, and with or without labels.

✓Point✓Check

Vertical slider

Horizontal slider

MessagePanel

FIGURE 17.13 The sliders move the message on a panel horizontally and vertically.

Key
Point

The frequently used constructors and properties in JSlider are shown in Figure 17.14.

Note
The values of a vertical scroll bar increase from top to bottom, but the values of a verti-
cal slider decrease from top to bottom by default.

Note
All the properties listed in Figure 17.14 have the associated get and set methods, but
they are omitted for brevity. By convention, the get method for a Boolean property is
named is<PropertyName>(). In the JSlider class, the get methods for

658 Chapter 17 GUI Components

javax.swing.JComponent

-maximum: int

-minimum: int

-value: int

-orientation: int

-paintLabels: boolean

-paintTicks: boolean

-paintTrack: boolean

-majorTickSpacing: int

-minorTickSpacing: int

-inverted: boolean

+JSlider(min: int, max: int)

+JSlider()

+JSlider(min: int, max: int, value: int)

+JSlider(orientation: int)

+JSlider(orientation: int, min: int, max:
 int, value: int)

The maximum value represented by the slider (default: 100).

The minimum value represented by the slider (default: 0).

The current value represented by the slider.

The orientation of the slider (default: JSlider.HORIZONTAL).

True if the labels are painted at tick marks (default: false).

True if the ticks are painted on the slider (default: false).

True if the track is painted on the slider (default: true).

The number of units between major ticks (default: 0).

The number of units between minor ticks (default: 0).

True to reverse the value range, and false to put the value range in the
 normal order (default: false).

Creates a default horizontal slider.

Creates a horizontal slider with the specified min and max.

Creates a horizontal slider with the specified min, max, and value.

Creates a slider with the specified orientation.

Creates a slider with the specified orientation, min, max, and value.

+addChangeListener(listener:
 ChangeListener): void

Adds a ChangeListener to this object.

javax.swing.JSlider

The get and set methods for these data fields are provided
in the class, but omitted in the UML diagram for brevity.

FIGURE 17.14 JSlider enables you to select from a range of values.

paintLabels, paintTicks, paintTrack, and inverted are
getPaintLabels(), getPaintTicks(), getPaintTrack(), and
getInverted(), which violate the naming convention.

When the user changes the value of the slider, the slider fires an instance of
javax.swing.event.ChangeEvent, which is passed to any registered listeners. Any
object that should be notified of changes to the slider’s value must implement the
stateChanged method in the ChangeListener interface defined in the package
javax.swing.event.

The program in Listing 17.7 uses the sliders to control a message displayed on a panel, as
shown in Figure 17.14. Here are the major steps in the program:

1. Create the user interface.
Create a MessagePanel object and place it in the center of the frame. Create a vertical
slider and place it in the east of the frame. Create a horizontal slider and place it in the
south of the frame.

2. Process the event.
Create listeners to implement the stateChanged handler in the ChangeListener
interface to move the message according to the knot movement in the slider.

LISTING 17.7 SliderDemo.java
1 import java.awt.*;
2 import javax.swing.*;
3 import javax.swing.event.*;

17.7 Sliders 659

4
5 public class SliderDemo extends JFrame {
6 // Create horizontal and vertical sliders
7 private JSlider jsldHort = new JSlider(JSlider.HORIZONTAL);
8 private JSlider jsldVert = new JSlider(JSlider.VERTICAL);
9
10 // Create a MessagePanel
11 private MessagePanel messagePanel =
12 new MessagePanel("Welcome to Java");
13
14 public static void main(String[] args) {
15 SliderDemo frame = new SliderDemo();
16 frame.setTitle("SliderDemo");
17 frame.setLocationRelativeTo(null); // Center the frame
18 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19 frame.pack();
20 frame.setVisible(true);
21 }
22
23 public SliderDemo() {
24 // Add sliders and message panel to the frame
25 setLayout(new BorderLayout(5, 5));
26 add(messagePanel, BorderLayout.CENTER);
27 add(jsldVert, BorderLayout.EAST);
28 add(jsldHort, BorderLayout.SOUTH);
29
30 // Set properties for sliders
31 jsldHort.setMaximum(50);
32 jsldHort.setPaintLabels(true);
33 jsldHort.setPaintTicks(true);
34 jsldHort.setMajorTickSpacing(10);
35 jsldHort.setMinorTickSpacing(1);
36 jsldHort.setPaintTrack(false);
37 jsldVert.setInverted(true);
38 jsldVert.setMaximum(10);
39 jsldVert.setPaintLabels(true);
40 jsldVert.setPaintTicks(true);
41 jsldVert.setMajorTickSpacing(10);
42 jsldVert.setMinorTickSpacing(1);
43
44 // Register listener for the sliders
45 jsldHort.addChangeListener(new ChangeListener() {
46 @Override /** Handle scroll-bar adjustment actions */
47 public void stateChanged(ChangeEvent e) {
48 // getValue() and getMaximumValue() return int, but for better
49 // precision, use double
50 double value = jsldHort.getValue();
51 double maximumValue = jsldHort.getMaximum();
52 double newX = (value * messagePanel.getWidth() /
53 maximumValue);
54 messagePanel.setXCoordinate((int)newX);
55 }
56 });
57 jsldVert.addChangeListener(new ChangeListener() {
58 @Override /** Handle scroll-bar adjustment actions */
59 public void stateChanged(ChangeEvent e) {
60 // getValue() and getMaximum() return int, but for better
61 // precision, use double
62 double value = jsldVert.getValue();
63 double maximumValue = jsldVert.getMaximum();

horizontal slider
vertical slider

create frame

create UI

slider properties

listener

listener

660 Chapter 17 GUI Components

64 double newY = (value * messagePanel.getHeight() /
65 maximumValue);
66 messagePanel.setYCoordinate((int)newY);
67 }
68 });
69 }
70 }

JSlider is similar to JScrollBar but has more features. As shown in this example, you can
specify maximum, labels, major ticks, and minor ticks on a JSlider (lines 31–35). You can
also choose to hide the track (line 36). Since the default values of a vertical slider decrease
from top to bottom, the setInverted method reverses the order (line 37).

JSlider fires ChangeEvent when the slider is changed. The listener needs to implement
the stateChanged handler in ChangeListener (lines 45–68). Note that JScrollBar fires
AdjustmentEvent when the scroll bar is adjusted.

17.20 How do you create a horizontal slider? How do you create a vertical slider?

17.21 What event can a slider fire when the user changes the value on a slider? What is the
corresponding interface for the event? What is the handler defined in the interface?

17.22 How do you get the value from a slider? How do you get the maximum value from a
slider?

17.8 Creating Multiple Windows
Multiple windows can be created in one program.

Occasionally, you may want to create multiple windows in an application so that the applica-
tion can open a new window to perform a specified task. The new windows are called
subwindows, and the main frame is called the main window.

Listing 17.8 gives a program that creates a main window with a text area in the scroll pane
and a button named Show Histogram. When the user clicks the button, a new window appears
that displays a histogram to show the occurrences of the letters in the text area. Figure 17.15
contains a sample run of the program.

✓Point✓Check

Key
Point

FIGURE 17.15 The histogram is displayed in a separate frame.

Here are the major steps in the program:

1. Define a main class for the frame named MultipleWindowsDemo in Listing 17.8.
Add a text area inside a scroll pane, and place the scroll pane in the center of the frame.
Create a button Show Histogram and place it in the south of the frame.

2. Define a subclass of JPanel named Histogram in Listing 17.9. The class contains a
data field named count of the int[] type, which counts the occurrences of 26 letters.
The values in count are displayed in the histogram.

17.8 Creating Multiple Windows 661

3. Implement the actionPerformed handler in MultipleWindowsDemo, as follows:

a. Create an instance of Histogram. Count the letters in the text area and set the count
in the Histogram object.

b. Create a new frame and place the Histogram object in the center of frame. Display
the frame.

LISTING 17.8 MultipleWindowsDemo.java
1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4
5 public class MultipleWindowsDemo extends JFrame {
6 private JTextArea jta;
7 private JButton jbtShowHistogram = new JButton("Show Histogram");
8
9
10 // Create a new frame to hold the histogram panel
11
12
13 public MultipleWindowsDemo() {
14 // Store text area in a scroll pane
15 JScrollPane scrollPane = new JScrollPane(jta = new JTextArea());
16 scrollPane.setPreferredSize(new Dimension(300, 200));
17 jta.setWrapStyleWord(true);
18 jta.setLineWrap(true);
19
20 // Place scroll pane and button in the frame
21 add(scrollPane, BorderLayout.CENTER);
22 add(jbtShowHistogram, BorderLayout.SOUTH);
23
24 // Register listener
25
26 @Override /** Handle the button action */
27 public void actionPerformed(ActionEvent e) {
28 // Count the letters in the text area
29 int[] count = countLetters();
30
31 // Set the letter count to histogram for display
32 histogram.showHistogram(count);
33
34 // Show the frame
35 histogramFrame.setVisible(true);
36 }
37 });
38
39 // Add the histogram panel to the frame
40
41
42 histogramFrame.setTitle("Histogram");
43 }
44
45 /** Count the letters in the text area */
46 private int[] countLetters() {
47 // Count for 26 letters
48 int[] count = new int[26];
49
50 // Get contents from the text area

histogramFrame.pack();
histogramFrame.add(histogram);

jbtShowHistogram.addActionListener(new ActionListener() {

private JFrame histogramFrame = new JFrame();

private Histogram histogram = new Histogram();

create subframe

create UI

display subframe

662 Chapter 17 GUI Components

51 String text = jta.getText();
52
53 // Count occurrences of each letter (case insensitive)
54 for (int i = 0; i < text.length(); i++) {
55 char character = text.charAt(i);
56
57 if (character >= 'A' && character <= 'Z') {
58 count[character - 'A']++;
59 }
60 else if (character >= 'a' && character <= 'z') {
61 count[character - 'a']++;
62 }
63 }
64
65 return count; // Return the count array
66 }
67
68 public static void main(String[] args) {
69 MultipleWindowsDemo frame = new MultipleWindowsDemo();
70 frame.setLocationRelativeTo(null); // Center the frame
71 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
72 frame.setTitle("MultipleWindowsDemo");
73 frame.pack();
74 frame.setVisible(true);
75 }
76 }

LISTING 17.9 Histogram.java
1 import javax.swing.*;
2 import java.awt.*;
3
4 public class {
5 // Count the occurrences of 26 letters
6 private int[] count;
7
8 /** Set the count and display histogram */
9 public void showHistogram(int[] count) {
10 this.count = count;
11 repaint();
12 }
13
14 @Override /** Paint the histogram */
15 protected void paintComponent(Graphics g) {
16 if (count == null) return; // No display if count is null
17
18 super.paintComponent(g);
19
20 // Find the panel size and bar width and interval dynamically
21 int width = getWidth();
22 int height = getHeight();
23 int interval = (width - 40) / count.length;
24 int individualWidth = (int)(((width - 40) / 24) * 0.60);
25
26 // Find the maximum count. The maximum count has the highest bar
27 int maxCount = 0;
28 for (int i = 0; i < count.length; i++) {
29 if (maxCount < count[i])
30 maxCount = count[i];
31 }

Histogram extends JPanel

create main frame

paint histogram

17.8 Creating Multiple Windows 663

32
33 // x is the start position for the first bar in the histogram
34 int x = 30;
35
36 // Draw a horizontal base line
37 g.drawLine(10, height - 45, width - 10, height - 45);
38 for (int i = 0; i < count.length; i++) {
39 // Find the bar height
40 int barHeight =
41 (int)(((double)count[i] / (double)maxCount) * (height - 55));
42
43 // Display a bar (i.e., rectangle)
44 g.drawRect(x, height - 45 - barHeight, individualWidth,
45 barHeight);
46
47 // Display a letter under the base line
48 g.drawString((char)(65 + i) + "", x, height - 30);
49
50 // Move x for displaying the next character
51 x += interval;
52 }
53 }
54
55 @Override
56 public Dimension getPreferredSize() {
57 return new Dimension(300, 300);
58 }
59 }

The program contains two classes: MultipleWindowsDemo and Histogram. Their relation-
ship is shown in Figure 17.16.

javax.swing.JFramejavax.swing.JPanel

Histogram MultipleWindowsDemo

-count: int[]

+showHistogram(count: int[]): void
#paintComponent(g: Graphics): void

-jta: JTextArea
-histogram: Histogram
-jbtShowHistogram: JButton

-countLetters(): int[]
+main(args: String[]): void

1 1

FIGURE 17.16 MultipleWindowsDemo uses Histogram to display a histogram of the
occurrences of the letters in a text area in the frame.

MultipleWindowsDemo is a frame that holds a text area in a scroll pane and a button.
Histogram is a subclass of JPanel that displays a histogram for the occurrences of letters in
the text area.

In Listing 17.8, MultipleWindowsDemo.java, when the user clicks the Show Histogram
button, the handler counts the occurrences of letters in the text area (line 29). Letters are
counted regardless of their case. Nonletter characters are not counted. The count is stored in
an int array of 26 elements (line 48). The first element in the array stores the count for the
letter a or A, and the last element stores the count for the letter z or Z (lines 57–63). The
count array is passed to the histogram for display (line 32).

The MultipleWindowsDemo class contains a main method. The main method creates an
instance of MultipleWindowsDemo and displays the frame (lines 69–74). The

preferredSize

664 Chapter 17 GUI Components

MultipleWindowsDemo class also contains an instance of JFrame, named
histogramFrame (line 8), which holds an instance of Histogram. When the user clicks the
Show Histogram button, histogramFrame is set as visible to display the histogram (line 35).

The height and width of the bars in the histogram are determined dynamically according to
the window size of the histogram.

You cannot add an instance of JFrame to a container. For example, adding
histogramFrame to the main frame would cause a runtime exception. However, you can
create a frame instance and set it visible to launch a new window.

17.23 Explain how to create and show multiple windows in an application.

CHAPTER SUMMARY

1. You learned how to handle events for JCheckBox, JRadioButton, and
JTextField.

2. You learned how to create graphical user interfaces using the Swing GUI components
JTextArea, JComboBox, JList, JScrollBar, and JSlider. You also learned
how to handle events on these components.

3. You learned how to launch multiple windows using JFrame.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 17.2–17.5
*17.1 (Use radio buttons) Write a GUI program as shown in Figure 17.17. You can use

buttons to move the message left and right and use the radio buttons to change the
background color for the message displayed in the message panel.

✓Point✓Check

FIGURE 17.17 The and buttons move the message on the panel, and the radio but-
tons change the background color for the message.

= 76=

*17.2 (Select geometric figures) Write a program that draws various figures, as shown in
Figure 17.18. The user selects a figure from a radio button and uses a check box to
specify whether it is filled. (Hint: Use the FigurePanel class introduced in
Listing 13.3 to display a figure.)

**17.3 (Traffic lights) Write a program that simulates a traffic light. The program lets the
user select one of three lights: red, yellow, or green. When a radio button is selected,
the light is turned on, and only one light can be on at a time (see Figure 17.19). No
light is on when the program starts.

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 665

Sections 17.6–17.8
**17.4 (Text viewer) Write a program that displays a text file in a text area, as shown in

Figure 17.20a. The user enters a file name in a text field and clicks the View button;
the file is then displayed in a text area.

**17.5 (Create a histogram for occurrences of letters) The program in Listing 17.8,
MultipleWindowsDemo.java, displays a histogram to show the occurrences of
each letter in a text area. Reuse the Histogram class created in Listing 17.9 to
write a program that will display a histogram on a panel. The histogram should
show the occurrences of each letter in a text file, as shown in Figure 17.20b.
Assume that the letters are not case sensitive.

■ Place the panel that will display the histogram in the center of the frame.
■ Place a label and a text field in a panel, and put the panel in the south side of the

frame. The text file will be entered from this text field.
■ Pressing the Enter key on the text field causes the program to count the occur-

rences of each letter and display the count in a histogram.

Panel with
FlowLayout

FigurePanel

FIGURE 17.18 The program displays lines, rectangles, and ovals when you select a shape
type.

Traffic light
panel

Panel with
FlowLayout

FIGURE 17.19 The radio buttons are grouped to let you select only one color in the group to
control a traffic light.

(a) (b)

FIGURE 17.20 (a) The program displays the text from a file in a text area. (b) The program
displays a histogram that shows the occurrences of each letter in the file.

666 Chapter 17 GUI Components

*17.6 (Create a miles/kilometers converter) Write a program that converts miles and
kilometers, as shown in Figure 17.21. If you enter a value in the Mile text field
and press the Enter key, the corresponding kilometer measurement is displayed
in the Kilometer text field. Likewise, if you enter a value in the Kilometer text
field and press the Enter key, the corresponding miles is displayed in the Mile
text field.

*17.7 (Set clock time) Write a program that displays a clock and sets the time with the
input from three text fields, as shown in Figure 17.22. Use the StillClock in
Listing 13.10.

**17.8 (Select a font) Write a program that can dynamically change the font of a message
to be displayed on a panel. The message can be displayed in bold and italic at the
same time, and/or it can be displayed in the center of the panel. You can select the
font name or font size from combo boxes, as shown in Figure 17.23. The available
font names can be obtained using getAvailableFontFamilyNames() in
GraphicsEnvironment (see Section 12.8, The Font Class). The combo box for
the font size is initialized with numbers from 1 to 100.

Panel with BorderLayout

Panel with GridLayout for
two text fields

Panel with GridLayout
for two labels

FIGURE 17.21 The program converts miles to kilometers, and vice versa.

StillClock

Panel with FlowLayout

FIGURE 17.22 The program displays the time specified in the text fields.

Panel with
BorderLayout

Panel with BorderLayout

Panel with BorderLayout

FIGURE 17.23 You can dynamically set the font for the message.

Programming Exercises 667

**17.9 (Demonstrate JLabel properties) Write a program to let the user dynami-
cally set the properties horizontalAlignment, verticalAlignment,
horizontalTextAlignment, and verticalTextAlignment, as shown in
Figure 17.24.

*17.10 (Mandelbrot fractal) Programming Exercise 15.20 displays Mandelbrot fractal.
Note that the values 77, 58, and 159 in line 15 in the MandelbrotCanvas class
in Programming Exercise 15.20 impact the color of the image. Revise the pro-
gram to let the user enter these values from text fields dynamically, as shown in
Figure 17.25a.

Panel with GridLayout

Panel with
GridLayout
for two labels

Panel with GridLayout
for two combo boxes

Panel with BorderLayoutPanel with BorderLayout

Panel with GridLayout
for two combo boxes

Panel with GridLayout
for two labels

FIGURE 17.24 You can set the alignment and text-position properties of a label dynamically.

(a) (b)

FIGURE 17.25 (a) The program enables the user to set the colors dynamically. (b) You can set a text field’s properties for
the horizontal alignment and column size dynamically.

668 Chapter 17 GUI Components

*17.11 (Demonstrate JTextField properties) Write a program that sets the horizontal-
alignment and column-size properties of a text field dynamically, as shown in
Figure 17.25b.

*17.12 (Demonstrate JTextArea properties) Write a program that demonstrates the
wrapping styles of the text area. The program uses a check box to indicate whether
the text area is wrapped. If the text area is wrapped, you can specify whether it is
wrapped by characters or by words, as shown in Figure 17.26.

*17.13 (Compare loans with various interest rates) Rewrite Programming Exercise 4.21
to create a user interface, as shown in Figure 17.27. Your program should let the
user enter the loan amount and loan period in the number of years from a text field,
and it should display the monthly and total payments for each interest rate starting
from 5 percent to 8 percent, with increments of one-eighth, in a text area.

*17.14 (Use JComboBox and JList) Write a program that demonstrates selecting items
in a list. The program uses a combo box to specify a selection mode, as shown in
Figure 17.28. When you select items, they are displayed in a label below the list.

Use text areas

Panel with
FlowLayout

JTextArea inside
a scroll pane

FIGURE 17.26 You can set the options to wrap a text area dynamically by characters or by
words.

Panel with
FlowLayout

JTextArea inside
a scroll pane

FIGURE 17.27 The program displays a table for monthly payments and total payments on a
given loan based on various interest rates.

JComboBox

JLabel

JList inside a
scroll pane

FIGURE 17.28 You can choose single selection, single-interval selection, or multiple-interval
selection in a list.

VideoNote

Programming Exercises 669

Sections 17.6–17.8
**17.15 (Use JScrollBar) Write a program that uses scroll bars to select the fore-

ground color for a label, as shown in Figure 17.29. Three horizontal scroll bars
are used for selecting the color’s red, green, and blue components. Use a title
border on the panel that holds the scroll bars.

**17.16 (Use JSlider) Revise the preceding exercise using sliders.

***17.17 (Display a calendar) Write a program that displays the calendar for the current
month. You can use the Prior and Next buttons to show the calendar of the pre-
vious or next month. Display the dates in the current month in black and dis-
play the dates in the previous month and next month in gray, as shown in
Figure 17.30.

*17.18 (Revise Listing 17.8, MultipleWindowsDemo.java) Instead of displaying the
occurrences of the letters using the Histogram component in Listing 17.8,
use a bar chart, so that the display is as shown in Figure 17.31.

Panel with GridLayout
for three scroll bars

Panel with
GridLayout
for three labels

Panel with BorderLayout

FIGURE 17.29 The foreground color changes in the label as you adjust the scroll bars.

JLabel

JPanel with
GridLayout

Each cell is
a JLabel

FIGURE 17.30 The program displays the calendar for the current month.

FIGURE 17.31 The number of occurrences of each letter is displayed in a bar chart.

670 Chapter 17 GUI Components

**17.19 (Display country flag and flag description) Listing 17.4, ComboBoxDemo.java,
gives a program that lets users view a country’s flag image and description
by selecting the country from a combo box. The description is a string coded
in the program. Rewrite the program to read the text description from a file.
Suppose that the descriptions are stored in the files description0.txt, . . ., and
description8.txt under the text directory for the nine countries Canada, China,
Denmark, France, Germany, India, Norway, the United Kingdom, and the
United States, in this order.

**17.20 (Slide show) Programming Exercise 16.13 developed a slide show using images.
Rewrite that program to develop a slide show using text files. Suppose ten
text files named slide0.txt, slide1.txt, . . ., and slide9.txt are stored in the text
directory. Each slide displays the text from one file. Each slide is shown for one
second, and the slides are displayed in order. When the last slide finishes, the
first slide is redisplayed, and so on. Use a text area to display the slide.

**17.21 (Retrieve files from Web) Write a Java program that retrieves a file from a Web
server, as shown in Figure 17.32. The user interface includes a text field in
which to enter the URL of the file name, a text area in which to show the file,
and a button that can be used to submit an action. A label is added at the bottom
of the applet to indicate the status, such as File loaded successfully or Network
connection problem.

FIGURE 17.32 The program displays the contents of a specified file on the Internet.

APPLETS
AND MULTIMEDIA

Objectives
■ To convert GUI applications into applets (§18.2).

■ To embed applets in Web pages (§18.3).

■ To run applets from Web browsers and from the appletviewer command
(§§18.3.1–18.3.2).

■ To understand the applet security sandbox model (§18.4).

■ To write a Java program that can run both as an application and as an
applet (§18.5).

■ To override the applet life-cycle methods init, start, stop, and
destroy (§18.6).

■ To pass string values to applets from HTML (§18.7).

■ To develop an animation for a bouncing ball (§18.8).

■ To develop an applet for the tic-tac-toe game (§18.9).

■ To locate resources (images and audio) using the URL class (§18.10).

■ To play audio in any Java program (§18.11).

CHAPTER

18

672 Chapter 18 Applets and Multimedia

Key
Point

Key
Point

18.1 Introduction
Java applets are Java programs running from a Web browser.

When browsing the Web, often the graphical user interface and animation you see have been
developed using Java. The Java programs that run from a Web browser are called Java applets.
How do you write Java applets with graphics, images, and audio? This chapter will show you how.

18.2 Developing Applets
Java applets are instances of the Applet class. JApplet is a subclass of Applet,
and it is suitable for developing applets using Swing components.

So far, you have used and written Java applications. Everything you have learned about writ-
ing applications, however, applies also to writing applets. Applications and applets share
many common programming features, although they differ slightly in some aspects. For
example, every application must have a main method, which is invoked by the Java inter-
preter. Java applets, on the other hand, do not need a main method. They run in the Web
browser environment. Because applets are embedded in a Web page, Java provides special
features that enable applets to run from a Web browser.

The Applet class provides the essential framework that enables applets to be run from a
Web browser. While every Java application has a main method that is executed when the
application starts, applets, because they don’t have a main method, depend on the browser to
run them. Every applet is an instance of java.applet.Applet. The Applet class is an
AWT class and is not designed to work with Swing components. To use Swing components in
Java applets, you need to define a Java applet that extends javax.swing.JApplet, which is
a subclass of java.applet.Applet.

Every Java GUI program you have developed can be converted into an applet by replacing
JFrame with JApplet and deleting the main method. Figure 18.1a shows a Java GUI appli-
cation program, which can be converted into a Java applet as shown in Figure 18.1b.

First applet

extend Japplet

import javax.swing.*;

public class DisplayLabel extends JFrame {
public DisplayLabel() {
add(new JLabel("Great!", JLabel.CENTER));

}

public static void main(String[] args) {
JFrame frame = new DisplayLabel();
frame.setTitle("DisplayLabel");
frame.setSize(200, 100);
frame.setLocationRelativeTo(null);
frame.setDefaultCloseOperation(
JFrame.EXIT_ON_CLOSE);

frame.setVisible(true);
}

}

import javax.swing.*;
JApplet

public class DisplayLabel extends JFrame {
public DisplayLabel() {
add(new JLabel("Great!", JLabel.CENTER));

}

public static void main(String[] args) {
JFrame frame = new DisplayLabel();
frame.setTitle("DisplayLabel");
frame.setSize(200, 100);
frame.setLocationRelativeTo(null);
frame.setDefaultCloseOperation(
JFrame.EXIT_ON_CLOSE);

frame.setVisible(true);
}

}

(a) GUI application (b) Applet

FIGURE 18.1 You can convert a GUI application into an applet.

Listing 18.1 gives the complete code for the applet.

LISTING 18.1 DisplayLabel.java
1 import javax.swing.*;
2
3 public class DisplayLabel {extends JApplet

VideoNote

18.3 The HTML File and the <applet> Tag 673

4 public DisplayLabel() {
5 add(new JLabel("Great!", JLabel.CENTER));
6 }
7 }

Like JFrame, JApplet is a container that can contain other GUI components (see the GUI
class diagrams in Figure 12.1). The default layout manager for JApplet is BorderLayout.
So, the label is placed in the center of the applet (line 5).

18.1 Is every applet an instance of java.applet.Applet?

18.2 Is javax.swing.JApplet a subclass of java.applet.Applet?

18.3 The HTML File and the <applet> Tag
To run an applet, you need to create an HTML file with an <applet> tag for
embedding the applet.

HTML is a markup language that presents static documents on the Web. It uses tags to instruct
the Web browser how to render a Web page and contains a tag called <applet> that incorpo-
rates applets into a Web page.

The HTML file in Listing 18.2 embeds the applet DisplayLabel.class.

LISTING 18.2 DisplayLabel.html
<html>

<head>

<title>Java Applet Demo</title>
</head>

<body>

<applet

width = 250

height = 50

</applet>

</body>

</html>

An HTML tag is an instruction to the Web browser. The browser interprets the tag and
decides how to display or otherwise treat the subsequent contents of the HTML document.
Tags are enclosed inside brackets (< >). The first word in a tag, called the tag name, describes
tag functions. A tag can have additional attributes, sometimes with values after an equals sign,
which further define the tag’s action. For example, in the preceding HTML file, <applet> is
the tag name, and code, width, and height are attributes. The width and height attributes
specify the rectangular viewing area of the applet.

Most tags have a start tag and a corresponding end tag. The tag has a specific effect on the
region between the start tag and the end tag. For example, <applet...>...</applet> tells
the browser to display an applet. An end tag is always the start tag’s name preceded by a slash.

An HTML document begins with the <html> tag, which declares that the document is
written in HTML. Each document has two parts, a head and a body, defined by <head> and
<body> tags, respectively. The head part contains the document title, including the <title>
tag and other information the browser can use when rendering the document, and the body
part holds the actual contents of the document. The header is optional. For more information,
refer to Supplement V.A, HTML and XHTML Tutorial.

The complete syntax of the <applet> tag is as follows:

<applet

[codebase = applet_url]

>

code = "DisplayLabel.class"

✓Point✓Check

Key
Point

HTML

applet class

tag

<applet> tag

674 Chapter 18 Applets and Multimedia

code = classfilename.class
width = applet_viewing_width_in_pixels
height = applet_viewing_height_in_pixels
[archive = archivefile]
[vspace = vertical_margin]
[hspace = horizontal_margin]
[align = applet_alignment]
[alt = alternative_text]

>
<param name = param_name1 value = param_value1>
<param name = param_name2 value = param_value2>
...
<param name = param_namei value = param_valuei>
</applet>

The code, width, and height attributes are required; all the others are optional. The
<param> tag will be introduced in Section 18.7, Passing Strings to Applets. The other attrib-
utes are explained below.

■ codebase specifies the base from which your classes are loaded. If this attribute is
not used, the Web browser loads the applet from the directory in which the HTML
page is located. If your applet is located in a different directory from the HTML
page, you must specify the applet_url for the browser to load the applet. This
attribute enables you to load the class from anywhere on the Internet. The classes
used by the applet are dynamically loaded when needed.

■ archive instructs the browser to load an archive file that contains all the class files
needed to run the applet. Archiving allows the Web browser to load all the classes
from a single compressed file at one time, thus reducing loading time and improving
performance. To create archives, see Supplement III.Q, Packaging and Deploying
Java Projects.

■ vspace and hspace specify the size, in pixels, of the blank margin to pad around
the applet vertically and horizontally.

■ align specifies how the applet will be aligned in the browser. One of nine values is
used: left, right, top, texttop, middle, absmiddle, baseline, bottom, or
absbottom.

■ alt specifies the text to be displayed in case the browser cannot run Java.

18.3.1 Viewing Applets from a Web Browser
To display an applet from a Web browser, open the applet’s HTML file (e.g.,
DisplayLabel.html). Its output is shown in Figure 18.2a.

To make your applet accessible on the Web, you need to store the DisplayLabel.class and
DisplayLabel.html files on a Web server, as shown in Figure 18.3. You can view the applet

<param> tag

codebase attribute

archive attribute

(a) (b)

FIGURE 18.2 The DisplayLabel program is loaded from a local host in (a) and from a Web server in (b).

18.4 Applet Security Restrictions 675

from an appropriate URL. For example, I have uploaded these two files on Web server
www.cs.armstrong.edu/. As shown in Figure 18.2b, you can access the applet from
www.cs.armstrong.edu/liang/intro9e/book/DisplayLabel.html.

18.3.2 Viewing Applets Using the Applet Viewer Utility
You can test the applet using the applet viewer utility, which can be launched from the DOS
prompt using the appletviewer command, as shown in Figure 18.4a. Its output is shown in
Figure 18.4b.

appletviewer

The applet viewer functions as a browser. It is convenient for testing applets during devel-
opment without launching a Web browser.

18.3 Describe the <applet> HTML tag. How do you embed an applet in a web page?

18.4 How do you test an applet using the appletviewer command?

18.4 Applet Security Restrictions
Applet security restrictions ensure that safety is maintained when running applets.

Java uses the so-called “sandbox security model” for executing applets to prevent destructive pro-
grams from damaging the system on which the browser is running. Applets are not allowed to use
resources outside the “sandbox.” Specifically, the sandbox restricts the following activities:

■ Applets are not allowed to read from, or write to, the file system of the computer.
Otherwise, they could damage the files and spread viruses.

■ Applets are not allowed to run programs on the browser’s computer. Otherwise, they
might call destructive local programs and damage the local system on the user’s
computer.

■ Applets are not allowed to establish connections between the user’s computer and any
other computer, except for the server where the applets are stored. This restriction
prevents the applet from connecting the user’s computer to another computer without
the user’s knowledge.

Web Browser

HTML Page

Web Server

The .html file and applet’s .class files
are stored on the Web server.

http://www.webserver.com/appropriatepath/DisplayLabel.html

FIGURE 18.3 A Web browser requests an HTML file from a Web server.

(a) (b)

FIGURE 18.4 The appletviewer command runs a Java applet in the applet viewer utility.

✓Point✓Check

Key
Point

www.cs.armstrong.edu/
www.cs.armstrong.edu/liang/intro9e/book/DisplayLabel.html
http://www.webserver.com/appropriatepath/DisplayLabel.html

676 Chapter 18 Applets and Multimedia

Key
Point

✓Point✓Check

Note
You can create signed applets to circumvent the security restrictions. See Supplement
III.S, Signed Applets, for detailed instructions on how to create signed applets.

18.5 List some security restrictions on applets.

18.5 Enabling Applets to Run as Applications
You can add a main method in the applet to enable the applet to run as a standalone
application.

Despite some differences, the JFrame class and the JApplet class have a lot in common.
Since they both are subclasses of the Container class, all their user-interface components,
layout managers, and event-handling features are the same. Applications, however, are
invoked from the static main method by the Java interpreter, and applets are run by the Web
browser. The Web browser creates an instance of the applet using the applet’s no-arg con-
structor and controls and executes the applet.

In general, an applet can be converted into an application without loss of functionality. An
application can be converted into an applet as long as it does not violate the security restric-
tions imposed on applets. You can implement a main method in an applet to enable the applet
to run as an application. This feature has both theoretical and practical implications. Theoret-
ically, it blurs the difference between applets and applications: You can write a class that is
both an applet and an application. From the standpoint of practicality, it is convenient to be
able to run a program both ways.

How do you write such programs? Suppose you have an applet named MyApplet. To
enable it to run as an application, you only need to add a main method in the applet, as follows:

public static void main(String[] args) {
// Create a frame
JFrame = new JFrame("Applet is in the frame");

// Create an instance of the applet
MyApplet = new MyApplet();

// Add the applet to the frame

// Display the frame
frame.setSize(300, 300);
frame.setLocationRelativeTo(null); // Center the frame
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

You can revise the DisplayLabel class in Listing 18.1 to enable it to run as a standalone
application (often abbreviated as “run standalone”) by adding a main method, as shown in
Listing 18.3.

LISTING 18.3 New DisplayLabel.java with a main Method
1 import javax.swing.*;
2
3
4
5 add(new JLabel("Great!", JLabel.CENTER));
6 }
7

public DisplayLabel() {
public class DisplayLabel extends JApplet {

frame.setVisible(true);

frame.add(applet, BorderLayout.CENTER);

applet

frame

signed applet

Run applets standalone

create frame

create applet

add applet

show frame

run standalone

VideoNote

18.6 Applet Life-Cycle Methods 677

✓Point✓Check

8
9 // Create a frame
10 JFrame frame = new JFrame("Applet is in the frame");
11
12 // Create an instance of the applet
13 DisplayLabel applet = new DisplayLabel();
14
15 // Add the applet to the frame
16 frame.add(applet);
17
18 // Display the frame
19 frame.setSize(300, 100);
20 frame.setLocationRelativeTo(null); // Center the frame
21 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22 frame.setVisible(true);
23 }
24 }

When the applet is run from a Web browser, the browser creates an instance of the applet and
displays it. When the applet is run standalone, the main method is invoked to create a frame
(line 10) to hold the applet. The applet is created (line 13) and added to the frame (line 16).
The frame is displayed in line 22.

Note that you can add an applet to a container, but not a frame to a container. A frame is a
top-level container that cannot be embedded in another container.

18.6 How do you add components to a JApplet? What is the default layout manager of
JApplet?

18.7 Can you place a frame in an applet?

18.8 Can you place an applet in a frame?

18.9 What are the differences between applications and applets? How do you run an
application, and how do you run an applet? Is the compilation process different for
applications and applets?

18.6 Applet Life-Cycle Methods
The Web browser controls and executes applets using the applet life-cycle methods.

Applets are actually run from the applet container, which is a plug-in of a Web browser. A
plug-in is a software component that can be added into a larger software to provide additional
functions. The Applet class contains the init(), start(), stop(), and destroy()
methods, known as the life-cycle methods. These methods are called by the applet container to
control the execution of an applet. They are implemented with an empty body in the Applet
class, so they do nothing by default. You may override them in a subclass of Applet to per-
form desired operations. Figure 18.5 shows how the applet container calls these methods.

public static void main(String[] args) { new main method

Loaded Initialized

Applet container
invokes init()

Created

Applet container
creates the applet

Applet container
loads the applet

Started

Applet container
invokes start()

Stopped

Applet container
invokes start()

Applet container
invokes destroyed()

Applet container
invokes stop()

Destroyed

FIGURE 18.5 The applet container uses the init, start, stop, and destroy methods to control the applet.

Key
Point

applet container

678 Chapter 18 Applets and Multimedia

18.6.1 The init Method
The init method is invoked after the applet is created. If a subclass of Applet has an ini-
tialization to perform, it should override this method. The functions usually implemented in
this method include getting string parameter values from the <applet> tag in the HTML
page.

18.6.2 The start Method
The start method is invoked after the init method. It is also called when the user returns to
the Web page containing the applet after surfing other pages.

A subclass of Applet overrides this method if it has any operation that needs to be per-
formed whenever the Web page containing the applet is visited. An applet with animation, for
example, might start the timer to resume animation.

18.6.3 The stop Method
The stop method is the opposite of the start method. The start method is called when the
user moves back to the page that contains the applet. The stop method is invoked when the
user leaves the page.

A subclass of Applet overrides this method if it has any operation to be performed each
time the Web page containing the applet is no longer visible. An applet with animation, for
example, might stop the timer to pause animation.

18.6.4 The destroy Method
The destroy method is invoked when the browser exits normally to inform the applet that it
is no longer needed and should release any resources it has allocated. The stop method is
always called before the destroy method.

A subclass of Applet overrides this method if it has any operation to be performed before
it is destroyed. Usually, you won’t need to override this method unless you want to release
specific resources that the applet created.

18.10 Describe the init(), start(), stop(), and destroy() methods in the Applet
class.

18.11 Why does the applet in (a) below display nothing? Why does the applet in (b) have
a runtime NullPointerException on the highlighted line?

init()

start()

stop()

destroy()

✓Point✓Check

import javax.swing.*;

public class WelcomeApplet extends JApplet {
public void WelcomeApplet() {
JLabel jlblMessage =
new JLabel("It is Java");

}
}

import javax.swing.*;

public class WelcomeApplet extends JApplet {
private JLabel jlblMessage;

public WelcomeApplet() {
JLabel jlblMessage =
new JLabel("It is Java");

}

@Override
public void init() {

}
}

add(jlblMessage);

(a) (b)

18.7 Passing Strings to Applets 679

18.7 Passing Strings to Applets
You can pass string parameters from an HTML file to an applet.

In Section 9.7, Command-Line Arguments, you learned how to pass strings to Java applica-
tions from a command line. Strings are passed to the main method as an array of strings.
When the application starts, the main method can use these strings. There is no main
method in an applet, however, and applets are not run from the command line by the Java
interpreter.

How, then, can applets accept arguments? In this section, you will learn how to pass
strings to Java applets. To be passed to an applet, a parameter must be defined in the HTML
file and must be read by the applet when it is initialized. Parameters are defined using the
<param> tag. The <param> tag must be embedded in the <applet> tag. Its syntax is:

<param name = parametername value = stringvalue />

The <param> tag defines a parameter and its corresponding string value.

Note
No comma separates the parameter name from the parameter value in the HTML code.
The HTML parameter names are not case sensitive.

Suppose you want to write an applet to display a message. The message is passed as a
parameter. In addition, you want the message to be displayed at a specific location with x-
coordinate and y-coordinate, which are passed as two parameters. The parameters and their
values are listed in Table 18.1.

Key
Point

TABLE 18.1 Parameter Names and Values for
the DisplayMessage Applet

Parameter Name Parameter Value

MESSAGE "Welcome to Java"

X 20

Y 30

The HTML source file is given in Listing 18.4.

LISTING 18.4 DisplayMessage.html
<html>

<head>

<title>Passing Strings to Java Applets</title>
</head>

<body>

<p>This applet gets a message from the HTML
page and displays it.</p>

width = 200
height = 50
alt = "You must have a Java-enabled browser to view the applet"

<param name = X value = 20 />
<param name = MESSAGE value = "Welcome to Java" />

>

code = "DisplayMessage.class"
<applet

680 Chapter 18 Applets and Multimedia

</body>

</html>

To read the parameter from the applet, use the following method defined in the Applet class:

public String getParameter(String parametername);

This returns the value of the specified parameter.
The applet is given in Listing 18.5. A sample run of the applet is shown in Figure 18.6.

LISTING 18.5 DisplayMessage.java
1 import javax.swing.*;
2
3 public class {
4 @Override /** Initialize the applet */
5 {
6 // Get parameter values from the HTML file
7 String message = ;
8 int x = Integer.parseInt();
9 int y = Integer.parseInt();
10
11 // Create a message panel
12 MessagePanel messagePanel = new MessagePanel(message);
13 messagePanel.setXCoordinate(x);
14 messagePanel.setYCoordinate(y);
15
16 // Add the message panel to the applet
17 add(messagePanel);
18 }
19 }

getParameter("Y")
getParameter("X")

getParameter("MESSAGE")

public void init()

DisplayMessage extends JApplet

</applet>

<param name = Y value = 30 />

The program gets the parameter values from the HTML file in the init method. The val-
ues are strings obtained using the getParameter method (lines 7–9). Because x and y are
ints, the program uses Integer.parseInt(string) to parse a digital string into an int
value.

If you change Welcome to Java in the HTML file to Welcome to HTML, and reload the
HTML file in the Web browser, you should see Welcome to HTML displayed. Similarly, the
x and y values can be changed to display the message in a desired location.

Caution
The Applet’s getParameter method can be invoked only after an instance of the
applet is created. Therefore, this method cannot be invoked in the constructor of the
applet class. You should invoke it from the init method.

getParameter

FIGURE 18.6 The applet displays the message Welcome to Java passed from the HTML
page.

add to applet

18.7 Passing Strings to Applets 681

You can add a main method to enable this applet to run as a standalone application. The
applet takes the parameters from the HTML file when it runs as an applet and takes the para-
meters from the command line when it runs standalone. The program, as shown in Listing
18.6, is identical to DisplayMessage except for the addition of a new main method and of
a variable named isStandalone to indicate whether it is running as an applet or as an
application.

LISTING 18.6 DisplayMessageApp.java
1 import javax.swing.*;
2 import java.awt.Font;
3 import java.awt.BorderLayout;
4
5 public class {
6 private String message = "A default message"; // Message to display
7 private int x = 20; // Default x-coordinate
8 private int y = 20; // Default y-coordinate
9
10 /** Determine whether it is an application */
11
12
13 @Override /** Initialize the applet */
14 public void init() {
15 {
16 // Get parameter values from the HTML file
17 message = getParameter("MESSAGE");
18 x = Integer.parseInt(getParameter("X"));
19 y = Integer.parseInt(getParameter("Y"));
20 }
21
22 // Create a message panel
23 MessagePanel messagePanel = new MessagePanel(message);
24 messagePanel.setFont(new Font("SansSerif", Font.BOLD, 20));
25 messagePanel.setXCoordinate(x);
26 messagePanel.setYCoordinate(y);
27
28 // Add the message panel to the applet
29 add(messagePanel);
30 }
31
32 /** Main method to display a message
33 @param args[0] x-coordinate
34 @param args[1] y-coordinate
35 @param args[2] message
36 */
37 public static void main(String[] args) {
38 // Create a frame
39 JFrame = new JFrame("DisplayMessageApp");
40
41 // Create an instance of the applet
42 DisplayMessageApp = new DisplayMessageApp();
43
44 // It runs as an application
45
46
47 // Get parameters from the command line
48
49
50 // Add the applet instance to the frame
51 frame.add(applet, BorderLayout.CENTER);

applet.getCommandLineParameters(args);

applet.isStandalone = true;

applet

frame

if (!isStandalone)

private boolean isStandalone = false;

DisplayMessageApp extends JApplet

isStandalone

applet params

standalone

command params

682 Chapter 18 Applets and Multimedia

52
53 // Invoke applet's init method
54
55
56
57 // Display the frame
58 frame.setSize(300, 300);
59 frame.setLocationRelativeTo(null); // Center the frame
60 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
61
62 }
63
64 /** Get command-line parameters */
65 private void getCommandLineParameters(String[] args) {
66 // Check usage and get x, y and message
67 if (args.length != 3) {
68 System.out.println(
69 "Usage: java DisplayMessageApp x y message");
70 System.exit(1);
71 }
72 else {
73 x = Integer.parseInt(args[0]);
74 y = Integer.parseInt(args[1]);
75 message = args[2];
76 }
77 }
78 }

When you run the program as an applet, the main method is ignored. When you run it as an
application, the main method is invoked. Sample runs of the program as an application and as
an applet are shown in Figure 18.7.

frame.setVisible(true);

applet.start();
applet.init();

omitting main method

✓Point✓Check

(b)(a)

FIGURE 18.7 The DisplayMessageApp class can run as an applet in (a) and as an
application in (b).

The main method creates a JFrame object frame and creates a JApplet object applet,
then places the applet applet into the frame frame and invokes its init method. The appli-
cation runs just like an applet.

The main method sets isStandalone as true (line 45) so that it does not attempt to
retrieve HTML parameters when the init method is invoked.

The setVisible(true) method (line 61) is invoked after the components are added to
the applet, and the applet is added to the frame to ensure that the components will be visible.
Otherwise, the components are not shown when the frame starts.

Important Pedagogical Note
From now on, all the GUI examples will be created as applets with a main method.
Thus, you will be able to run the program either as an applet or as an application. For
brevity, the main method is not listed in the text.

18.12 How do you pass parameters to an applet?

18.13 Where is the getParameter method defined?

18.8 Case Study: Bouncing Ball 683

18.14 What is wrong if the DisplayMessage applet is revised as follows?

18.8 Case Study: Bouncing Ball
This section presents an applet that displays a ball bouncing in a panel.

The applet uses two buttons to suspend and resume the bouncing movement, and uses a scroll
bar to control the bouncing speed, as shown in Figure 18.8.

public class DisplayMessage extends JApplet {
/** Initialize the applet */
public DisplayMessage() {
// Get parameter values from the HTML file
String message = getParameter("MESSAGE");
int x =
Integer.parseInt(getParameter("X"));

int y =
Integer.parseInt(getParameter("Y"));

// Create a message panel
MessagePanel messagePanel =
new MessagePanel(message);

messagePanel.setXCoordinate(x);
messagePanel.setYCoordinate(y);

// Add the message panel to the applet
add(messagePanel);

}
}

public class DisplayMessage extends JApplet {
private String message;
private int x;
private int y;

@Override /** Initialize the applet */
public void init() {
// Get parameter values from the HTML file
message = getParameter("MESSAGE");
x = Integer.parseInt(getParameter("X"));
y = Integer.parseInt(getParameter("Y"));

}

public DisplayMessage() {
// Create a message panel
MessagePanel messagePanel =
new MessagePanel(message);

messagePanel.setXCoordinate(x);
messagePanel.setYCoordinate(y);

// Add the message panel to the applet
add(messagePanel);

}
}

(a) Revision 1 (b) Revision 2

FIGURE 18.8 The ball’s movement is controlled by the Suspend and Resume buttons and the
scroll bar.

Here are the major steps to write this program:

1. Define a subclass of JPanel named Ball to display a ball bouncing, as shown in
Listing 18.7.

2. Define a subclass of JPanel named BallControl to set the ball speed with a scroll
bar, and two control buttons Suspend and Resume, as shown in Listing 18.8.

3. Define an applet named BounceBallApp to contain an instance of BallControl and
enable the applet to run as a standalone application, as shown in Listing 18.9.

The relationship among these classes is shown in Figure 18.9.

Key
Point

684 Chapter 18 Applets and Multimedia

LISTING 18.7 Ball.java
1 import javax.swing.Timer;
2 import java.awt.*;
3 import javax.swing.*;
4 import java.awt.event.*;
5
6 public class Ball extends JPanel {
7
8
9 // Create a timer with the specified delay in milliseconds
10
11
12 private int x = 0; private int y = 0; // Current ball position
13 private int radius = 5; // Ball radius
14 private int dx = 2; // Increment on ball's x-coordinate
15 private int dy = 2; // Increment on ball's y-coordinate
16
17 public Ball() {
18
19 }
20
21
22 @Override /** Handle the action event */
23 public void actionPerformed(ActionEvent e) {
24
25 }
26 }
27
28 @Override
29
30 super.paintComponent(g);
31
32 g.setColor(Color.red);
33
34 // Check boundaries
35 if (x < 0 || x > getWidth())
36 dx *= -1;

protected void paintComponent(Graphics g) {

repaint();

private class TimerListener implements ActionListener {

timer.start();

private Timer timer = new Timer(delay, new TimerListener());

private int delay = 10;

Ball BallControl BounceBallApp

+BallControl()

11 1 1

javax.swing.JAppletjavax.swing.JPaneljavax.swing.JPanel

-x: int
-y: int
-dx: int
-dy: int
-radius: int
-delay: int
-timer: Timer

+Ball()

+suspend(): void

+resume(): void

+setDelay(delay: int): void

-ball: Ball
-jsbDelay: JScrollBar
-jbtResume: JButton
-jbtSuspend: JButton

+BounceBallApp()
+main(args: String[]): void

FIGURE 18.9 BounceBallApp contains BallControl, and BallControl contains Ball.

timer delay

create timer

start timer

timer listener

repaint ball

paint ball

18.8 Case Study: Bouncing Ball 685

37 if (y < 0 || y > getHeight())
38 dy *= -1;
39
40 // Adjust ball position
41 x += dx;
42 y += dy;
43 g.fillOval(x - radius, y - radius, radius * 2, radius * 2);
44 }
45
46 public void suspend() {
47 timer.stop(); // Suspend timer
48 }
49
50 public void resume() {
51 timer.start(); // Resume timer
52 }
53
54 public void setDelay(int delay) {
55 this.delay = delay;
56 timer.setDelay(delay);
57 }
58 }

The use of Timer to control animation was introduced in Section 16.11, Animation Using the
Timer Class. Ball extends JPanel to display a moving ball. The timer listener implements
ActionListener to listen for ActionEvent (line 21). Line 10 creates a Timer for a Ball.
The timer is started in line 18 when a Ball is constructed. The timer fires an ActionEvent
at a fixed rate. The listener responds in line 24 to repaint the ball to animate ball movement.
The center of the ball is at (x, y), which changes to (x + dx, y + dy) on the next display
(lines 41–42). When the ball is out of the horizontal boundary, the sign of dx is changed (from
positive to negative, or vice versa) (lines 35–36). This causes the ball to change its horizontal
movement direction. When the ball is out of the vertical boundary, the sign of dy is changed
(from positive to negative, or vice versa) (lines 37–38). This causes the ball to change its ver-
tical movement direction. The suspend and resume methods (lines 46–52) can be used to
stop and start the timer. The setDelay(int) method (lines 54–57) sets a new delay.

LISTING 18.8 BallControl.java
1 import javax.swing.*;
2 import java.awt.event.*;
3 import java.awt.*;
4
5 public class BallControl extends JPanel {
6 private Ball ball = new Ball();
7
8
9
10
11 public BallControl() {
12 // Group buttons in a panel
13 JPanel panel = new JPanel();
14 panel.add(jbtSuspend);
15 panel.add(jbtResume);
16
17 // Add ball and buttons to the panel
18 ball.setBorder(new javax.swing.border.LineBorder(Color.red));
19 jsbDelay.setOrientation(JScrollBar.HORIZONTAL);
20 ball.setDelay(jsbDelay.getMaximum());
21 setLayout(new BorderLayout());

private JScrollBar jsbDelay = new JScrollBar();
private JButton jbtResume = new JButton("Resume");
private JButton jbtSuspend = new JButton("Suspend"); button

scroll bar

create UI

686 Chapter 18 Applets and Multimedia

22 add(jsbDelay, BorderLayout.NORTH);
23 add(ball, BorderLayout.CENTER);
24 add(panel, BorderLayout.SOUTH);
25
26 // Register listeners
27
28 @Override
29 public void actionPerformed(ActionEvent e) {
30
31 }
32 });
33
34 @Override
35 public void actionPerformed(ActionEvent e) {
36
37 }
38 });
39
40 @Override
41 public void adjustmentValueChanged(AdjustmentEvent e) {
42
43 }
44 });
45 }
46 }

The BallControl class extends JPanel to display the ball with a scroll bar and two control
buttons. When the Suspend button is clicked, the ball’s suspend() method is invoked to sus-
pend the ball’s movement (line 30). When the Resume button is clicked, the ball’s resume()
method is invoked to resume the ball’s movement (line 36). The bouncing speed can be
changed using the scroll bar.

LISTING 18.9 BounceBallApp.java
1 import java.awt.*;
2 import javax.swing.*;
3
4 public class {
5 public BounceBallApp() {
6
7 }
8 }

The BounceBallApp class simply places an instance of BallControl in the applet. The
main method is provided in the applet (not displayed in the listing for brevity) so that you can
also run it standalone.

18.15 How does the program make the ball moving?

18.16 How does the code in Listing 18.7 Ball.java change the direction of the ball movement?

18.17 What does the program do when the Suspend button is clicked? What does the pro-
gram do when the Resume button is clicked?

18.9 Case Study: Developing a Tic-Tac-Toe Game
This section develops an applet for playing tic-tac-toe.

From the many examples in this and earlier chapters you have learned about objects, classes,
arrays, class inheritance, GUI, event-driven programming, and applets. Now it is time to put

add(new BallControl());

BounceBallApp extends JApplet

ball.setDelay(jsbDelay.getMaximum() - e.getValue());

jsbDelay.addAdjustmentListener(new AdjustmentListener() {

ball.resume();

jbtResume.addActionListener(new ActionListener() {

ball.suspend();

jbtSuspend.addActionListener(new ActionListener() {register listener

suspend

register listener

resume

register listener

new delay

add BallControl

main method omitted

✓Point✓Check

Key
Point

TicTacToe

VideoNote

18.9 Case Study: Developing a Tic-Tac-Toe Game 687

what you have learned to work in developing comprehensive projects. In this section, we will
develop a Java applet with which to play the popular game of tic-tac-toe.

Two players take turns marking an available cell in a grid with their respective
tokens (either X or O). When one player has placed three tokens in a horizontal, vertical, or
diagonal row on the grid, the game is over and that player has won. A draw (no winner) occurs
when all the cells on the grid have been filled with tokens and neither player has achieved a
win. Figure 18.10 shows the representative sample runs of the example.

3 * 3

(a) The X player won the game (b) Draw—no winners (c) The O player won the game

FIGURE 18.10 Two players play a tic-tac-toe game.

All the examples you have seen so far show simple behaviors that are easy to model with
classes. The behavior of the tic-tac-toe game is somewhat more complex. To create classes
that model the behavior, you need to study and understand the game.

Assume that all the cells are initially empty, and that the first player takes the X token and
the second player the O token. To mark a cell, the player points the mouse to the cell and
clicks it. If the cell is empty, the token (X or O) is displayed. If the cell is already filled, the
player’s action is ignored.

From the preceding description, it is obvious that a cell is a GUI object that handles the
mouse-click event and displays tokens. Such an object could be either a button or a panel.
Drawing on panels is more flexible than drawing on buttons, because on a panel the token (X
or O) can be drawn in any size, but on a button it can be displayed only as a text label. There-
fore, a panel should be used to model a cell. How do you know the state of the cell (empty, X,
or O)? You use a property named token of the char type in the Cell class. The Cell class
is responsible for drawing the token when an empty cell is clicked, so you need to write the
code for listening to the MouseEvent and for painting the shapes for tokens X and O. The
Cell class can be defined as shown in Figure 18.11.

-token: char

+getToken(): char

+setToken(token: char): void

#paintComponent(g: Graphics): void

Token used in the cell (default: ' ').

Returns the token in the cell.

Sets a new token in the cell.

Paints the token in the cell.

Cell

javax.swing.JPanel

FIGURE 18.11 The Cell class paints the token in a cell.

688 Chapter 18 Applets and Multimedia

The tic-tac-toe board consists of nine cells, created using new Cell[3][3]. To determine
which player’s turn it is, you can introduce a variable named whoseTurn of the char type.
whoseTurn is initially 'X', then changes to 'O', and subsequently changes between 'X' and
'O' whenever a new cell is occupied. When the game is over, set whoseTurn to ' '.

How do you know whether the game is over, whether there is a winner, and who the win-
ner, if any, is? You can define a method named isWon(char token) to check whether a
specified token has won and a method named isFull() to check whether all the cells are
occupied.

Clearly, two classes emerge from the foregoing analysis. One is the Cell class, which han-
dles operations for a single cell; the other is the TicTacToe class, which plays the whole
game and deals with all the cells. The relationship between these two classes is shown in
Figure 18.12.

Since the Cell class is only to support the TicTacToe class, it can be defined as an inner
class in TicTacToe. The complete program is given in Listing 18.10.

LISTING 18.10 TicTacToe.java
1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4 import javax.swing.border.LineBorder;
5
6 public class {
7 // Indicate which player has a turn; initially it is the X player
8 private char whoseTurn = 'X';
9
10 // Create and initialize cells
11 private Cell[][] cells = new Cell[3][3];
12
13 // Create and initialize a status label
14 private JLabel jlblStatus = new JLabel("X's turn to play");
15
16 /** Initialize UI */
17 {
18 // Panel p to hold cells

public TicTacToe()

TicTacToe extends JAppletmain class TicTacToe

-whoseTurn: char

-cell: Cell[][]

-jlblStatus: JLabel

+TicTacToe()

+isFull(): boolean

+isWon(token: char): boolean

9

1
TicTacToe

Cell

Indicates which player has the turn, initially X.

A 3 � 3, two-dimensional array for cells.

A label to display game status.

Constructs the TicTacToe user interface.

Returns true if all cells are filled.

Returns true if a player with the specified token has won.

javax.swing.JApplet

FIGURE 18.12 The TicTacToe class contains nine cells.

18.9 Case Study: Developing a Tic-Tac-Toe Game 689

19 JPanel p = new JPanel(new GridLayout(3, 3, 0, 0));
20 for (int i = 0; i < 3; i++)
21 for (int j = 0; j < 3; j++)
22 p.add(cells[i][j] = new Cell());
23
24 // Set line borders on the cells' panel and the status label
25 p.setBorder(new LineBorder(Color.red, 1));
26 jlblStatus.setBorder(new LineBorder(Color.yellow, 1));
27
28 // Place the panel and the label for the applet
29 add(p, BorderLayout.CENTER);
30 add(jlblStatus, BorderLayout.SOUTH);
31 }
32
33 /** Determine whether the cells are all occupied */
34 {
35 for (int i = 0; i < 3; i++)
36 for (int j = 0; j < 3; j++)
37 if (cells[i][j].getToken() == ' ')
38 return false;
39
40 return true;
41 }
42
43 /** Determine whether the player with the specified token wins */
44 {
45 for (int i = 0; i < 3; i++)
46 if ((cells[i][0].getToken() == token)
47 && (cells[i][1].getToken() == token)
48 && (cells[i][2].getToken() == token)) {
49 return true;
50 }
51
52 for (int j = 0; j < 3; j++)
53 if ((cells[0][j].getToken() == token)
54 && (cells[1][j].getToken() == token)
55 && (cells[2][j].getToken() == token)) {
56 return true;
57 }
58
59 if ((cells[0][0].getToken() == token)
60 && (cells[1][1].getToken() == token)
61 && (cells[2][2].getToken() == token)) {
62 return true;
63 }
64
65 if ((cells[0][2].getToken() == token)
66 && (cells[1][1].getToken() == token)
67 && (cells[2][0].getToken() == token)) {
68 return true;
69 }
70
71 return false;
72 }
73
74 // An inner class for a cell
75 public class {
76 // Token used for this cell
77 private char token = ' ';
78

Cell extends JPanel

public boolean isWon(char token)

public boolean isFull() check isFull

check rows

check columns

check major diagonal

check subdiagonal

inner class Cell

690 Chapter 18 Applets and Multimedia

79 public Cell() {
80 setBorder(new LineBorder(Color.black, 1)); // Set cell's border
81 // Register listener
82 }
83
84 /** Return token */
85 public char getToken() {
86 return token;
87 }
88
89 /** Set a new token */
90 public void setToken(char c) {
91 token = c;
92 repaint();
93 }
94
95 @Override /** Paint the cell */
96 {
97 super.paintComponent(g);
98
99 if (token == 'X') {
100 g.drawLine(10, 10, getWidth() - 10, getHeight() - 10);
101 g.drawLine(getWidth() - 10, 10, 10, getHeight() - 10);
102 }
103 else if (token == 'O') {
104 g.drawOval(10, 10, getWidth() - 20, getHeight() - 20);
105 }
106 }
107
108
109 @Override /** Handle mouse click on a cell */
110 {
111 // If cell is empty and game is not over
112 if (token == ' ' && whoseTurn != ' ') {
113 setToken(whoseTurn); // Set token in the cell
114
115 // Check game status
116 if (isWon(whoseTurn)) {
117 jlblStatus.setText(whoseTurn + " won! The game is over");
118 whoseTurn = ' '; // Game is over
119 }
120 else if (isFull()) {
121 jlblStatus.setText("Draw! The game is over");
122 whoseTurn = ' '; // Game is over
123 }
124 else {
125 // Change the turn
126 whoseTurn = (whoseTurn == 'X') ? 'O' : 'X';
127 // Display whose turn
128 jlblStatus.setText(whoseTurn + "'s turn");
129 }
130 }
131 }
132 }
133 }
134 }

The TicTacToe class initializes the user interface with nine cells placed in a panel of
GridLayout (lines 19–22). A label named jlblStatus is used to show the status of the
game (line 14). The variable whoseTurn (line 8) is used to track the next type of token to be

public void mouseClicked(MouseEvent e)

private class MyMouseListener extends MouseAdapter {

protected void paintComponent(Graphics g)

addMouseListener(new MyMouseListener());register listener

paint cell

listener class

main method omitted

18.10 Locating Resources Using the URL Class 691

placed in a cell. The methods isFull (lines 34–41) and isWon (lines 44–72) are for check-
ing the status of the game.

Since Cell is an inner class in TicTacToe, the variable (whoseTurn) and methods
(isFull and isWon) defined in TicTacToe can be referenced from the Cell class. The
inner class makes programs simple and concise. If Cell were not defined as an inner class of
TicTacToe, you would have to pass an object of TicTacToe to Cell in order for the vari-
ables and methods in TicTacToe to be used in Cell. You will rewrite the program without
using an inner class in Programming Exercise 18.6.

The listener for MouseEvent is registered for the cell (line 81). If an empty cell is clicked
and the game is not over, a token is set in the cell (line 113). If the game is over, whoseTurn
is set to ' ' (lines 118, 122). Otherwise, whoseTurn is alternated to a new turn (line 126).

Tip
Use an incremental approach in developing and testing a Java project of this kind. For
example, this program can be divided into five steps:

1. Lay out the user interface and display a fixed token X on a cell.

2. Enable the cell to display a fixed token X upon a mouse click.

3. Coordinate between the two players so as to display tokens X and O alternately.

4. Check whether a player wins, or whether all the cells are occupied without a winner.

5. Implement displaying a message on the label upon each move by a player.

18.18 When the game starts, what value is in whoseTurn? When the game is over, what
value is in whoseTurn?

18.19 What happens when the user clicks on an empty cell if the game is not over? What
happens when the user clicks on an empty cell if the game is over?

18.20 How does the program check whether a player wins? How does the program check
whether all cells are filled?

18.21 Delete super.paintComponent(g) on line 97 in TicTacToe.java in Listing 18.10
and run the program to see what happens.

18.10 Locating Resources Using the URL Class
You can use the URL class to load a resource file for an applet, as long as the resource
file is located in the applet’s class directory.

You have used the ImageIcon class to create an icon from an image file and used the
setIcon method or the constructor to place the icon in a GUI component, such as a button or
a label. For example, the following statements create an ImageIcon and set it on a JLabel
object jlbl:

ImageIcon imageIcon = new ImageIcon("c:\\book\\image\\us.gif");
jlbl.setIcon(imageIcon);

This approach presents a problem. The file location is fixed, because it uses the absolute file
path on the Windows platform. As a result, the program cannot run on other platforms and
cannot run as an applet. Assume that image/us.gif is under the class directory. You can cir-
cumvent this problem by using a relative path as follows:

ImageIcon imageIcon = new ImageIcon("image/us.gif");

This works fine with Java applications on all platforms but not with Java applets, because
applets cannot load local files. To enable it to work with both applications and applets, you
need to locate the file’s URL (Uniform Resource Locator).

✓Point✓Check

Key
Point

incremental development and
testing

why URL class?

692 Chapter 18 Applets and Multimedia

The java.net.URL class was used to locate a text file on the Internet in Section 14.13. It
can also be used to locate image files and audio files on the Internet. In general, a URL object
is a pointer to a “resource” on a local machine or a remote host. A resource can be a file or a
directory.

The URL class can be used to locate a resource file from a class in a way that is independent
of the file’s location, as long as the resource file is located in the class directory. Recall that
the class directory is where the class is stored. To obtain the URL object for a file from a class,
use the following statement in the applet or application:

meta object

.

.

.
Class metaObject = this.getClass();
URL url = metaObject.getResource(resourceFilename);
.
.
.

Directory

A resource file

An applet or
application

.

.

.
Class metaObject = this.getClass();
URL url = metaObject.getResource("image/us.gif");
.
.
.

C:\book

An applet or
application

image

us.gif

The getClass() method returns an instance of the java.lang.Class class for the current
class. This instance is automatically created by the JVM for every class loaded into the mem-
ory. This instance, also known as a meta object, contains the information about the class file
such as class name, constructors, and methods. You can obtain a URL object for a file in the
class path by invoking the getResource(filename) method on the meta object. For exam-
ple, if the class file is in c:\book, the following statements obtain a URL object for
c:\book\image\us.gif.

You can now create an ImageIcon using

ImageIcon imageIcon = new ImageIcon(url);

Listing 18.11 gives the code that displays an image from image/us.gif in the class directory.
The file image/us.gif is under the class directory, and its URL object is obtained using the
getResource method (line 5). A label with an image icon is created in line 6. The image
icon is obtained from the URL object.

LISTING 18.11 DisplayImageWithURL.java
1 import javax.swing.*;
2
3 public class DisplayImageWithURL extends JApplet {

18.11 Playing Audio in Any Java Program 693

4 public DisplayImageWithURL() {
5 java.net.URL url = ;
6 add(new JLabel());
7 }
8 }

If you replace the code in lines 5–6 with the following code,

add(new JLabel(new ImageIcon("image/us.gif")));

you can still run the program as a standalone application, but not as an applet from a browser,
as shown in Figure 18.13.

new ImageIcon(url)
this.getClass().getResource("image/us.gif")

18.22 How do you create a URL object for the file image/us.gif in the class directory?

18.23 How do you create an ImageIcon from the file image/us.gif in the class directory?

18.11 Playing Audio in Any Java Program
The Applet class contains the methods for obtaining an AudioClip object for an
audio file. The AudioClip object contains the methods for playing audio files.

There are several formats for audio files. Java programs can play audio files in the WAV,
AIFF, MIDI, AU, and RMF formats.

To play an audio file in Java (application or applet), first create an audio clip object for the file.
The audio clip is created once and can be played repeatedly without reloading the file. To create
an audio clip, use the static method newAudioClip() in the java.applet.Applet class:

AudioClip audioClip = Applet.newAudioClip(url);

Audio originally could be played only from Java applets. For this reason, the AudioClip inter-
face is in the java.applet package. Since JDK 1.2, audio can be played in any Java program.

The following statements, for example, create an AudioClip for the beep.au audio file
in the class directory:

Class metaObject = this.getClass();
URL url = metaObject.getResource("beep.au");
AudioClip audioClip = Applet.newAudioClip(url);

get image URL
create a label

FIGURE 18.13 The applet loads an image from an image file located in the same directory as the applet.

✓Point✓Check

Key
Point

main method omitted

694 Chapter 18 Applets and Multimedia

To manipulate a sound for an audio clip, use the play(), loop(), and stop() methods in
java.applet.AudioClip, as shown in Figure 18.14.

Listing 18.12 gives the code that displays the Danish flag and plays the Danish national
anthem repeatedly. The image file image/denmark.gif and audio file audio/denmark.mid
are stored under the class directory. Line 12 obtains the URL object for the audio file, line 13
creates an audio clip for the file, and line 14 repeatedly plays the audio.

LISTING 18.12 DisplayImagePlayAudio.java
1 import javax.swing.*;
2 import java.net.URL;
3 import java.applet.*;
4
5 public class DisplayImagePlayAudio extends JApplet {
6 private AudioClip audioClip;
7
8 public DisplayImagePlayAudio() {
9 URL urlForImage = getClass().getResource("image/denmark.gif");
10 add(new JLabel(new ImageIcon(urlForImage)));
11
12
13
14
15 }
16
17 @Override
18 public void start() {
19 if (audioClip != null) audioClip.loop();
20 }
21
22 @Override
23 public void stop() {
24 if (audioClip != null) audioClip.stop();
25 }
26 }

The stop method (lines 23–25) stops the audio when the applet is not displayed, and the
start method (lines 18–20) restarts the audio when the applet is redisplayed. Try to run this
applet without the stop and start methods from a browser and observe the effect.

Run this program as a standalone application from the main method and from a Web browser
to test it. Recall that, for brevity, the main method in all applets is not printed in the text.

18.24 What types of audio files are used in Java?

18.25 How do you create an audio clip from the file anthem/us.mid in the class directory?

18.26 How do you play, repeatedly play, and stop an audio clip?

audioClip.loop();
audioClip = Applet.newAudioClip(urlForAudio);
URL urlForAudio = getClass().getResource("audio/denmark.mid");

get image URL
create a label

get audio URL
create an audio clip
play audio repeatedly

start audio

stop audio

main method omitted

✓Point✓Check

Starts playing this audio clip. Each time this method
 is called, the clip is restarted from the beginning.

Plays the clip repeatedly.

Stops playing the clip.

java.applet.AudioClip

+play()

+loop()

+stop()

«interface»

FIGURE 18.14 The AudioClip interface provides the methods for playing sound.

18.12 Case Study: National Flags and Anthems 695

18.12 Case Study: National Flags and Anthems
This case study presents an applet that displays a nation’s flag and plays its anthem.

The images in the applet are for seven national flags, named flag0.gif, flag1.gif, . . ., flag6.gif
for Denmark, Germany, China, India, Norway, the U.K., and the U.S. They are stored under
the image directory in the class path. The audio consists of national anthems for these seven
nations, named anthem0.mid, anthem1.mid, . . ., and anthem6.mid. They are stored under
the audio directory in the class path.

The program enables the user to select a nation from a combo box and then displays its flag
and plays its anthem. The user can suspend the audio by clicking the Suspend button and
resume it by clicking the Resume button, as shown in Figure 18.15.

FIGURE 18.15 The applet displays a sequence of images and plays audio.

The program is given in Listing 18.13.

LISTING 18.13 FlagAnthem.java
1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4 import java.applet.*;
5
6 public class FlagAnthem extends JApplet {
7 private final static int NUMBER_OF_NATIONS = 7;
8 private int current = 0;
9 private ImageIcon[] icons = new ImageIcon[NUMBER_OF_NATIONS];
10
11
12
13 private JLabel jlblImageLabel = new JLabel();
14 private JButton jbtResume = new JButton("Resume");
15 private JButton jbtSuspend = new JButton("Suspend");
16 private JComboBox jcboNations = new JComboBox(new Object[]
17 {"Denmark", "Germany", "China", "India", "Norway", "UK", "US"});
18
19 public FlagAnthem() {
20 // Load image icons and audio clips
21 for (int i = 0; i < NUMBER_OF_NATIONS; i++) {
22 icons[i] = new ImageIcon(getClass().getResource(
23 "image/flag" + i + ".gif"));
24
25
26 }
27
28 JPanel panel = new JPanel();

getClass().getResource("audio/anthem" + i + ".mid"));
audioClips[i] = Applet.newAudioClip(

private AudioClip currentAudioClip;
private AudioClip[] audioClips = new AudioClip[NUMBER_OF_NATIONS];

Key
Point

Audio and image

image icons
audio clips
current audio clip

GUI components

VideoNote

create icons

create audio clips

create UI

696 Chapter 18 Applets and Multimedia

29 panel.add(jbtResume);
30 panel.add(jbtSuspend);
31 panel.add(new JLabel("Select"));
32 panel.add(jcboNations);
33 add(jlblImageLabel, BorderLayout.CENTER);
34 add(panel, BorderLayout.SOUTH);
35
36 jbtResume.addActionListener(new ActionListener() {
37 @Override
38 public void actionPerformed(ActionEvent e) {
39
40 }
41 });
42 jbtSuspend.addActionListener(new ActionListener() {
43 @Override
44 public void actionPerformed(ActionEvent e) {
45
46 }
47 });
48 jcboNations.addActionListener(new ActionListener() {
49 @Override
50 public void actionPerformed(ActionEvent e) {
51 stop();
52 current = jcboNations.getSelectedIndex();
53 presentNation(current);
54 }
55 });
56
57 jlblImageLabel.setIcon(icons[0]);
58 jlblImageLabel.setHorizontalAlignment(JLabel.CENTER);
59
60
61 }
62
63 private void presentNation(int index) {
64 jlblImageLabel.setIcon(icons[index]);
65 jcboNations.setSelectedIndex(index);
66 currentAudioClip = audioClips[index];
67
68 }
69
70 @Override
71 public void start() {
72
73 }
74
75 @Override
76 public void stop() {
77
78 }
79 }

A label is created in line 13 to display a flag image. An array of flag images for seven nations
is created in lines 22–23. An array of audio clips is created in lines 24–25. The image files and
audio files are stored in the same directory as the applet class file so these files can be located
using the getResource method.

The combo box for country names is created in lines 16–17. When a new country name in
the combo box is selected, the current presentation is stopped and a new selected nation is
presented (lines 51–53).

currentAudioClip.stop();

currentAudioClip.play();

currentAudioClip.play();

currentAudioClip.play();
currentAudioClip = audioClips[0];

stop();

start();

register listener

start audio

register listener

stop audio

register listener

select a nation
present a nation

play a clip

stop audio clip

main method omitted

Chapter Summary 697

The presentNation(index) method (lines 63–68) presents a nation with the specified
index. It sets a new image in the label (line 64), synchronizes with the combo box by setting
the selected index (line 65), and plays the new audio (line 67).

The applet’s start and stop methods are overridden to resume and suspend the audio
(lines 70–78).

18.27 Which code sets the initial image icon? Which code plays the initial audio clip?

18.28 What does the program do when the Suspend button is clicked? What does the pro-
gram do when the Resume button is clicked?

KEY TERMS

✓Point✓Check

applet 673
applet container 677
archive 674

HTML 673
signed applet 676
tag 673

CHAPTER SUMMARY

1. JApplet is a subclass of Applet. It is used for developing Java applets with Swing
components.

2. The applet class file must be specified, using the <applet> tag in an HTML file to
tell the Web browser where to find the applet. The applet can accept string parameters
from HTML using the <param> tag.

3. The applet container controls and executes applets through the init, start, stop,
and destroy methods in the Applet class.

4. When an applet is loaded, the applet container creates an instance of it by invoking its
no-arg constructor. The init method is invoked after the applet is created. The
start method is invoked after the init method. It is also called whenever the applet
becomes active again after the page containing the applet is revisited. The stop
method is invoked when the applet becomes inactive.

5. The destroy method is invoked when the browser exits normally to inform the applet
that it is no longer needed and should release any resources it has allocated. The stop
method is always called before the destroy method.

6. Applications and applets are very similar. An applet can easily be converted into an
application, and vice versa. Moreover, an applet can be written with a main method to
run standalone.

7. You can pass arguments to an applet using the param attribute in the applet’s tag in
HTML. To retrieve the value of the parameter, invoke the getParameter(paramName)
method.

8. The Applet’s getParameter method can be invoked only after an instance of the
applet is created. Therefore, this method cannot be invoked in the constructor of the
applet class. You should invoke this method from the init method.

9. You learned how to incorporate images and audio in Java applications and applets. To
load audio and images for Java applications and applets, you have to create a URL object
for the audio and image file. The resource files must be stored in the class directory.

698 Chapter 18 Applets and Multimedia

(a) (b) (c)

FIGURE 18.16 The applet tests the user knowledge on states and capitals.

10. To play an audio, create an audio clip from the URL object for the audio source. You
can use the AudioClip’s play() method to play it once, the loop() method to play
it repeatedly, and the stop() method to stop it.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Pedagogical Note
For every applet in the exercise, add a main method to enable it to run as a stand-
alone application.

Sections 18.2–18.6
18.1 (Loan calculator) Revise Listing 16.7, LoanCalculator.java, to be an applet for

computing loan payment.

18.2 (Convert applications to applets) Rewrite ClockAnimation in Listing 16.12
as an applet and enable it to run standalone.

*18.3 (Guess capitals and states) Revise Programming Exercise 9.17 to write an
applet that repeatedly prompts the user to enter a capital for a state or vice
versa, as shown in Figure 18.16a. Upon clicking the Answer button, the pro-
gram gets the user input from the text field, reports whether the answer is cor-
rect in a message dialog box (Figure 18.16b–c), shows the correct count and
total count, and then displays the next question. The user can specify whether
to let the program generate a question randomly or sequentially, and whether
to generate questions for a capital or a state.

*18.4 (Pass strings to applets) Rewrite Listing 18.5, DisplayMessage.java, to display a
message with a standard color, font, and size. The message, x, y, color,
fontname, and fontsize are parameters in the <applet> tag, as shown below:

<applet

code = "Exercise18_04.class"

width = 200

height = 50

alt = "You must have a Java-enabled browser to view the applet"

>
<param name = MESSAGE value = "Welcome to Java" />
<param name = X value = 40 />
<param name = Y value = 50 />
<param name = COLOR value = "red" />

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 699

<param name = FONTNAME value = "Monospaced" />
<param name = FONTSIZE value = 20 />

</applet>

**18.5 (Game: a clock learning tool) Develop a clock applet to show a first-grade stu-
dent how to read a clock. Modify Programming Exercise 13.19 to display a
detailed clock with an hour hand and a minute hand in an applet, as shown in
Figure 18.17a. The hour and minute values are randomly generated. The hour
is between 0 and 11, and the minute is 0, 15, 30, or 45. Upon a mouse click, a
new random time is displayed on the clock.

**18.6 (Game: tic-tac-toe) Rewrite the program in Listing 18.10 TicTacToe.java with
the following modifications:

■ Define Cell as a separate class rather than an inner class.
■ Add a button named New Game, as shown in Figure 18.17b. Clicking the

New Game button starts a new game.

**18.7 (Financial application: tax calculator) Create an applet to compute tax, as
shown in Figure 18.17c. The applet lets the user select the tax status and enter
the taxable income to compute the tax based on the 2001 federal tax rates, as
shown in Programming Exercise 10.8.

***18.8 (Create a calculator) Use various panels of FlowLayout, GridLayout, and
BorderLayout to lay out the following calculator and to implement addition
(+), subtraction (-), division (/), square root (sqrt), and modulus (%) func-
tions (see Figure 18.18a).

(b)(a) (c)

FIGURE 18.17 (a) Upon a mouse click on the clock, the clock time is randomly displayed.
(b) Clicking the New Game button starts a new game. (c) The tax calculator computes the
tax for the specified taxable income and tax status.

(a) (b)

FIGURE 18.18 (a) Exercise 18.8 is a Java implementation of a popular calculator.
(b) Exercise 18.9 converts between decimal, hex, and binary numbers.

700 Chapter 18 Applets and Multimedia

(a) (b)

FIGURE 18.19 (a) The histogram displays the average temperature of every hour in the last 24 hours. (b) The program
simulates a running fan.

FIGURE 18.20 The program runs and controls a group of fans.

*18.9 (Convert numbers) Write an applet that converts between decimal, hex, and
binary numbers, as shown in Figure 18.18b. When you enter a decimal value
in the decimal-value text field and press the Enter key, its corresponding hex
and binary numbers are displayed in the other two text fields. Likewise, you
can enter values in the other fields and convert them accordingly.

**18.10 (Repaint a partial area) When you repaint the entire viewing area of a panel,
sometimes only a tiny portion of the viewing area is changed. You can improve
the performance by repainting only the affected area, but do not invoke
super.paintComponent(g) when repainting the panel, because this will
cause the entire viewing area to be cleared. Use this approach to write an applet
to display the temperatures of each hour during the last 24 hours in a histogram.
Suppose that temperatures between 50 and 90 degrees Fahrenheit are obtained
randomly and are updated every hour. The temperature of the current hour
needs to be redisplayed, while the others remain unchanged. Use a unique color
to highlight the temperature for the current hour (see Figure 18.19a).

**18.11 (Simulation: a running fan) Write a Java applet that simulates a running fan, as
shown in Figure 18.19b. The buttons Start, Stop, and Reverse control the fan.
The scrollbar controls the fan’s speed. Create a class named Fan, a subclass of
JPanel, to display the fan. This class also contains the methods to suspend
and resume the fan, set its speed, and reverse its direction. Create a class
named FanControl that contains a fan, and three buttons and a scroll bar to
control the fan. Create a Java applet that contains an instance of FanControl.

**18.12 (Control a group of fans) Write a Java applet that displays three fans in a group,
with control buttons to start and stop all of them, as shown in Figure 18.20.

***18.13 (Create an elevator simulator) Write an applet that simulates an elevator going
up and down (see Figure 18.21). The buttons on the left indicate the floor where
the passenger is now located. The passenger must click a button on the left to

Programming Exercises 701

request that the elevator come to his or her floor. On entering the elevator, the
passenger clicks a button on the right to request that it go to the specified floor.

*18.14 (Control a group of clocks) Write a Java applet that displays three clocks in a
group, with control buttons to start and stop all of them, as shown in Figure 18.22.

Sections 18.10–18.12
*18.15 (Enlarge and shrink an image) Write an applet that will display a sequence of

images from a single image file in different sizes. Initially, the viewing area for
this image has a width of 300 and a height of 300. Your program should con-
tinuously shrink the viewing area by 1 in width and 1 in height until it reaches
a width of 50 and a height of 50. At that point, the viewing area should contin-
uously enlarge by 1 in width and 1 in height until it reaches a width of 300 and
a height of 300. The viewing area should shrink and enlarge (alternately) to
create animation for the single image.

***18.16 (Simulate a stock ticker) Write a Java applet that displays a stock-index ticker
(see Figure 18.23). The stock-index information is passed from the <param>
tag in the HTML file. Each index has four parameters: Index Name (e.g., S&P

Control a group of clocks

FIGURE 18.21 The program simulates elevator operations.

FIGURE 18.22 Three clocks run independently with individual control and group control.

FIGURE 18.23 The program displays a stock-index ticker.

VideoNote

702 Chapter 18 Applets and Multimedia

(a) (b)

FIGURE 18.24 (a) You can set the speed for each car. (b) This applet shows each country’s
flag, name, and description, one after another, and reads the description that is currently
shown.

500), Current Time (e.g., 15:54), the index from the previous day (e.g.,
919.01), and Change (e.g., 4.54). Use at least five indexes, such as Dow Jones,
S&P 500, NASDAQ, NIKKEI, and Gold & Silver Index. Display positive
changes in green and negative changes in red. The indexes move from right to
left in the applet’s viewing area. The applet freezes the ticker when the mouse
button is pressed; it moves again when the mouse button is released.

**18.17 (Racing cars) Write an applet that simulates four cars racing, as shown in
Figure 18.24a. You can set the speed for each car, with maximum 100.

**18.18 (Show national flags) Write an applet that introduces national flags, one after
the other, by presenting each one’s photo, name, and description (see Figure
18.24b) along with audio that reads the description. Suppose your applet dis-
plays the flags of eight countries. Assume that the photo image files, named
flag0.gif, flag1.gif, and so on, up to flag7.gif, are stored in a subdirectory
named image in the applet’s directory. The length of each audio is less than 10
seconds. Assume that the name and description of each country’s flag are
passed from the HTML using the parameters name0, name1, . . . , name7, and
description0, description1, . . . , and description7. Pass the number
of countries as an HTML parameter using numberOfCountries. Here is an
example:

<param name = "numberOfCountries" value = 8>
<param name = "name0" value = "Canada">
<param name = "description0" value = "The Canadian ... ">

Hint
Use the DescriptionPanel class to display the image, name, and the
text. The DescriptionPanel class was introduced in Listing 17.2.

***18.19 (Bouncing balls) The example in Section 18.8 simulates a bouncing ball.
Extend the example to allow multiple balls, as shown in Figure 18.25a. You
can use the or button to increase or decrease the number of the balls,
and use the Suspend and Resume buttons to freeze the balls or resume bounc-
ing. For each ball, assign a random color.

- ˛1+ ˛1

Programming Exercises 703

(a) (b)

FIGURE 18.25 (a) The applet allows you to add or remove bouncing balls. (b) Click Play to
play an audio clip once, click Loop to play an audio repeatedly, and click Stop to terminate
playing.

(a) (b)

FIGURE 18.26 The program displays the current hour, minute, and second and enables you
to set an alarm.

*18.20 (Play, loop, and stop a sound clip) Write an applet that meets the following
requirements:

■ Get an audio file from the class directory.
■ Place three buttons labeled Play, Loop, and Stop, as shown in Figure 18.25b.
■ If you click the Play button, the audio file is played once. If you click the

Loop button, the audio file keeps playing repeatedly. If you click the Stop
button, the playing stops.

■ The applet can run as an application.

**18.21 (Create an alarm clock) Write an applet that will display a digital clock with a
large display panel that shows the hour, minute, and second. This clock should
allow the user to set an alarm. Figure 18.26a shows an example of such a clock.
To turn on the alarm, check the Alarm check box. To specify the alarm time,
click the Set alarm button to display a new frame, as shown in Figure 18.26b.
You can set the alarm time in the frame.

**18.22 (Create an image animator with audio) Create animation using the applet
shown in Figure 18.27 to meet the following requirements:

■ Allow the user to specify the animation speed in a text field.
■ Get the number of frames and the image’s file-name prefix from the user.

For example, if the user enters n for the number of frames and L for the
image prefix, then the files are L1, L2, and so on, to Ln. Assume that the
images are stored in the image directory, a subdirectory of the applet’s
directory.

■ Allow the user to specify an audio file name. The audio file is stored in the
same directory as the applet. The sound is played while the animation runs.

704 Chapter 18 Applets and Multimedia

(a) (c)(b)

FIGURE 18.28 The applet controls a bean-machine animation.

**18.23 (Simulation: raise flag and play anthem) Create an applet that displays a flag
rising up, as shown in Figure 16.1b–d. As the national flag rises, play the
national anthem. (You may use a flag image and anthem audio file from
Listing 18.13.)

Comprehensive
***18.24 (Game: bean-machine animation) Write an applet that enhances the bean

machine animation in Programming Exercise 16.22. The applet lets you set the
number of slots, as shown in Figure 18.28. Click Start to start or restart the ani-
mation and click Stop to stop.

**18.25 (Game: guess birthdays) Listing 3.3, GuessBirthday.java, gives a program for
guessing a birthday. Create an applet for guessing birthdays as shown in
Figure 18.29. The applet prompts the user to check whether the date is in any
of the five sets. The date is displayed in the text field upon clicking the Guess
Birthday button.

***18.26 (Game: math quiz) Listing 3.1, AdditionQuiz.java, and Listing 3.4, Subtrac-
tionQuiz.java, generate and grade math quizzes. Write an applet that allows

FIGURE 18.27 This applet lets the user select image files, an audio file, and the animation
speed.

Programming Exercises 705

FIGURE 18.29 This applet guesses the birthday.

the user to select a question type and difficulty level, as shown in Figure
18.30a. When the user clicks the Start button, the program begins to generate
a question. After the user enters an answer with the Enter key, a new question
is displayed. When the user clicks the Start button, the elapsed time is dis-
played. The time is updated every second until the Stop button is clicked. The
correct count is updated whenever a correct answer is made.

***18.27 (Graphs) A graph consists of vertices and edges that connect vertices. Write a
program that enables the user to draw vertices and edges dynamically, as
shown in Figure 18.31. The radius of each vertex is 20 pixels. Implement the
following functions: (1) The user clicks the left-mouse button to place a vertex
centered at the mouse point, provided that the mouse point is not inside or too

 (a) Before a session starts (b) After a session is started

FIGURE 18.30 The applet tests math skills.

FIGURE 18.31 The applet enables users to draw a graph dynamically.

706 Chapter 18 Applets and Multimedia

(a) (b) (c)

FIGURE 18.32 Check whether two circles, two rectangles, and two triangles are overlapping.

(a) (b) (c) (d)

FIGURE 18.33 (a)–(c) The applet counts up the time. (d) The applet counts down the time.

close to an existing vertex. (2) The user clicks the right-mouse button inside an
existing vertex to remove the vertex. (3) The user presses a mouse button
inside a vertex and drags to another vertex and then releases the button to cre-
ate an edge. (4) The user drags a vertex while pressing the CTRL key to move
a vertex.

**18.28 (Geometry: two circles intersect?) The Circle2D class was defined in Program-
ming Exercise 10.11. Write an applet that enables the user to specify the location
and size of the circles and displays whether the two circles intersect, as shown in
Figure 18.32a. Enable the user to point the mouse inside a circle and drag it. As
the circle is being dragged, the circle’s center coordinates in the text fields are
updated.

**18.29 (Geometry: two rectangles intersect?) The MyRectangle2D class was
defined in Programming Exercise 10.13. Write an applet that enables the user
to specify the location and size of the rectangles and displays whether the two
rectangles intersect, as shown in Figure 18.32b. Enable the user to point the
mouse inside a rectangle and drag it. As the rectangle is being dragged, the
rectangle’s center coordinates in the text fields are updated.

**18.30 (Geometry: two triangles intersect?) The Triangle2D class was defined in
Programming Exercise 10.12. Write an applet that enables the user to specify
the location of the two triangles and displays whether the two triangles inter-
sect, as shown in Figure 18.32c.

*18.31 (Count-up stopwatch) Write an applet that simulates a stopwatch, as shown
in Figure 18.33a. When the user clicks the Start button, the button’s label

Programming Exercises 707

is changed to Pause, as shown in Figure 18.33b. When the user clicks the
Pause button, the button’s label is changed to Resume, as shown in Figure
18.33c. The Clear button resets the count to 0 and resets the button’s label
to Start.

*18.32 (Count-down stopwatch) Write an applet that allows the user to enter time in
seconds in the text field and press the Enter key to count down the minutes,
as shown in Figure 18.33(d). The remaining seconds are redisplayed every
one second. When the minutes are expired, the program starts to play music
continuously.

**18.33 (Pattern recognition: consecutive four equal numbers) Write an applet for
Programming Exercise 7.19, as shown in Figure 18.34a–b. Let the user enter
the numbers in the text fields in a grid of 6 rows and 7 columns. The user can
click the Solve button to highlight a sequence of four equal numbers, if it
exists.

***18.34 (Game: connect four) Programming Exercise 7.20 enables two players to play
the connect-four game on the console. Rewrite the program using an applet, as
shown in Figure 18.34c. The applet enables two players to place red and yel-
low discs in turn. To place a disk, the player needs to click on an available cell.
An available cell is unoccupied and its downward neighbor is occupied. The
applet flashes the four winning cells if a player wins and reports no winners if
all cells are occupied with no winners.

***18.35 (Game: play connect four with computer) Revise Exercise 18.34 to play the
game with the computer. The program lets the user make a move first, fol-
lowed by a move by the computer. The minimum requirement is for the com-
puter to make a legal move. You are encouraged to design good strategies for
the computer to make intelligent moves.

**18.36 (Geometry: display angles) Write a program that enables the user to drag the
vertices of a triangle and displays the angles dynamically as the triangle shape
changes, as shown in Figure 18.35a. Change the mouse cursor to the cross-hair
shape when the mouse is moved close to a vertex. The formula to compute
angles A, B, and C are as follows (see Figure 18.35b):

A = Math.acos((a * a - b * b - c * c) / (-2 * b * c))
B = Math.acos((b * b - a * a - c * c) / (-2 * a * c))
C = Math.acos((c * c - b * b - a * a) / (-2 * a * b))

(a) (b) (c)

FIGURE 18.34 (a)–(b) Clicking the Solve button to highlight the four consecutive numbers
in a row, a column, or a diagonal. (c) The applet enables two players to play the connect-four
game.

708 Chapter 18 Applets and Multimedia

**18.37 (Geometry: intersecting point) Write a program that displays two line seg-
ments with their end points, and their intersecting point. Initially, the end
points are at (20, 20) and (56, 130) for line 1 and at (100, 20) and (16, 130)
for line 2. The user can use the mouse to drag a point and dynamically display
the intersecting point, as shown in Figure 18.35c. Hint: See Programming
Exercise 3.25 for finding the intersecting point of two unbounded lines.

x2, y2

x3, y3

x1, y1

A

B

C

b

a
c

(a) (b) (c)

FIGURE 18.35 (a–b) Exercise18.36 enables the user to drag vertices and display the angles dynamically. (c) Exercise18.37
enables the user to drag vertices and display the lines and their intersecting point dynamically.

BINARY I/O

Objectives
■ To discover how I/O is processed in Java (§19.2).

■ To distinguish between text I/O and binary I/O (§19.3).

■ To read and write bytes using FileInputStream and FileOutputStream

(§19.4.1).

■ To filter data using the base classes FilterInputStream and
FilterOutputStream (§19.4.2).

■ To read and write primitive values and strings using DataInputStream
and DataOutputStream (§19.4.3).

■ To improve I/O performance by using BufferedInputStream and
BufferedOutputStream (§19.4.4).

■ To write a program that copies a file (§19.5).

■ To store and restore objects using ObjectOutputStream and
ObjectInputStream (§19.6).

■ To implement the Serializable interface to make objects serializable
(§19.6.1).

■ To serialize arrays (§19.6.2).

■ To read and write files using the RandomAccessFile class (§19.7).

CHAPTER

19

710 Chapter 19 Binary I/O

19.1 Introduction
Java provides many classes for performing text I/O and binary I/O.

Files can be classified as either text or binary. A file that can be processed (read, created, or
modified) using a text editor such as Notepad on Windows or vi on UNIX is called a text file.
All the other files are called binary files. You cannot read binary files using a text editor—they
are designed to be read by programs. For example, Java source programs are stored in text
files and can be read by a text editor, but Java class files are stored in binary files and are read
by the JVM.

Although it is not technically precise and correct, you can envision a text file as consisting
of a sequence of characters and a binary file as consisting of a sequence of bits. Characters in
a text file are encoded using a character encoding scheme such as ASCII or Unicode. For
example, the decimal integer 199 is stored as the sequence of the three characters 1, 9, 9 in a
text file, and the same integer is stored as a byte-type value C7 in a binary file, because deci-
mal 199 equals hex C7 The advantage of binary files is that they are
more efficient to process than text files.

Java offers many classes for performing file input and output. These can be categorized as
text I/O classes and binary I/O classes. In Section 14.11, File Input and Output, you learned
how to read and write strings and numeric values from/to a text file using Scanner and
PrintWriter. This chapter introduces the classes for performing binary I/O.

19.2 How Is Text I/O Handled in Java?
Text data is read using the Scanner class and written using the PrintWriter class.

Recall that a File object encapsulates the properties of a file or a path but does not contain
the methods for reading/writing data from/to a file. In order to perform I/O, you need to cre-
ate objects using appropriate Java I/O classes. The objects contain the methods for
reading/writing data from/to a file. For example, to write text to a file named temp.txt, you
can create an object using the PrintWriter class as follows:

PrintWriter output = new PrintWriter("temp.txt");

You can now invoke the print method on the object to write a string to the file. For example,
the following statement writes Java 101 to the file.

output.print("Java 101");

The next statement closes the file.

output.close();

There are many I/O classes for various purposes. In general, these can be classified as input
classes and output classes. An input class contains the methods to read data, and an output
class contains the methods to write data. PrintWriter is an example of an output class, and
Scanner is an example of an input class. The following code creates an input object for the
file temp.txt and reads data from the file.

Scanner input = new Scanner(new File("temp.txt"));
System.out.println(input.nextLine());

If temp.txt contains the text Java 101, input.nextLine() returns the string "Java 101".
Figure 19.1 illustrates Java I/O programming. An input object reads a stream of data from

a file, and an output object writes a stream of data to a file. An input object is also called an
input stream and an output object an output stream.

(199 = 12 * 161 + 7).

Key
Point

text file

binary file

why binary I/O?

text I/O

binary I/O

Key
Point

stream

input stream

output stream

19.3 Text I/O vs. Binary I/O 711

Program

Input object
created from an

input class

Output object
created from an

 output class

Input stream

01011...1001

11001...1011

Output stream

File

File

FIGURE 19.1 The program receives data through an input object and sends data through an
output object.

19.1 What is a text file, and what is a binary file? Can you view a text file or a binary file
using a text editor?

19.2 How do you read or write text data in Java? What is a stream?

19.3 Text I/O vs. Binary I/O
Binary I/O does not involve encoding or decoding and thus is more efficient than text I/O.

Computers do not differentiate between binary files and text files. All files are stored in binary
format, and thus all files are essentially binary files. Text I/O is built upon binary I/O to pro-
vide a level of abstraction for character encoding and decoding, as shown in Figure 19.2a.
Encoding and decoding are automatically performed for text I/O. The JVM converts Unicode
to a file-specific encoding when writing a character, and it converts a file-specific encoding to
Unicode when reading a character. For example, suppose you write the string "199" using
text I/O to a file. Each character is written to the file. Since the Unicode for character 1 is
0x0031, the Unicode 0x0031 is converted to a code that depends on the encoding scheme for
the file. (Note that the prefix 0x denotes a hex number.) In the United States, the default
encoding for text files on Windows is ASCII. The ASCII code for character 1 is 49 (0x31 in

✓Point✓Check

Key
Point

The same byte in the file

The encoding of the character
is stored in the file

Binary I/O program

Text I/O program

The Unicode of
the character

Encoding/
Decoding

A byte is read/written

e.g., "199"

e.g., 199

00110001 00111001 00111001

0x31

0xC7

0x39 0x39

11000111

(a)

(b)

FIGURE 19.2 Text I/O requires encoding and decoding, whereas binary I/O does not.

712 Chapter 19 Binary I/O

Key
Point

✓Point✓Check

hex) and for character 9 is 57 (0x39 in hex). Thus, to write the characters 199, three bytes—
0x31, 0x39, and 0x39—are sent to the output, as shown in Figure 19.2a.

Binary I/O does not require conversions. If you write a numeric value to a file using binary
I/O, the exact value in the memory is copied into the file. For example, a byte-type value 199
is represented as 0xC7 in the memory and appears exactly as 0xC7 in
the file, as shown in Figure 19.2b. When you read a byte using binary I/O, one byte value is
read from the input.

In general, you should use text input to read a file created by a text editor or a text output
program, and use binary input to read a file created by a Java binary output program.

Binary I/O is more efficient than text I/O, because binary I/O does not require encoding
and decoding. Binary files are independent of the encoding scheme on the host machine and
thus are portable. Java programs on any machine can read a binary file created by a Java pro-
gram. This is why Java class files are binary files. Java class files can run on a JVM on any
machine.

Note
For consistency, this book uses the extension .txt to name text files and .dat to name
binary files.

19.3 What are the differences between text I/O and binary I/O?

19.4 How is a Java character represented in the memory, and how is a character repre-
sented in a text file?

19.5 If you write the string "ABC" to an ASCII text file, what values are stored in the file?

19.6 If you write the string "100" to an ASCII text file, what values are stored in the file?
If you write a numeric byte-type value 100 using binary I/O, what values are stored
in the file?

19.7 What is the encoding scheme for representing a character in a Java program? By
default, what is the encoding scheme for a text file on Windows?

19.4 Binary I/O Classes
The abstract InputStream is the root class for reading binary data and the abstract
OutputStream is the root class for writing binary data.

The design of the Java I/O classes is a good example of applying inheritance, where common
operations are generalized in superclasses, and subclasses provide specialized operations.
Figure 19.3 lists some of the classes for performing binary I/O. InputStream is the root for

(199 = 12 * 161 + 7)

.txt and .dat

FileOutputStream

FilterOutputStream

ObjectOutputStream

FileInputStream

OutputStream

InputStream FilterInputStream

ObjectInputStream

Object

DataInputStream

BufferedInputStream

DataOutputStream

BufferedOutputStream

FIGURE 19.3 InputStream, OutputStream, and their subclasses are for performing
binary I/O.

19.4 Binary I/O Classes 713

java.io.InputStream

+read(): int

+read(b: byte[]): int

+read(b: byte[], off: int,
 len: int): int

+available(): int

+close(): void

+skip(n: long): long

+markSupported(): boolean

+mark(readlimit: int): void
+reset(): void

Reads the next byte of data from the input stream. The value byte is returned as
 an int value in the range 0 to 255. If no byte is available because the end of
 the stream has been reached, the value –1 is returned.

Reads up to b.length bytes into array b from the input stream and returns the
 actual number of bytes read. Returns –1 at the end of the stream.
Reads bytes from the input stream and stores them in b[off], b[off+1], . . .,
b[off+len-1]. The actual number of bytes read is returned. Returns –1

 at the end of the stream.

Returns an estimate of the number of bytes that can be read from the input stream.

Closes this input stream and releases any system resources occupied by it.

Skips over and discards n bytes of data from this input stream. The actual
 number of bytes skipped is returned.

Tests whether this input stream supports the mark and reset methods.

Marks the current position in this input stream.
Repositions this stream to the position at the time the mark method was last
 called on this input stream.

FIGURE 19.4 The abstract InputStream class defines the methods for the input stream of bytes.

binary input classes, and OutputStream is the root for binary output classes. Figures 19.4
and 19.5 list all the methods in the classes InputStream and OutputStream.

Note
All the methods in the binary I/O classes are declared to throw java.io.IOException
or a subclass of java.io.IOException.

java.io.OutputStream

+write(int b): void

+write(b: byte[], off: int,
 len: int): void

+write(b: byte[]): void

+close(): void

+flush(): void

Writes the specified byte to this output stream. The parameter b is an int value.
(byte)b is written to the output stream.

Writes b[off], b[off+1],. . ., b[off+len-1] into the output stream.

Writes all the bytes in array b to the output stream.

Closes this output stream and releases any system resources occupied by it.

Flushes this output stream and forces any buffered output bytes to be written out.

FIGURE 19.5 The abstract OutputStream class defines the methods for the output stream of bytes.

throws IOException

19.4.1 FileInputStream/FileOutputStream
FileInputStream/FileOutputStream is for reading/writing bytes from/to files. All the
methods in these classes are inherited from InputStream and OutputStream.
FileInputStream/FileOutputStream does not introduce new methods. To construct a
FileInputStream, use the constructors shown in Figure 19.6.

A java.io.FileNotFoundException will occur if you attempt to create a
FileInputStream with a nonexistent file.

To construct a FileOutputStream, use the constructors shown in Figure 19.7.
If the file does not exist, a new file will be created. If the file already exists, the first two con-

structors will delete the current content of the file. To retain the current content and append new
data into the file, use the last two constructors and pass true to the append parameter.

FileNotFoundException

714 Chapter 19 Binary I/O

Almost all the methods in the I/O classes throw java.io.IOException. Therefore, you
have to declare java.io.IOException to throw in the method or place the code in a try-
catch block, as shown below:

Listing 19.1 uses binary I/O to write ten byte values from 1 to 10 to a file named temp.dat
and reads them back from the file.

LISTING 19.1 TestFileStream.java
1 import java.io.*;
2
3 public class TestFileStream {
4 public static void main(String[] args) {
5 // Create an output stream to the file
6
7
8 // Output values to the file
9 for (int i = 1; i <= 10; i++)
10
11
12 // Close the output stream
13
14

output.close();

output.write(i);

FileOutputStream output = new FileOutputStream("temp.dat");

throws IOException

Creates a FileOutputStream from a File object.
Creates a FileOutputStream from a file name.
If append is true, data are appended to the existing file.
If append is true, data are appended to the existing file.

java.io.OutputStream

+FileOutputStream(file: File)
+FileOutputStream(filename: String)
+FileOutputStream(file: File, append: boolean)
+FileOutputStream(filename: String, append: boolean)

java.io.FileOutputStream

FIGURE 19.7 FileOutputStream outputs a stream of bytes to a file.

IOException

import

output stream

output

java.io.InputStream

+FileInputStream(file: File)

+FileInputStream(filename: String)

javo.io.FileInputStream

Creates a FileInputStream from a File object.

Creates a FileInputStream from a file name.

FIGURE 19.6 FileInputStream inputs a stream of bytes from a file.

public static void main(String[] args)

// Perform I/O operations
}

throws IOException {
public static void main(String[] args) {

// Perform I/O operations
}

ex.printStackTrace();
}

}

catch (IOException ex) {

try {

Using try-catch blockDeclaring exception in the method

19.4 Binary I/O Classes 715

15 // Create an input stream for the file
16
17
18 // Read values from the file
19 int value;
20 while ((value =) != -1)
21 System.out.print(value + " ");
22
23 // Close the output stream
24
25 }
26 }

input.close();

input.read()

FileInputStream input = new FileInputStream("temp.dat"); input stream

input

1 2 3 4 5 6 7 8 9 10

A FileOutputStream is created for the file temp.dat in line 6. The for loop writes ten
byte values into the file (lines 9–10). Invoking write(i) is the same as invoking
write((byte)i). Line 13 closes the output stream. Line 16 creates a FileInputStream
for the file temp.dat. Values are read from the file and displayed on the console in lines
19–21. The expression ((value = input.read()) != -1) (line 20) reads a byte from
input.read(), assigns it to value, and checks whether it is –1. The input value of –1
signifies the end of a file.

The file temp.dat created in this example is a binary file. It can be read from a Java pro-
gram but not from a text editor, as shown in Figure 19.8.

Tip
When a stream is no longer needed, always close it using the close() method. Not
closing streams may cause data corruption in the output file, or other programming
errors.

Note
The root directory for the file is the classpath directory. For the example in this book, the
root directory is c:\book, so the file temp.dat is located at c:\book. If you wish to
place temp.dat in a specific directory, replace line 6 with

FileOutputStream output =
new FileOutputStream ("directory/temp.dat");

Note
An instance of FileInputStream can be used as an argument to construct a
Scanner, and an instance of FileOutputStream can be used as an argument to
construct a PrintWriter. You can create a PrintWriter to append text into a
file using

end of a file

close stream

where is the file?

appending to text file

Binary data

FIGURE 19.8 A binary file cannot be displayed in text mode.

716 Chapter 19 Binary I/O

+readBoolean(): boolean

+readByte(): byte

+readChar(): char

+readFloat(): float

+readDouble(): double

+readInt(): int

+readLong(): long

+readShort(): short

+readLine(): String

+readUTF(): String

Reads a Boolean from the input stream.

Reads a byte from the input stream.

Reads a character from the input stream.

Reads a float from the input stream.

Reads a double from the input stream.

Reads an int from the input stream.

Reads a long from the input stream.

Reads a short from the input stream.

Reads a line of characters from input.

Reads a string in UTF format.

InputStream

FilterInputStream

DataInputStream

+DataInputStream(
in: InputStream)

«interface»
java.io.DataInput

FIGURE 19.9 DataInputStream filters an input stream of bytes into primitive data type values and strings.

new PrintWriter(new FileOutputStream("temp.txt", true));

If temp.txt does not exist, it is created. If temp.txt already exists, new data are
appended to the file.

19.4.2 FilterInputStream/FilterOutputStream
Filter streams are streams that filter bytes for some purpose. The basic byte input stream pro-
vides a read method that can be used only for reading bytes. If you want to read integers,
doubles, or strings, you need a filter class to wrap the byte input stream. Using a filter class
enables you to read integers, doubles, and strings instead of bytes and characters.
FilterInputStream and FilterOutputStream are the base classes for filtering data.
When you need to process primitive numeric types, use DataInputStream and
DataOutputStream to filter bytes.

19.4.3 DataInputStream/DataOutputStream
DataInputStream reads bytes from the stream and converts them into appropriate primitive
type values or strings. DataOutputStream converts primitive type values or strings into
bytes and outputs the bytes to the stream.

DataInputStream extends FilterInputStream and implements the DataInput
interface, as shown in Figure 19.9. DataOutputStream extends FilterOutputStream
and implements the DataOutput interface, as shown in Figure 19.10.

DataInputStream implements the methods defined in the DataInput interface to read
primitive data type values and strings. DataOutputStream implements the methods defined
in the DataOutput interface to write primitive data type values and strings. Primitive values
are copied from memory to the output without any conversions. Characters in a string may be
written in several ways, as discussed in the next section.

Characters and Strings in Binary I/O
A Unicode character consists of two bytes. The writeChar(char c) method writes the
Unicode of character c to the output. The writeChars(String s) method writes the Uni-
code for each character in the string s to the output. The writeBytes(String s) method
writes the lower byte of the Unicode for each character in the string s to the output. The high
byte of the Unicode is discarded. The writeBytes method is suitable for strings that consist

19.4 Binary I/O Classes 717

+writeChar(c: char): void

+writeChars(s: String): void

+writeBoolean(b: boolean): void
+writeByte(v: int): void

+writeBytes(s: String): void

+writeFloat(v: float): void

+writeDouble(v: double): void

+writeInt(v: int): void

+writeLong(v: long): void

+writeShort(v: short): void

+writeUTF(s: String): void

Writes a Boolean to the output stream.
Writes the eight low-order bits of the argument v to
 the output stream.

Writes the lower byte of the characters in a string to
 the output stream.

Writes a character (composed of 2 bytes) to the
 output stream.

Writes every character in the string s to the output
 stream, in order, 2 bytes per character.

Writes a float value to the output stream.

Writes a double value to the output stream.

Writes an int value to the output stream.

Writes a long value to the output stream.

Writes a short value to the output stream.

Writes s string in UTF format.

OutputStream

FilterOutputStream

DataOutputStream

+DataOutputStream
 (out: OutputStream)

«interface»
java.io.DataOutput

FIGURE 19.10 DataOutputStream enables you to write primitive data type values and strings into an output stream.

of ASCII characters, since an ASCII code is stored only in the lower byte of a Unicode. If a
string consists of non-ASCII characters, you have to use the writeChars method to write
the string.

The writeUTF(String s) method writes two bytes of length information to the
output stream, followed by the modified UTF-8 representation of every character in the
string s. UTF-8 is a coding scheme that allows systems to operate with both ASCII and
Unicode. Most operating systems use ASCII. Java uses Unicode. The ASCII character set
is a subset of the Unicode character set. Since most applications need only the ASCII
character set, it is a waste to represent an 8-bit ASCII character as a 16-bit Unicode
character. The modified UTF-8 scheme stores a character using one, two, or three bytes.
Characters are coded in one byte if their code is less than or equal to 0x7F, in two bytes if
their code is greater than 0x7F and less than or equal to 0x7FF, or in three bytes if their
code is greater than 0x7FF.

The initial bits of a UTF-8 character indicate whether a character is stored in one byte, two
bytes, or three bytes. If the first bit is 0, it is a one-byte character. If the first bits are 110, it is
the first byte of a two-byte sequence. If the first bits are 1110, it is the first byte of a three-byte
sequence. The information that indicates the number of characters in a string is stored in the
first two bytes preceding the UTF-8 characters. For example, writeUTF("ABCDEF") actu-
ally writes eight bytes (i.e., 00 06 41 42 43 44 45 46) to the file, because the first two
bytes store the number of characters in the string.

The writeUTF(String s) method converts a string into a series of bytes in the UTF-8
format and writes them into an output stream. The readUTF() method reads a string that has
been written using the writeUTF method.

The UTF-8 format has the advantage of saving a byte for each ASCII character, because a
Unicode character takes up two bytes and an ASCII character in UTF-8 only one byte. If most
of the characters in a long string are regular ASCII characters, using UTF-8 is more efficient.

Creating DataInputStream/DataOutputStream
DataInputStream/DataOutputStream are created using the following constructors
(see Figures 19.9 and 19.10):

public DataInputStream(InputStream instream)
public DataOutputStream(OutputStream outstream)

UTF-8 scheme

718 Chapter 19 Binary I/O

The following statements create data streams. The first statement creates an input stream for
the file in.dat; the second statement creates an output stream for the file out.dat.

DataInputStream input =
(new FileInputStream("in.dat"));

DataOutputStream output =
(new FileOutputStream("out.dat"));

Listing 19.2 writes student names and scores to a file named temp.dat and reads the data back
from the file.

LISTING 19.2 TestDataStream.java
1 import java.io.*;
2
3 public class TestDataStream {
4 public static void main(String[] args) throws IOException {
5 // Create an output stream for file temp.dat
6
7
8
9 // Write student test scores to the file
10
11
12 output.writeUTF("Susan");
13 output.writeDouble(185.5);
14 output.writeUTF("Kim");
15 output.writeDouble(105.25);
16
17 // Close output stream
18 output.close();
19
20 // Create an input stream for file temp.dat
21
22
23
24 // Read student test scores from the file
25 System.out.println(+ " " +);
26 System.out.println(input.readUTF() + " " + input.readDouble());
27 System.out.println(input.readUTF() + " " + input.readDouble());
28 }
29 }

input.readDouble()input.readUTF()

new DataInputStream(new FileInputStream("temp.dat"));
DataInputStream input =

output.writeDouble(85.5);
output.writeUTF("John");

new DataOutputStream(new FileOutputStream("temp.dat"));
DataOutputStream output =

new DataOutputStream

new DataInputStream

output stream

output

close stream

input stream

input

John 85.5
Susan 185.5
Kim 105.25

A DataOutputStream is created for file temp.dat in lines 6–7. Student names and scores
are written to the file in lines 10–15. Line 18 closes the output stream. A DataInputStream
is created for the same file in lines 21–22. Student names and scores are read back from the
file and displayed on the console in lines 25–27.

DataInputStream and DataOutputStream read and write Java primitive type values
and strings in a machine-independent fashion, thereby enabling you to write a data file on one
machine and read it on another machine that has a different operating system or file structure.
An application uses a data output stream to write data that can later be read by a program
using a data input stream.

19.4 Binary I/O Classes 719

EOFException

output stream

output

close stream

input stream

input

EOFException

4.5
43.25
3.2
All data were read

Caution
You have to read data in the same order and format in which they are stored. For exam-
ple, since names are written in UTF-8 using writeUTF, you must read names using
readUTF.

Detecting the End of a File
If you keep reading data at the end of an InputStream, an EOFException will occur. This
exception can be used to detect the end of a file, as shown in Listing 19.3.

LISTING 19.3 DetectEndOfFile.java
1 import java.io.*;
2
3 public class DetectEndOfFile {
4 public static void main(String[] args) {
5 try {
6 DataOutputStream output =
7 new DataOutputStream(new FileOutputStream("test.dat"));
8 output.writeDouble(4.5);
9 output.writeDouble(43.25);
10 output.writeDouble(3.2);
11 output.close();
12
13 DataInputStream input =
14 new DataInputStream(new FileInputStream("test.dat"));
15 while (true) {
16 System.out.println();
17 }
18 }
19
20 System.out.println("All data were read");
21 }
22 catch (IOException ex) {
23 ex.printStackTrace();
24 }
25 }
26 }

catch (EOFException ex) {

input.readDouble()

The program writes three double values to the file using DataOutputStream (lines 6–10),
and reads the data using DataInputStream (lines 13–14). When reading past the end of the
file, an EOFException is thrown. The exception is caught in line 19.

19.4.4 BufferedInputStream/BufferedOutputStream
BufferedInputStream/BufferedOutputStream can be used to speed up input and output
by reducing the number of disk reads and writes. Using BufferedInputStream, the whole
block of data on the disk is read into the buffer in the memory once. The individual data are
then delivered to your program from the buffer, as shown in Figure 19.11a. Using
BufferedOutputStream, the individual data are first written to the buffer in the memory. When
the buffer is full, all data in the buffer is written to the disk once, as shown in Figure 19.11b.

720 Chapter 19 Binary I/O

A block
of data

BufferedOutputStream

Buffer Write
individual
data

Program

Read
individual
data

A block
of data

(a) (b)

BufferedInputStream

Buffer

Program

FIGURE 19.11 Buffer I/O places data in a buffer for fast processing.

Creates a BufferedInputStream from an
InputStream object.

Creates a BufferedInputStream from an
InputStream object with specified buffer size.

+BufferedInputStream(in: InputStream)

+BufferedInputStream(in: InputStream, bufferSize: int)

java.io.InputStream

java.io.FilterInputStream

java.io.BufferedInputStream

FIGURE 19.12 BufferedInputStream buffers an input stream.

Creates a BufferedOutputStream from an
OutputStream object.

Creates a BufferedOutputStream from an
OutputStream object with specified size.

+BufferedOutputStream(out: OutputStream)

+BufferedOutputStream(out: OutputStream, bufferSize: int)

java.io.OutputStream

java.io.FilterOutputStream

java.io.BufferedOutputStream

FIGURE 19.13 BufferedOutputStream buffers an output stream.

BufferedInputStream/BufferedOutputStream does not contain new methods. All the
methods in BufferedInputStream/BufferedOutputStream are inherited from the
InputStream/OutputStream classes. BufferedInputStream/BufferedOutputStream
manages a buffer behind the scene and automatically reads/writes data from/to disk on
demand.

You can wrap a BufferedInputStream/BufferedOutputStream on any
InputStream/OutputStream using the constructors shown in Figures 19.12 and 19.13.

19.4 Binary I/O Classes 721

✓Point✓Check

If no buffer size is specified, the default size is 512 bytes. You can improve the perfor-
mance of the TestDataStream program in Listing 19.2 by adding buffers in the stream in
lines 6–7 and 21–22, as follows:

DataOutputStream output = new DataOutputStream(
(new FileOutputStream("temp.dat")));

DataInputStream input = new DataInputStream(
(new FileInputStream("temp.dat")));

Tip
You should always use buffered I/O to speed up input and output. For small files, you
may not notice performance improvements. However, for large files—over 100 MB—you
will see substantial improvements using buffered I/O.

19.8 Why do you have to declare to throw IOException in the method or use a try-catch
block to handle IOException for Java I/O programs?

19.9 Why should you always close streams?

19.10 The read() method in InputStream reads a byte. Why does it return an int
instead of a byte? Find the abstract methods in InputStream and OutputStream.

19.11 Does FileInputStream/FileOutputStream introduce any new methods beyond
the methods inherited from InputStream/OutputStream? How do you create a
FileInputStream/FileOutputStream?

19.12 What will happen if you attempt to create an input stream on a nonexistent file? What
will happen if you attempt to create an output stream on an existing file? Can you
append data to an existing file?

19.13 How do you append data to an existing text file using java.io.PrintWriter?

19.14 Suppose a file contains an unspecified number of double values. Theses values were
written to the file using the writeDouble method using a DataOutputStream. How
do you write a program to read all these values? How do you detect the end of a file?

19.15 What is written to a file using writeByte(91) on a FileOutputStream?

19.16 How do you check the end of a file in an input stream (FileInputStream,
DataInputStream)?

19.17 What is wrong in the following code?

import java.io.*;

public class Test {
public static void main(String[] args) {
try {
FileInputStream fis = new FileInputStream("test.dat");

}
catch (IOException ex) {
ex.printStackTrace();

}
catch (FileNotFoundException ex) {
ex.printStackTrace();

}
}

}

19.18 Suppose you run the program on Windows using the default ASCII encoding. After the
program is finished, how many bytes are in the file t.txt? Show the contents of each byte.

new BufferedInputStream

new BufferedOutputStream

722 Chapter 19 Binary I/O

Key
Point

public class Test {
public static void main(String[] args)

throws java.io.IOException {
java.io.PrintWriter output =
new java.io.PrintWriter("t.txt");

output.printf("%s", "1234");
output.printf("%s", "5678");
output.close();

}
}

19.19 After the program is finished, how many bytes are in the file t.dat? Show the contents
of each byte.

import java.io.*;

public class Test {
public static void main(String[] args) throws IOException {
DataOutputStream output = new DataOutputStream(
new FileOutputStream("t.dat"));

output.writeInt(1234);
output.writeInt(5678);
output.close();

}
}

19.20 For each of the following statements on a DataOutputStream output, how many
bytes are sent to the output?

output.writeChar('A');
output.writeChars("BC");
output.writeUTF("DEF");

19.21 What are the advantages of using buffered streams? Are the following statements
correct?

BufferedInputStream input1 =
new BufferedInputStream(new FileInputStream("t.dat"));

DataInputStream input2 = new DataInputStream(
new BufferedInputStream(new FileInputStream("t.dat")));

ObjectInputStream input3 = new ObjectInputStream(
new BufferedInputStream(new FileInputStream("t.dat")));

19.5 Case Study: Copying Files
This section develops a useful utility for copying files.

In this section, you will learn how to write a program that lets users copy files. The
user needs to provide a source file and a target file as command-line arguments using
the command:

java Copy source target

The program copies the source file to the target file and displays the number of bytes in the
file. The program should alert the user if the source file does not exist or if the target file
already exists. A sample run of the program is shown in Figure 19.14.

Copy file
VideoNote

19.5 Case Study: Copying Files 723

File exists

Delete file

Copy

Source
does not
exist

FIGURE 19.14 The program copies a file.

To copy the contents from a source file to a target file, it is appropriate to use an input
stream to read bytes from the source file and an output stream to send bytes to the target file,
regardless of the file’s contents. The source file and the target file are specified from the
command line. Create an InputFileStream for the source file and an OutputFileStream
for the target file. Use the read() method to read a byte from the input stream, and then use
the write(b) method to write the byte to the output stream. Use BufferedInputStream
and BufferedOutputStream to improve the performance. Listing 19.4 gives the solution to
the problem.

LISTING 19.4 Copy.java
1 import java.io.*;
2
3 public class Copy {
4 /** Main method
5 @param args[0] for source file
6 @param args[1] for target file
7 */
8 public static void main(String[] args) throws IOException {
9 // Check command-line parameter usage
10 if (args.length != 2) {
11 System.out.println(
12 "Usage: java Copy sourceFile targetFile");
13 System.exit(1);
14 }
15
16 // Check whether source file exists
17
18 if (!sourceFile.exists()) {
19 System.out.println("Source file " + args[0]
20 + " does not exist");
21 System.exit(2);
22 }
23
24 // Check whether target file exists
25
26 if (targetFile.exists()) {
27 System.out.println("Target file " + args[1]
28 + " already exists");
29 System.exit(3);
30 }
31
32 // Create an input stream
33 BufferedInputStream input =

File targetFile = new File(args[1]);

File sourceFile = new File(args[0]);

check usage

source file

target file

input stream

724 Chapter 19 Binary I/O

✓Point✓Check

Key
Point

34
35
36 // Create an output stream
37
38
39
40 // Continuously read a byte from input and write it to output
41 int r, numberOfBytesCopied = 0;
42 while (() != -1) {
43
44 numberOfBytesCopied++;
45 }
46
47 // Close streams
48 input.close();
49 output.close();
50
51 // Display the file size
52 System.out.println(numberOfBytesCopied + " bytes copied");
53 }
54 }

The program first checks whether the user has passed the two required arguments from the
command line in lines 10–14.

The program uses the File class to check whether the source file and target file exist. If
the source file does not exist (lines 18–22) or if the target file already exists (lines 25–30), the
program ends.

An input stream is created using BufferedInputStream wrapped on FileInputStream
in lines 33–34, and an output stream is created using BufferedOutputStream wrapped on
FileOutputStream in lines 37–38.

The expression ((r = input.read()) != -1) (line 42) reads a byte from
input.read(), assigns it to r, and checks whether it is -1. The input value of -1 signifies
the end of a file. The program continuously reads bytes from the input stream and sends them
to the output stream until all of the bytes have been read.

19.22 How does the program check if a file already exists?

19.23 How does the program detect the end of the file while reading data?

19.24 How does the program count the number of bytes read from the file?

19.6 Object I/O
ObjectInputStream/ObjectOutputStream classes can be used to read/write
serializable objects.

DataInputStream/DataOutputStream enables you to perform I/O for primitive type val-
ues and strings. ObjectInputStream/ObjectOutputStream enables you to perform I/O
for objects in addition to primitive type values and strings. Since ObjectInputStream/
ObjectOutputStream contains all the functions of DataInputStream/
DataOutputStream, you can replace DataInputStream/DataOutputStream com-
pletely with ObjectInputStream/ObjectOutputStream.

ObjectInputStream extends InputStream and implements ObjectInput and
ObjectStreamConstants, as shown in Figure 19.15. ObjectInput is a subinterface of
DataInput (DataInput is shown in Figure 19.9). ObjectStreamConstants contains the
constants to support ObjectInputStream/ObjectOutputStream.

output.write((byte)r);
r = input.read()

new BufferedOutputStream(new FileOutputStream(targetFile));
BufferedOutputStream output =

new BufferedInputStream(new FileInputStream(sourceFile));

output stream

read
write

close stream

Object I/O
VideoNote

19.6 Object I/O 725

Reads an object.

java.io.InputStream

java.io.ObjectInputStream

+ObjectInputStream(in: InputStream) +readObject(): Object

«interface»
java.io.DataInput

«interface»
java.io.ObjectInput

«interface»
ObjectStreamConstants

FIGURE 19.15 ObjectInputStream can read objects, primitive type values, and strings.

ObjectOutputStream extends OutputStream and implements ObjectOutput and
ObjectStreamConstants, as shown in Figure 19.16. ObjectOutput is a subinterface of
DataOutput (DataOutput is shown in Figure 19.10).

You can wrap an ObjectInputStream/ObjectOutputStream on any InputStream/
OutputStream using the following constructors:

// Create an ObjectInputStream
public ObjectInputStream(InputStream in)

// Create an ObjectOutputStream
public ObjectOutputStream(OutputStream out)

Listing 19.5 writes student names, scores, and the current date to a file named object.dat.

LISTING 19.5 TestObjectOutputStream.java
1 import java.io.*;
2
3 public class TestObjectOutputStream {
4 public static void main(String[] args) throws IOException {
5 // Create an output stream for file object.dat
6
7
8
9 // Write a string, double value, and object to the file

new ObjectOutputStream(new FileOutputStream("object.dat"));
ObjectOutputStream output =

Writes an object.

java.io.OutputStream

java.io.ObjectOutputStream

+ObjectOutputStream(out: OutputStream) +writeObject(o: Object): void

«interface»
java.io.DataOutput

«interface»
java.io.ObjectOutput

«interface»
ObjectStreamConstants

FIGURE 19.16 ObjectOutputStream can write objects, primitive type values, and strings.

output stream

726 Chapter 19 Binary I/O

10 output.writeUTF("John");
11 output.writeDouble(85.5);
12
13
14 // Close output stream
15 output.close();
16 }
17 }

An ObjectOutputStream is created to write data into the file object.dat in lines 6–7. A
string, a double value, and an object are written to the file in lines 10–12. To improve per-
formance, you may add a buffer in the stream using the following statement to replace
lines 6–7:

ObjectOutputStream output = new ObjectOutputStream(
new BufferedOutputStream(new FileOutputStream("object.dat")));

Multiple objects or primitives can be written to the stream. The objects must be read back
from the corresponding ObjectInputStream with the same types and in the same order as
they were written. Java’s safe casting should be used to get the desired type. Listing 19.6 reads
data from object.dat.

LISTING 19.6 TestObjectInputStream.java
1 import java.io.*;
2
3 public class TestObjectInputStream {
4 public static void main(String[] args)
5 throws ClassNotFoundException, IOException {
6 // Create an input stream for file object.dat
7
8
9
10 // Write a string, double value, and object to the file
11 String name = input.readUTF();
12 double score = input.readDouble();
13 java.util.Date date = (java.util.Date)();
14 System.out.println(name + " " + score + " " + date);
15
16 // Close input stream
17 input.close();
18 }
19 }

input.readObject()

new ObjectInputStream(new FileInputStream("object.dat"));
ObjectInputStream input =

output.writeObject(new java.util.Date());

output

input stream

input

John 85.5 Sun Dec 04 10:35:31 EST 2011

The readObject() method may throw java.lang.ClassNotFoundException, because
when the JVM restores an object, it first loads the class for the object if the class has not been
loaded. Since ClassNotFoundException is a checked exception, the main method
declares to throw it in line 5. An ObjectInputStream is created to read input from
object.dat in lines 7–8. You have to read the data from the file in the same order and format
as they were written to the file. A string, a double value, and an object are read in lines 11–13.
Since readObject() returns an Object, it is cast into Date and assigned to a Date variable
in line 13.

ClassNotFoundException

19.6 Object I/O 727

19.6.1 The Serializable Interface
Not every object can be written to an output stream. Objects that can be so written are said to
be serializable. A serializable object is an instance of the java.io.Serializable inter-
face, so the object’s class must implement Serializable.

The Serializable interface is a marker interface. Since it has no methods, you don’t
need to add additional code in your class that implements Serializable. Implementing this
interface enables the Java serialization mechanism to automate the process of storing objects
and arrays.

To appreciate this automation feature, consider what you otherwise need to do in order to
store an object. Suppose you want to store a JButton object. To do this you need to store all
the current values of the properties (e.g., color, font, text, alignment) in the object. Since
JButton is a subclass of AbstractButton, the property values of AbstractButton have
to be stored as well as the properties of all the superclasses of AbstractButton. If a prop-
erty is of an object type (e.g., background of the Color type), storing it requires storing all
the property values inside this object. As you can see, this would be a very tedious process.
Fortunately, you don’t have to go through it manually. Java provides a built-in mechanism to
automate the process of writing objects. This process is referred to as object serialization,
which is implemented in ObjectOutputStream. In contrast, the process of reading objects
is referred to as object deserialization, which is implemented in ObjectInputStream.

Many classes in the Java API implement Serializable. The utility classes, such as
java.util.Date, and all the Swing GUI component classes implement Serializable.
Attempting to store an object that does not support the Serializable interface would cause
a NotSerializableException.

When a serializable object is stored, the class of the object is encoded; this includes the
class name and the signature of the class, the values of the object’s instance variables, and the
closure of any other objects referenced by the object. The values of the object’s static vari-
ables are not stored.

Note
nonserializable fields
If an object is an instance of Serializable but contains nonserializable instance
data fields, can it be serialized? The answer is no. To enable the object to be serialized,
mark these data fields with the transient keyword to tell the JVM to ignore them
when writing the object to an object stream. Consider the following class:

public class C implements java.io.Serializable {
private int v1;
private double v2;
private A v3 = new A();

}

class A { } // A is not serializable

When an object of the C class is serialized, only variable v1 is serialized. Variable v2 is
not serialized because it is a static variable, and variable v3 is not serialized because it is
marked transient. If v3 were not marked transient, a
java.io.NotSerializableException would occur.

Note
duplicate objects
If an object is written to an object stream more than once, will it be stored in multiple
copies? No, it will not. When an object is written for the first time, a serial number is
created for it. The JVM writes the complete contents of the object along with the serial

transient

static

serializable

serialization

deserialization

NotSerializableException

transient

728 Chapter 19 Binary I/O

number into the object stream. After the first time, only the serial number is stored if the
same object is written again. When the objects are read back, their references are the
same, since only one object is actually created in the memory.

19.6.2 Serializing Arrays
An array is serializable if all its elements are serializable. An entire array can be saved into a
file using writeObject and later can be restored using readObject. Listing 19.7 stores an
array of five int values and an array of three strings and reads them back to display on the
console.

LISTING 19.7 TestObjectStreamForArray.java
1 import java.io.*;
2
3 public class TestObjectStreamForArray {
4 public static void main(String[] args)
5 throws ClassNotFoundException, IOException {
6 int[] numbers = {1, 2, 3, 4, 5};
7 String[] strings = {"John", "Susan", "Kim"};
8
9 // Create an output stream for file array.dat
10
11
12
13 // Write arrays to the object output stream
14
15
16
17 // Close the stream
18 output.close();
19
20 // Create an input stream for file array.dat
21
22
23
24
25
26
27 // Display arrays
28 for (int i = 0; i < newNumbers.length; i++)
29 System.out.print(newNumbers[i] + " ");
30 System.out.println();
31
32 for (int i = 0; i < newStrings.length; i++)
33 System.out.print(newStrings[i] + " ");
34
35 // Close the stream
36 input.close();
37 }
38 }

String[] newStrings = (String[])(input.readObject());
int[] newNumbers = (int[])(input.readObject());

new ObjectInputStream(new FileInputStream("array.dat"));
ObjectInputStream input =

output.writeObject(strings);
output.writeObject(numbers);

FileOutputStream("array.dat", true));
ObjectOutputStream output = new ObjectOutputStream(newoutput stream

store array

input stream

restore array

1 2 3 4 5
John Susan Kim

Lines 14–15 write two arrays into file array.dat. Lines 24–25 read two arrays back in the
same order they were written. Since readObject() returns Object, casting is used to cast
the objects into int[] and String[].

19.7 Random-Access Files 729

✓Point✓Check19.25 What types of objects can be stored using the ObjectOutputStream? What is the
method for writing an object? What is the method for reading an object? What is the
return type of the method that reads an object from ObjectInputStream?

19.26 If you serialize two objects of the same type, will they take the same amount of
space? If not, give an example.

19.27 Is it true that any instance of java.io.Serializable can be successfully serial-
ized? Are the static variables in an object serialized? How do you mark an instance
variable not to be serialized?

19.28 Can you write an array to an ObjectOutputStream?

19.29 Is it true that DataInputStream/DataOutputStream can always be replaced by
ObjectInputStream/ObjectOutputStream?

19.30 What will happen when you attempt to run the following code?

import java.io.*;

public class Test {
public static void main(String[] args) throws IOException {
ObjectOutputStream output =
new ObjectOutputStream(new FileOutputStream("object.dat"));

output.writeObject(new A());
}

}

class A implements Serializable {
B b = new B();

}

class B {
}

19.7 Random-Access Files
Java provides the RandomAccessFile class to allow a file to be read from and
written to at random locations.

All of the streams you have used so far are known as read-only or write-only streams. The exter-
nal files of these streams are sequential files that cannot be updated without creating a new file.
However, it is often necessary to modify files. Java provides the RandomAccessFile class to
allow a file to be read from and written to at random locations.

The RandomAccessFile class implements the DataInput and DataOutput interfaces,
as shown in Figure 19.17. The DataInput interface (see Figure 19.9) defines the methods for
reading primitive type values and strings (e.g., readInt, readDouble, readChar,
readBoolean, readUTF), and the DataOutput interface (see Figure 19.10) defines the
methods for writing primitive type values and strings (e.g., writeInt, writeDouble,
writeChar, writeBoolean, writeUTF).

When creating a RandomAccessFile, you can specify one of two modes: r or rw. Mode
r means that the stream is read-only, and mode rw indicates that the stream allows both read
and write. For example, the following statement creates a new stream, raf, that allows the
program to read from and write to the file test.dat:

RandomAccessFile raf = new RandomAccessFile("test.dat", "rw");

If test.dat already exists, raf is created to access it; if test.dat does not exist, a new file
named test.dat is created, and raf is created to access the new file. The method
raf.length() returns the number of bytes in test.dat at any given time. If you append new
data into the file, raf.length() increases.

Key
Point

read-only

write-only

sequential

random-access file

730 Chapter 19 Binary I/O

Creates a RandomAccessFile stream with the specified File object
 and mode.

Creates a RandomAccessFile stream with the specified file name
 string and mode.

Closes the stream and releases the resource associated with it.

Returns the offset, in bytes, from the beginning of the file to where the
 next read or write occurs.
Returns the length of this file.

Reads a byte of data from this file and returns –1 at the end of stream.

Reads up to b.length bytes of data from this file into an array of bytes.

Reads up to len bytes of data from this file into an array of bytes.

Sets the offset (in bytes specified in pos) from the beginning of the
 stream to where the next read or write occurs.

Sets a new length for this file.

Skips over n bytes of input.

Writes b.length bytes from the specified byte array to this file,
 starting at the current file pointer.

Writes len bytes from the specified byte array, starting at offset off,
 to this file.

java.io.RandomAccessFile

+RandomAccessFile(file: File, mode:
 String)

+RandomAccessFile(name: String,
 mode: String)

+close(): void

+getFilePointer(): long

+length(): long

+read(): int

+read(b: byte[]): int

+read(b: byte[], off: int, len: int): int

+seek(pos: long): void

+setLength(newLength: long): void

+skipBytes(int n): int

+write(b: byte[]): void

+write(b: byte[], off: int, len: int):
 void

«interface»
java.io.DataOutput

«interface»
java.io.DataInput

FIGURE 19.17 RandomAccessFile implements the DataInput and DataOutput interfaces with additional methods
to support random access.

Tip
If the file is not intended to be modified, open it with the r mode. This prevents unin-
tentional modification of the file.

A random-access file consists of a sequence of bytes. A special marker called a file pointer is
positioned at one of these bytes. A read or write operation takes place at the location of the file
pointer. When a file is opened, the file pointer is set at the beginning of the file. When you
read or write data to the file, the file pointer moves forward to the next data item. For exam-
ple, if you read an int value using readInt(), the JVM reads 4 bytes from the file pointer,
and now the file pointer is 4 bytes ahead of the previous location, as shown in Figure 19.18.

For a RandomAccessFile raf, you can use the raf.seek(position) method to move
the file pointer to a specified position. raf.seek(0) moves it to the beginning of the file, and
raf.seek(raf.length()) moves it to the end of the file. Listing 19.8 demonstrates

file pointer

(b) After readInt()

File pointer

File

File

… byte byte byte byte byte byte byte byte byte byte… (a) Before readInt()byte byte

byte byte byte byte byte bytebyte byte byte byte byte… …byte

File pointer

FIGURE 19.18 After an int value is read, the file pointer is moved 4 bytes ahead.

19.7 Random-Access Files 731

RandomAccessFile. A large case study of using RandomAccessFile to organize an
address book is given in Supplement VI.B.

LISTING 19.8 TestRandomAccessFile.java
1 import java.io.*;
2
3 public class TestRandomAccessFile {
4 public static void main(String[] args) throws IOException {
5 // Create a random-access file
6
7
8 // Clear the file to destroy the old contents, if any
9
10
11 // Write new integers to the file
12 for (int i = 0; i < 200; i++)
13
14
15 // Display the current length of the file
16 System.out.println("Current file length is " +);
17
18 // Retrieve the first number
19 // Move the file pointer to the beginning
20 System.out.println("The first number is " +);
21
22 // Retrieve the second number
23 // Move the file pointer to the second number
24 System.out.println("The second number is " +);
25
26 // Retrieve the tenth number
27 // Move the file pointer to the tenth number
28 System.out.println("The tenth number is " +);
29
30 // Modify the eleventh number
31
32
33 // Append a new number
34 // Move the file pointer to the end
35
36
37 // Display the new length
38 System.out.println("The new length is " +);
39
40 // Retrieve the new eleventh number
41 // Move the file pointer to the next number
42 System.out.println("The eleventh number is " +);
43
44 inout.close();
45 }
46 }

inout.readInt()
inout.seek(10 * 4);

inout.length()

inout.writeInt(999);
inout.seek(inout.length());

inout.writeInt(555);

inout.readInt()
inout.seek(9 * 4);

inout.readInt()
inout.seek(1 * 4);

inout.readInt()
inout.seek(0);

inout.length()

inout.writeInt(i);

inout.setLength(0);

RandomAccessFile inout = new RandomAccessFile("inout.dat", "rw"); RandomAccessFile

empty file

write

move pointer
read

Current file length is 800
The first number is 0
The second number is 1
The tenth number is 9
The new length is 804
The eleventh number is 555

close file

732 Chapter 19 Binary I/O

✓Point✓Check

A RandomAccessFile is created for the file named inout.dat with mode rw to allow both
read and write operations in line 6.

inout.setLength(0) sets the length to 0 in line 9. This, in effect, destroys the old con-
tents of the file.

The for loop writes 200 int values from 0 to 199 into the file in lines 12–13. Since each
int value takes 4 bytes, the total length of the file returned from inout.length() is now
800 (line 16), as shown in the sample output.

Invoking inout.seek(0) in line 19 sets the file pointer to the beginning of the file.
inout.readInt() reads the first value in line 20 and moves the file pointer to the next num-
ber. The second number is read in line 24.

inout.seek(9 * 4) (line 27) moves the file pointer to the tenth number.
inout.readInt() reads the tenth number and moves the file pointer to the eleventh number
in line 28. inout.write(555) writes a new eleventh number at the current position (line
31). The previous eleventh number is destroyed.

inout.seek(inout.length()) moves the file pointer to the end of the file (line 34).
inout.writeInt(999) writes a 999 to the file. Now the length of the file is increased by 4,
so inout.length() returns 804 (line 38).

inout.seek(10 * 4) moves the file pointer to the eleventh number in line 41. The new
eleventh number, 555, is displayed in line 42.

19.31 Can RandomAccessFile streams read and write a data file created by
DataOutputStream? Can RandomAccessFile streams read and write objects?

19.32 Create a RandomAccessFile stream for the file address.dat to allow the updating
of student information in the file. Create a DataOutputStream for the file
address.dat. Explain the differences between these two statements.

19.33 What happens if the file test.dat does not exist when you attempt to compile and run
the following code?

import java.io.*;

public class Test {
public static void main(String[] args) {
try {
RandomAccessFile raf =
new RandomAccessFile("test.dat", "r");

int i = raf.readInt();
}
catch (IOException ex) {
System.out.println("IO exception");

}
}

}

KEY TERMS

binary I/O 710
deserialization 727
file pointer 730
random-access file 729

sequential-access file 729
serialization 727
stream 710
text I/O 710

Programming Exercises 733

CHAPTER SUMMARY

1. I/O can be classified into text I/O and binary I/O. Text I/O interprets data in
sequences of characters. Binary I/O interprets data as raw binary values. How text is
stored in a file depends on the encoding scheme for the file. Java automatically per-
forms encoding and decoding for text I/O.

2. The InputStream and OutputStream classes are the roots of all binary I/O
classes. FileInputStream/FileOutputStream associates a file for input/output.
BufferedInputStream/BufferedOutputStream can be used to wrap any binary
I/O stream to improve performance. DataInputStream/DataOutputStream can
be used to read/write primitive values and strings.

3. ObjectInputStream/ObjectOutputStream can be used to read/write objects
in addition to primitive values and strings. To enable object serialization, the
object’s defining class must implement the java.io.Serializable marker
interface.

4. The RandomAccessFile class enables you to read and write data to a file. You can
open a file with the r mode to indicate that it is read-only, or with the rw mode to
indicate that it is updateable. Since the RandomAccessFile class implements
DataInput and DataOutput interfaces, many methods in RandomAccessFile are
the same as those in DataInputStream and DataOutputStream.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Section 19.3
*19.1 (Create a text file) Write a program to create a file named Exercise19_01.txt if it

does not exist. Append new data to it if it already exists. Write 100 integers created
randomly into the file using text I/O. Integers are separated by a space.

Section 19.4
*19.2 (Create a binary data file) Write a program to create a file named

Exercise19_02.dat if it does not exist. Append new data to it if it already exists.
Write 100 integers created randomly into the file using binary I/O.

*19.3 (Sum all the integers in a binary data file) Suppose a binary data file
named Exercise19_03.dat has been created and its data are created using
writeInt(int) in DataOutputStream. The file contains an unspecified num-
ber of integers. Write a program to find the sum of the integers.

*19.4 (Convert a text file into UTF) Write a program that reads lines of characters from
a text file and writes each line as a UTF-8 string into a binary file. Display
the sizes of the text file and the binary file. Use the following command to run
the program:

java Exercise19_04 Welcome.java Welcome.utf

www.cs.armstrong.edu/liang/intro9e/test.html

734 Chapter 19 Binary I/O

FIGURE 19.19 The application can store, retrieve, and update addresses from a file.

Section 19.6
*19.5 (Store objects and arrays in a file) Write a program that stores an array of the

five int values 1, 2, 3, 4 and 5, a Date object for the current time, and the
double value 5.5 into the file named Exercise19_05.dat.

*19.6 (Store Loan objects) The Loan class in Listing 10.2 does not implement
Serializable. Rewrite the Loan class to implement Serializable. Write
a program that creates five Loan objects and stores them in a file named
Exercise19_06.dat.

*19.7 (Restore objects from a file) Suppose a file named Exercise19_07.dat has
been created using the ObjectOutputStream. The file contains Loan
objects. The Loan class in Listing 10.2 does not implement Serializable.
Rewrite the Loan class to implement Serializable. Write a program that
reads the Loan objects from the file and computes the total loan amount.
Suppose you don’t know how many Loan objects are in the file. Use
EOFException to end the loop.

Section 19.7
*19.8 (Update count) Suppose you want to track how many times a program has

been executed. You can store an int to count the file. Increase the count by 1
each time this program is executed. Let the program be Exercise19_08 and
store the count in Exercise19_08.dat.

***19.9 (Address book) Supplement VI.B has a case study of using random-access
files for creating and manipulating an address book. Modify the case study by
adding an Update button, as shown in Figure 19.19, to enable the user to mod-
ify the address that is being displayed.

Comprehensive
*19.10 (Split files) Suppose you want to back up a huge file (e.g., a 10-GB AVI file) to

a CD-R. You can achieve it by splitting the file into smaller pieces and backing
up these pieces separately. Write a utility program that splits a large file into
smaller ones using the following command:

java Exercise19_10 SourceFile numberOfPieces

The command creates the files SourceFile.1, SourceFile.2, . . . , SourceFile.n,
where n is numberOfPieces and the output files are about the same size.

**19.11 (Split files GUI) Rewrite Exercise 19.10 with a GUI, as shown in Figure 19.20a.

*19.12 (Combine files) Write a utility program that combines the files together into a
new file using the following command:

java Exercise19_12 SourceFile1 . . . SourceFilen TargetFile

The command combines SourceFile1, . . . , and SourceFilen into
TargetFile.

Split a large file
VideoNote

Programming Exercises 735

*19.13 (Combine files GUI) Rewrite Exercise 19.12 with a GUI, as shown in Figure
19.20b.

19.14 (Encrypt files) Encode the file by adding 5 to every byte in the file. Write a pro-
gram that prompts the user to enter an input file name and an output file name
and saves the encrypted version of the input file to the output file.

19.15 (Decrypt files) Suppose a file is encrypted using the scheme in Programming Exer-
cise 19.14. Write a program to decode an encrypted file. Your program should
prompt the user to enter an input file name for the encrypted file and an output file
name for the unencrypted version of the input file.

19.16 (Frequency of characters) Write a program that prompts the user to enter the
name of an ASCII text file and displays the frequency of the characters in the file.

**19.17 (BitOutputStream) Implement a class named BitOutputStream, as shown
in Figure 19.21, for writing bits to an output stream. The writeBit(char
bit) method stores the bit in a byte variable. When you create a
BitOutputStream, the byte is empty. After invoking writeBit('1'), the
byte becomes 00000001. After invoking writeBit("0101"), the byte
becomes 00010101. The first three bits are not filled yet. When a byte is full, it
is sent to the output stream. Now the byte is reset to empty. You must close the
stream by invoking the close() method. If the byte is neither empty nor full,
the close() method first fills the zeros to make a full 8 bits in the byte, and
then outputs the byte and closes the stream. For a hint, see Programming Exer-
cise 4.46. Write a test program that sends the bits 010000100100001001101
to the file named Exercise19_17.dat.

(a) (b)

FIGURE 19.20 (a) The program splits a file. (b) The program combines files into a new file.

BitOutputStream

+BitOutputStream(file: File)

+writeBit(char bit): void

+writeBit(String bit): void

+close(): void

Creates a BitOutputStream to writes bits to the file.

Writes a bit '0' or '1' to the output stream.

Writes a string of bits to the output stream.

This method must be invoked to close the stream.

FIGURE 19.21 BitOutputStream outputs a stream of bits to a file.

*19.18 (View bits) Write the following method that displays the bit representation for
the last byte in an integer:

public static String getBits(int value)

736 Chapter 19 Binary I/O

(a) (b)

FIGURE 19.22 The programs enable the user to manipulate the contents of the file in
(a) binary and (b) hex.

For a hint, see Programming Exercise 4.46. Write a program that prompts the
user to enter a file name, reads bytes from the file, and displays each byte’s
binary representation.

*19.19 (View hex) Write a program that prompts the user to enter a file name, reads
bytes from the file, and displays each byte’s hex representation. (Hint: You can
first convert the byte value into an 8-bit string, then convert the bit string into a
two-digit hex string.)

**19.20 (Binary editor) Write a GUI application that lets the user enter a file name in the
text field and press the Enter key to display its binary representation in a text
area. The user can also modify the binary code and save it back to the file, as
shown in Figure 19.22a.

**19.21 (Hex editor) Write a GUI application that lets the user enter a file name in the
text field and press the Enter key to display its hex representation in a text
area. The user can also modify the hex code and save it back to the file, as
shown in Figure 19.22b.

RECURSION

Objectives
■ To describe what a recursive method is and the benefits of using recur-

sion (§20.1).

■ To develop recursive methods for recursive mathematical functions
(§§20.2–20.3).

■ To explain how recursive method calls are handled in a call stack
(§§20.2–20.3).

■ To solve problems using recursion (§20.4).

■ To use an overloaded helper method to design a recursive method (§20.5).

■ To implement a selection sort using recursion (§20.5.1).

■ To implement a binary search using recursion (§20.5.2).

■ To get the directory size using recursion (§20.6).

■ To solve the Towers of Hanoi problem using recursion (§20.7).

■ To draw fractals using recursion (§20.8).

■ To discover the relationship and difference between recursion and
iteration (§20.9).

■ To know tail-recursive methods and why they are desirable (§20.10).

CHAPTER

20

738 Chapter 20 Recursion

(a) (b) (c) (d)

Key
Point

FIGURE 20.1 An H-tree can be displayed using recursion.

Key
Point

20.1 Introduction
Recursion is a technique that leads to elegant solutions to problems that are difficult to
program using simple loops.

Suppose you want to find all the files under a directory that contain a particular word. How do
you solve this problem? There are several ways to do so. An intuitive and effective solution is
to use recursion by searching the files in the subdirectories recursively.

H-trees, depicted in Figure 20.1, are used in a very large-scale integration (VLSI) design as a
clock distribution network for routing timing signals to all parts of a chip with equal propagation
delays. How do you write a program to display H-trees? A good approach is to use recursion.

search word problem

H-tree problem

To use recursion is to program using recursive methods—that is, to use methods that
invoke themselves. Recursion is a useful programming technique. In some cases, it enables
you to develop a natural, straightforward, simple solution to an otherwise difficult problem.
This chapter introduces the concepts and techniques of recursive programming and illustrates
with examples of how to “think recursively.”

20.2 Case Study: Computing Factorials
A recursive method is one that invokes itself.

Many mathematical functions are defined using recursion. Let’s begin with a simple example.
The factorial of a number n can be recursively defined as follows:

0! = 1;
n! = n × (n - 1)!; n > 0

How do you find n! for a given n? To find 1! is easy, because you know that 0! is 1, and 1!
is 1 × 0!. Assuming that you know (n - 1)!, you can obtain n! immediately by using n ×
(n - 1)!. Thus, the problem of computing n! is reduced to computing (n - 1)!. When
computing (n - 1)!, you can apply the same idea recursively until n is reduced to 0.

Let factorial(n) be the method for computing n!. If you call the method with n = 0,
it immediately returns the result. The method knows how to solve the simplest case, which is
referred to as the base case or the stopping condition. If you call the method with n > 0, it
reduces the problem into a subproblem for computing the factorial of n - 1. The subproblem
is essentially the same as the original problem, but it is simpler or smaller. Because the sub-
problem has the same property as the original problem, you can call the method with a differ-
ent argument, which is referred to as a recursive call.

The recursive algorithm for computing factorial(n) can be simply described as follows:

if (n == 0)
return 1;

recursive method

base case or stopping
condition

recursive call

20.2 Case Study: Computing Factorials 739

else

return n * factorial(n - 1);

A recursive call can result in many more recursive calls, because the method keeps
on dividing a subproblem into new subproblems. For a recursive method to terminate,
the problem must eventually be reduced to a stopping case, at which point the method
returns a result to its caller. The caller then performs a computation and returns the
result to its own caller. This process continues until the result is passed back to the origi-
nal caller. The original problem can now be solved by multiplying n by the result of
factorial(n - 1).

Listing 20.1 gives a complete program that prompts the user to enter a nonnegative integer
and displays the factorial for the number.

LISTING 20.1 ComputeFactorial.java
1 import java.util.Scanner;
2
3 public class ComputeFactorial {
4 /** Main method */
5 public static void main(String[] args) {
6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8 System.out.print("Enter a nonnegative integer: ");
9 int n = input.nextInt();
10
11 // Display factorial
12 System.out.println("Factorial of " + n + " is " +);
13 }
14
15 /** Return the factorial for the specified number */
16 public static long {
17 if (n == 0) // Base case
18 return 1;
19 else

20 return n * ; // Recursive call
21 }
22 }

factorial(n - 1)

factorial(int n)

factorial(n)

base case

recursion

Enter a nonnegative integer:
Factorial of 4 is 24

4

Enter a nonnegative integer:
Factorial of 10 is 3628800

10

The factorial method (lines 16–21) is essentially a direct translation of the recursive
mathematical definition for the factorial into Java code. The call to factorial is recursive
because it calls itself. The parameter passed to factorial is decremented until it reaches the
base case of 0.

You see how to write a recursive method. How does recursion work? Figure 20.2 illustrates
the execution of the recursive calls, starting with n = 4. The use of stack space for recursive
calls is shown in Figure 20.3.

how does it work?

740 Chapter 20 Recursion

return 1

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

factorial(4)

return 3 * factorial(2)

return 4 * factorial(3)

FIGURE 20.2 Invoking factorial(4) spawns recursive calls to factorial.

Space required
for factorial(4)

n: 4

1 Space required
for factorial(4)

n: 4

2 Space required
for factorial(3)

n: 3

Space required
for factorial(4)

n: 4

3

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(4)

n: 4

4

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(1)

n: 1

Space required
for factorial(4)

n: 4

5

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(1)

n: 1

Space required
for factorial(0)

n: 0

Space required
for factorial(4)

n: 4

6

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(1)

n: 1

Space required
for factorial(4)

n: 4

7

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(4)

n: 4

8 Space required
for factorial(3)

n: 3

Space required
for factorial(4)

n: 4

9

FIGURE 20.3 When factorial(4) is being executed, the factorial method is called recursively, causing stack space
to dynamically change.

20.3 Case Study: Computing Fibonacci Numbers 741

Pedagogical Note
It is simpler and more efficient to implement the factorial method using a loop.
However, we use the recursive factorial method here to demonstrate the concept of
recursion. Later in this chapter, we will present some problems that are inherently
recursive and are difficult to solve without using recursion.

If recursion does not reduce the problem in a manner that allows it to eventually converge
into the base case, infinite recursion can occur. For example, suppose you mistakenly
write the factorial method as follows:

public static long {
return n * ;

}

The method runs infinitely and causes a StackOverflowError.

The example discussed in this section shows a recursive method that invokes itself. This is
known as direct recursion. It is also possible to create indirect recursion. This occurs when
method A invokes method B, which in turn invokes method A. There can even be several more
methods involved in the recursion. For example, method A invokes method B, which invokes
method C, which invokes method A.

20.1 What is a recursive method? What is an infinite recursion?

20.2 How many times is the factorialmethod in Listing 20.1 invoked for factorial(6)?

20.3 Show the output of the following programs and identify base cases and recursive calls.

factorial(n - 1)
factorial(int n)

infinite recursion

direct recursion
indirect recursion

✓Point✓Check

public class Test {
public static void main(String[] args) {
System.out.println(
"Sum is " + xMethod(5));

}

public static int xMethod(int n) {
if (n == 1)

return 1;
else

return n + xMethod(n - 1);
}

}

public class Test {
public static void main(String[] args) {
xMethod(1234567);

}

public static void xMethod(int n) {
if (n > 0) {
System.out.print(n % 10);
xMethod(n / 10);

}
}

}

20.4 Write a recursive mathematical definition for computing for a positive integer n.

20.5 Write a recursive mathematical definition for computing for a positive integer n
and a real number x.

20.6 Write a recursive mathematical definition for computing for a
positive integer.

20.3 Case Study: Computing Fibonacci Numbers
In some cases, recursion enables you to create an intuitive, straightforward, simple
solution to a problem.

The factorial method in the preceding section could easily be rewritten without using
recursion. In this section, we show an example for creating an intuitive solution to a problem
using recursion. Consider the well-known Fibonacci-series problem:

1 + 2 + 3 + . . . + n

xn

2n

Key
Point

742 Chapter 20 Recursion

The series: 0 1 1 2 3 5 8 13 21 34 55 89 . . .
indices: 0 1 2 3 4 5 6 7 8 9 10 11

The Fibonacci series begins with 0 and 1, and each subsequent number is the sum of the pre-
ceding two. The series can be recursively defined as:

fib(0) = 0;
fib(1) = 1;
fib(index) = fib(index - 2) + fib(index - 1); index >= 2

The Fibonacci series was named for Leonardo Fibonacci, a medieval mathematician, who
originated it to model the growth of the rabbit population. It can be applied in numeric opti-
mization and in various other areas.

How do you find fib(index) for a given index? It is easy to find fib(2), because you
know fib(0) and fib(1). Assuming that you know fib(index - 2) and fib(index - 1),
you can obtain fib(index) immediately. Thus, the problem of computing fib(index) is
reduced to computing fib(index - 2) and fib(index - 1). When doing so, you apply the
idea recursively until index is reduced to 0 or 1.

The base case is index = 0 or index = 1. If you call the method with index = 0 or
index = 1, it immediately returns the result. If you call the method with index >= 2, it divides
the problem into two subproblems for computing fib(index - 1) and fib(index - 2)

using recursive calls. The recursive algorithm for computing fib(index) can be simply
described as follows:

if (index == 0)
return 0;

else if (index == 1)
return 1;

else

return fib(index - 1) + fib(index - 2);

Listing 20.2 gives a complete program that prompts the user to enter an index and computes
the Fibonacci number for that index.

LISTING 20.2 ComputeFibonacci.java
1 import java.util.Scanner;
2
3 public class ComputeFibonacci {
4 /** Main method */
5 public static void main(String[] args) {
6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8 System.out.print("Enter an index for a Fibonacci number: ");
9 int index = input.nextInt();

10
11 // Find and display the Fibonacci number
12 System.out.println("The Fibonacci number at index "
13 + index + " is " +);
14 }
15
16 /** The method for finding the Fibonacci number */
17 public static long {
18 if (index == 0) // Base case
19 return 0;

fib(long index)

fib(index)

base case

20.3 Case Study: Computing Fibonacci Numbers 743

return fib(3) + fib(2)
10: return fib(3)

fib(4)
0: call fib(4)17: return fib(4)

return fib(2) + fib(1) return fib(1) + fib(0)

1: call fib(3)

11: call fib(2)

16: return fib(2)

return 1 return 0

12: call fib(1)
13: return fib(1) 14: return fib(0)

15: return fib(0)
return fib(1) + fib(0) return 1

2: call fib(2)

7: return fib(2)
8: call fib(1)

9: return fib(1)

return 1 return 0

3: call fib(1)

4: return fib(1) 5: call fib(0)

6: return fib(0)

FIGURE 20.4 Invoking fib(4) spawns recursive calls to fib.

20 else if (index == 1) // Base case
21 return 1;
22 else // Reduction and recursive calls
23 return ;
24 }
25 }

fib(index - 1) + fib(index - 2)

base case

recursion

Enter an index for a Fibonacci number:
The Fibonacci number at index 1 is 1

1

Enter an index for a Fibonacci number:
The Fibonacci number at index 6 is 8

6

Enter an index for a Fibonacci number:
The Fibonacci number at index 7 is 13

7

The program does not show the considerable amount of work done behind the scenes by the
computer. Figure 20.4, however, shows the successive recursive calls for evaluating fib(4).
The original method, fib(4), makes two recursive calls, fib(3) and fib(2), and then
returns fib(3) + fib(2). But in what order are these methods called? In Java, operands are
evaluated from left to right, so fib(2) is called after fib(3) is completely evaluated. The
labels in Figure 20.4 show the order in which the methods are called.

As shown in Figure 20.4, there are many duplicated recursive calls. For instance, fib(2)
is called twice, fib(1) three times, and fib(0) twice. In general, computing fib(index)
requires roughly twice as many recursive calls as does computing fib(index - 1). As you
try larger index values, the number of calls substantially increases, as shown in Table 20.1.

TABLE 20.1 Number of Recursive Calls in fib(index)

index 2 3 4 10 20 30 40 50

of calls 3 5 9 177 21891 2,692,537 331,160,281 2,075,316,483

744 Chapter 20 Recursion

✓Point✓Check

Key
Point

Pedagogical Note
The recursive implementation of the fib method is very simple and straightforward, but it
isn’t efficient, since it requires more time and memory to run recursive methods. See
Programming Exercise 20.2 for an efficient solution using loops. Though it is not practical,
the recursive fib method is a good example of how to write recursive methods.

20.7 Show the output of the following two programs:

recursion characteristics

if-else

base cases

reduction

public class Test {
public static void main(String[] args) {
xMethod(5);

}

public static void xMethod(int n) {
if (n > 0) {
System.out.print(n + " ");

}
}

}

xMethod(n - 1);

public class Test {
public static void main(String[] args) {
xMethod(5);

}

public static void xMethod(int n) {
if (n > 0) {

System.out.print(n + " ");
}

}
}

xMethod(n - 1);

20.8 What is wrong in the following method?

public class Test {
public static void main(String[] args) {
xMethod(1234567);

}

public static void xMethod(double n) {
if {
System.out.print(n);
xMethod(n / 10);

}
}

}

(n != 0)

20.9 How many times is the fib method in Listing 20.2 invoked for fib(6)?

20.4 Problem Solving Using Recursion
If you think recursively, you can solve many problems using recursion.

The preceding sections presented two classic recursion examples. All recursive methods have
the following characteristics:

■ The method is implemented using an if-else or a switch statement that leads to
different cases.

■ One or more base cases (the simplest case) are used to stop recursion.

■ Every recursive call reduces the original problem, bringing it increasingly closer to a
base case until it becomes that case.

In general, to solve a problem using recursion, you break it into subproblems. Each sub-
problem is the same as the original problem but smaller in size. You can apply the same
approach to each subproblem to solve it recursively.

public class Test {
public static void main(String[] args) {
Test test = new Test();
System.out.println(test.toString());

}

public Test() {
Test test = new Test();

}
}

20.4 Problem Solving Using Recursion 745

Recursion is everywhere. It is fun to think recursively. Consider drinking coffee. You may
describe the procedure recursively as follows:

public static void drinkCoffee(Cup cup) {
if (!cup.isEmpty()) {
cup.takeOneSip(); // Take one sip
drinkCoffee(cup);

}
}

Assume cup is an object for a cup of coffee with the instance methods isEmpty() and
takeOneSip(). You can break the problem into two subproblems: one is to drink one sip of
coffee and the other is to drink the rest of the coffee in the cup. The second problem is the
same as the original problem but smaller in size. The base case for the problem is when the
cup is empty.

Consider the problem of printing a message n times. You can break the problem into two
subproblems: one is to print the message one time and the other is to print it n - 1 times. The
second problem is the same as the original problem but it is smaller in size. The base case for
the problem is n == 0. You can solve this problem using recursion as follows:

public static void nPrintln(String message, int times) {
if (times >= 1) {
System.out.println(message);
nPrintln(message, times - 1);

} // The base case is times == 0
}

Note that the fib method in the preceding section returns a value to its caller, but the
drinkCoffee and nPrintln methods are void and they do not return a value.

If you think recursively, you can use recursion to solve many of the problems presented in
earlier chapters of this book. Consider the palindrome problem in Listing 9.1. Recall that a
string is a palindrome if it reads the same from the left and from the right. For example,
“mom” and “dad” are palindromes, but “uncle” and “aunt” are not. The problem of checking
whether a string is a palindrome can be divided into two subproblems:

■ Check whether the first character and the last character of the string are equal.

■ Ignore the two end characters and check whether the rest of the substring is a
palindrome.

The second subproblem is the same as the original problem but smaller in size. There are two
base cases: (1) the two end characters are not the same, and (2) the string size is 0 or 1. In case
1, the string is not a palindrome; in case 2, the string is a palindrome. The recursive method
for this problem can be implemented as shown in Listing 20.3.

LISTING 20.3 RecursivePalindromeUsingSubstring.java
1 public class RecursivePalindromeUsingSubstring {
2
3 if (s.length() <= 1) // Base case
4 return true;
5 else if (s.charAt(0) != s.charAt(s.length() - 1)) // Base case
6 return false;

7 else

8 return ;
9 }
10
11 public static void main(String[] args) {

isPalindrome(s.substring(1, s.length() - 1))

public static boolean isPalindrome(String s) {

think recursively

recursive call

think recursively

method header
base case

base case

recursive call

746 Chapter 20 Recursion

✓Point✓Check

Key
Point

12 System.out.println("Is moon a palindrome? "
13 + isPalindrome("moon"));
14 System.out.println("Is noon a palindrome? "
15 + isPalindrome("noon"));
16 System.out.println("Is a a palindrome? " + isPalindrome("a"));
17 System.out.println("Is aba a palindrome? " +
18 isPalindrome("aba"));
19 System.out.println("Is ab a palindrome? " + isPalindrome("ab"));
20 }
21 }

Is moon a palindrome? false
Is noon a palindrome? true
Is a a palindrome? true
Is aba a palindrome? true
Is ab a palindrome? false

The substring method in line 8 creates a new string that is the same as the original string
except without the first and last characters. Checking whether a string is a palindrome is
equivalent to checking whether the substring is a palindrome if the two end characters in the
original string are the same.

20.10 Describe the characteristics of recursive methods.

20.11 For the isPalindrome method in Listing 20.3, what are the base cases? How many
times is this method called when invoking isPalindrome("abdxcxdba")?

20.12 Show the call stack for isPalindrome("abcba") using the method defined in
Listing 20.3.

20.5 Recursive Helper Methods
Sometimes you can find a recursive solution by slightly changing the original problem.
This new method is called a recursive helper method.

The recursive isPalindrome method in Listing 20.3 is not efficient, because it creates a new
string for every recursive call. To avoid creating new strings, you can use the low and high
indices to indicate the range of the substring. These two indices must be passed to the recur-
sive method. Since the original method is isPalindrome(String s), you have to create
the new method isPalindrome(String s, int low, int high) to accept additional
information on the string, as shown in Listing 20.4.

LISTING 20.4 RecursivePalindrome.java
1 public class RecursivePalindrome {
2
3 return isPalindrome(s, 0, s.length() - 1);
4 }
5
6
7 if // Base case
8 return true;

9 else if // Base case
10 return false;

11 else

12 return isPalindrome(s, low + 1, high - 1);
13 }
14

(s.charAt(low) != s.charAt(high))

(high <= low)
private static boolean isPalindrome(String s, int low, int high) {

public static boolean isPalindrome(String s) {

helper method
base case

base case

20.5 Recursive Helper Methods 747

15 public static void main(String[] args) {
16 System.out.println("Is moon a palindrome? "
17 + isPalindrome("moon"));
18 System.out.println("Is noon a palindrome? "
19 + isPalindrome("noon"));
20 System.out.println("Is a a palindrome? " + isPalindrome("a"));
21 System.out.println("Is aba a palindrome? " + isPalindrome("aba"));
22 System.out.println("Is ab a palindrome? " + isPalindrome("ab"));
23 }
24 }

Two overloaded isPalindromemethods are defined. The first, isPalindrome(String s),
checks whether a string is a palindrome, and the second, isPalindrome(String s, int low,
int high), checks whether a substring s(low..high) is a palindrome. The first method passes
the string s with low = 0 and high = s.length() – 1 to the second method. The second
method can be invoked recursively to check a palindrome in an ever-shrinking substring. It is a com-
mon design technique in recursive programming to define a second method that receives additional
parameters. Such a method is known as a recursive helper method.

Helper methods are very useful in designing recursive solutions for problems involving
strings and arrays. The sections that follow give two more examples.

20.5.1 Recursive Selection Sort
Selection sort was introduced in Section 6.11.1. Recall that it finds the smallest element in the
list and swaps it with the first element. It then finds the smallest element remaining and swaps
it with the first element in the remaining list, and so on until the remaining list contains only a
single element. The problem can be divided into two subproblems:

■ Find the smallest element in the list and swap it with the first element.

■ Ignore the first element and sort the remaining smaller list recursively.

The base case is that the list contains only one element. Listing 20.5 gives the recursive
sort method.

LISTING 20.5 RecursiveSelectionSort.java
1 public class RecursiveSelectionSort {
2 public static void sort(double[] list) {
3 // Sort the entire list
4 }
5
6
7 if (low < high) {
8 // Find the smallest number and its index in list[low .. high]
9 int indexOfMin = low;
10 double min = list[low];
11 for (int i = low + 1; i <= high; i++) {
12 if (list[i] < min) {
13 min = list[i];
14 indexOfMin = i;
15 }
16 }
17
18 // Swap the smallest in list[low .. high] with list[low]
19 list[indexOfMin] = list[low];
20 list[low] = min;
21

private static void sort(double[] list, int low, int high) {

sort(list, 0, list.length - 1);

recursive helper method

helper method
base case

748 Chapter 20 Recursion

22 // Sort the remaining list[low+1 .. high]
23
24 }
25 }
26 }

Two overloaded sort methods are defined. The first method, sort(double[] list), sorts
an array in list[0..list.length - 1] and the second method, sort(double[]
list, int low, int high), sorts an array in list[low..high]. The second method
can be invoked recursively to sort an ever-shrinking subarray.

20.5.2 Recursive Binary Search
Binary search was introduced in Section 6.10.2. For binary search to work, the elements in
the array must be in an increasing order. The binary search first compares the key with the
element in the middle of the array. Consider the following three cases:

■ Case 1: If the key is less than the middle element, recursively search for the key in
the first half of the array.

■ Case 2: If the key is equal to the middle element, the search ends with a match.

■ Case 3: If the key is greater than the middle element, recursively search for the key
in the second half of the array.

Case 1 and Case 3 reduce the search to a smaller list. Case 2 is a base case when there is a
match. Another base case is that the search is exhausted without a match. Listing 20.6 gives a
clear, simple solution for the binary search problem using recursion.

LISTING 20.6 Recursive Binary Search Method
1 public class RecursiveBinarySearch {
2
3 int low = 0;
4 int high = list.length - 1;
5 return recursiveBinarySearch(list, key, low, high);
6 }
7
8
9
10 if // The list has been exhausted without a match
11 return -low - 1;
12
13 int mid = (low + high) / 2;
14 if (key < list[mid])
15
16 else if (key == list[mid])
17 return mid;
18 else

19
20 }
21 }

The first method finds a key in the whole list. The second method finds a key in the list with
index from low to high.

The first binarySearch method passes the initial array with low = 0 and high =

list.length - 1 to the second binarySearch method. The second method is invoked
recursively to find the key in an ever-shrinking subarray.

return recursiveBinarySearch(list, key, mid + 1, high);

return recursiveBinarySearch(list, key, low, mid - 1);

(low > high)
int low, int high) {

private static int recursiveBinarySearch(int[] list, int key,

public static int recursiveBinarySearch(int[] list, int key) {

sort(list, low + 1, high);recursive call

Binary search

helper method

base case

recursive call

base case

recursive call

VideoNote

20.6 Case Study: Finding the Directory Size 749

✓Point✓Check

Key
Point

directory

. . . d2d1
f1 f2 . . .fm dn

FIGURE 20.5 A directory contains files and subdirectories.

20.13 Show the call stack for isPalindrome("abcba") using the method defined in
Listing 20.4.

20.14 Show the call stack for selectionSort(new double[]{2, 3, 5, 1}) using the
method defined in Listing 20.5.

20.15 What is a recursive helper method?

20.6 Case Study: Finding the Directory Size
Recursive methods are efficient for solving problems with recursive structures.

The preceding examples can easily be solved without using recursion. This section presents a
problem that is difficult to solve without using recursion. The problem is to find the size of a
directory. The size of a directory is the sum of the sizes of all files in the directory. A directory
d may contain subdirectories. Suppose a directory contains files and subdirecto-
ries as shown in Figure 20.5. d1, d2, . . . , dn,

f1, f2, . . . , fm

The size of the directory can be defined recursively as follows:

The File class, introduced in Section 14.10, can be used to represent a file or a directory and
obtain the properties for files and directories. Two methods in the File class are useful for
this problem:

■ The length() method returns the size of a file.

■ The listFiles() method returns an array of File objects under a directory.

Listing 20.7 gives a program that prompts the user to enter a directory or a file and dis-
plays its size.

LISTING 20.7 DirectorySize.java
1 import java.io.File;
2 import java.util.Scanner;
3
4 public class DirectorySize {
5 public static void main(String[] args) {
6 // Prompt the user to enter a directory or a file
7 System.out.print("Enter a directory or a file: ");
8 Scanner input = new Scanner(System.in);
9 String directory = input.nextLine();
10
11 // Display the size
12 System.out.println(+ " bytes");
13 }
14

getSize(new File(directory))

size(d) = size(f1) + size(f2) + . . . + size(fm) + size(d1) + size(d2) + . . . + size(dn)

Directory size
VideoNote

invoke method

750 Chapter 20 Recursion

✓Point✓Check

Key
Point

15
16 long size = 0; // Store the total size of all files
17
18 if () {
19 // All files and subdirectories
20 for (int i = 0; files != null && i < files.length; i++) {
21 size += ; // Recursive call
22 }
23 }
24 else { // Base case
25 size += file.length();
26 }
27
28 return size;
29 }
30 }

getSize(files[i])

File[] files = file.listFiles();
file.isDirectory()

public static long getSize(File file) {getSize method

is directory?
all subitems

recursive call

base case

Enter a directory or a file:
48619631 bytes

c:\book

Enter a directory or a file:
172 bytes

c:\book\Welcome.java

Enter a directory or a file:
0 bytes

c:\book\NonExistentFile

If the file object represents a directory (line 18), each subitem (file or subdirectory) in the
directory is recursively invoked to obtain its size (line 21). If the file object represents a file
(line 24), the file size is obtained (line 25).

What happens if an incorrect or a nonexistent directory is entered? The program will detect
that it is not a directory and invoke file.length() (line 25), which returns 0. Thus, in this
case, the getSize method will return 0.

Tip
To avoid mistakes, it is a good practice to test all cases. For example, you should test the
program for an input of file, an empty directory, a nonexistent directory, and a nonexis-
tent file.

20.16 What is the base case for the getSize method?

20.17 How does the program get all files and directories under a given directory?

20.18 How many times will the getSize method be invoked for a directory if the directory
has three subdirectories and each subdirectory has four files?

20.7 Case Study: Towers of Hanoi
The Towers of Hanoi problem is a classic problem that can be solved easily using
recursion, but it is difficult to solve otherwise.

The problem involves moving a specified number of disks of distinct sizes from one tower to
another while observing the following rules:

■ There are n disks labeled 1, 2, 3, . . . , n and three towers labeled A, B, and C.

■ No disk can be on top of a smaller disk at any time.

testing all cases

20.7 Case Study: Towers of Hanoi 751

A B C

A B C

A B C

A B C

A B CA C

B

Original position

Step 1: Move disk 1 from A to B

Step 2: Move disk 2 from A to C

Step 3: Move disk 1 from B to C

Step 4: Move disk 3 from A to B

Step 5: Move disk 1 from C to A

Step 7: Move disk 1 from A to B

Step 6: Move disk 2 from C to B

A A B C

B

C

0 4

1 5

2 6

3 7

1
2
3

2
3

3 1 2

23
1

3
2

31

1 3 2

2

1

1

1
23

FIGURE 20.6 The goal of the Towers of Hanoi problem is to move disks from tower A to
tower B without breaking the rules.

■ All the disks are initially placed on tower A.

■ Only one disk can be moved at a time, and it must be the smallest disk on a tower.

The objective of the problem is to move all the disks from A to B with the assistance of C. For
example, if you have three disks, the steps to move all of the disks from A to B are shown in
Figure 20.6.

Note
The Towers of Hanoi is a classic computer-science problem, to which many websites are
devoted. One of them worth looking at is www.cut-the-knot.com/recurrence/hanoi.html.

In the case of three disks, you can find the solution manually. For a larger number of disks,
however—even for four—the problem is quite complex. Fortunately, the problem has an
inherently recursive nature, which leads to a straightforward recursive solution.

The base case for the problem is n = 1. If n == 1, you could simply move the disk from
A to B. When n > 1, you could split the original problem into the following three subprob-
lems and solve them sequentially.

1. Move the first n - 1 disks from A to C with the assistance of tower B, as shown in Step
1 in Figure 20.7.

2. Move disk n from A to B, as shown in Step 2 in Figure 20.7.

3. Move n - 1 disks from C to B with the assistance of tower A, as shown in Step 3 in
Figure 20.7.

www.cut-the-knot.com/recurrence/hanoi.html

752 Chapter 20 Recursion

A B
Original position

C

A B
Step 1: Move the first n – 1 disks from

A to C recursively

C

A B
Step 2: Move disk n from A to B

C

A B

Step 3: Move n – 1 disks from
C to B recursively

C

.

.

.

n – 1 disks

.

.

.

n – 1 disks

.

.

.

n – 1 disks

.

.

.

n – 1 disks

20

31

FIGURE 20.7 The Towers of Hanoi problem can be decomposed into three subproblems.

The following method moves n disks from the fromTower to the toTower with the assis-
tance of the auxTower:

void moveDisks(int n, char fromTower, char toTower, char auxTower)

The algorithm for the method can be described as:

if (n == 1) // Stopping condition
Move disk 1 from the fromTower to the toTower;

else {
moveDisks(n - 1, fromTower, auxTower, toTower);
Move disk n from the fromTower to the toTower;
moveDisks(n - 1, auxTower, toTower, fromTower);

}

Listing 20.8 gives a program that prompts the user to enter the number of disks and invokes
the recursive method moveDisks to display the solution for moving the disks.

LISTING 20.8 TowersOfHanoi.java
1 import java.util.Scanner;
2
3 public class TowersOfHanoi {
4 /** Main method */
5 public static void main(String[] args) {
6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8 System.out.print("Enter number of disks: ");
9 int n = input.nextInt();

10
11 // Find the solution recursively
12 System.out.println("The moves are:");
13 ;
14 }
15

moveDisks(n, 'A', 'B', 'C')

20.7 Case Study: Towers of Hanoi 753

16 /** The method for finding the solution to move n disks
17 from fromTower to toTower with auxTower */
18 public static void

19 {
20 if (n == 1) // Stopping condition
21 System.out.println("Move disk " + n + " from " +
22 fromTower + " to " + toTower);
23 else {
24 ;
25 System.out.println("Move disk " + n + " from " +
26 fromTower + " to " + toTower);
27 ;
28 }
29 }
30 }

moveDisks(n - 1, auxTower, toTower, fromTower)

moveDisks(n - 1, fromTower, auxTower, toTower)

char toTower, char auxTower)
moveDisks(int n, char fromTower,

base case

recursion

recursion

Enter number of disks:
The moves are:
Move disk 1 from A to C
Move disk 2 from A to B
Move disk 1 from C to B
Move disk 3 from A to C
Move disk 1 from B to A
Move disk 2 from B to C
Move disk 1 from A to C
Move disk 4 from A to B
Move disk 1 from C to B
Move disk 2 from C to A
Move disk 1 from B to A
Move disk 3 from C to B
Move disk 1 from A to C
Move disk 2 from A to B
Move disk 1 from C to B

4

This problem is inherently recursive. Using recursion makes it possible to find a natural, sim-
ple solution. It would be difficult to solve the problem without using recursion.

Consider tracing the program for n = 3. The successive recursive calls are shown in
Figure 20.8. As you can see, writing the program is easier than tracing the recursive calls. The

moveDisks(2,'A','C','B')
move disk 3 from A to B
moveDisks(2,'C','B','A')

moveDisks(3,'A','B','C')

moveDisks(1,'A','B','C')
move disk 2 from A to C
moveDisks(1,'B','C','A')

moveDisks(2,'A','C','B')

moveDisks(1,'C','A','B')
move disk 2 from C to B
moveDisks(1,'A','B','C')

moveDisks(2,'C','B','A')

moveDisks(1,'A','B','C')

move disk 1 from A to B

moveDisks(1,'B','C','A')

move disk 1 from B to C

moveDisks(1,'C','A','B')

move disk 1 from C to A

moveDisks(1,'A','B','C')

move disk 1 from A to B

FIGURE 20.8 Invoking moveDisks(3, 'A', 'B', 'C') spawns calls to moveDisks recursively.

754 Chapter 20 Recursion

✓Point✓Check

Key
Point

(a) Order 0 (b) Order 1

(c) Order 2 (d) Order 3

JPanel

JPanel

FIGURE 20.9 A Sierpinski triangle is a pattern of recursive triangles.

system uses stacks to manage the calls behind the scenes. To some extent, recursion provides
a level of abstraction that hides iterations and other details from the user.

20.19 How many times is the moveDisks method in Listing 20.8 invoked for
moveDisks(5, 'A', 'B', 'C')?

20.8 Case Study: Fractals
Using recursion is ideal for displaying fractals, because fractals are inherently recursive.

A fractal is a geometrical figure, but unlike triangles, circles, and rectangles, fractals can be
divided into parts, each of which is a reduced-size copy of the whole. There are many inter-
esting examples of fractals. This section introduces a simple fractal, the Sierpinski triangle,
named after a famous Polish mathematician.

A Sierpinski triangle is created as follows:

1. Begin with an equilateral triangle, which is considered to be a Sierpinski fractal of order
(or level) 0, as shown in Figure 20.9a.

2. Connect the midpoints of the sides of the triangle of order 0 to create a Sierpinski trian-
gle of order 1 (Figure 20.9b).

3. Leave the center triangle intact. Connect the midpoints of the sides of the three other tri-
angles to create a Sierpinski triangle of order 2 (Figure 20.9c).

4. You can repeat the same process recursively to create a Sierpinski triangle of order 3, 4,
. . . , and so on (Figure 20.9d).

The problem is inherently recursive. How do you develop a recursive solution for it? Con-
sider the base case when the order is 0. It is easy to draw a Sierpinski triangle of order 0.

Fractal (Sierpinski triangle)
VideoNote

20.8 Case Study: Fractals 755

How do you draw a Sierpinski triangle of order 1? The problem can be reduced to drawing
three Sierpinski triangles of order 0. How do you draw a Sierpinski triangle of order 2? The
problem can be reduced to drawing three Sierpinski triangles of order 1, so the problem of
drawing a Sierpinski triangle of order n can be reduced to drawing three Sierpinski triangles
of order n - 1.

Listing 20.9 gives a Java applet that displays a Sierpinski triangle of any order, as shown in
Figure 20.9. You can enter an order in a text field to display a Sierpinski triangle of the spec-
ified order.

LISTING 20.9 SierpinskiTriangle.java
1 import javax.swing.*;
2 import java.awt.*;
3 import java.awt.event.*;
4
5 public class SierpinskiTriangle extends JApplet {
6 private JTextField jtfOrder = new JTextField("0", 5); // Order
7 private SierpinskiTrianglePanel trianglePanel =
8 new SierpinskiTrianglePanel(); // To display the pattern
9
10 public SierpinskiTriangle() {
11 // Panel to hold label, text field, and a button
12 JPanel panel = new JPanel();
13 panel.add(new JLabel("Enter an order: "));
14 panel.add(jtfOrder);
15 jtfOrder.setHorizontalAlignment(SwingConstants.RIGHT);
16
17 // Add a Sierpinski triangle panel to the applet
18 add(trianglePanel);
19 add(panel, BorderLayout.SOUTH);
20
21 // Register a listener
22
23 @Override
24 public void actionPerformed(ActionEvent e) {
25 trianglePanel.setOrder(Integer.parseInt(jtfOrder.getText()));
26 }
27 });
28 }
29
30 static class SierpinskiTrianglePanel extends JPanel {
31 private int order = 0;
32
33 /** Set a new order */
34 public void setOrder(int order) {
35 this.order = order;
36 repaint();
37 }
38
39 @Override
40 protected void paintComponent(Graphics g) {
41 super.paintComponent(g);
42
43 // Select three points in proportion to the panel size
44
45
46
47

Point p3 = new Point(getWidth() - 10, getHeight() - 10);
Point p2 = new Point(10, getHeight() - 10);
Point p1 = new Point(getWidth() / 2, 10);

jtfOrder.addActionListener(new ActionListener() { listener

set a new order

three initial points

756 Chapter 20 Recursion

✓Point✓Check

48
49 }
50
51
52
53 if (order == 0) {
54 // Draw a triangle to connect three points
55 g.drawLine(p1.x, p1.y, p2.x, p2.y);
56 g.drawLine(p1.x, p1.y, p3.x, p3.y);
57 g.drawLine(p2.x, p2.y, p3.x, p3.y);
58 }
59 else {
60 // Get the midpoint on each edge of the triangle
61 Point p12 = midpoint(p1, p2);
62 Point p23 = midpoint(p2, p3);
63 Point p31 = midpoint(p3, p1);
64
65 // Recursively display three triangles
66
67
68
69 }
70 }
71
72 private static Point midpoint(Point p1, Point p2) {
73 return new Point((p1.x + p2.x) / 2, (p1.y + p2.y) / 2);
74 }
75 }
76 }

The initial triangle has three points set in proportion to the panel size (lines 44–46). If
order == 0, the displayTriangles(g, order, p1, p2, p3) method displays a
triangle that connects the three points p1, p2, and p3 in lines 55–57, as shown in
Figure 20.10a. Otherwise, it performs the following tasks:

1. Obtain the midpoint between p1 and p2 (line 61), the midpoint between p2 and p3 (line
62), and the midpoint between p3 and p1 (line 63), as shown in Figure 20.10b.

2. Recursively invoke displayTriangles with a reduced order to display three smaller
Sierpinski triangles (lines 66–68). Note that each small Sierpinski triangle is struc-
turally identical to the original big Sierpinski triangle except that the order of a small
triangle is one less, as shown in Figure 20.10b.

A Sierpinski triangle is displayed in a SierpinskiTrianglePanel. The order property in
the inner class SierpinskiTrianglePanel specifies the order for the Sierpinski triangle.
The Point class, introduced in Section 16.8, Mouse Events, represents a point on a compo-
nent. The midpoint(Point p1, Point p2) method returns the midpoint between p1 and
p2 (lines 72–74).

20.20 How do you obtain the midpoint between two points?

20.21 What is the base case for the displayTriangles method?

20.22 How many times is the displayTriangles method invoked for a Sierpinski triangle
of order 0, order 1, order 2, and order n?

displayTriangles(g, order - 1, p31, p23, p3);
displayTriangles(g, order - 1, p12, p2, p23);
displayTriangles(g, order - 1, p1, p12, p31);

Point p1, Point p2, Point p3) {
private static void displayTriangles(Graphics g, int order,

displayTriangles(g, order, p1, p2, p3);

draw a triangle

top subtriangle
left subtriangle
right subtriangle

main method omitted

displayTriangle method

20.9 Recursion vs. Iteration 757

p1

p3p2

Draw the Sierpinski triangle
displayTriangles(g, order, p1, p2, p3)

p1

(a)

p3p2

p12 p31

p23

Recursively draw the small Sierpinski triangle
displayTriangles(g,
order - 1, p1, p12, p31)

Recursively draw the
small Sierpinski triangle
displayTriangles(g,
order - 1, p31, p23, p3)

Recursively draw the small
Sierpinski triangle
displayTriangles(g,
order - 1, p12, p2, p23)

(b)

FIGURE 20.10 Drawing a Sierpinski triangle spawns calls to draw three small Sierpinski triangles recursively.

Key
Point

20.9 Recursion vs. Iteration
Recursion is an alternative form of program control. It is essentially repetition
without a loop.

When you use loops, you specify a loop body. The repetition of the loop body is controlled by
the loop control structure. In recursion, the method itself is called repeatedly. A selection
statement must be used to control whether to call the method recursively or not.

Recursion bears substantial overhead. Each time the program calls a method, the system
must allocate memory for all of the method’s local variables and parameters. This can con-
sume considerable memory and requires extra time to manage the memory.

Any problem that can be solved recursively can be solved nonrecursively with iterations.
Recursion has some negative aspects: it uses up too much time and too much memory. Why,
then, should you use it? In some cases, using recursion enables you to specify a clear, simple
solution for an inherently recursive problem that would otherwise be difficult to obtain.
Examples are the directory-size problem, the Towers of Hanoi problem, and the fractal prob-
lem, which are rather difficult to solve without using recursion.

The decision whether to use recursion or iteration should be based on the nature of,
and your understanding of, the problem you are trying to solve. The rule of thumb is to
use whichever approach can best develop an intuitive solution that naturally mirrors the
problem. If an iterative solution is obvious, use it. It will generally be more efficient than
the recursive option.

Note
Recursive programs can run out of memory, causing a StackOverflowError.

recursion overhead

recursion advantages

recursion or iteration?

StackOverflowError

758 Chapter 20 Recursion

✓Point✓Check

Key
Point

Tip
If you are concerned about your program’s performance, avoid using recursion, because
it takes more time and consumes more memory than iteration. In general, recursion can
be used to solve the inherent recursive problems such as Towers of Hanoi, recursive
directories, and Sierpinski triangles.

20.23 Which of the following statements are true?

a. Any recursive method can be converted into a nonrecursive method.

b. Recursive methods take more time and memory to execute than nonrecursive methods.

c. Recursive methods are always simpler than nonrecursive methods.

d. There is always a selection statement in a recursive method to check whether a
base case is reached.

20.24 What is a cause for a stack-overflow exception?

20.10 Tail Recursion
A tail recursive method is efficient for reducing stack size.

A recursive method is said to be tail recursive if there are no pending operations to be per-
formed on return from a recursive call, as illustrated in Figure 20.11a. However, method B in
Figure 20.11b is not tail recursive because there are pending operations after a method call
is returned.

tail recursion

performance concern

Recursive method A
. . .
. . .

. . .
Invoke method A recursively

Recursive method B
. . .
. . .
Invoke method B recursively
. . .
. . .

(b) Nontail recursion(a) Tail recursion

FIGURE 20.11 A tail-recursive method has no pending operations after a recursive call.

For example, the recursive isPalindrome method (lines 6–13) in Listing 20.4 is tail
recursive because there are no pending operations after recursively invoking isPalindrome
in line 12. However, the recursive factorial method (lines 16–21) in Listing 20.1 is not tail
recursive, because there is a pending operation, namely multiplication, to be performed on
return from each recursive call.

Tail recursion may be desirable: because the method ends when the last recursive call ends,
there is no need to store the intermediate calls in the stack. Some compilers can optimize tail
recursion to reduce stack size.

A nontail-recursive method can often be converted to a tail-recursive method by using aux-
iliary parameters. These parameters are used to contain the result. The idea is to incorporate
the pending operations into the auxiliary parameters in such a way that the recursive call no
longer has a pending operation. You can define a new auxiliary recursive method with the
auxiliary parameters. This method may overload the original method with the same name but
a different signature. For example, the factorial method in Listing 20.1 is written in a tail-
recursive way in Listing 20.10.

Chapter Summary 759

LISTING 20.10 ComputeFactorialTailRecursion.java
1 public class ComputeFactorialTailRecursion {
2 /** Return the factorial for a specified number */
3 public static long factorial(int n) {
4 return factorial(n, 1); // Call auxiliary method
5 }
6
7 /** Auxiliary tail-recursive method for factorial */
8 private static long factorial(int n, int result) {
9 if (n == 0)
10 return result;
11 else

12 return factorial(n - 1, n * result); // Recursive call
13 }
14 }

The first factorial method (line 3) simply invokes the second auxiliary method (line 4).
The second method contains an auxiliary parameter result that stores the result for the fac-
torial of n. This method is invoked recursively in line 12. There is no pending operation after
a call is returned. The final result is returned in line 10, which is also the return value from
invoking factorial(n, 1) in line 4.

20.25 Identify tail-recursive methods in this chapter.

20.26 Rewrite the fib method in Listing 20.2 using tail recursion.

KEY TERMS

original method
invoke auxiliary method

auxiliary method

recursive call

✓Point✓Check

base case 738
direct recursion 741
indirect recursion 741
infinite recursion 741

recursive helper method 747
recursive method 738
stopping condition 738
tail recursion 758

CHAPTER SUMMARY

1. A recursive method is one that directly or indirectly invokes itself. For a recursive
method to terminate, there must be one or more base cases.

2. Recursion is an alternative form of program control. It is essentially repetition with-
out a loop control. It can be used to specify simple, clear solutions for inherently
recursive problems that would otherwise be difficult to solve.

3. Sometimes the original method needs to be modified to receive additional parame-
ters in order to be invoked recursively. A recursive helper method can be defined for
this purpose.

4. Recursion bears substantial overhead. Each time the program calls a method, the system
must allocate memory for all of the method’s local variables and parameters. This can
consume considerable memory and requires extra time to manage the memory.

5. A recursive method is said to be tail recursive if there are no pending operations to be
performed on return from a recursive call. Some compilers can optimize tail recursion
to reduce stack size.

760 Chapter 20 Recursion

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 20.2–20.3
*20.1 (Factorial) Using the BigInteger class introduced in Section 10.14, you can

find the factorial for a large number (e.g., 100!). Implement the factorial
method using recursion. Write a program that prompts the user to enter an inte-
ger and displays its factorial.

*20.2 (Fibonacci numbers) Rewrite the fib method in Listing 20.2 using iterations.

Hint: To compute fib(n) without recursion, you need to obtain fib(n - 2)
and fib(n - 1) first. Let f0 and f1 denote the two previous Fibonacci num-
bers. The current Fibonacci number would then be f0 + f1. The algorithm
can be described as follows:

f0 = 0; // For fib(0)
f1 = 1; // For fib(1)

for (int i = 1; i <= n; i++) {
currentFib = f0 + f1;
f0 = f1;
f1 = currentFib;

}
// After the loop, currentFib is fib(n)

Write a test program that prompts the user to enter an index and displays its
Fibonacci number.

*20.3 (Compute greatest common divisor using recursion) The gcd(m, n) can also
be defined recursively as follows:

■ If m % n is 0, gcd(m, n) is n.
■ Otherwise, gcd(m, n) is gcd(n, m % n).

Write a recursive method to find the GCD. Write a test program that prompts
the user to enter two integers and displays their GCD.

20.4 (Sum series) Write a recursive method to compute the following series:

Write a test program that displays m(i) for i 1, 2, . . . , 10.

20.5 (Sum series) Write a recursive method to compute the following series:

Write a test program that displays m(i) for i 1, 2, . . . , 10.

*20.6 (Sum series) Write a recursive method to compute the following series:

Write a test program that displays m(i) for i 1, 2, . . . , 10.=

m(i) =
1

2
+

2

3
+ . . . +

i

i + 1

=

m(i) =
1

3
+

2

5
+

3

7
+

4

9
+

5

11
+

6

13
+ . . . +

i

2i + 1

=

m(i) = 1 +
1

2
+

1

3
+ . . . +

1

i

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 761

*20.7 (Fibonacci series) Modify Listing 20.2, ComputeFibonacci.java, so that the
program finds the number of times the fib method is called. (Hint: Use a static
variable and increment it every time the method is called.)

Section 20.4
*20.8 (Print the digits in an integer reversely) Write a recursive method that displays

an int value reversely on the console using the following header:

public static void reverseDisplay(int value)

For example, reverseDisplay(12345) displays 54321. Write a test pro-
gram that prompts the user to enter an integer and displays its reversal.

*20.9 (Print the characters in a string reversely) Write a recursive method that dis-
plays a string reversely on the console using the following header:

public static void reverseDisplay(String value)

For example, reverseDisplay("abcd") displays dcba. Write a test pro-
gram that prompts the user to enter a string and displays its reversal.

*20.10 (Occurrences of a specified character in a string) Write a recursive method that
finds the number of occurrences of a specified letter in a string using the fol-
lowing method header:

public static int count(String str, char a)

For example, count("Welcome", 'e') returns 2. Write a test program that
prompts the user to enter a string and a character, and displays the number of
occurrences for the character in the string.

*20.11 (Sum the digits in an integer using recursion) Write a recursive method that
computes the sum of the digits in an integer. Use the following method header:

public static int sumDigits(long n)

For example, sumDigits(234) returns Write a test program
that prompts the user to enter an integer and displays its sum.

Section 20.5
**20.12 (Print the characters in a string reversely) Rewrite Exercise 20.9 using a helper

method to pass the substring high index to the method. The helper method
header is:

public static void reverseDisplay(String value, int high)

*20.13 (Find the largest number in an array) Write a recursive method that returns the
largest integer in an array. Write a test program that prompts the user to enter a
list of eight integers and displays the largest element.

*20.14 (Find the number of uppercase letters in a string) Write a recursive method to
return the number of uppercase letters in a string. Write a test program that prompts
the user to enter a string and displays the number of uppercase letters in the string.

*20.15 (Occurrences of a specified character in a string) Rewrite Exercise 20.10
using a helper method to pass the substring high index to the method. The
helper method header is:

public static int count(String str, char a, int high)

2 + 3 + 4 = 9.

762 Chapter 20 Recursion

(a) (b)

FIGURE 20.12 (a) Exercise 20.19 uses the and buttons to increase or decrease the
current order by 1. (b) Exercise 20.20 draws ovals using a recursive method.

-+

*20.16 (Find the number of uppercase letters in an array) Write a recursive method to
return the number of uppercase letters in an array of characters. You need to
define the following two methods. The second one is a recursive helper method.

public static int count(char[] chars)
public static int count(char[] chars, int high)

Write a test program that prompts the user to enter a list of characters in one
line and displays the number of uppercase letters in the list.

*20.17 (Occurrences of a specified character in an array) Write a recursive method that
finds the number of occurrences of a specified character in an array. You need to
define the following two methods. The second one is a recursive helper method.

public static int count(char[] chars, char ch)
public static int count(char[] chars, char ch, int high)

Write a test program that prompts the user to enter a list of characters in one line,
and a character, and displays the number of occurrences of the character in the list.

Sections 20.6–20.10
*20.18 (Towers of Hanoi) Modify Listing 20.8, TowersOfHanoi.java, so that the pro-

gram finds the number of moves needed to move n disks from tower A to tower
B. (Hint: Use a static variable and increment it every time the method is called.)

*20.19 (Sierpinski triangle) Revise Listing 20.9 to develop an applet that lets the user
use the and buttons to increase or decrease the current order by 1, as
shown in Figure 20.12a. The initial order is 0. If the current order is 0, the
Decrease button is ignored.

-+

*20.20 (Display circles) Write a Java applet that displays ovals, as shown in Figure
20.12b. The ovals are centered in the panel. The gap between two adjacent
ovals is 10 pixels, and the gap between the border of the panel and the largest
oval is also 10.

*20.21 (Decimal to binary) Write a recursive method that converts a decimal number
into a binary number as a string. The method header is:

public static String decimalToBinary(int value)

Programming Exercises 763

Write a test program that prompts the user to enter a decimal number and dis-
plays its binary equivalent.

*20.22 (Decimal to hex) Write a recursive method that converts a decimal number into
a hex number as a string. The method header is:

public static String decimalToHex(int value)

Write a test program that prompts the user to enter a decimal number and dis-
plays its hex equivalent.

*20.23 (Binary to decimal) Write a recursive method that parses a binary number as a
string into a decimal integer. The method header is:

public static int binaryToDecimal(String binaryString)

Write a test program that prompts the user to enter a binary string and displays
its decimal equivalent.

*20.24 (Hex to decimal) Write a recursive method that parses a hex number as a string
into a decimal integer. The method header is:

public static int hexToDecimal(String hexString)

Write a test program that prompts the user to enter a hex string and displays its
decimal equivalent.

**20.25 (String permutation) Write a recursive method to print all the permutations of a
string. For example, for the string abc, the printout is

abc

acb

bac

bca

cab

cba

(Hint: Define the following two methods. The second is a helper method.)

public static void displayPermutation(String s)
public static void displayPermutation(String s1, String s2)

The first method simply invokes displayPermutation(" ", s). The
second method uses a loop to move a character from s2 to s1 and recursively
invokes it with a new s1 and s2. The base case is that s2 is empty and prints s1
to the console.

Write a test program that prompts the user to enter a string and displays all its
permutations.

**20.26 (Create a maze) Write an applet that will find a path in a maze, as shown in
Figure 20.13a. The maze is represented by an board. The path must meet
the following conditions:

■ The path is between the upper-left corner cell and the lower-right corner
cell in the maze.

■ The applet enables the user to place or remove a mark on a cell. A path con-
sists of adjacent unmarked cells. Two cells are said to be adjacent if they are
horizontal or vertical neighbors, but not if they are diagonal neighbors.

■ The path does not contain cells that form a square. The path in Figure
20.13b, for example, does not meet this condition. (The condition makes a
path easy to identify on the board.)

8 * 8

764 Chapter 20 Recursion

(a) Correct path (b) Illegal path

FIGURE 20.13 The program finds a path from the upper-left corner to the bottom-right corner.

(a) (b) (c) (d)

FIGURE 20.14 A Koch snowflake is a fractal starting with a triangle.

**20.27 (Koch snowflake fractal) The text presented the Sierpinski triangle fractal. In
this exercise, you will write an applet to display another fractal, called the Koch
snowflake, named after a famous Swedish mathematician. A Koch snowflake is
created as follows:

1. Begin with an equilateral triangle, which is considered to be the Koch frac-
tal of order (or level) 0, as shown in Figure 20.14a.

2. Divide each line in the shape into three equal line segments and draw an out-
ward equilateral triangle with the middle line segment as the base to create a
Koch fractal of order 1, as shown in Figure 20.14b.

3. Repeat Step 2 to create a Koch fractal of order 2, 3, . . . , and so on, as shown
in Figure 20.14c–d.

**20.28 (Nonrecursive directory size) Rewrite Listing 20.7, DirectorySize.java, without
using recursion.

*20.29 (Number of files in a directory) Write a program that prompts the user to enter
a directory and displays the number of the files in the directory.

**20.30 (Find words) Write a program that finds all occurrences of a word in all the files
under a directory, recursively. Pass the parameters from the command line as
follows:

java Exercise20_30 dirName word

**20.31 (Replace words) Write a program that replaces all occurrences of a word with a
new word in all the files under a directory, recursively. Pass the parameters
from the command line as follows:

java Exercise20_31 dirName oldWord newWord

Search a string in a directory
VideoNote

Programming Exercises 765

***20.32 (Game: Knight’s Tour) The Knight’s Tour is an ancient puzzle. The objective is
to move a knight, starting from any square on a chessboard, to every other
square once, as shown in Figure 20.15a. Note that the knight makes only L-
shaped moves (two spaces in one direction and one space in a perpendicular
direction). As shown in Figure 20.15b, the knight can move to eight squares.
Write a program that displays the moves for the knight in an applet, as shown in
Figure 20.15c.

(Hint: A brute-force approach for this problem is to move the knight from one
square to another available square arbitrarily. Using such an approach, your
program will take a long time to finish. A better approach is to employ some
heuristics. A knight has two, three, four, six, or eight possible moves, depend-
ing on its location. Intuitively, you should attempt to move the knight to the
least accessible squares first and leave those more accessible squares open, so
there will be a better chance of success at the end of the search.)

***20.33 (Game: Knight’s Tour animation) Write an applet for the Knight’s Tour prob-
lem. Your applet should let the user move a knight to any starting square and
click the Solve button to animate a knight moving along the path, as shown in
Figure 20.16.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

(a) (b) (c)

FIGURE 20.15 (a) A knight traverses all squares once. (b) A knight makes an L-shaped
move. (c) An applet displays a Knight’s Tour path.

FIGURE 20.16 A knight traverses along the path.

**20.34 (Game: Eight Queens) The Eight Queens problem is to find a solution to place
a queen in each row on a chessboard such that no two queens can attack each
other. Write a program to solve the Eight Queens problem using recursion and
display the result as shown in Figure 20.17.

766 Chapter 20 Recursion

FIGURE 20.17 The program displays a solution to the Eight Queens problem.

(a) (b) (c) (d)

FIGURE 20.18 A Hilbert curve with the specified order is drawn.

**20.35 (H-tree fractal) An H-tree (introduced at the beginning of this chapter) is a
fractal defined as follows:

1. Begin with a letter H. The three lines of the H are of the same length, as
shown in Figure 20.1a.

2. The letter H (in its sans-serif form, H) has four endpoints. Draw an H centered
at each of the four endpoints to an H-tree of order 1, as shown in Figure
20.1b. These Hs are half the size of the H that contains the four endpoints.

3. Repeat Step 2 to create an H-tree of order 2, 3, . . . , and so on, as shown in
Figure 20.1c–d.

Write an applet that draws an H-tree, as shown in Figure 20.1.

**20.36 (Hilbert curve) The Hilbert curve, first described by German mathematician
David Hilbert in 1891, is a space-filling curve that visits every point in a square
grid with a size of or any other power of 2.
Write a Java applet that displays a Hilbert curve for the specified order, as
shown in Figure 20.18.

2 * 2, 4 * 4, 8 * 8, 16 * 16,

20.37 (Sierpinski triangle) Write a program that prompts the user to enter the order
and display the filled Sierpinski triangles as shown in Figure 20.19.

**20.38 (Recursive tree) Write an applet to display a recursive tree as shown in
Figure 20.20.

Programming Exercises 767

**20.39 (Dragging the tree) Revise Exercise 20.38 to move the tree to where the
mouse is dragged.

FIGURE 20.19 A filled Sierpinski triangle is displayed.

(a) (b) (c) (d)

FIGURE 20.20 A recursive tree with the specified depth is drawn.

This page intentionally left blank

GENERICS

Objectives
■ To describe the benefits of generics (§21.2).

■ To use generic classes and interfaces (§21.2).

■ To define generic classes and interfaces (§21.3).

■ To explain why generic types can improve reliability and readability (§21.3).

■ To define and use generic methods and bounded generic types (§21.4).

■ To develop a generic sort method to sort an array of Comparable objects
(§21.5).

■ To use raw types for backward compatibility (§21.6).

■ To explain why wildcard generic types are necessary (§21.7).

■ To describe generic type erasure and list certain restrictions and limitations
on generic types caused by type erasure (§21.8).

■ To design and implement generic matrix classes (§21.9).

CHAPTER

21

770 Chapter 21 Generics

21.1 Introduction
Generics enable you to detect errors at compile time rather than at runtime.

You have used a generic class ArrayList in Chapter 11 and generic interface Comparable
in Chapter 15. Generics let you parameterize types. With this capability, you can define a
class or a method with generic types that the compiler can replace with concrete types. For
example, Java defines a generic ArrayList class for storing the elements of a generic type.
From this generic class, you can create an ArrayList object for holding strings and an
ArrayList object for holding numbers. Here, strings and numbers are concrete types that
replace the generic type.

The key benefit of generics is to enable errors to be detected at compile time rather than at
runtime. A generic class or method permits you to specify allowable types of objects that the
class or method can work with. If you attempt to use an incompatible object, the compiler will
detect that error.

This chapter explains how to define and use generic classes, interfaces, and methods and
demonstrates how generics can be used to improve software reliability and readability. It can
be intertwined with Chapter 15, Abstract Classes and Interfaces.

21.2 Motivations and Benefits
The motivation for using Java generics is to detect errors at compile time.

Java has allowed you to define generic classes, interfaces, and methods since JDK 1.5. Sev-
eral interfaces and classes in the Java API are modified using generics. For example, prior to
JDK 1.5 the java.lang.Comparable interface was defined as shown in Figure 21.1a, but
since JDK 1.5 it is modified as shown in Figure 21.1b.

Key
Point

what is generics?

why generics?

Key
Point

formal generic type

actual concrete type

generic instantiation

Here, <T> represents a formal generic type, which can be replaced later with an actual
concrete type. Replacing a generic type is called a generic instantiation. By convention, a
single capital letter such as E or T is used to denote a formal generic type.

To see the benefits of using generics, let us examine the code in Figure 21.2. The statement
in Figure 21.2a declares that c is a reference variable whose type is Comparable and invokes
the compareTo method to compare a Date object with a string. The code compiles fine, but
it has a runtime error because a string cannot be compared with a date.

Comparable c = new Date();
System.out.println();c.compareTo("red")

c = new Date();
System.out.println();c.compareTo("red")
Comparable<Date>

(a) Prior to JDK 1.5 (b) Since JDK 1.5

FIGURE 21.2 The new generic type detects possible errors at compile time.

package java.lang;

public interface Comparable {
public int compareTo(Object o)

}

(a) Prior to JDK 1.5

package java.lang;

public interface Comparable {
public int compareTo(o)

}
T

<T>

(b) Since JDK 1.5

The java.lang.Comparable interface was modified in JDK 1.5 with a
generic type.
FIGURE 21.1

21.2 Motivations and Benefits 771

(a) ArrayList before JDK 1.5

+ArrayList()
+add(o: Object): void
+add(index: int, o: Object): void
+clear(): void
+contains(o: Object): boolean

+get(index:int): Object
+indexOf(o: Object): int
+isEmpty(): boolean
+lastIndexOf(o: Object): int
+remove(o: Object): boolean
+size(): int
+remove(index: int): boolean
+set(index: int, o: Object): Object

java.util.ArrayList

(b) ArrayList since JDK 1.5

+ArrayList()

+clear(): void
+contains(o: Object): boolean

+indexOf(o: Object): int
+isEmpty(): boolean
+lastIndexOf(o: Object): int
+remove(o: Object): boolean
+size(): int
+remove(index: int): boolean

java.util.ArrayList<E>

+add(o: E): void
+add(index: int, o: E): void

+get(index:int): E

+set(index: int, o: E): E

FIGURE 21.3 ArrayList is a generic class since JDK 1.5.

reliable

The statement in Figure 21.2b declares that c is a reference variable whose type is
Comparable<Date> and invokes the compareTo method to compare a Date object with a
string. This code generates a compile error, because the argument passed to the compareTo
method must be of the Date type. Since the errors can be detected at compile time rather than
at runtime, the generic type makes the program more reliable.

ArrayList was introduced in Section 11.11, The ArrayList Class. This class has been
a generic class since JDK 1.5. Figure 21.3 shows the class diagram for ArrayList before
and since JDK 1.5, respectively.

only strings allowed

generic reference type

autoboxing

For example, the following statement creates a list for strings:

ArrayList<String> list = new ArrayList<String>();

You can now add only strings into the list. For instance,

list.add("Red");

If you attempt to add a nonstring, a compile error will occur. For example, the following state-
ment is now illegal, because list can contain only strings.

list.add(new Integer(1));

Generic types must be reference types. You cannot replace a generic type with a primitive
type such as int, double, or char. For example, the following statement is wrong:

ArrayList<int> intList = new ArrayList<int>();

To create an ArrayList object for int values, you have to use:

ArrayList<Integer> intList = new ArrayList<Integer>();

You can add an int value to intList. For example,

intList.add(5);

Java automatically wraps 5 into new Integer(5). This is called autoboxing, as introduced
in Section 10.13, Automatic Conversion between Primitive Types and Wrapper Class Types.

772 Chapter 21 Generics

✓Point✓Check

Casting is not needed to retrieve a value from a list with a specified element type, because
the compiler already knows the element type. For example, the following statements create a
list that contains strings, add strings to the list, and retrieve strings from the list.

1 ArrayList<String> list = new ArrayList<String>();
2 list.add("Red");
3 list.add("White");
4 String s = list.get(0); // No casting is needed

Prior to JDK 1.5, without using generics, you would have had to cast the return value to
String as:

String s = (String)(list.get(0)); // Casting needed prior to JDK 1.5

If the elements are of wrapper types, such as Integer, Double, and Character, you can
directly assign an element to a primitive type variable. This is called autounboxing, as intro-
duced in Section 10.13. For example, see the following code:

1 ArrayList<Double> list = new ArrayList<Double>();
2 list.add(5.5); // 5.5 is automatically converted to new Double(5.5)
3 list.add(3.0); // 3.0 is automatically converted to new Double(3.0)
4 Double doubleObject = list.get(0); // No casting is needed
5 double d = list.get(1); // Automatically converted to double

In lines 2 and 3, 5.5 and 3.0 are automatically converted into Double objects and added to
list. In line 4, the first element in list is assigned to a Double variable. No casting is nec-
essary, because list is declared for Double objects. In line 5, the second element in list is
assigned to a double variable. The object in list.get(1) is automatically converted into a
primitive type value.

21.1 Are there any compile errors in (a) and (b)?

autounboxing

Key
Point

no casting needed

ArrayList dates = new ArrayList();
dates.add(new Date());
dates.add(new String());

ArrayList<Date> dates =
new ArrayList<Date>();

dates.add(new Date());
dates.add(new String());

(a) Prior to JDK 1.5 (b) Since JDK 1.5

21.2 What is wrong in (a)? Is the code in (b) correct?

ArrayList dates = new ArrayList();
dates.add(new Date());
Date date = dates.get(0);

ArrayList<Date> dates =
new ArrayList<Date>();

dates.add(new Date());
Date date = dates.get(0);

(a) Prior to JDK 1.5 (b) Since JDK 1.5

21.3 What are the benefits of using generic types?

21.3 Defining Generic Classes and Interfaces
A generic type can be defined for a class or interface. A concrete type must be
specified when using the class to create an object or using the class or interface to
declare a reference variable.

21.3 Defining Generic Classes and Interfaces 773

Let us revise the stack class in Section 11.12, Case Study: A Custom Stack Class, to general-
ize the element type with a generic type. The new stack class, named GenericStack, is
shown in Figure 21.4 and is implemented in Listing 21.1.

LISTING 21.1 GenericStack.java
1 public class GenericStack< > {
2 private java.util.ArrayList< > list = new java.util.ArrayList<E>();
3
4
5 return list.size();
6 }
7
8
9 return list.get(getSize() - 1);
10 }
11
12
13 list.add(o);
14 }
15
16
17 E o = list.get(getSize() - 1);
18 list.remove(getSize() - 1);
19 return o;
20 }
21
22
23 return list.isEmpty();
24 }
25
26 @Override
27 public String toString() {
28 return "stack: " + list.toString();
29 }
30 }

The following example creates a stack to hold strings and adds three strings to the stack:

GenericStack<String> stack1 = new GenericStack<String>();
stack1.push("London");
stack1.push("Paris");
stack1.push("Berlin");

public boolean isEmpty() {

public E pop() {

public void push(E o) {

public E peek() {

public int getSize() {

E
E generic type E declared

generic array list

getSize

peek

push

pop

isEmpty

Creates an empty stack.

Returns the number of elements in this stack.

Returns the top element in this stack.

Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

Returns true if the stack is empty.

An array list to store elements.

GenericStack<E>

-list: java.util.ArrayList<E>

+GenericStack()

+getSize(): int

+peek(): E

+pop(): E

+push(o: E): void

+isEmpty(): boolean

FIGURE 21.4 The GenericStack class encapsulates the stack storage and provides the
operations for manipulating the stack.

774 Chapter 21 Generics

This example creates a stack to hold integers and adds three integers to the stack:

GenericStack<Integer> stack2 = new GenericStack<Integer>();
stack2.push(1); // autoboxing 1 to new Integer(1)
stack2.push(2);
stack2.push(3);

Instead of using a generic type, you could simply make the type element Object, which can
accommodate any object type. However, using generic types can improve software reliabil-
ity and readability, because certain errors can be detected at compile time rather than at run-
time. For example, because stack1 is declared GenericStack<String>, only strings can
be added to the stack. It would be a compile error if you attempted to add an integer to
stack1.

Caution
To create a stack of strings, you use new GenericStack<String>(). This could
mislead you into thinking that the constructor of GenericStack should be defined as

public GenericStack<E>()

This is wrong. It should be defined as

public GenericStack()

Note
Occasionally, a generic class may have more than one parameter. In this case, place
the parameters together inside the brackets, separated by commas—for example,
<E1, E2, E3>.

Note
You can define a class or an interface as a subtype of a generic class or interface. For
example, the java.lang.String class is defined to implement the Comparable
interface in the Java API as follows:

public class String implements Comparable<String>

21.4 What is the generic definition for java.lang.Comparable in the Java API?

21.5 Since you create an instance of ArrayList of strings using new

ArrayList<String>(), should the constructor in the ArrayList class be
defined as

public ArrayList<E>()

21.6 Can a generic class have multiple generic parameters?

21.7 How do you declare a generic type in a class?

21.4 Generic Methods
A generic type can be defined for a static method.

You can define generic interfaces (e.g., the Comparable interface in Figure 21.1b) and
classes (e.g., the GenericStack class in Listing 21.1). You can also use generic types to
define generic methods. For example, Listing 21.2 defines a generic method print (lines
10–14) to print an array of objects. Line 6 passes an array of integer objects to invoke the
generic print method. Line 7 invokes print with an array of strings.

benefits of using generic types

generic class constructor

multiple generic parameters

inheritance with generics

✓Point✓Check

Key
Point

generic method

21.4 Generic Methods 775

LISTING 21.2 GenericMethodDemo.java
1 public class GenericMethodDemo {
2 public static void main(String[] args) {
3 Integer[] integers = {1, 2, 3, 4, 5};
4 String[] strings = {"London", "Paris", "New York", "Austin"};
5
6 GenericMethodDemo.<Integer>print(integers);
7 GenericMethodDemo.<String>print(strings);
8 }
9
10 public static <E> void print(E[] list) {
11 for (int i = 0; i < list.length; i++)
12 System.out.print(list[i] + " ");
13 System.out.println();
14 }
15 }

To declare a generic method, you place the generic type <E> immediately after the keyword
static in the method header. For example,

public static void print(E[] list)

To invoke a generic method, prefix the method name with the actual type in angle brackets.
For example,

GenericMethodDemo.<Integer>print(integers);
GenericMethodDemo.<String>print(strings);

or simply invoke it as follows:

print(integers);
print(strings);

In the latter case, the actual type is not explicitly specified. The compiler automatically dis-
covers the actual type.

A generic type can be specified as a subtype of another type. Such a generic type is called
bounded. For example, Listing 21.3 revises the equalArea method in Listing 15.4, TestGeo-
metricObject.java, to test whether two geometric objects have the same area. The bounded
generic type <E extends GeometricObject> (line 7) specifies that E is a generic subtype
of GeometricObject. You must invoke equalArea by passing two instances of
GeometricObject.

LISTING 21.3 BoundedTypeDemo.java
1 public class BoundedTypeDemo {
2 public static void main(String[] args) {
3 Rectangle rectangle = new Rectangle(2, 2);
4 Circle circle = new Circle(2);
5
6 System.out.println("Same area? " +
7 equalArea(rectangle, circle));
8 }
9
10 public static <E extends GeometricObject> boolean equalArea(
11 E object1, E object2) {
12 return object1.getArea() == object2.getArea();
13 }
14 }

<E>

generic method

declare a generic method

invoke generic method

bounded generic type

Rectangle in Listing 15.3
Circle in Listing 15.2

bounded generic type

776 Chapter 21 Generics

Key
Point

✓Point✓Check

Note
An unbounded generic type <E> is the same as <E extends Object>.

Note
To define a generic type for a class, place it after the class name, such as
GenericStack<E>. To define a generic type for a method, place the generic type
before the method return type, such as <E> void max(E o1, E o2).

21.8 How do you declare a generic method? How do you invoke a generic method?

21.9 What is a bounded generic type?

21.5 Case Study: Sorting an Array of Objects
You can develop a generic method for sorting an array of Comparable objects.

This section presents a generic method for sorting an array of comparable objects. The
objects are instances of the Comparable interface, and they are compared using the
compareTo method. To test the method, the program sorts an array of integers, an array of
double numbers, an array of characters, and an array of strings. The program is shown in
Listing 21.4.

LISTING 21.4 GenericSort.java
1 public class GenericSort {
2 public static void main(String[] args) {
3 // Create an Integer array
4 Integer[] intArray = {new Integer(2), new Integer(4),
5 new Integer(3)};
6
7 // Create a Double array
8 Double[] doubleArray = {new Double(3.4), new Double(1.3),
9 new Double(-22.1)};
10
11 // Create a Character array
12 Character[] charArray = {new Character('a'),
13 new Character('J'), new Character('r')};
14
15 // Create a String array
16 String[] stringArray = {"Tom", "Susan", "Kim"};
17
18 // Sort the arrays
19
20
21
22
23
24 // Display the sorted arrays
25 System.out.print("Sorted Integer objects: ");
26 printList(intArray);
27 System.out.print("Sorted Double objects: ");
28 printList(doubleArray);
29 System.out.print("Sorted Character objects: ");
30 printList(charArray);
31 System.out.print("Sorted String objects: ");
32 printList(stringArray);
33 }
34

sort(stringArray);
sort(charArray);
sort(doubleArray);
sort(intArray);

generic class parameter vs.
generic method parameter

sort Integer objects
sort Double objects
sort Character objects
sort String objects

21.5 Case Study: Sorting an Array of Objects 777

35 /** Sort an array of comparable objects */
36 {
37 E currentMin;
38 int currentMinIndex;
39
40 for (int i = 0; i < list.length - 1; i++) {
41 // Find the minimum in the list[i+1..list.length-2]
42 currentMin = list[i];
43 currentMinIndex = i;
44
45 for (int j = i + 1; j < list.length; j++) {
46 {
47 currentMin = list[j];
48 currentMinIndex = j;
49 }
50 }
51
52 // Swap list[i] with list[currentMinIndex] if necessary;
53 if (currentMinIndex != i) {
54 list[currentMinIndex] = list[i];
55 list[i] = currentMin;
56 }
57 }
58 }
59
60 /** Print an array of objects */
61 public static void printList(Object[] list) {
62 for (int i = 0; i < list.length; i++)
63 System.out.print(list[i] + " ");
64 System.out.println();
65 }
66 }

if (currentMin.compareTo(list[j]) > 0)

public static <E extends Comparable<E>> void sort(E[] list) generic sort method

compareTo

Sorted Integer objects: 2 3 4
Sorted Double objects: -22.1 1.3 3.4
Sorted Character objects: J a r
Sorted String objects: Kim Susan Tom

The algorithm for the sort method is the same as in Listing 6.8, SelectionSort.java The sort
method in that program sorts an array of double values. The sort method in this example
can sort an array of any object type, provided that the objects are also instances of the
Comparable interface. The generic type is defined as <E extends Comparable<E>> (line
36). This has two meanings. First, it specifies that E is a subtype of Comparable. Second, it
specifies that the elements to be compared are of the E type as well.

The sort method uses the compareTo method to determine the order of the objects in the
array (line 46). Integer, Double, Character, and String implement Comparable, so
the objects of these classes can be compared using the compareTo method. The program cre-
ates arrays of Integer objects, Double objects, Character objects, and String objects
(lines 4–16) and invoke the sort method to sort these arrays (lines 19–22).

21.10 Given int[] list = {1, 2, -1}, can you invoke sort(list) using the sort
method in Listing 21.4?

21.11 Given int[] list = {new Integer(1), new Integer(2), new Inte-
ger(-1)}, can you invoke sort(list) using the sort method in Listing 21.4?

✓Point✓Check

778 Chapter 21 Generics

Key
Point

FIGURE 21.5 The unchecked warnings are displayed using the compiler option
–Xlint:unchecked.

21.6 Raw Types and Backward Compatibility
A generic class or interface used without specifying a concrete type, called a raw type,
enables backward compatibility with earlier versions of Java.

You can use a generic class without specifying a concrete type like this:

GenericStack stack = new GenericStack(); // raw type

This is roughly equivalent to

GenericStack<Object> stack = new GenericStack<Object>();

A generic class such as GenericStack and ArrayList used without a type parameter is
called a raw type. Using raw types allows for backward compatibility with earlier versions of
Java. For example, a generic type has been used in java.lang.Comparable since JDK 1.5,
but a lot of code still uses the raw type Comparable, as shown in Listing 21.5:

LISTING 21.5 Max.java
1 public class Max {
2 /** Return the maximum of two objects */
3 public static Comparable max(Comparable o1, Comparable o2) {
4 if (o1.compareTo(o2) > 0)
5 return o1;
6 else
7 return o2;
8 }
9 }

Comparable o1 and Comparable o2 are raw type declarations. Be careful: raw types are
unsafe. For example, you might invoke the max method using

Max.max("Welcome", 23); // 23 is autoboxed into new Integer(23)

This would cause a runtime error, because you cannot compare a string with an integer
object. The Java compiler displays a warning on line 3 when compiled with the option
–Xlint:unchecked, as shown in Figure 21.5.

A better way to write the max method is to use a generic type, as shown in Listing 21.6.

LISTING 21.6 MaxUsingGenericType.java
1 public class MaxUsingGenericType {
2 /** Return the maximum of two objects */
3 public static <E extends Comparable<E>> E max(E o1, E o2) {
4 if (o1.compareTo(o2) > 0)
5 return o1;
6 else

raw type

backward compatibility

raw type

Xlint:unchecked

bounded type

21.7 Wildcard Generic Types 779

✓Point✓Check

7 return o2;
8 }
9 }

If you invoke the max method using

// 23 is autoboxed into new Integer(23)
MaxUsingGenericType.max("Welcome", 23);

a compile error will be displayed, because the two arguments of the max method in
MaxUsingGenericType must have the same type (e.g., two strings or two integer objects).
Furthermore, the type E must be a subtype of Comparable<E>.

As another example, in the following code you can declare a raw type stack in line 1,
assign new GenericStack<String> to it in line 2, and push a string and an integer object
to the stack in lines 3 and 4.

1 GenericStack stack;
2 stack = new GenericStack<String>();
3 stack.push("Welcome to Java");
4 stack.push(new Integer(2));

However, line 4 is unsafe because the stack is intended to store strings, but an Integer object
is added into the stack. Line 3 should be okay, but the compiler will show warnings for both
line 3 and line 4, because it cannot follow the semantic meaning of the program. All the com-
piler knows is that stack is a raw type, and performing certain operations is unsafe. Therefore,
warnings are displayed to alert potential problems.

Tip
Since raw types are unsafe, this book will not use them from here on.

21.12 What is a raw type? Why is a raw type unsafe? Why is the raw type allowed in Java?

21.13 What is the syntax to declare an ArrayList reference variable using the raw type
and assign a raw type ArrayList object to it?

21.7 Wildcard Generic Types
You can use unbounded wildcards, bounded wildcards, or lower-bound wildcards to
specify a range for a generic type.

What are wildcard generic types and why are they needed? Listing 21.7 gives an example to
demonstrate the needs. The example defines a generic max method for finding the maximum
in a stack of numbers (lines 12–22). The main method creates a stack of integer objects, adds
three integers to the stack, and invokes the max method to find the maximum number in the
stack.

LISTING 21.7 WildCardNeedDemo.java
1 public class WildCardNeedDemo {
2 public static void main(String[] args) {
3 GenericStack<Integer> intStack = new GenericStack<Integer>();
4 intStack.push(1); // 1 is autoboxed into new Integer(1)
5 intStack.push(2);
6 intStack.push(-2);
7
8 System.out.print("The max number is " + max(intStack));
9 }
10

Key
Point

GenericStack<Integer>
type

780 Chapter 21 Generics

11 /** Find the maximum in a stack of numbers */
12 public static double max(GenericStack<Number> stack) {
13 double max = stack.pop().doubleValue(); // Initialize max
14
15 while (!stack.isEmpty()) {
16 double value = stack.pop().doubleValue();
17 if (value > max)
18 max = value;
19 }
20
21 return max;
22 }
23 }

The program in Listing 21.7 has a compile error in line 8 because intStack is not an
instance of GenericStack<Number>. Thus, you cannot invoke max(intStack).

The fact is that Integer is a subtype of Number, but GenericStack<Integer> is not a
subtype of GenericStack<Number>. To circumvent this problem, use wildcard generic
types. A wildcard generic type has three forms: ? and ? extends T, as well as ? super T,
where T is a generic type.

The first form, ?, called an unbounded wildcard, is the same as ? extends Object. The
second form, ? extends T, called a bounded wildcard, represents T or an unknown subtype
of T. The third form, ? super T, called a lower-bound wildcard, denotes T or an unknown
supertype of T.

You can fix the error by replacing line 12 in Listing 21.7 as follows:

public static double max(GenericStack<? extends Number> stack) {

<? extends Number> is a wildcard type that represents Number or a subtype of Number, so it
is legal to invoke max(new GenericStack<Integer>()) or max(new
GenericStack<Double>()).

Listing 21.8 shows an example of using the ? wildcard in the print method that prints
objects in a stack and empties the stack. <?> is a wildcard that represents any object type. It is
equivalent to <? extends Object>. What happens if you replace GenericStack<?> with
GenericStack<Object>? It would be wrong to invoke print(intStack), because
intStack is not an instance of GenericStack<Object>. Please note that
GenericStack<Integer> is not a subtype of GenericStack<Object>, even though
Integer is a subtype of Object.

LISTING 21.8 AnyWildCardDemo.java
1 public class AnyWildCardDemo {
2 public static void main(String[] args) {
3 GenericStack<Integer> intStack = new GenericStack<Integer>();
4 intStack.push(1); // 1 is autoboxed into new Integer(1)
5 intStack.push(2);
6 intStack.push(-2);
7
8 print(intStack);
9 }
10
11 /** Prints objects and empties the stack */
12 public static void print(GenericStack<?> stack) {
13 while (!stack.isEmpty()) {
14 System.out.print(stack.pop() + " ");
15 }
16 }
17 }

GenericStack<Number>
type

unbounded wildcard

bounded wildcard

lower-bound wildcard

GenericStack<Integer>
type

wildcard type

21.7 Wildcard Generic Types 781

When is the wildcard <? super T> needed? Consider the example in Listing 21.9. The exam-
ple creates a stack of strings in stack1 (line 3) and a stack of objects in stack2 (line 4), and
invokes add(stack1, stack2) (line 8) to add the strings in stack1 into stack2.
GenericStack<? super T> is used to declare stack2 in line 13. If <? super T> is
replaced by <T>, a compile error will occur on add(stack1, stack2) in line 8, because
stack1’s type is GenericStack<String> and stack2’s type is GenericStack<Object>.
<? super T> represents type T or a supertype of T. Object is a supertype of String.

LISTING 21.9 SuperWildCardDemo.java
1 public class SuperWildCardDemo {
2 public static void main(String[] args) {
3 GenericStack<String> stack1 = new GenericStack<String>();
4 GenericStack<Object> stack2 = new GenericStack<Object>();
5 stack2.push("Java");
6 stack2.push(2);
7 stack1.push("Sun");
8 add(stack1, stack2);
9 AnyWildCardDemo.print(stack2);
10 }
11
12 public static <T> void add(GenericStack<T> stack1,
13 GenericStack<? super T> stack2) {
14 while (!stack1.isEmpty())
15 stack2.push(stack1.pop());
16 }
17 }

This program will also work if the method header in lines 12–13 is modified as follows:

public static <T> void add(GenericStack<? extends T> stack1,
GenericStack<T> stack2)

The inheritance relationship involving generic types and wildcard types is summarized in Figure
21.6. In this figure, A and B represent classes or interfaces, and E is a generic type parameter.

why <? Super T>

GenericStack<String>
type

<? Super T> type

21.14 Is GenericStack the same as GenericStack<Object>?

21.15 What are an unbounded wildcard, a bounded wildcard, and a lower-bound wildcard?

21.16 What happens if lines 12–13 in Listing 21.9 are changed to

public static <T> void add(GenericStack<T> stack1,
GenericStack<T> stack2)

✓Point✓Check

E

? super E

Object

E’s subclass ? extends E

A<? extends B> A<? super B>

A<?>

Object

AA<B’s subclass> A<B’s subclass>

? E’s superclass

FIGURE 21.6 The relationship between generic types and wildcard types.

782 Chapter 21 Generics

Key
Point

21.17 What happens if lines 12–13 in Listing 21.9 are changed to

public static <T> void add(GenericStack<? extends T> stack1,
GenericStack<T> stack2)

21.8 Erasure and Restrictions on Generics
The information on generics is used by the compiler but is not available at runtime.
This is called type erasure.

Generics are implemented using an approach called type erasure: The compiler uses the
generic type information to compile the code, but erases it afterward. Thus, the generic infor-
mation is not available at runtime. This approach enables the generic code to be backward
compatible with the legacy code that uses raw types.

The generics are present at compile time. Once the compiler confirms that a generic type is
used safely, it converts the generic type to a raw type. For example, the compiler checks
whether the following code in (a) uses generics correctly and then translates it into the equiv-
alent code in (b) for runtime use. The code in (b) uses the raw type.

type erasure

erase generics

replace generic type

replace bounded type

important fact

ArrayList list = new ArrayList ();
list.add("Oklahoma");
String state = list.get(0);

<String><String>

(a)

ArrayList list = new ArrayList();
list.add("Oklahoma");
String state = (list.get(0));(String)

(b)

When generic classes, interfaces, and methods are compiled, the compiler replaces the
generic type with the Object type. For example, the compiler would convert the following
method in (a) into (b).

public static void print([] list) {
for (int i = 0; i < list.length; i++)
System.out.print(list[i] + " ");

System.out.println();
}

E<E>

(a)

public static void print([] list) {
for (int i = 0; i < list.length; i++)
System.out.print(list[i] + " ");

System.out.println();
}

Object

(b)

If a generic type is bounded, the compiler replaces it with the bounded type. For example, the
compiler would convert the following method in (a) into (b).

public static
boolean equalArea(

object1,
object2) {

return object1.getArea() ==
object2.getArea();

}

E
E

<E extends GeometricObject>

(a)

public static
boolean equalArea(

object1,

object2) {
return object1.getArea() ==
object2.getArea();

}

GeometricObject
GeometricObject

(b)

It is important to note that a generic class is shared by all its instances regardless of its actual
concrete type. Suppose list1 and list2 are created as follows:

ArrayList<String> list1 = new ArrayList<String>();
ArrayList<Integer> list2 = new ArrayList<Integer>();

21.8 Erasure and Restrictions on Generics 783

Although ArrayList<String> and ArrayList<Integer> are two types at compile time,
only one ArrayList class is loaded into the JVM at runtime. list1 and list2 are both
instances of ArrayList, so the following statements display true:

System.out.println(list1 instanceof ArrayList);
System.out.println(list2 instanceof ArrayList);

However, the expression list1 instanceof ArrayList<String> is wrong. Since
ArrayList<String> is not stored as a separate class in the JVM, using it at runtime
makes no sense.

Because generic types are erased at runtime, there are certain restrictions on how generic
types can be used. Here are some of the restrictions:

Restriction 1: Cannot Use new E()

You cannot create an instance using a generic type parameter. For example, the following
statement is wrong:

E object = new E();

The reason is that new E() is executed at runtime, but the generic type E is not avail-
able at runtime.

Restriction 2: Cannot Use new E[]

You cannot create an array using a generic type parameter. For example, the following
statement is wrong:

E[] elements = new E[capacity];

You can circumvent this limitation by creating an array of the Object type and then cast-
ing it to E[], as follows:

E[] elements = (E[])new Object[capacity];

However, casting to (E[]) causes an unchecked compile warning. The warning occurs
because the compiler is not certain that casting will succeed at runtime. For example, if E
is String and new Object[] is an array of Integer objects, (String[])(new
Object[]) will cause a ClassCastException. This type of compile warning is a
limitation of Java generics and is unavoidable.

Generic array creation using a generic class is not allowed, either. For example, the
following code is wrong:

ArrayList<String>[] list = new ArrayList<String>[10];

You can use the following code to circumvent this restriction:

ArrayList<String>[] list = (ArrayList<String>[])new
ArrayList[10];

However, you will still get a compile warning.

Restriction 3: A Generic Type Parameter of a Class Is Not Allowed in a Static
Context

Since all instances of a generic class have the same runtime class, the static variables and
methods of a generic class are shared by all its instances. Therefore, it is illegal to refer to

no new E()

no new E[capacity]

unavoidable compile warning

784 Chapter 21 Generics

✓Point✓Check

Key
Point

a generic type parameter for a class in a static method, field, or initializer. For example, the
following code is illegal:

public class Test<E> {
public static void m(E o1) { // Illegal
}

public static E o1; // Illegal

static {
E o2; // Illegal

}
}

Restriction 4: Exception Classes Cannot Be Generic

A generic class may not extend java.lang.Throwable, so the following class declara-
tion would be illegal:

public class MyException<T> extends Exception {
}

Why? If it were allowed, you would have a catch clause for MyException<T> as follows:

try {
...

}
catch (MyException<T> ex) {
...

}

The JVM has to check the exception thrown from the try clause to see if it matches the
type specified in a catch clause. This is impossible, because the type information is not
present at runtime.

21.18 What is erasure? Why are Java generics implemented using erasure?

21.19 If your program uses ArrayList<String> and ArrayList<Date>, does the JVM
load both of them?

21.20 Can you create an instance using new E() for a generic type E? Why?

21.21 Can a method that uses a generic class parameter be static? Why?

21.22 Can you define a custom generic exception class? Why?

21.9 Case Study: Generic Matrix Class
This section presents a case study on designing classes for matrix operations using
generic types.

The addition and multiplication operations for all matrices are similar except that their ele-
ment types differ. Therefore, you can design a superclass that describes the common opera-
tions shared by matrices of all types regardless of their element types, and you can create
subclasses tailored to specific types of matrices. This case study gives implementations for
two types: int and Rational. For the int type, the wrapper class Integer should be used
to wrap an int value into an object, so that the object is passed in the methods for operations.

The class diagram is shown in Figure 21.7. The methods addMatrix and
multiplyMatrix add and multiply two matrices of a generic type E[][]. The static method
printResult displays the matrices, the operator, and their result. The methods add,
multiply, and zero are abstract, because their implementations depend on the specific type
of the array elements. For example, the zero() method returns 0 for the Integer type and

21.9 Case Study: Generic Matrix Class 785

#add(element1: E, element2: E): E
#multiply(element1: E, element2: E): E
#zero(): E
+addMatrix(matrix1: E[][], matrix2: E[][]): E[][]
+multiplyMatrix(matrix1: E[][], matrix2: E[][]): E[][]
+printResult(m1: Number[][], m2: Number[][],

GenericMatrix<E extends Number> IntegerMatrix

RationalMatrixm3: Number[][], op: char): void

FIGURE 21.7 The GenericMatrix class is an abstract superclass for IntegerMatrix and
RationalMatrix.

0/1 for the Rational type. These methods will be implemented in the subclasses in which
the matrix element type is specified.

IntegerMatrix and RationalMatrix are concrete subclasses of GenericMatrix.
These two classes implement the add, multiply, and zero methods defined in the
GenericMatrix class.

Listing 21.10 implements the GenericMatrix class. <E extends Number> in line 1
specifies that the generic type is a subtype of Number. Three abstract methods—add, multiply,
and zero—are defined in lines 3, 6, and 9. These methods are abstract because we cannot imple-
ment them without knowing the exact type of the elements. The addMaxtrix (lines 12–30) and
multiplyMatrix (lines 33–57) methods implement the methods for adding and multiplying
two matrices. All these methods must be nonstatic, because they use generic type E for the class.
The printResult method (lines 60–84) is static because it is not tied to specific instances.

The matrix element type is a generic subtype of Number. This enables you to use an object
of any subclass of Number as long as you can implement the abstract add, multiply, and
zero methods in subclasses.

The addMatrix and multiplyMatrix methods (lines 12–57) are concrete methods.
They are ready to use as long as the add, multiply, and zero methods are implemented in
the subclasses.

The addMatrix and multiplyMatrix methods check the bounds of the matrices before
performing operations. If the two matrices have incompatible bounds, the program throws an
exception (lines 16, 36).

LISTING 21.10 GenericMatrix.java
1 public abstract class GenericMatrix<E extends Number> {
2 /** Abstract method for adding two elements of the matrices */
3 protected abstract E add(E o1, E o2);
4
5 /** Abstract method for multiplying two elements of the matrices */
6 protected abstract E multiply(E o1, E o2);
7
8 /** Abstract method for defining zero for the matrix element */
9 protected abstract E zero();
10
11 /** Add two matrices */
12 public E[][] addMatrix(E[][] matrix1, E[][] matrix2) {
13 // Check bounds of the two matrices
14 if ((matrix1.length != matrix2.length) ||
15 (matrix1[0].length != matrix2[0].length)) {
16 throw new RuntimeException(
17 "The matrices do not have the same size");
18 }
19

bounded generic type

abstract method

abstract method

abstract method

add two matrices

786 Chapter 21 Generics

20 E[][] result =
21 (E[][])new Number[matrix1.length][matrix1[0].length];
22
23 // Perform addition
24 for (int i = 0; i < result.length; i++)
25 for (int j = 0; j < result[i].length; j++) {
26 result[i][j] = add(matrix1[i][j], matrix2[i][j]);
27 }
28
29 return result;
30 }
31
32 /** Multiply two matrices */
33 public E[][] multiplyMatrix(E[][] matrix1, E[][] matrix2) {
34 // Check bounds
35 if (matrix1[0].length != matrix2.length) {
36 throw new RuntimeException(
37 "The matrices do not have compatible size");
38 }
39
40 // Create result matrix
41 E[][] result =
42 (E[][])new Number[matrix1.length][matrix2[0].length];
43
44 // Perform multiplication of two matrices
45 for (int i = 0; i < result.length; i++) {
46 for (int j = 0; j < result[0].length; j++) {
47 result[i][j] = zero();
48
49 for (int k = 0; k < matrix1[0].length; k++) {
50 result[i][j] = add(result[i][j],
51 multiply(matrix1[i][k], matrix2[k][j]));
52 }
53 }
54 }
55
56 return result;
57 }
58
59 /** Print matrices, the operator, and their operation result */
60 public static void printResult(
61 Number[][] m1, Number[][] m2, Number[][] m3, char op) {
62 for (int i = 0; i < m1.length; i++) {
63 for (int j = 0; j < m1[0].length; j++)
64 System.out.print(" " + m1[i][j]);
65
66 if (i == m1.length / 2)
67 System.out.print(" " + op + " ");
68 else
69 System.out.print(" ");
70
71 for (int j = 0; j < m2.length; j++)
72 System.out.print(" " + m2[i][j]);
73
74 if (i == m1.length / 2)
75 System.out.print(" = ");
76 else
77 System.out.print(" ");
78
79 for (int j = 0; j < m3.length; j++)

multiply two matrices

display result

21.9 Case Study: Generic Matrix Class 787

80 System.out.print(m3[i][j] + " ");
81
82 System.out.println();
83 }
84 }
85 }

Listing 21.11 implements the IntegerMatrix class. The class extends
GenericMatrix<Integer> in line 1. After the generic instantiation, the add method in
GenericMatrix<Integer> is now Integer add(Integer o1, Integer o2). The
add, multiply, and zero methods are implemented for Integer objects. These methods
are still protected, because they are invoked only by the addMatrix and
multiplyMatrix methods.

LISTING 21.11 IntegerMatrix.java
1 public class IntegerMatrix extends GenericMatrix<Integer> {
2 @Override /** Add two integers */
3 protected Integer add(Integer o1, Integer o2) {
4 return o1 + o2;
5 }
6
7 @Override /** Multiply two integers */
8 protected Integer multiply(Integer o1, Integer o2) {
9 return o1 * o2;
10 }
11
12 @Override /** Specify zero for an integer */
13 protected Integer zero() {
14 return 0;
15 }
16 }

Listing 21.12 implements the RationalMatrix class. The Rational class was introduced
in Listing 15.13 Rational.java. Rational is a subtype of Number. The RationalMatrix
class extends GenericMatrix<Rational> in line 1. After the generic instantiation, the add
method in GenericMatrix<Rational> is now Rational add(Rational r1, Ratio-
nal r2). The add, multiply, and zero methods are implemented for Rational objects.
These methods are still protected, because they are invoked only by the addMatrix and
multiplyMatrix methods.

LISTING 21.12 RationalMatrix.java
1 public class RationalMatrix extends GenericMatrix<Rational> {
2 @Override /** Add two rational numbers */
3 protected Rational add(Rational r1, Rational r2) {
4 return r1.add(r2);
5 }
6
7 @Override /** Multiply two rational numbers */
8 protected Rational multiply(Rational r1, Rational r2) {
9 return r1.multiply(r2);
10 }
11
12 @Override /** Specify zero for a Rational number */
13 protected Rational zero() {
14 return new Rational(0, 1);
15 }
16 }

extends generic type

implement add

implement multiply

implement zero

extends generic type

implement add

implement multiply

implement zero

788 Chapter 21 Generics

Listing 21.13 gives a program that creates two Integer matrices (lines 4–5) and an
IntegerMatrix object (line 8), and adds and multiplies two matrices in lines 12 and 16.

LISTING 21.13 TestIntegerMatrix.java
1 public class TestIntegerMatrix {
2 public static void main(String[] args) {
3 // Create Integer arrays m1, m2
4 Integer[][] m1 = new Integer[][]{{1, 2, 3}, {4, 5, 6}, {1, 1, 1}};
5 Integer[][] m2 = new Integer[][]{{1, 1, 1}, {2, 2, 2}, {0, 0, 0}};
6
7 // Create an instance of IntegerMatrix
8 IntegerMatrix integerMatrix = new IntegerMatrix();
9
10 System.out.println("\nm1 + m2 is ");
11 GenericMatrix.printResult(
12 m1, m2, integerMatrix.addMatrix(m1, m2), '+');
13
14 System.out.println("\nm1 * m2 is ");
15 GenericMatrix.printResult(
16 m1, m2, integerMatrix.multiplyMatrix(m1, m2), '*');
17 }
18 }

create matrices

create IntegerMatrix

add two matrices

multiply two matrices

m1 + m2 is
1 2 3 1 1 1 2 3 4
4 5 6 + 2 2 2 = 6 7 8
1 1 1 0 0 0 1 1 1

m1 * m2 is
1 2 3 1 1 1 5 5 5
4 5 6 * 2 2 2 = 14 14 14
1 1 1 0 0 0 3 3 3

Listing 21.14 gives a program that creates two Rational matrices (lines 4–10) and a
RationalMatrix object (line 13) and adds and multiplies two matrices in lines 17 and 21.

LISTING 21.14 TestRationalMatrix.java
1 public class TestRationalMatrix {
2 public static void main(String[] args) {
3 // Create two Rational arrays m1 and m2
4 Rational[][] m1 = new Rational[3][3];
5 Rational[][] m2 = new Rational[3][3];
6 for (int i = 0; i < m1.length; i++)
7 for (int j = 0; j < m1[0].length; j++) {
8 m1[i][j] = new Rational(i + 1, j + 5);
9 m2[i][j] = new Rational(i + 1, j + 6);
10 }
11
12 // Create an instance of RationalMatrix
13 RationalMatrix rationalMatrix = new RationalMatrix();
14
15 System.out.println("\nm1 + m2 is ");
16 GenericMatrix.printResult(
17 m1, m2, , '+');
18
19 System.out.println("\nm1 * m2 is ");

rationalMatrix.addMatrix(m1, m2)

create matrices

create RationalMatrix

add two matrices

Chapter Summary 789

✓Point✓Check

20 GenericMatrix.printResult(
21 m1, m2, , '*');
22 }
23 }

rationalMatrix.multiplyMatrix(m1, m2) multiply two matrices

m1 + m2 is
1/5 1/6 1/7 1/6 1/7 1/8 11/30 13/42 15/56
2/5 1/3 2/7 + 1/3 2/7 1/4 = 11/15 13/21 15/28
3/5 1/2 3/7 1/2 3/7 3/8 11/10 13/14 45/56

m1 * m2 is
1/5 1/6 1/7 1/6 1/7 1/8 101/630 101/735 101/840
2/5 1/3 2/7 * 1/3 2/7 1/4 = 101/315 202/735 101/420
3/5 1/2 3/7 1/2 3/7 3/8 101/210 101/245 101/280

21.23 Why are the add, multiple, and zero methods defined abstract in the
GenericMatrix class?

21.24 How are the add, multiple, and zero methods implemented in the
IntegerMatrix class?

21.25 How are the add, multiple, and zero methods implemented in the
RationalMatrix class?

21.26 What would be wrong if the printResult method defined as follows?

public static void printResult(
E[][] m1, E[][] m2, E[][] m3, char op)

KEY TERMS

actual concrete type 770
bounded generic type 775
bounded wildcard

(<? extends E>) 780
formal generic type 770

generic instantiation 770
lower-bound wildcard

(<? super E>) 780
raw type 778
unbounded wildcard (<?>) 780

CHAPTER SUMMARY

1. Generics give you the capability to parameterize types. You can define a class or a
method with generic types, which the compiler replaces with concrete types.

2. The key benefit of generics is to enable errors to be detected at compile time rather
than at runtime.

3. A generic class or method permits you to specify allowable types of objects that the
class or method can work with. If you attempt to use a class or method with an incom-
patible object, the compiler will detect the error.

4. A generic type defined in a class, interface, or a static method is called a formal
generic type, which can be replaced later with an actual concrete type. Replacing a
generic type is called a generic instantiation.

790 Chapter 21 Generics

5. A generic class such as ArrayList used without a type parameter is called a raw
type. Use of raw types is allowed for backward compatibility with the earlier ver-
sions of Java.

6. A wildcard generic type has three forms: ? and ? extends T, and ? super T,
where T is a generic type. The first form, ?, called an unbounded wildcard, is the
same as ? extends Object. The second form, ? extends T, called a bounded
wildcard, represents T or an unknown subtype of T. The third form, ? super T,
called a lower-bound wildcard, denotes T or an unknown supertype of T.

7. Generics are implemented using an approach called type erasure. The compiler uses
the generic type information to compile the code but erases it afterward, so the
generic information is not available at runtime. This approach enables the generic
code to be backward compatible with the legacy code that uses raw types.

8. You cannot create an instance using a generic type parameter.

9. You cannot create an array using a generic type parameter.

10. You cannot use a generic type parameter of a class in a static context.

11. Generic type parameters cannot be used in exception classes.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

21.1 (Revising Listing 21.1) Revise the GenericStack class in Listing 21.1 to imple-
ment it using an array rather than an ArrayList. You should check the array size
before adding a new element to the stack. If the array is full, create a new array
that doubles the current array size and copy the elements from the current array to
the new array.

21.2 (Implement GenericStack using inheritance) In Listing 21.1, GenericStack is
implemented using composition. Create a new stack class that extends ArrayList.

Draw the UML diagram for the classes and then implement GenericStack.
Write a test program that prompts the user to enter five strings and displays them
in reverse order.

21.3 (Distinct elements in ArrayList) Write the following method that returns a new
ArrayList. The new list contains the non-duplicate elements from the original list.

public static <E> ArrayList<E> removeDuplicates(ArrayList<E> list)

21.4 (Generic insertion sort) Implement the following method using insertion sort.

public static <E extends Comparable<E>>
void insertionSort(E[] list)

21.5 (Maximum element in an array) Implement the following method that returns the
maximum element in an array.

public static <E extends Comparable<E>> E max(E[] list)

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 791

21.6 (Maximum element in a two-dimensional array) Write a generic method that
returns the maximum element in a two-dimensional array.

public static <E extends Comparable<E>> E max(E[][] list)

21.7 (Generic binary search) Implement the following method using binary search.

public static <E extends Comparable<E>>
int binarySearch(E[] list, E key)

21.8 (Shuffle ArrayList) Write the following method that shuffles an ArrayList:

public static <E> void shuffle(ArrayList<E> list)

21.9 (Sort ArrayList) Write the following method that sorts an ArrayList:

public static <E extends Comparable<E>>
void sort(ArrayList<E> list)

21.10 (Largest element in ArrayList) Write the following method that returns the
largest element in an ArrayList:

public static <E extends Comparable<E>> E max(ArrayList<E> list)

This page intentionally left blank

LISTS, STACKS,
QUEUES, AND
PRIORITY QUEUES

Objectives
■ To explore the relationship between interfaces and classes in the Java

Collections Framework hierarchy (§22.2).

■ To use the common methods defined in the Collection interface for
operating collections (§22.2).

■ To use the Iterator interface to traverse the elements in a collection
(§22.3).

■ To use a for-each loop to traverse the elements in a collection (§22.3).

■ To explore how and when to use ArrayList or LinkedList to store
a list of elements (§22.4).

■ To compare elements using the Comparable interface and the
Comparator interface (§22.5).

■ To use the static utility methods in the Collections class for sorting,
searching, shuffling lists, and finding the largest and smallest element
in collections (§22.6).

■ To develop a multiple bouncing balls application using ArrayList
(§22.7).

■ To distinguish between Vector and ArrayList and to use the Stack class
for creating stacks (§22.8).

■ To explore the relationships among Collection, Queue, LinkedList,
and PriorityQueue and to create priority queues using the
PriorityQueue class (§22.9).

■ To use stacks to write a program to evaluate expressions (§22.10).

CHAPTER

22

794 Chapter 22 Lists, Stacks, Queues, and Priority Queues

Key
Point

Key
Point

22.1 Introduction
Choosing the best data structures and algorithms for a particular task is one of the
keys to developing high-performance software.

A data structure is a collection of data organized in some fashion. The structure not only
stores data but also supports operations for accessing and manipulating the data.

In object-oriented thinking, a data structure, also known as a container or container object,
is an object that stores other objects, referred to as data or elements. To define a data structure
is essentially to define a class. The class for a data structure should use data fields to store data
and provide methods to support such operations as search, insertion, and deletion. To create a
data structure is therefore to create an instance from the class. You can then apply the meth-
ods on the instance to manipulate the data structure, such as inserting an element into or delet-
ing an element from the data structure.

Section 11.11 introduced the ArrayList class, which is a data structure to store elements
in a list. Java provides several more data structures that can be used to organize and manipu-
late data efficiently. These are commonly known as Java Collections Framework. We will
introduce the applications of lists, vectors, stacks, queues, and priority queues in this chapter
and sets and maps in the next chapter. The implementation of these data structures will be dis-
cussed in Chapters 26–29.

22.2 Collections
The Collection interface defines the common operations for lists, vectors, stacks,
queues, priority queues, and sets.

The Java Collections Framework supports two types of containers:

■ One for storing a collection of elements is simply called a collection.

■ The other, for storing key/value pairs, is called a map.

Maps are efficient data structures for quickly searching an element using a key. We will intro-
duce maps in the next chapter. Now we turn our attention to collections.

There are different kinds of collections.

■ Sets store a group of nonduplicate elements.

■ Lists store an ordered collection of elements.

■ Queues store objects that are processed in first-in, first-out fashion.

The common features of these collections are defined in the interfaces, and implementa-
tions are provided in concrete classes, as shown in Figure 22.1.

Note
All the interfaces and classes defined in the Java Collections Framework are grouped in
the java.util package.

Design Guide
The design of the Java Collections Framework is an excellent example of using interfaces,
abstract classes, and concrete classes. The interfaces define the framework. The abstract
classes provide partial implementation. The concrete classes implement the interfaces
with concrete data structures. Providing an abstract class that partially implements an
interface makes it convenient for the user to write the code. The user can simply define
a concrete class that extends the abstract class rather implements all the methods in the
interface. The abstract classes such as AbstractCollection are provided for conve-
nience. For this reason, they are called convenience abstract classes.

data structure

container

Java Collections Framework

collection

map

Set

List

Queue

convenience abstract class

22.2 Collections 795

SortedSet

Collection

TreeSet

Vector

LinkedList

PriorityQueueAbstractQueue

AbstractCollection
Stack

LinkedHashSet

Interfaces Abstract Classes Concrete Classes

ArrayList

NavigableSet

Deque

HashSetSet

List

Queue

AbstractList

AbstractSet

AbstractSequentialList

FIGURE 22.1 A collection is a container that stores objects.

The Collection interface is the root interface for manipulating a collection of objects.
Its public methods are listed in Figure 22.2. The AbstractCollection class provides par-
tial implementation for the Collection interface. It implements all the methods in
Collection except the size and iterator methods. These are implemented in appropri-
ate concrete subclasses.

The Collection interface provides the basic operations for adding and removing elements
in a collection. The add method adds an element to the collection. The addAll method adds
all the elements in the specified collection to this collection. The remove method removes an
element from the collection. The removeAll method removes the elements from this collec-
tion that are present in the specified collection. The retainAll method retains the elements in
this collection that are also present in the specified collection. All these methods return
boolean. The return value is true if the collection is changed as a result of the method exe-
cution. The clear() method simply removes all the elements from the collection.

Note
The methods addAll, removeAll, and retainAll are similar to the set union,
difference, and intersection operations.

The Collection interface provides various query operations. The size method returns
the number of elements in the collection. The contains method checks whether the collec-
tion contains the specified element. The containsAll method checks whether the collection
contains all the elements in the specified collection. The isEmpty method returns true if the
collection is empty.

The Collection interface provides the toArray() method, which returns an array rep-
resentation for the collection.

Design Guide
Some of the methods in the Collection interface cannot be implemented in the
concrete subclass. In this case, the method would throw java.lang
.UnsupportedOperationException, a subclass of RuntimeException.

basic operations

set operations

query operations

unsupported operations

796 Chapter 22 Lists, Stacks, Queues, and Priority Queues

This is a good design that you can use in your project. If a method has no meaning
in the subclass, you can implement it as follows:

public void someMethod() {
throw new UnsupportedOperationException
("Method not supported");

}

Listing 22.1 gives an example to use the methods defined in the Collection interface.

LISTING 22.1 TestCollection.java
1 import java.util.*;
2
3 public class TestCollection {
4 public static void main(String[] args) {
5
6
7 collection1.add("Atlanta");
8 collection1.add("Dallas");
9 collection1.add("Madison");
10

collection1.add("New York");
ArrayList<String> collection1 = new ArrayList<String>();create an array list

add elements

+add(o: E): boolean

+addAll(c: Collection<? extends E>): boolean

+clear(): void

+contains(o: Object): boolean

+containsAll(c: Collection<?>): boolean

+equals(o: Object): boolean

+hashCode(): int

+isEmpty(): boolean

+remove(o: Object): boolean

+removeAll(c: Collection<?>): boolean

+retainAll(c: Collection<?>): boolean

+size(): int

+toArray(): Object[]

Adds a new element o to this collection.

Adds all the elements in the collection c to this collection.

Removes all the elements from this collection.

Returns true if this collection contains the element o.

Returns true if this collection contains all the elements in c.

Returns true if this collection is equal to another collection o.

Returns the hash code for this collection.

Returns true if this collection contains no elements.

Removes the element o from this collection.

Removes all the elements in c from this collection.

Retains the elements that are both in c and in this collection.

Returns the number of elements in this collection.

Returns an array of Object for the elements in this collection.

Returns true if this iterator has more elements to traverse.

Returns the next element from this iterator.

Removes the last element obtained using the next method.

java.util.Collection<E>
«interface»

+hasNext(): boolean

+next(): E

+remove(): void

java.util.Iterator<E>
«interface»

+iterator(): Iterator<E>

java.lang.Iterable<E>
«interface»

Returns an iterator for the elements in this collection.

FIGURE 22.2 The Collection interface contains the methods for manipulating the elements in a collection, and you
can obtain an iterator object for traversing elements in the collection.

22.2 Collections 797

contains?

11 System.out.println("A list of cities in collection1:");
12 System.out.println(collection1);
13
14 System.out.println("\nIs Dallas in collection1? "
15 +);
16
17
18 System.out.println("\n" + +
19 " cities are in collection1 now");
20
21
22 collection2.add("Seattle");
23 collection2.add("Portland");
24 collection2.add("Los Angeles");
25 collection2.add("Atlanta");
26
27 System.out.println("\nA list of cities in collection2:");
28 System.out.println(collection2);
29
30 ArrayList<String> c1 = (ArrayList<String>)();
31
32 System.out.println("\nCities in collection1 or collection2: ");
33 System.out.println(c1);
34
35 c1 = (ArrayList<String>)(collection1.clone());
36
37 System.out.print("\nCities in collection1 and collection2: ");
38 System.out.println(c1);
39
40 c1 = (ArrayList<String>)(collection1.clone());
41
42 System.out.print("\nCities in collection1, but not in 2: ");
43 System.out.println(c1);
44 }
45 }

c1.removeAll(collection2);

c1.retainAll(collection2);

c1.addAll(collection2);
collection1.clone()

Collection<String> collection2 = new ArrayList<String>();

collection1.size()
collection1.remove("Dallas");

collection1.contains("Dallas")

size?

clone
addAll

retainAll

removeAll

A list of cities in collection1:
[New York, Atlanta, Dallas, Madison]
Is Dallas in collection1? true
3 cities are in collection1 now
A list of cities in collection2:
[Seattle, Portland, Los Angeles, Atlanta]
Cities in collection1 or collection2:
[New York, Atlanta, Madison, Seattle, Portland, Los Angeles, Atlanta]
Cities in collection1 and collection2: [Atlanta]
Cities in collection1, but not in 2: [New York, Madison]

The program creates a concrete collection object using ArrayList (line 5), and invokes the
Collection interface’s contains method (line 15), remove method (line 17), size
method (line 18), addAll method (line 31), retainAll method (line 36), and removeAll
method (line 41).

For this example, we use ArrayList. You can use any concrete class of Collection
such as HashSet, LinkedList, Vector, and Stack to replace ArrayList to test these
methods defined in the Collection interface.

Every concrete class except java.util.PriorityQueue in the Java Collections Frame-
work implements the clone() method. The program creates a copy of an array list (lines 30,

798 Chapter 22 Lists, Stacks, Queues, and Priority Queues

✓Point✓Check

Key
Point

create an array list
add elements

iterator
hasNext()
next()

NEW YORK ATLANTA DALLAS MADISON

35, 40). The purpose of this is to keep the original array list intact and use its copy to perform
addAll, retainAll, and removeAll operations.

Note
All the concrete classes in the Java Collections Framework implement the java.lang.
Cloneable and java.io.Serializable interfaces except that
java.util.PriorityQueue does not implement the Cloneable interface. Thus,
all instances except priority queues can be cloned and all instances can be serialized.

22.1 What is a data structure?

22.2 Describe the Java Collections Framework. List the interfaces, convenience abstract
classes, and concrete classes under the Collection interface.

22.3 Can a collection object be cloned and serialized?

22.4 What method do you use to add all the elements from one collection to another
collection?

22.5 When should a method throw an UnsupportedOperationException?

22.3 Iterators
Each collection has an Iterator object that can be used to traverse all the elements
in the collection.

Iterator is a classic design pattern for walking through a data structure without having to
expose the details of how data is stored in the data structure.

The Collection interface extends the Iterable interface. The Iterable interface defines
the iterator method, which returns an iterator. The Iterator interface provides a uniform
way for traversing elements in various types of collections. The iterator method in the
Collection interface returns an instance of the Iterator interface, as shown in Figure 22.2,
which provides sequential access to the elements in the collection using the next()method. You
can also use the hasNext()method to check whether there are more elements in the iterator, and
the remove() method to remove the last element returned by the iterator.

Listing 22.2 gives an example that uses the iterator to traverse all the elements in an array list.

LISTING 22.2 TestIterator.java
1 import java.util.*;
2
3 public class TestIterator {
4 public static void main(String[] args) {
5
6 collection.add("New York");
7 collection.add("Atlanta");
8 collection.add("Dallas");
9 collection.add("Madison");
10
11
12 while () {
13 System.out.print(.toUpperCase() + " ");
14 }
15 System.out.println();
16 }
17 }

iterator.next()
iterator.hasNext()

Iterator<String> iterator = collection.iterator();

Collection<String> collection = new ArrayList<String>();

Cloneable
Serializable

22.4 Lists 799

✓Point✓Check

Key
Point

for-each loop

The program creates a concrete collection object using ArrayList (line 5) and adds four strings
into the list (lines 6–9). The program then obtains an iterator for the collection (line 11) and uses
the iterator to traverse all the strings in the list and displays the strings in uppercase (lines 12–14).

Tip
You can simplify the code in lines 11–14 using a for-each loop without using an iterator,
as follows:

for (String element: collection)
System.out.print(element.toUpperCase() + " ");

This loop is read as “for each element in the collection, do the following.” The for-each
loop can be used for arrays (see Section 6.2.7) as well as any instance of Iterable.

22.6 How do you obtain an iterator from a collection object?

22.7 What method do you use to obtain an element in the collection from an iterator?

22.8 Can you use a for-each loop to traverse the elements in any instance of Collection?

22.9 When using a for-each loop to traverse all elements in a collection, do you need to use
the next() or hasNext() methods in an iterator?

22.4 Lists
The List interface extends the Collection interface and defines a collection for
storing elements in a sequential order. To create a list, use one of its two concrete
classes: ArrayList or LinkedList.

We used ArrayList to test the methods in the Collection interface in the preceding sec-
tions. Now we will examine ArrayList in more depth. We will also introduce another useful
list, LinkedList, in this section.

22.4.1 The Common Methods in the List Interface
ArrayList and LinkedList are defined under the List interface. The List interface extends
Collection to define an ordered collection with duplicates allowed. The List interface adds

«interface»
java.util.List<E>

+add(index: int, element: Object): boolean

+addAll(index: int, c: Collection<? extends E>)
 : boolean
+get(index: int): E

+indexOf(element: Object): int

+lastIndexOf(element: Object): int

+listIterator(): ListIterator<E>

+listIterator(startIndex: int): ListIterator<E>

+remove(index: int): E

+set(index: int, element: Object): Object

+subList(fromIndex: int, toIndex: int): List<E>

«interface»
java.util.Collection<E>

Adds a new element at the specified index.

Adds all the elements in c to this list at the specified
 index.
Returns the element in this list at the specified index.

Returns the index of the first matching element.

Returns the index of the last matching element.

Returns the list iterator for the elements in this list.

Returns the iterator for the elements from startIndex.

Removes the element at the specified index.

Sets the element at the specified index.

Returns a sublist from fromIndex to toIndex-1.

FIGURE 22.3 The List interface stores elements in sequence and permits duplicates.

800 Chapter 22 Lists, Stacks, Queues, and Priority Queues

+add(o: E): void
+hasPrevious(): boolean

+nextIndex(): int
+previous(): E
+previousIndex(): int
+set(o: E): void

Adds the specified object to the list.
Returns true if this list iterator has more elements
 when traversing backward.
Returns the index of the next element.
Returns the previous element in this list iterator.
Returns the index of the previous element.
Replaces the last element returned by the previous or
 next method with the specified element.

«interface»
java.util.Iterator<E>

«interface»
java.util.ListIterator<E>

FIGURE 22.4 ListIterator enables traversal of a list bidirectionally.

position-oriented operations, as well as a new list iterator that enables the user to traverse the list
bidirectionally. The methods introduced in the List interface are shown in Figure 22.3.

The add(index, element)method is used to insert an element at a specified index, and the
addAll(index, collection) method to insert a collection of elements at a specified index.
The remove(index) method is used to remove an element at the specified index from the list.
A new element can be set at the specified index using the set(index, element) method.

The indexOf(element) method is used to obtain the index of the specified element’s
first occurrence in the list, and the lastIndexOf(element) method to obtain the index
of its last occurrence. A sublist can be obtained by using the subList(fromIndex,
toIndex) method.

The listIterator() or listIterator(startIndex) method returns an instance of
ListIterator. The ListIterator interface extends the Iterator interface to add bidi-
rectional traversal of the list. The methods in ListIterator are listed in Figure 22.4.

The add(element) method inserts the specified element into the list. The element is
inserted immediately before the next element that would be returned by the next() method
defined in the Iterator interface, if any, and after the element that would be returned by the
previous() method, if any. If the list doesn’t contain any elements, the new element becomes
the sole element in the list. The set(element) method can be used to replace the last element
returned by the next method or the previous method with the specified element.

The hasNext() method defined in the Iterator interface is used to check whether the
iterator has more elements when traversed in the forward direction, and the hasPrevious()
method to check whether the iterator has more elements when traversed in the backward
direction.

The next() method defined in the Iterator interface returns the next element in
the iterator, and the previous() method returns the previous element in the iterator. The
nextIndex() method returns the index of the next element in the iterator, and the
previousIndex() returns the index of the previous element in the iterator.

The AbstractList class provides a partial implementation for the List interface.
The AbstractSequentialList class extends AbstractList to provide support for
linked lists.

22.4.2 The ArrayList and LinkedList Classes
The ArrayList class and the LinkedList class are two concrete implementations of the
List interface. ArrayList stores elements in an array. The array is dynamically created. If

ArrayList vs. LinkedList

22.4 Lists 801

java.util.ArrayList<E>

+ArrayList()
+ArrayList(c: Collection<? extends E>)

+ArrayList(initialCapacity: int)

+trimToSize(): void

java.util.AbstractList<E>

Creates an empty list with the default initial capacity.
Creates an array list from an existing collection.
Creates an empty list with the specified initial capacity.

Trims the capacity of this ArrayList instance to be
 the list’s current size.

FIGURE 22.5 ArrayList implements List using an array.

the capacity of the array is exceeded, a larger new array is created and all the elements from
the current array are copied to the new array. LinkedList stores elements in a linked list.
Which of the two classes you use depends on your specific needs. If you need to support ran-
dom access through an index without inserting or removing elements at the beginning of the
list, ArrayList offers the most efficient collection. If, however, your application requires
the insertion or deletion of elements at the beginning of the list, you should choose
LinkedList. A list can grow or shrink dynamically. Once it is created, an array is fixed. If
your application does not require the insertion or deletion of elements, an array is the most
efficient data structure.

ArrayList is a resizable-array implementation of the List interface. It also provides
methods for manipulating the size of the array used internally to store the list, as shown in
Figure 22.5. Each ArrayList instance has a capacity, which is the size of the array used to
store the elements in the list. It is always at least as large as the list size. As elements are added
to an ArrayList, its capacity grows automatically. An ArrayList does not automatically
shrink. You can use the trimToSize()method to reduce the array capacity to the size of the list.
An ArrayList can be constructed using its no-arg constructor, ArrayList(Collection),
or ArrayList(initialCapacity).

linked list

trimToSize()

LinkedList is a linked list implementation of the List interface. In addition to imple-
menting the List interface, this class provides the methods for retrieving, inserting, and
removing elements from both ends of the list, as shown in Figure 22.6. A LinkedList can be
constructed using its no-arg constructor or LinkedList(Collection).

Creates a default empty linked list.

Creates a linked list from an existing collection.

Adds the object to the head of this list.

Adds the object to the tail of this list.

Returns the first element from this list.

Returns the last element from this list.

Returns and removes the first element from this list.

Returns and removes the last element from this list.

+LinkedList()

+LinkedList(c: Collection<? extends E>)

+addFirst(o: E): void

+addLast(o: E): void

+getFirst(): E

+getLast(): E

+removeFirst(): E

+removeLast(): E

java.util.LinkedList<E>

java.util.AbstractSequentialList<E>

FIGURE 22.6 LinkedList provides methods for adding and inserting elements at both ends of the list.

802 Chapter 22 Lists, Stacks, Queues, and Priority Queues

Listing 22.3 gives a program that creates an array list filled with numbers and inserts new
elements into specified locations in the list. The example also creates a linked list from the
array list and inserts and removes elements from the list. Finally, the example traverses the list
forward and backward.

array list

linked list

list iterator

list iterator

A list of integers in the array list:
[10, 1, 2, 30, 3, 1, 4]
Display the linked list forward:
green 10 red 1 2 30 3 1
Display the linked list backward:
1 3 30 2 1 red 10 green

A list can hold identical elements. Integer 1 is stored twice in the list (lines 6, 9). ArrayList
and LinkedList operate similarly. The critical difference between them pertains to internal
implementation, which affects their performance. ArrayList is efficient for retrieving ele-
ments and LinkedList is efficient for inserting and removing elements at the beginning of
the list. Both have the same performance for inserting and removing elements in the middle or
at the end of the list.

LISTING 22.3 TestArrayAndLinkedList.java
1 import java.util.*;
2
3 public class TestArrayAndLinkedList {
4 public static void main(String[] args) {
5
6 arrayList.add(1); // 1 is autoboxed to new Integer(1)
7 arrayList.add(2);
8 arrayList.add(3);
9 arrayList.add(1);
10 arrayList.add(4);
11 arrayList.add(0, 10);
12 arrayList.add(3, 30);
13
14 System.out.println("A list of integers in the array list:");
15 System.out.println(arrayList);
16
17
18 linkedList.add(1, "red");
19 linkedList.removeLast();
20 linkedList.addFirst("green");
21
22 System.out.println("Display the linked list forward:");
23
24 while (listIterator.hasNext()) {
25 System.out.print(listIterator.next() + " ");
26 }
27 System.out.println();
28
29 System.out.println("Display the linked list backward:");
30
31 while (listIterator.hasPrevious()) {
32 System.out.print(listIterator.previous() + " ");
33 }
34 }
35 }

listIterator = linkedList.listIterator(linkedList.size());

ListIterator<Object> listIterator = linkedList.listIterator();

LinkedList<Object> linkedList = new LinkedList<Object>(arrayList);

List<Integer> arrayList = new ArrayList<Integer>();

22.5 The Comparator Interface 803

✓Point✓Check

The get(i) method is available for a linked list, but it is a time-consuming operation. Do
not use it to traverse all the elements in a list as shown in (a). Instead you should use an itera-
tor as shown in (b). Note that a for-each loop uses an iterator implicitly. You will know the
reason when you learn how to implement a linked list in Chapter 26.

Arrays.asList(T... a)
method

Key
Point

comparator

for (int i = 0; i < linkedList.size(); i++) {
process linkedList.get(i);

}

for (listElementType s: linkedList) {
process s;

}

(a) Very inefficient (b) Efficient

Tip
Java provides the static asList method for creating a list from a variable-length argu-
ment list of a generic type. Thus you can use the following code to create a list of
strings and a list of integers:

List<String> list1 = Arrays.asList("red", "green", "blue");
List<Integer> list2 = Arrays.asList(10, 20, 30, 40, 50);

22.10 How do you add and remove elements from a list? How do you traverse a list in both
directions?

22.11 Suppose that list1 is a list that contains the strings red, yellow, and green, and
that list2 is another list that contains the strings red, yellow, and blue. Answer
the following questions:

a. What are list1 and list2 after executing list1.addAll(list2)?

b. What are list1 and list2 after executing list1.add(list2)?

c. What are list1 and list2 after executing list1.removeAll(list2)?

d. What are list1 and list2 after executing list1.remove(list2)?

e. What are list1 and list2 after executing list1.retainAll(list2)?

f. What is list1 after executing list1.clear()?

22.12 What are the differences between ArrayList and LinkedList? Which list should
you use to insert and delete elements at the beginning of a list?

22.13 Are all the methods in ArrayList also in LinkedList? What methods are in
LinkedList but not in ArrayList?

22.14 How do you create a list from an array of objects?

22.5 The Comparator Interface
Comparator can be used to compare the objects of a class that doesn’t implement
Comparable.

You have learned how to compare elements using the Comparable interface (introduced in
Section 15.6). Several classes in the Java API, such as String, Date, Calendar,
BigInteger, BigDecimal, and all the numeric wrapper classes for the primitive types,
implement the Comparable interface. The Comparable interface defines the compareTo
method, which is used to compare two elements of the same class that implement the
Comparable interface.

What if the elements’ classes do not implement the Comparable interface or the elements
have different types? Can these elements be compared? You can define a comparator to

804 Chapter 22 Lists, Stacks, Queues, and Priority Queues

compare the elements of different classes. To do so, define a class that implements the
java.util.Comparator<T> interface. The Comparator<T> interface has two methods,
compare and equals.

■ public int compare(T element1, T element2)
Returns a negative value if element1 is less than element2, a positive value if
element1 is greater than element2, and zero if they are equal.

■ public boolean equals(Object element)
Returns true if the specified object is also a comparator and imposes the same
ordering as this comparator.

The equals method is also defined in the Object class. Therefore, you will not get a
compile error even if you don’t implement the equals method in your custom comparator
class. However, in some cases implementing this method may improve performance by allow-
ing programs to determine quickly whether two distinct comparators impose the same order.

The GeometricObject class was introduced in Section 15.2, Abstract Classes. The
GeometricObject class does not implement the Comparable interface. To compare the
objects of the GeometricObject class, you can define a comparator class, as shown in
Listing 22.4.

LISTING 22.4 GeometricObjectComparator.java
1 import java.util.Comparator;
2
3 public class GeometricObjectComparator
4 , {
5 public int {
6 double area1 = o1.getArea();
7 double area2 = o2.getArea();
8
9 if (area1 < area2)
10 return -1;
11 else if (area1 == area2)
12 return 0;
13 else
14 return 1;
15 }
16 }

Line 4 implements Comparator<GeometricObject>. Line 5 overrides the compare
method to compare two geometric objects. The class also implements Serializable. It is
generally a good idea for comparators to implement Serializable, as they may be used
as ordering methods in serializable data structures. In order for the data structure to serial-
ize successfully, the comparator (if provided) must implement Serializable.

Listing 22.5 gives a method that returns a larger object between two geometric objects.
The objects are compared using the GeometricObjectComparator.

LISTING 22.5 TestComparator.java
1 import java.util.Comparator;
2
3 public class TestComparator {
4 public static void main(String[] args) {
5 GeometricObject g1 = new Rectangle(5, 5);
6 GeometricObject g2 = new Circle(5);
7
8 GeometricObject g =

compare(GeometricObject o1, GeometricObject o2)
java.io.Serializableimplements Comparator<GeometricObject>implements Comparator

implements compare

22.6 Static Methods for Lists and Collections 805

9
10
11 System.out.println("The area of the larger object is " +
12 g.getArea());
13 }
14
15 public static GeometricObject max(GeometricObject g1,
16 GeometricObject g2,) {
17 if (> 0)
18 return g1;
19 else
20 return g2;
21 }
22 }

c.compare(g1, g2)
Comparator<GeometricObject> c

max(g1, g2, new GeometricObjectComparator()); invoke max

the max method

invoke compare

The area of the larger object is 78.53981633974483

The program creates a Rectangle and a Circle object in lines 5–6 (the Rectangle and
Circle classes were defined in Section 15.2, Abstract Classes). They are all subclasses of
GeometricObject. The program invokes the max method to obtain the geometric object
with the larger area (lines 8–9).

The GeometricObjectComparator is created and passed to the max method (line 9)
and this comparator is used in the max method to compare the geometric objects in line 17.

Note
Comparable is used to compare the objects of the class that implement
Comparable. Comparator can be used to compare the objects of a class that doesn’t
implement Comparable.

Comparing elements using the Comparable interface is referred to as comparing using
natural order, and comparing elements using the Comparator interface is referred to
as comparing using comparator.

22.15 What are the differences between the Comparable interface and the Comparator
interface? In which package is Comparable, and in which package is Comparator?

22.16 The Comparator interface contains the equals method. Why is the method not
implemented in the GeometricObjectComparator class in this section?

22.6 Static Methods for Lists and Collections
The Collections class contains static methods to perform common operations in a
collection and a list.

Often you need to sort a list. The Java Collections Framework provides static methods in the
Collections class that can be used to sort a list. The Collections class also contains the
binarySearch, reverse, shuffle, copy, and fill methods for lists, and max, min,
disjoint, and frequency methods for collections, as shown in Figure 22.7.

You can sort the comparable elements in a list in its natural order with the compareTo
method in the Comparable interface. You may also specify a comparator to sort elements.
For example, the following code sorts strings in a list.

List<String> list = Arrays.asList("red", "green", "blue");
Collections
System.out.println(list);

.sort(list);

Comparable vs.
Comparator

natural order
using Comparator

✓Point✓Check

Key
Point

sort list

806 Chapter 22 Lists, Stacks, Queues, and Priority Queues

java.util.Collections

+sort(list: List): void

+sort(list: List, c: Comparator): void

+binarySearch(list: List, key: Object): int

+binarySearch(list: List, key: Object, c:
Comparator): int

+reverse(list: List): void

+reverseOrder(): Comparator

+shuffle(list: List): void

+shuffle(list: List, rmd: Random): void

+copy(des: List, src: List): void

+nCopies(n: int, o: Object): List

+fill(list: List, o: Object): void

+max(c: Collection): Object

+max(c: Collection, c: Comparator): Object

+min(c: Collection): Object

+min(c: Collection, c: Comparator): Object

+disjoint(c1: Collection, c2: Collection):
 boolean
+frequency(c: Collection, o: Object): int

Sorts the specified list.

Sorts the specified list with the comparator.

Searches the key in the sorted list using binary search.

Searches the key in the sorted list using binary search
with the comparator.

Reverses the specified list.

Returns a comparator with the reverse ordering.

Shuffles the specified list randomly.

Shuffles the specified list with a random object.

Copies from the source list to the destination list.

Returns a list consisting of n copies of the object.

Fills the list with the object.

Returns the max object in the collection.

Returns the max object using the comparator.

Returns the min object in the collection.

Returns the min object using the comparator.

Returns true if c1 and c2 have no elements in common.

Returns the number of occurrences of the specified
 element in the collection.

List

Collection

FIGURE 22.7 The Collections class contains static methods for manipulating lists and collections.

The output is [blue, green, red].
The preceding code sorts a list in ascending order. To sort it in descending order, you can

simply use the Collections.reverseOrder() method to return a Comparator object
that orders the elements in reverse order. For example, the following code sorts a list of strings
in descending order.

List<String> list = Arrays.asList("yellow", "red",
"green", "blue");

Collections.sort(list,);
System.out.println(list);

The output is [yellow, red, green, blue].
You can use the binarySearch method to search for a key in a list. To use this method,

the list must be sorted in increasing order. If the key is not in the list, the method returns
1 Recall that the insertion point is where the item would fall in the list

if it were present. For example, the following code searches the keys in a list of integers and a
list of strings.

List<Integer> list1 =
Arrays.asList(2, 4, 7, 10, 11, 45, 50, 59, 60, 66);

System.out.println("(1) Index: " + Collections.binarySearch(list1, 7));
System.out.println("(2) Index: " + Collections.binarySearch(list1, 9));

List<String> list2 = Arrays.asList("blue", "green", "red");
System.out.println("(3) Index: " +
Collections.binarySearch(list2, "red"));

System.out.println("(4) Index: " +
Collections.binarySearch(list2, "cyan"));

The output of the preceding code is:

).- ˛(insertion point +

Collections.reverseOrder()

descending order
ascending order

binarySearch

22.6 Static Methods for Lists and Collections 807

(1) Index: 2
(2) Index: -4
(3) Index: 2
(4) Index: -2

You can use the reverse method to reverse the elements in a list. For example, the following
code displays [blue, green, red, yellow].

List<String> list = Arrays.asList("yellow", "red", "green", "blue");

System.out.println(list);

You can use the shuffle(List) method to randomly reorder the elements in a list. For
example, the following code shuffles the elements in list.

List<String> list = Arrays.asList("yellow", "red", "green", "blue");

System.out.println(list);

You can also use the shuffle(List, Random) method to randomly reorder the elements in
a list with a specified Random object. Using a specified Random object is useful to generate a
list with identical sequences of elements for the same original list. For example, the following
code shuffles the elements in list.

List<String> list1 = Arrays.asList("yellow", "red", "green", "blue");
List<String> list2 = Arrays.asList("yellow", "red", "green", "blue");

System.out.println(list1);
System.out.println(list2);

You will see that list1 and list2 have the same sequence of elements before and after
the shuffling.

You can use the copy(det, src) method to copy all the elements from a source list to a
destination list on the same index. The destination list must be as long as the source list. If it
is longer, the remaining elements in the source list are not affected. For example, the follow-
ing code copies list2 to list1.

List<String> list1 = Arrays.asList("yellow", "red", "green", "blue");
List<String> list2 = Arrays.asList("white", "black");

System.out.println(list1);

The output for list1 is [white, black, green, blue]. The copy method performs a
shallow copy: only the references of the elements from the source list are copied.

You can use the nCopies(int n, Object o) method to create an immutable list that
consists of n copies of the specified object. For example, the following code creates a list with
five Calendar objects.

List<GregorianCalendar> list1 =

The list created from the nCopies method is immutable, so you cannot add, remove, or
update elements in the list. All the elements have the same references.

(5, new GregorianCalendar(2005, 0, 1));
Collections.nCopies

Collections.copy(list1, list2);

Collections.shuffle(list2, new Random(20));
Collections.shuffle(list1, new Random(20));

Collections.shuffle(list);

Collections.reverse(list);

reverse

shuffle

copy

nCopies

808 Chapter 22 Lists, Stacks, Queues, and Priority Queues

✓Point✓Check

You can use the fill(List list, Object o) method to replace all the elements in
the list with the specified element. For example, the following code displays [black,
black, black].

List<String> list = Arrays.asList("red", "green", "blue");

System.out.println(list);

You can use the max and min methods for finding the maximum and minimum elements in a
collection. The elements must be comparable using the Comparable interface or the
Comparator interface. For example, the following code displays the largest and smallest
strings in a collection.

Collection<String> collection = Arrays.asList("red", "green", "blue");
System.out.println();
System.out.println();

The disjoint(collection1, collection2) method returns true if the two col-
lections have no elements in common. For example, in the following code,
disjoint(collection1, collection2) returns false, but disjoint(collection1,
collection3) returns true.

Collection<String> collection1 = Arrays.asList("red", "cyan");
Collection<String> collection2 = Arrays.asList("red", "blue");
Collection<String> collection3 = Arrays.asList("pink", "tan");
System.out.println();
System.out.println();

The frequency(collection, element) method finds the number of occurrences of the
element in the collection. For example, frequency(collection, "red") returns 2 in the
following code.

Collection<String> collection = Arrays.asList("red", "cyan", "red");
System.out.println(Collections.frequency(collection, "red"));

22.17 Are all the methods in the Collections class static?

22.18 Which of the following static methods in the Collections class are for lists, and
which are for collections?

sort, binarySearch, reverse, shuffle, max, min, disjoint, frequency

22.19 Show the printout of the following code:

import java.util.*;

public class Test {
public static void main(String[] args) {
List<String> list =
Arrays.asList("yellow", "red", "green", "blue");

Collections.reverse(list);
System.out.println(list);

List<String> list1 =
Arrays.asList("yellow", "red", "green", "blue");

List<String> list2 = Arrays.asList("white", "black");
Collections.copy(list1, list2);
System.out.println(list1);

Collections.disjoint(collection1, collection3)
Collections.disjoint(collection1, collection2)

Collections.min(collection)
Collections.max(collection)

Collections.fill(list, "black");

fill

max and min methods

disjoint method

frequency method

22.7 Case Study: Bouncing Balls 809

Key
Point

FIGURE 22.8 Pressing the or button adds or removes a ball.-+

Collection<String> c1 = Arrays.asList("red", "cyan");
Collection<String> c2 = Arrays.asList("red", "blue");
Collection<String> c3 = Arrays.asList("pink", "tan");
System.out.println(Collections.disjoint(c1, c2));
System.out.println(Collections.disjoint(c1, c3));

Collection<String> collection =
Arrays.asList("red", "cyan", "red");

System.out.println(Collections.frequency(collection, "red"));
}

}

22.20 Which method can you use to sort the elements in an ArrayList or a LinkedList?
Which method can you use to sort an array of strings?

22.21 Which method can you use to perform binary search for elements in an ArrayList
or a LinkedList? Which method can you use to perform binary search for an array
of strings?

22.22 Write a statement to find the largest element in an array of comparable objects.

22.7 Case Study: Bouncing Balls
This section presents an applet that displays bouncing balls and enables the user to
add, remove balls.

Section 18.8 presents an applet that displays one bouncing ball. This section presents an
applet that displays multiple bouncing balls. You can use two buttons to suspend and resume
the movement of the balls, a scroll bar to control the ball speed, and the 1 or 1 button add
or remove a ball, as shown in Figure 22.8.

- ˛+ ˛

The example in Section 18.8 only had to store one ball. How do you store the multiple
balls in this example? An array list is a good data structure for storing the balls. Initially, the
array list is empty. When a new ball is created, add it to the end of the list. To remove a ball,
simply remove the last one in the array list.

Each ball has its state: the location, color, and direction to move. You can define a class named
Ball with appropriate data fields to store this information. When a ball is created, it starts from
the upper-left corner and moves downward to the right. A random color is assigned to a new ball.

The BallPanel class is responsible for displaying the ball and the BallControl class
places the control components and implements the control. The MultipleBallApp places
the BallControl in an applet. The relationship of these classes is shown in Figure 22.9.
Listing 22.6 gives the program.

810 Chapter 22 Lists, Stacks, Queues, and Priority Queues

x: int

y: int

dx: int

dy: int

radius: int

color: Color

+Ball()

Ball

java.lang.Object

-ballPanel: BallPanel

-jsbDelay: JScrollBox

-jbtResume: JButton

-jbtSuspend: JButton

-jbtAdd: JButton

-jbtRemove: JButton

+BallControl()

BallControl

javax.swing.JPanel

+BounceBallApp

+main(args:

 String[]): void

MultipleBallApp

javax.swing.JApple

BallPanel

-delay: int

-timer: Timer

-balls:

 java.util.ArrayList<Ball>

javax.swing.JPanel

+BallPanel()

+suspend(): void

+resume(): void

+setDelay(delay: int): void

+add(): void

+remove(): void

m 1 1 1 1 1

FIGURE 22.9 MultipleBallApp contains BallControl, BallControl contains BallPanel, and BallPanel
contains Ball.

LISTING 22.6 MultipleBallApp.java
1 import javax.swing.Timer;
2 import java.util.ArrayList;
3 import java.awt.*;
4 import javax.swing.*;
5 import java.awt.event.*;
6
7
8 public MultipleBallApp() {
9 add(new BallControl());
10 }
11
12
13 private BallPanel ballPanel = new BallPanel();
14 private JButton jbtSuspend = new JButton("Suspend");
15 private JButton jbtResume = new JButton("Resume");
16 private JButton jbtAdd = new JButton("+1");
17 private JButton jbtSubtract = new JButton("-1");
18 private JScrollBar jsbDelay = new JScrollBar();
19
20 public BallControl() {
21 // Group buttons in a panel
22 JPanel panel = new JPanel();
23 panel.add(jbtSuspend);
24 panel.add(jbtResume);
25 panel.add(jbtAdd);
26 panel.add(jbtSubtract);
27
28 // Add ball and buttons to the panel
29 ballPanel.setBorder(
30 new javax.swing.border.LineBorder(Color.red));
31 jsbDelay.setOrientation(JScrollBar.HORIZONTAL);
32 ballPanel.setDelay(jsbDelay.getMaximum());
33 setLayout(new BorderLayout());
34 add(jsbDelay, BorderLayout.NORTH);
35 add(ballPanel, BorderLayout.CENTER);

class BallControl extends JPanel {

public class MultipleBallApp extends JApplet {

create a ball control

BallControl class

22.7 Case Study: Bouncing Balls 811

36 add(panel, BorderLayout.SOUTH);
37
38 // Register listeners
39 jbtSuspend.addActionListener(new Listener());
40 jbtResume.addActionListener(new Listener());
41 jbtAdd.addActionListener(new Listener());
42 jbtSubtract.addActionListener(new Listener());
43 jsbDelay.addAdjustmentListener(new AdjustmentListener() {
44 @Override
45 public void adjustmentValueChanged(AdjustmentEvent e) {
46 ballPanel.setDelay(jsbDelay.getMaximum() - e.getValue());
47 }
48 });
49 }
50
51 class Listener implements ActionListener {
52 @Override
53 public void actionPerformed(ActionEvent e) {
54 if (e.getSource() == jbtSuspend)
55 ballPanel.suspend();
56 else if (e.getSource() == jbtResume)
57 ballPanel.resume();
58 else if (e.getSource() == jbtAdd)
59 ballPanel.add();
60 else if (e.getSource() == jbtSubtract)
61 ballPanel.subtract();
62 }
63 }
64 }
65
66
67 private int delay = 10;
68 private ArrayList<Ball> list = new ArrayList<Ball>();
69
70 // Create a timer with the initial delay
71 protected Timer timer = new Timer(delay, new ActionListener() {
72 @Override /** Handle the action event */
73 public void actionPerformed(ActionEvent e) {
74 repaint();
75 }
76 });
77
78 public BallPanel() {
79 timer.start();
80 }
81
82 public void add() {
83 list.add(new Ball());
84 }
85
86 public void subtract() {
87 if (list.size() > 0)
88 list.remove(list.size() - 1); // Remove the last ball
89 }
90
91 @Override
92 protected void paintComponent(Graphics g) {
93 super.paintComponent(g);
94
95 for (int i = 0; i < list.size(); i++) {

class BallPanel extends JPanel { BallPanel class

add a ball

remove a ball

paint all balls

812 Chapter 22 Lists, Stacks, Queues, and Priority Queues

✓Point✓Check

96 Ball ball = (Ball)list.get(i); // Get a ball
97 g.setColor(ball.color); // Set ball color
98
99 // Check boundaries
100 if (ball.x < 0 || ball.x > getWidth())
101 ball.dx = -ball.dx;
102
103 if (ball.y < 0 || ball.y > getHeight())
104 ball.dy = -ball.dy;
105
106 // Adjust ball position
107 ball.x += ball.dx;
108 ball.y += ball.dy;
109 g.fillOval(ball.x - ball.radius, ball.y - ball.radius,
110 ball.radius * 2, ball.radius * 2);
111 }
112 }
113
114 public void suspend() {
115 timer.stop();
116 }
117
118 public void resume() {
119 timer.start();
120 }
121
122 public void setDelay(int delay) {
123 this.delay = delay;
124 timer.setDelay(delay);
125 }
126 }
127
128
129 int x = 0;
130 int y = 0; // Current ball position
131 int dx = 2; // Increment on ball's x-coordinate
132 int dy = 2; // Increment on ball's y-coordinate
133 int radius = 5; // Ball radius
134 Color color = new Color((int)(Math.random() * 256),
135 (int)(Math.random() * 256), (int)(Math.random() * 256));
136 }
137 }

An array list is created to store the balls (line 68). When the user clicks the 1 button, a
new ball is created and added to the array list (line 83). When the user clicks the 1 button,
the last ball in the array list is removed (line 88).

The paintComponent method in the BallPanel class gets every ball in the array list,
adjusts the balls’ positions (lines 107–108), and paints them (lines 109–110).

This program uses an ArrayList to store balls. The program will work fine if
ArrayList is replaced by LinkedList, but it is more efficient to use ArrayList in this
example.

22.23 Will the MutilpleBallApp program work if ArrayList is replaced by
LinkedList? Why is the ArrayList a better choice than the LinkedList for
this program?

22.24 If you change the MutilpleBallApp program to remove the first ball in the list
when the 1 button is clicked, should you use ArrayList or LinkedList to store
the balls in this program?

- ˛

- ˛

+ ˛

class Ball {Ball class

main method omitted

22.8 The Vector and Stack Classes 813

Key
Point

java.util.Vector<E>

+Vector()

+Vector(c: Collection<? extends E>)

+Vector(initialCapacity: int)

+Vector(initCapacity: int, capacityIncr: int)

+addElement(o: E): void

+capacity(): int

+copyInto(anArray: Object[]): void

+elementAt(index: int): E

+elements(): Enumeration<E>

+ensureCapacity(): void

+firstElement(): E

+insertElementAt(o: E, index: int): void

+lastElement(): E

+removeAllElements(): void

+removeElement(o: Object): boolean

+removeElementAt(index: int): void

+setElementAt(o: E, index: int): void

+setSize(newSize: int): void

+trimToSize(): void

Creates a default empty vector with initial capacity 10.

Creates a vector from an existing collection.

Creates a vector with the specified initial capacity.

Creates a vector with the specified initial capacity and increment.

Appends the element to the end of this vector.

Returns the current capacity of this vector.

Copies the elements in this vector to the array.

Returns the object at the specified index.

Returns an enumeration of this vector.

Increases the capacity of this vector.

Returns the first element in this vector.

Inserts o into this vector at the specified index.

Returns the last element in this vector.

Removes all the elements in this vector.

Removes the first matching element in this vector.

Removes the element at the specified index.

Sets a new element at the specified index.

Sets a new size in this vector.

Trims the capacity of this vector to its size.

java.util.AbstractList<E>

FIGURE 22.10 Starting in Java 2, the Vector class extends AbstractList and also retains all the methods in the
original Vector class.

22.25 How do you modify the code in the MutilpleBallApp program so that each ball
will get a random radius between 10 and 20?

22.8 The Vector and Stack Classes
Vector is a subclass of AbstractList, and Stack is a subclass of Vector in the
Java API.

The Java Collections Framework was introduced in Java 2. Several data structures were sup-
ported earlier, among them the Vector and Stack classes. These classes were redesigned
to fit into the Java Collections Framework, but all their old-style methods are retained for
compatibility.

Vector is the same as ArrayList, except that it contains synchronized methods for access-
ing and modifying the vector. Synchronized methods can prevent data corruption when a vector
is accessed and modified by two or more threads concurrently. We will discuss synchronization
in Chapter 32, Multithreading and Parallel Programming. For the many applications that do not
require synchronization, using ArrayList is more efficient than using Vector.

The Vector class extends the AbstractList class. It also has the methods contained in
the original Vector class defined prior to Java 2, as shown in Figure 22.10.

Most of the methods in the Vector class listed in the UML diagram in Figure 22.10 are
similar to the methods in the List interface. These methods were introduced before the Java
Collections Framework. For example, addElement(Object element) is the same as the

814 Chapter 22 Lists, Stacks, Queues, and Priority Queues

✓Point✓Check

Key
Point

java.util.Stack<E>

+Stack()

+empty(): boolean

+peek(): E

+pop(): E

+push(o: E): E

+search(o: Object): int

java.util.Vector<E>

Creates an empty stack.

Returns true if this stack is empty.

Returns the top element in this stack.

Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

Returns the position of the specified element in this stack.

FIGURE 22.11 The Stack class extends Vector to provide a last-in, first-out data structure.

add(Object element) method, except that the addElement method is synchronized. Use
the ArrayList class if you don’t need synchronization. It works much faster than Vector.

Note
The elements() method returns an Enumeration. The Enumeration interface was
introduced prior to Java 2 and was superseded by the Iterator interface.

Note
Vector is widely used in Java programming because it was the Java resizable array
implementation before Java 2. Many of the Swing data models use vectors.

In the Java Collections Framework, Stack is implemented as an extension of Vector, as
illustrated in Figure 22.11.

The Stack class was introduced prior to Java 2. The methods shown in Figure 22.11 were
used before Java 2. The empty() method is the same as isEmpty(). The peek() method
looks at the element at the top of the stack without removing it. The pop() method removes
the top element from the stack and returns it. The push(Object element) method adds the
specified element to the stack. The search(Object element) method checks whether the
specified element is in the stack.

22.26 How do you create an instance of Vector? How do you add or insert a new element
into a vector? How do you remove an element from a vector? How do you find the
size of a vector?

22.27 How do you create an instance of Stack? How do you add a new element to a stack?
How do you remove an element from a stack? How do you find the size of a stack?

22.28 Does Listing 22.1, TestCollection.java, compile and run if all the occurrences of
ArrayList are replaced by LinkedList, Vector, or Stack?

22.9 Queues and Priority Queues
In a priority queue, the element with the highest priority is removed first.

A queue is a first-in, first-out data structure. Elements are appended to the end of the queue
and are removed from the beginning of the queue. In a priority queue, elements are assigned
priorities. When accessing elements, the element with the highest priority is removed first.
This section introduces queues and priority queues in the Java API.

queue
priority queue

22.9 Queues and Priority Queues 815

«interface»
java.util.Queue<E>

+offer(element: E): boolean

+poll(): E

+remove(): E

+peek(): E

+element(): E

«interface»
java.util.Collection<E>

Inserts an element into the queue.

Retrieves and removes the head of this queue, or null
 if this queue is empty.

Retrieves and removes the head of this queue and
throws an exception if this queue is empty.

Retrieves, but does not remove, the head of this queue,
returning null if this queue is empty.

Retrieves, but does not remove, the head of this queue,
throwing an exception if this queue is empty.

FIGURE 22.12 The Queue interface extends Collection to provide additional insertion,
extraction, and inspection operations.

22.9.1 The Queue Interface
The Queue interface extends java.util.Collection with additional insertion, extraction,
and inspection operations, as shown in Figure 22.12.

The offer method is used to add an element to the queue. This method is similar to the add
method in the Collection interface, but the offer method is preferred for queues. The poll
and remove methods are similar, except that poll() returns null if the queue is empty,
whereas remove() throws an exception. The peek and element methods are similar, except
that peek() returns null if the queue is empty, whereas element() throws an exception.

22.9.2 Deque and LinkedList
The LinkedList class implements the Deque interface, which extends the Queue interface, as
shown in Figure 22.13. Therefore, you can use LinkedList to create a queue. LinkedList is
ideal for queue operations because it is efficient for inserting and removing elements from both
ends of a list.

Deque supports element insertion and removal at both ends. The name deque is short for
“double-ended queue” and is usually pronounced “deck.” The Deque interface extends
Queue with additional methods for inserting and removing elements from both ends of the

Queue interface

queue operations

«interface»
java.util.Deque<E>

java.util.LinkedList<E>

«interface»
java.util.Collection<E>

«interface»
java.util.Queue<E>

«interface»
java.util.List<E>

FIGURE 22.13 LinkedList implements List and Deque.

816 Chapter 22 Lists, Stacks, Queues, and Priority Queues

java.util.PriorityQueue<E>

+PriorityQueue()

+PriorityQueue(initialCapacity: int)

+PriorityQueue(c: Collection<? extends
 E>)

+PriorityQueue(initialCapacity: int,
 comparator: Comparator<? super E>)

Creates a default priority queue with initial capacity 11.

Creates a default priority queue with the specified initial
 capacity.

Creates a priority queue with the specified collection.

Creates a priority queue with the specified initial
 capacity and the comparator.

«interface»
java.util.Queue<E>

FIGURE 22.14 The PriorityQueue class implements a priority queue.

queue. The methods addFirst(e), removeFirst(), addLast(e), removeLast(),
getFirst(), and getLast() are defined in the Deque interface.

Listing 22.7 shows an example of using a queue to store strings. Line 4 creates a queue
using LinkedList. Four strings are added to the queue in lines 5–8. The size() method
defined in the Collection interface returns the number of elements in the queue (line 10).
The remove() method retrieves and removes the element at the head of the queue (line 11).

LISTING 22.7 TestQueue.java
1 public class TestQueue {
2 public static void main(String[] args) {
3
4
5
6 queue.offer("Indiana");
7 queue.offer("Georgia");
8 queue.offer("Texas");
9
10 while (> 0)
11 System.out.print(queue.remove() + " ");
12 }
13 }

queue.size()

queue.offer("Oklahoma");
new java.util.LinkedList<String>();

java.util.Queue<String> queue =creates a queue
inserts an element

queue size
remove element

Oklahoma Indiana Georgia Texas

The PriorityQueue class implements a priority queue, as shown in Figure 22.14. By
default, the priority queue orders its elements according to their natural ordering using
Comparable. The element with the least value is assigned the highest priority and thus is
removed from the queue first. If there are several elements with the same highest priority, the
tie is broken arbitrarily. You can also specify an ordering using Comparator in the construc-
tor PriorityQueue(initialCapacity, comparator).

PriorityQueue class

Listing 22.8 shows an example of using a priority queue to store strings. Line 5 creates a pri-
ority queue for strings using its no-arg constructor. This priority queue orders the strings using
their natural order, so the strings are removed from the queue in increasing order. Lines 16–17
create a priority queue using the comparator obtained from Collections.reverseOrder(),
which orders the elements in reverse order, so the strings are removed from the queue in
decreasing order.

22.10 Case Study: Evaluating Expressions 817

LISTING 22.8 PriorityQueueDemo.java
1 import java.util.*;
2
3 public class PriorityQueueDemo {
4 public static void main(String[] args) {
5
6
7 queue1.offer("Indiana");
8 queue1.offer("Georgia");
9 queue1.offer("Texas");
10
11 System.out.println("Priority queue using Comparable:");
12 while (queue1.size() > 0) {
13 System.out.print(queue1.remove() + " ");
14 }
15
16
17 4,);
18 queue2.offer("Oklahoma");
19 queue2.offer("Indiana");
20 queue2.offer("Georgia");
21 queue2.offer("Texas");
22
23 System.out.println("\nPriority queue using Comparator:");
24 while (queue2.size() > 0) {
25 System.out.print(queue2.remove() + " ");
26 }
27 }
28 }

Collections.reverseOrder()
PriorityQueue<String> queue2 = new PriorityQueue<String>(

queue1.offer("Oklahoma");
PriorityQueue<String> queue1 = new PriorityQueue<String>(); a default queue

inserts an element

a queue with comparator

comparator

Priority queue using Comparable:
Georgia Indiana Oklahoma Texas
Priority queue using Comparator:
Texas Oklahoma Indiana Georgia

22.29 Is java.util.Queue a subinterface of java.util.Collection, java.util.Set,
or java.util.List? Does LinkedList implement Queue?

22.30 How do you create a priority queue for integers? By default, how are elements
ordered in a priority queue? Is the element with the least value assigned the highest
priority in a priority queue?

22.31 How do you create a priority queue that reverses the natural order of the elements?

22.10 Case Study: Evaluating Expressions
Stacks can be used to evaluate expressions.

Stacks and queues have many applications. This section gives an application that uses stacks
to evaluate expressions. You can enter an arithmetic expression from Google to evaluate the
expression, as shown in Figure 22.15.

How does Google evaluate an expression? This section presents a program that evaluates a
compound expression with multiple operators and parentheses (e.g., (15 + 2) * 34 – 2). For
simplicity, assume that the operands are integers and the operators are of four types: +, -, *, and /.

The problem can be solved using two stacks, named operandStack and operatorStack,
for storing operands and operators, respectively. Operands and operators are pushed into the

✓Point✓Check

Key
Point

compound expression

818 Chapter 22 Lists, Stacks, Queues, and Priority Queues

FIGURE 22.15 You can evaluate an arithmetic expression using a Google search engine.

FIGURE 22.16 The program takes an expression as command-line arguments.

stacks before they are processed. When an operator is processed, it is popped from
operatorStack and applied to the first two operands from operandStack (the two operands
are popped from operandStack). The resultant value is pushed back to operandStack.

The algorithm proceeds in two phases:

Phase 1: Scanning the expression

The program scans the expression from left to right to extract operands, operators, and the
parentheses.

1.1. If the extracted item is an operand, push it to operandStack.

1.2. If the extracted item is a + or - operator, process all the operators at the top of
operatorStack and push the extracted operator to operatorStack.

1.3. If the extracted item is a * or / operator, process the * or / operators at the top of
operatorStack and push the extracted operator to operatorStack.

1.4. If the extracted item is a (symbol, push it to operatorStack.

1.5. If the extracted item is a) symbol, repeatedly process the operators from the top
of operatorStack until seeing the (symbol on the stack.

Phase 2: Clearing the stack

Repeatedly process the operators from the top of operatorStack until
operatorStack is empty.

Table 22.1 shows how the algorithm is applied to evaluate the expression (1 + 2) * 4 - 3.
Listing 22.9 gives the program, and Figure 22.16 shows some sample output.

process an operator

22.10 Case Study: Evaluating Expressions 819

TABLE 22.1 Evaluating an expression

Expression Scan Action operandStack operatorStack

c
(1 + 2) * 4 - 3 (Phase 1.4 (

c
(1 + 2) * 4 - 3 1 Phase 1.1 1 (

c
(1 + 2) * 4 - 3 + Phase 1.2 1 (+

c
(1 + 2) * 4 - 3 2 Phase 1.1 2 1 (+

c
(1 + 2) * 4 - 3) Phase 1.5 3

c
(1 + 2) * 4 - 3 * Phase 1.3 3 *

c
(1 + 2) * 4 - 3 4 Phase 1.1 4 3 *

c
(1 + 2) * 4 - 3 - Phase 1.2 12 -

c
(1 + 2) * 4 - 3 3 Phase 1.1 3 12 -

c
(1 + 2) * 4 - 3 none Phase 2 9

LISTING 22.9 EvaluateExpression.java
1 import java.util.Stack;
2
3 public class EvaluateExpression {
4 public static void main(String[] args) {
5 // Check number of arguments passed
6 if (args.length != 1) {
7 System.out.println(
8 "Usage: java EvaluateExpression \"expression\"");
9 System.exit(1);
10 }
11
12 try {
13 System.out.println();
14 }
15 catch (Exception ex) {
16 System.out.println("Wrong expression: " + args[0]);
17 }
18 }
19
20 /** Evaluate an expression */
21 public static int evaluateExpression(String expression) {
22 // Create operandStack to store operands
23 Stack<Integer> = new Stack<Integer>();
24

operandStack

evaluateExpression(args[0])

check usage

evaluate expression

exception

operandStack

820 Chapter 22 Lists, Stacks, Queues, and Priority Queues

25 // Create operatorStack to store operators
26 Stack<Character> = new Stack<Character>();
27
28 // Insert blanks around (,), +, -, /, and *
29 expression = insertBlanks(expression);
30
31 // Extract operands and operators
32
33
34 // Phase 1: Scan tokens
35
36 // Blank space
37 continue; // Back to the while loop to extract the next token
38
39 // Process all +, -, *, / in the top of the operator stack
40 while (!operatorStack.isEmpty() &&
41 (operatorStack.peek() == '+' ||
42 operatorStack.peek() == '-' ||
43 operatorStack.peek() == '*' ||
44 operatorStack.peek() == '/')) {
45 processAnOperator(operandStack, operatorStack);
46 }
47
48 // Push the + or - operator into the operator stack
49 operatorStack.push(token.charAt(0));
50 }
51
52 // Process all *, / in the top of the operator stack
53 while (!operatorStack.isEmpty() &&
54 (operatorStack.peek() == '*' ||
55 operatorStack.peek() == '/')) {
56 processAnOperator(operandStack, operatorStack);
57 }
58
59 // Push the * or / operator into the operator stack
60 operatorStack.push(token.charAt(0));
61 }
62
63 operatorStack.push('('); // Push '(' to stack
64 }
65
66 // Process all the operators in the stack until seeing '('
67 while (operatorStack.peek() != '(') {
68 processAnOperator(operandStack, operatorStack);
69 }
70
71 operatorStack.pop(); // Pop the '(' symbol from the stack
72 }
73 else { // An operand scanned
74 // Push an operand to the stack
75
76 }
77 }
78
79 // Phase 2: Process all the remaining operators in the stack
80
81 processAnOperator(operandStack, operatorStack);
82 }
83
84 // Return the result

while (!operatorStack.isEmpty()) {

operandStack.push(new Integer(token));

else if (token.trim().charAt(0) == ')') {

else if (token.trim().charAt(0) == '(') {

else if (token.charAt(0) == '*' || token.charAt(0) == '/') {

else if (token.charAt(0) == '+' || token.charAt(0) == '-') {

if (token.length() == 0)
for (String token: tokens) {

String[] tokens = expression.split(" ");

operatorStackoperatorStack

prepare for extraction

extract tokens

process tokens

+ or - scanned

* or / scanned

(scanned

) scanned

an operand scanned

clear operatorStack

22.10 Case Study: Evaluating Expressions 821

85
86 }
87
88 /** Process one operator: Take an operator from operatorStack and
89 * apply it on the operands in the operandStack */
90 public static void processAnOperator(
91 Stack<Integer> operandStack, Stack<Character> operatorStack) {
92 char op = operatorStack.pop();
93 int op1 = operandStack.pop();
94 int op2 = operandStack.pop();
95 if (op == '+')
96 operandStack.push(op2 + op1);
97 else if (op == '-')
98 operandStack.push(op2 - op1);
99 else if (op == '*')
100 operandStack.push(op2 * op1);
101 else if (op == '/')
102 operandStack.push(op2 / op1);
103 }
104
105 public static String insertBlanks(String s) {
106 String result = "";
107
108 for (int i = 0; i < s.length(); i++) {
109 if (s.charAt(i) == '(' || s.charAt(i) == ')' ||
110 s.charAt(i) == '+' || s.charAt(i) == '-' ||
111 s.charAt(i) == '*' || s.charAt(i) == '/')
112 result += " " + s.charAt(i) + " ";
113 else
114 result += s.charAt(i);
115 }
116
117 return result;
118 }
119 }

You can use the GenericStack class provided by the book or the java.util.Stack
class defined in the Java API for creating stacks. This example uses the java.util.Stack
class. The program will work if it is replaced by GenericStack.

The program takes an expression as a command-line argument in one string.
The evaluateExpression method creates two stacks, operandStack and

operatorStack (lines 23, 26), and extracts operands, operators, and parentheses delimited
by space (lines 29–32). The insertBlanks method is used to ensure that operands, opera-
tors, and parentheses are separated by at least one blank (line 29).

The program scans each token in the for loop (lines 35–77). If a token is empty, skip it
(line 37). If a token is an operand, push it to operandStack (line 75). If a token is a + or –
operator (line 38), process all the operators from the top of operatorStack, if any (lines
40–46), and push the newly scanned operator into the stack (line 49). If a token is a * or /
operator (line 51), process all the * and / operators from the top of operatorStack, if any
(lines 53–57), and push the newly scanned operator to the stack (line 60). If a token is a (
symbol (line 62), push it into operatorStack. If a token is a) symbol (line 65), process all
the operators from the top of operatorStack until seeing the) symbol (lines 67–69) and
pop the) symbol from the stack.

After all tokens are considered, the program processes the remaining operators in
operatorStack (lines 80–82).

The processAnOperator method (lines 90–103) processes an operator. The method pops
the operator from operatorStack (line 92) and pops two operands from operandStack

return operandStack.pop(); return result

process +

process -

process *

process /

insert blanks

822 Chapter 22 Lists, Stacks, Queues, and Priority Queues

✓Point✓Check

(lines 93–94). Depending on the operator, the method performs an operation and pushes the
result of the operation back to operandStack (lines 96, 98, 100, 102).

22.32 Can the EvaluateExpression program evaluate the following expressions "1+2",
"1 + 2", "(1) + 2", "((1)) + 2", and "(1 + 2)"?

22.33 Show the change of the contents in the stacks when evaluating "3 + (4 + 5) * (3
+ 5) + 4 * 5" using the EvaluateExpression program.

KEY TERMS

collection 794
comparator 803
convenience abstract class 794
data structure 794

linked list 801
list 794
priority queue 814
queue 794

CHAPTER SUMMARY

1. The Java Collections Framework supports sets, lists, queues, and maps. They are
defined in the interfaces Set, List, Queue, and Map.

2. A list stores an ordered collection of elements.

3. All the concrete classes in the Java Collections Framework implement the
Cloneable and Serializable interfaces. Thus, their instances can be cloned and
serialized.

4. To allow duplicate elements to be stored in a collection, you need to use a list. A list
not only can store duplicate elements but also allows the user to specify where they
are stored. The user can access elements by an index.

5. Two types of lists are supported: ArrayList and LinkedList. ArrayList is a
resizable-array implementation of the List interface. All the methods in
ArrayList are defined in List. LinkedList is a linked-list implementation of
the List interface. In addition to implementing the List interface, this class pro-
vides the methods for retrieving, inserting, and removing elements from both ends
of the list.

6. Comparator can be used to compare the objects of a class that doesn’t implement
Comparable.

7. The Vector class extends the AbstractList class. Starting with Java 2, Vector
has been the same as ArrayList, except that the methods for accessing and modify-
ing the vector are synchronized. The Stack class extends the Vector class and pro-
vides several methods for manipulating the stack.

8. The Queue interface represents a queue. The PriorityQueue class implements
Queue for a priority queue.

Programming Exercises 823

(a) (b)

FIGURE 22.17 (a) The numbers are stored in a list and displayed in the text area. (b) The colliding balls are combined.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 22.2–22.7
*22.1 (Display words in ascending alphabetical order) Write a program that reads

words from a text file and displays all the words (duplicates allowed) in ascend-
ing alphabetical order. The words must start with a letter. The text file is passed
as a command-line argument.

*22.2 (Store numbers in a linked list) Write a program that lets the user enter numbers
from a graphical user interface and displays them in a text area, as shown in
Figure 22.17a. Use a linked list to store the numbers. Do not store duplicate
numbers. Add the buttons Sort, Shuffle, and Reverse to sort, shuffle, and reverse
the list.

*22.3 (Guessing the capitals) Rewrite Programming Exercise 9.17 to store the pairs of
states and capitals so that the questions are displayed randomly.

*22.4 (Sort points in a plane) Write a program that meets the following requirements:

■ Define a class named Point with two data fields x and y to represent a
point’s x- and y-coordinates. Implement the Comparable interface for com-
paring the points on x-coordinates. If two points have the same x-coordinates,
compare their y-coordinates.

■ Define a class named CompareY that implements Comparator<Point>.
Implement the compare method to compare two points on their y-coordinates.
If two points have the same y-coordinates, compare their x-coordinates.

■ Randomly create 100 points and apply the Arrays.sort method to display
the points in increasing order of their x-coordinates and in increasing order of
their y-coordinates, respectively.

***22.5 (Combine colliding bouncing balls) The example in Section 22.7 displays mul-
tiple bouncing balls. Extend the example to detect collisions. Once two balls
collide, remove the later ball that was added to the panel and add its radius to the

www.cs.armstrong.edu/liang/intro9e/test.html

824 Chapter 22 Lists, Stacks, Queues, and Priority Queues

other ball, as shown in Figure 22.17b. Add a mouse listener that removes a ball
when the mouse clicks on the ball.

22.6 (Use iterators on linked lists) Write a test program that stores 5 million integers
in a linked list and test the time to traverse the list using an iterator vs. using
the get(index) method.

***22.7 (Game: hangman) Programming Exercise 9.25 presents a console version of
the popular hangman game. Write a GUI program that lets a user play the
game. The user guesses a word by entering one letter at a time, as shown in
Figure 22.18. If the user misses seven times, a hanging man swings. Once a
word is finished, the user can press the Enter key to continue to guess another
word.

**22.8 (Game: lottery) Revise Programming Exercise 3.15 to add an additional $2,000
award if two digits from the user input are in the lottery number. (Hint: Sort the
three digits in the lottery number and three digits in the user input into two lists,
and use the Collection’s containsAll method to check whether the two
digits in the user input are in the lottery number.)

Sections 22.8–22.10
***22.9 (Remove the largest ball first) Modify Listing 22.6, MultipleBallApp.java to

assign a random radius between 2 and 20 when a ball is created. When the 1
button is clicked, one of largest balls is removed. (Hint: Use a PriorityQueue
to store the balls.)

22.10 (Perform set operations on priority queues) Create two priority queues,
{"George", "Jim", "John", "Blake", "Kevin", "Michael"} and
{"George", "Katie", "Kevin", "Michelle", "Ryan"}, and find their
union, difference, and intersection.

*22.11 (Match grouping symbols) A Java program contains various pairs of grouping
symbols, such as:

■ Parentheses: (and)
■ Braces: { and }
■ Brackets: [and]

Note that the grouping symbols cannot overlap. For example, (a{b)} is illegal.
Write a program to check whether a Java source-code file has correct pairs of
grouping symbols. Pass the source-code file name as a command-line argument.

22.12 (Clone PriorityQueue) Define MyPriorityQueue class that extends
PriorityQueue to implement the Cloneable interface and implement the
clone() method to clone a priority queue.

**22.13 (Game: the 24-point card game) The 24-point game is to pick any 4 cards from
52 cards, as shown in Figure 22.19. Note that the Jokers are excluded. Each card
represents a number. An Ace, King, Queen, and Jack represent 1, 13, 12, and
11, respectively. You can click the Refresh button to get four cards. Enter an
expression that uses the four numbers from the four selected cards. Each num-
ber must be used once and only once. You can use the operators (addition, sub-
traction, multiplication, and division) and parentheses in the expression. The
expression must evaluate to 24. After entering the expression, click the Verify
button to check whether the numbers in the expression are currently selected
and whether the result of the expression is correct. Display the verification in a
dialog box. Assume that images are stored in files named 1.png, 2.png, . . . ,
52.png, in the order of spades, hearts, diamonds, and clubs. So, the first 13
images are for spades 1, 2, 3, . . . , and 13.

-

Programming Exercises 825

FIGURE 22.18 The program displays a hangman game.

826 Chapter 22 Lists, Stacks, Queues, and Priority Queues

1 1 3

2

3

3

1 2 + 3 * 1 2 + 3 *

9

scanned scanned

1 2 + 3 *

scanned

1 2 + 3 *

scanned

1 2 + 3 *

scanned

**22.14 (Postfix notation) Postfix notation is a way of writing expressions without using
parentheses. For example, the expression (1 + 2) * 3 would be written as 1
2 + 3 *. A postfix expression is evaluated using a stack. Scan a postfix expres-
sion from left to right. A variable or constant is pushed into the stack. When an
operator is encountered, apply the operator with the top two operands in the
stack and replace the two operands with the result. The following diagram
shows how to evaluate 1 2 + 3 *.

Write a program to evaluate postfix expressions. Pass the expression as a command-
line argument in one string.

***22.15 (Game: the 24-point card game) Improve Exercise 22.13 to enable the computer
to display the expression if one exists, as shown in Figure 22.20. Otherwise,
report that the expression does not exist.

**22.16 (Convert infix to postfix) Write a method that converts an infix expression into a
postfix expression using the following header:

public static String infixToPostfix(String expression)

For example, the method should convert the infix expression (1 + 2) * 3 to
1 2 + 3 * and 2 * (1 + 3) to 2 1 3 + *.

FIGURE 22.19 The user enters an expression consisting of the numbers in the cards and
clicks the Verify button to check the answer.

Programming Exercises 827

FIGURE 22.20 The program can automatically find a solution if one exists.

FIGURE 22.21 The user enters four numbers and the program finds a solution.

***22.17 (Game: the 24-point card game) This exercise is a variation of the 24-point
card game described in Exercise 22.13. Write an applet to check whether there
is a 24-point solution for the four specified numbers. The applet lets the user
enter four values, each between 1 and 13, as shown in Figure 22.21. The user
can then click the Solve button to display the solution or display “No solution”
if none exist.

*22.18 (Directory size) Listing 20.7, DirectorySize.java, gives a recursive method for
finding a directory size. Rewrite this method without using recursion. Your
program should use a queue to store the subdirectories under a directory. The
algorithm can be described as follows:

long getSize(File directory) {
long size = 0;
add directory to the queue;

while (queue is not empty) {
Remove an item from the queue into t;
if (t is a file)
size += t.length();

else
add all the files and subdirectories under t into the
queue;

}

return size;
}

***22.19 (Game: solution ratio for 24-point game) When you pick four cards from a deck
of 52 cards for the 24-point game introduced in Exercise 22.13, the four cards
may not have a 24-point solution. What is the number of all possible picks of four
cards from 52 cards? Among all possible picks, how many of them have 24-point

828 Chapter 22 Lists, Stacks, Queues, and Priority Queues

solutions? What is the success ratio—that is, (number of picks with solutions)/
(number of all possible picks of four cards)? Write a program to find these
answers.

*22.20 (Directory size) Rewrite Exercise 22.18 using a stack instead of a queue.

*22.21 (Use Comparator) Write the following generic method using selection sort and
a comparator.

public static <E> void selectionSort(E[] list,
Comparator<? super E> comparator)

Write a test program that creates an array of 10 GeometricObjects and invokes
this method using the GeometricObjectComparator introduced in Listing 22.4
to sort the elements. Display the sorted elements. Use the following statement to
create the array.

GeometricObject[] list = {new Circle(5), new Rectangle(4, 5),
new Circle(5.5), new Rectangle(2.4, 5), new Circle(0.5),
new Rectangle(4, 65), new Circle(4.5), new Rectangle(4.4, 1),
new Circle(6.5), new Rectangle(4, 5)};

*22.22 (Nonrecursive Tower of Hanoi) Implement the moveDisks method in Listing
20.8 using a stack instead of using recursion.

SETS AND MAPS

Objectives
■ To store unordered, nonduplicate elements using a set (§23.2).

■ To explore how and when to use HashSet (§23.2.1), LinkedHashSet
(§23.2.2), or TreeSet (§23.2.3) to store a set of elements.

■ To compare the performance of sets and lists (§23.3).

■ To use sets to develop a program that counts the keywords in a Java source
file (§23.4).

■ To tell the differences between Collection and Map and describe when
and how to use HashMap, LinkedHashMap, or TreeMap to store values
associated with keys (§23.5).

■ To use maps to develop a program that counts the occurrence of the words
in a text (§23.6).

■ To obtain singleton sets, lists, and maps, and unmodifiable sets, lists, and
maps, using the static methods in the Collections class (§23.7).

CHAPTER

23

830 Chapter 23 Sets and Maps

Key
Point

Key
Point

23.1 Introduction
A set is an efficient data structure for storing and processing nonduplicate elements. A
map is like a dictionary that provides a quick lookup to retrieve a value using a key.

The “No-Fly” list is a list, created and maintained by the U.S. government’s Terrorist Screening
Center, of people who are not permitted to board a commercial aircraft for travel in or out of
the United States. Suppose we need to write a program that checks whether a person is on the
No-Fly list. You can use a list to store names in the No-Fly list. However, a more efficient data
structure for this application is a set.

Suppose your program also needs to store detailed information about terrorists in the No-
Fly list. The detailed information such as gender, height, weight, and nationality can be
retrieved using the name as the key. A map is an efficient data structure for such a task.

This chapter introduces sets and maps in the Java Collections Framework.

23.2 Sets
You can create a set using one of its three concrete classes: HashSet,
LinkedHashSet, or TreeSet.

The Set interface extends the Collection interface, as shown in Figure 22.1. It does not
introduce new methods or constants, but it stipulates that an instance of Set contains no
duplicate elements. The concrete classes that implement Set must ensure that no duplicate
elements can be added to the set. That is, no two elements e1 and e2 can be in the set such
that e1.equals(e2) is true.

The AbstractSet class extends AbstractCollection and partially implements Set.
The AbstractSet class provides concrete implementations for the equals method and the
hashCode method. The hash code of a set is the sum of the hash codes of all the elements in
the set. Since the size method and iterator method are not implemented in the
AbstractSet class, AbstractSet is an abstract class.

Three concrete classes of Set are HashSet, LinkedHashSet, and TreeSet, as shown in
Figure 23.1.

23.2.1 HashSet
The HashSet class is a concrete class that implements Set. You can create an empty hash set
using its no-arg constructor or create a hash set from an existing collection. By default, the
initial capacity is 16 and the load factor is 0.75. If you know the size of your set, you can
specify the initial capacity and load factor in the constructor. Otherwise, use the default set-
ting. The load factor is a value between 0.0 and 1.0.

The load factor measures how full the set is allowed to be before its capacity is increased.
When the number of elements exceeds the product of the capacity and load factor, the capacity is
automatically doubled. For example, if the capacity is 16 and load factor is 0.75, the capacity will
be doubled to 32 when the size reaches 12 A higher load factor decreases the
space costs but increases the search time. Generally, the default load factor 0.75 is a good trade-
off between time and space costs. We will discuss more on the load factor in Chapter 28, Hashing.

A HashSet can be used to store duplicate-free elements. For efficiency, objects added to a
hash set need to implement the hashCode method in a manner that properly disperses the
hash code. Recall that hashCode is defined in the Object class. The hash codes of two
objects must be the same if the two objects are equal. Two unequal objects may have the same
hash code, but you should implement the hashCode method to avoid too many such cases.
Most of the classes in the Java API implement the hashCode method. For example, the
hashCode in the Integer class returns its int value. The hashCode in the Character
class returns the Unicode of the character. The hashCode in the String class returns

where is s.charAt(i).sis0*31(n-1) + s1*31(n-2) + . . . + sn-1,

(16 * 0.75 = 12).

why set?

why map?

no duplicates

AbstractSet

hash set

load factor

hashCode()

set

23.2 Sets 831

java.util.AbstractSet<E>

+HashSet()

+HashSet(c: Collection<? extends E>)

+HashSet(initialCapacity: int)

+HashSet(initialCapacity: int, loadFactor: float)

java.util.TreeSet<E>

+TreeSet()

+TreeSet(c: Collection<? extends E>)

+TreeSet(comparator: Comparator<?

 super E>)

+TreeSet(s: SortedSet<E>)

+first(): E

+last(): E

+headSet(toElement: E): SortedSet<E>

+tailSet(fromElement: E): SortedSet<E>

«interface»
java.util.Set<E>

java.util.HashSet<E>

«interface»
java.util.SortedSet<E>

+pollFirst(): E
+pollLast(): E
+lower(e: E): E
+higher(e: E):E
+floor(e: E): E
+ceiling(e: E): E

«interface»
java.util.NavigableSet<E>

«interface»
java.util.Collection<E>

java.util.LinkedHashSet<E>

+LinkedHashSet()

+LinkedHashSet(c: Collection<? extends E>)

+LinkedHashSet(initialCapacity: int)

+LinkedHashSet(initialCapacity: int, loadFactor: float)

FIGURE 23.1 The Java Collections Framework provides three concrete set classes.

Listing 23.1 gives a program that creates a hash set to store strings and uses an iterator to
traverse the elements in the set.

LISTING 23.1 TestHashSet.java
1 import java.util.*;
2
3 public class TestHashSet {
4 public static void main(String[] args) {
5 // Create a hash set
6
7
8 // Add strings to the set
9
10 set.add("Paris");
11 set.add("New York");
12 set.add("San Francisco");
13 set.add("Beijing");

set.add("London");

Set<String> set = new HashSet<String>(); create set

add element

832 Chapter 23 Sets and Maps

14 set.add("New York");
15
16 System.out.println();
17
18 // Display the elements in the hash set
19 {
20 System.out.print(s.toUpperCase() + " ");
21 }
22 }
23 }

for (String s: set)

set

traverse elements

[San Francisco, New York, Paris, Beijing, London]
SAN FRANCISCO NEW YORK PARIS BEIJING LONDON

The strings are added to the set (lines 9–14). New York is added to the set more than once, but
only one string is stored, because a set does not allow duplicates.

As shown in the output, the strings are not stored in the order in which they are inserted
into the set. There is no particular order for the elements in a hash set. To impose an order on
them, you need to use the LinkedHashSet class, which is introduced in the next section.

Recall that the Collection interface extends the Iterable interface, so the elements in
a set are iterable. A for-each loop is used to traverse all the elements in the set (lines 19–21).

Since a set is an instance of Collection, all methods defined in Collection can be used
for sets. Listing 23.2 gives an example that explores the methods in the Collection interface.

LISTING 23.2 TestMethodsInCollection.java
1 public class TestMethodsInCollection {
2 public static void main(String[] args) {
3 // Create set1
4
5
6 // Add strings to set1
7
8 set1.add("Paris");
9 set1.add("New York");
10 set1.add("San Francisco");
11 set1.add("Beijing");
12
13 System.out.println("set1 is " + set1);
14 System.out.println(+ " elements in set1");
15
16 // Delete a string from set1
17
18 System.out.println("\nset1 is " + set1);
19 System.out.println(set1.size() + " elements in set1");
20
21 // Create set2
22
23
24 // Add strings to set2
25
26 set2.add("Shanghai");
27 set2.add("Paris");
28 System.out.println("\nset2 is " + set2);
29 System.out.println(set2.size() + " elements in set2");
30
31 System.out.println("\nIs Taipei in set2? "
32 +);set2.contains("Taipei")

set2.add("London");

java.util.Set<String> set2 = new java.util.HashSet<String>();

set1.remove("London");

set1.size()

set1.add("London");

java.util.Set<String> set1 = new java.util.HashSet<String>();create a set

add element

get size

remove element

create a set

add element

contains element?

23.2 Sets 833

33
34
35 System.out.println("\nAfter adding set2 to set1, set1 is "
36 + set1);
37
38
39 System.out.println("After removing set2 from set1, set1 is "
40 + set1);
41
42
43 System.out.println("After removing common elements in set2 "
44 + "from set1, set1 is " + set1);
45 }
46 }

set1.retainAll(set2);

set1.removeAll(set2);

set1.addAll(set2); addAll

removeAll

retainAll

set1 is [San Francisco, New York, Paris, Beijing, London]
5 elements in set1

set1 is [San Francisco, New York, Paris, Beijing]
4 elements in set1

set2 is [Shanghai, Paris, London]
3 elements in set2

Is Taipei in set2? false

After adding set2 to set1, set1 is
[San Francisco, New York, Shanghai, Paris, Beijing, London]

After removing set2 from set1, set1 is
[San Francisco, New York, Beijing]

After removing common elements in set2 from set1, set1 is []

The program creates two sets (lines 4, 22). The size() method returns the number of the ele-
ments in a set (line 14). Line 17

set1.remove("London");

removes London from set1.
The contains method (line 32) checks whether an element is in the set.
Line 34

set1.addAll(set2);

adds set2 to set1. Therefore, set1 becomes [San Francisco, New York, Shanghai,
Paris, Beijing, London].

Line 38

set1.removeAll(set2);

removes set2 from set1. Thus, set1 becomes [San Francisco, New York, Beijing].
Line 42

set1.retainAll(set2);

retains the common elements in set1. Since set1 and set2 have no common elements,
set1 becomes empty.

834 Chapter 23 Sets and Maps

23.2.2 LinkedHashSet
LinkedHashSet extends HashSet with a linked-list implementation that supports an order-
ing of the elements in the set. The elements in a HashSet are not ordered, but the elements in
a LinkedHashSet can be retrieved in the order in which they were inserted into the set. A
LinkedHashSet can be created by using one of its four constructors, as shown in Figure 23.1.
These constructors are similar to the constructors for HashSet.

Listing 23.3 gives a test program for LinkedHashSet. The program simply replaces
HashSet by LinkedHashSet in Listing 23.1.

LISTING 23.3 TestLinkedHashSet.java
1 import java.util.*;
2
3 public class TestLinkedHashSet {
4 public static void main(String[] args) {
5 // Create a hash set
6
7
8 // Add strings to the set
9 set.add("London");
10 set.add("Paris");
11 set.add("New York");
12 set.add("San Francisco");
13 set.add("Beijing");
14 set.add("New York");
15
16 System.out.println(set);
17
18 // Display the elements in the hash set
19
20
21 }
22 }

System.out.print(element.toLowerCase() + " ");
for (String element: set)

Set<String> set = new LinkedHashSet<String>();

linked hash set

create linked hash set

add element

display elements

[London, Paris, New York, San Francisco, Beijing]
london paris new york san francisco beijing

A LinkedHashSet is created in line 6. As shown in the output, the strings are stored in the order
in which they are inserted. Since LinkedHashSet is a set, it does not store duplicate elements.

The LinkedHashSet maintains the order in which the elements are inserted. To impose a
different order (e.g., increasing or decreasing order), you can use the TreeSet class, which is
introduced in the next section.

Tip
If you don’t need to maintain the order in which the elements are inserted, use
HashSet, which is more efficient than LinkedHashSet.

23.2.3 TreeSet
SortedSet is a subinterface of Set, which guarantees that the elements in the set are sorted.
Additionally, it provides the methods first() and last() for returning the first and last
elements in the set, and headSet(toElement) and tailSet(fromElement) for returning
a portion of the set whose elements are less than toElement and greater than or equal to
fromElement.

23.2 Sets 835

NavigableSet extends SortedSet to provide navigation methods lower(e),
floor(e), ceiling(e), and higher(e) that return elements respectively less than, less
than or equal, greater than or equal, and greater than a given element and return null if there
is no such element. The pollFirst() and pollLast() methods remove and return the first
and last element in the tree set, respectively.

TreeSet implements the SortedSet interface. To create a TreeSet, use a constructor,
as shown in Figure 23.1. You can add objects into a tree set as long as they can be compared
with each other.

As discussed in Section 22.5, the elements can be compared in two ways: using the
Comparable interface or the Comparator interface.

Listing 23.4 gives an example of ordering elements using the Comparable interface. The
preceding example in Listing 23.3 displays all the strings in their insertion order. This exam-
ple rewrites the preceding example to display the strings in alphabetical order using the
TreeSet class.

LISTING 23.4 TestTreeSet.java
1 import java.util.*;
2
3 public class TestTreeSet {
4 public static void main(String[] args) {
5 // Create a hash set
6
7
8 // Add strings to the set
9 set.add("London");
10 set.add("Paris");
11 set.add("New York");
12 set.add("San Francisco");
13 set.add("Beijing");
14 set.add("New York");
15
16
17 System.out.println("Sorted tree set: " + treeSet);
18
19 // Use the methods in SortedSet interface
20 System.out.println("first(): " + treeSet.first());
21 System.out.println("last(): " + treeSet.last());
22 System.out.println("headSet(\"New York\"): " +
23 treeSet.headSet("New York"));
24 System.out.println("tailSet(\"New York\"): " +
25 treeSet.tailSet("New York"));
26
27 // Use the methods in NavigableSet interface
28 System.out.println("lower(\"P\"): " + treeSet.lower("P"));
29 System.out.println("higher(\"P\"): " + treeSet.higher("P"));
30 System.out.println("floor(\"P\"): " + treeSet.floor("P"));
31 System.out.println("ceiling(\"P\"): " + treeSet.ceiling("P"));
32 System.out.println("pollFirst(): " + treeSet.pollFirst());
33 System.out.println("pollLast(): " + treeSet.pollLast());
34 System.out.println("New tree set: " + treeSet);
35 }
36 }

TreeSet<String> treeSet = new TreeSet<String>(set);

Set<String> set = new HashSet<String>();

tree set

create hash set

create tree set

display elements

Sorted tree set: [Beijing, London, New York, Paris, San Francisco]
first(): Beijing
last(): San Francisco

836 Chapter 23 Sets and Maps

headSet("New York"): [Beijing, London]
tailSet("New York"): [New York, Paris, San Francisco]
lower("P"): New York
higher("P"): Paris
floor("P"): New York
ceiling("P"): Paris
pollFirst(): Beijing
pollLast(): San Francisco
New tree set: [London, New York, Paris]

The example creates a hash set filled with strings, then creates a tree set for the same strings. The
strings are sorted in the tree set using the compareTo method in the Comparable interface.

The elements in the set are sorted once you create a TreeSet object from a HashSet object
using new TreeSet<String>(set) (line 16). You may rewrite the program to create an
instance of TreeSet using its no-arg constructor, and add the strings into the TreeSet object.

treeSet.first() returns the first element in treeSet (line 20), and
treeSet.last() returns the last element in treeSet (line 21). treeSet.headSet("New
York") returns the elements in treeSet before New York (lines 22–23).
treeSet.tailSet("New York") returns the elements in treeSet after New York,
including New York (lines 24–25).

treeSet.lower("P") returns the largest element less than P in treeSet (line 28).
treeSet.higher("P") returns the smallest element greater than P in treeSet (line 29).
treeSet.floor("P") returns the largest element less than or equal to P in treeSet (line
30). treeSet.ceiling("P") returns the smallest element greater than or equal to P in
treeSet (line 31). treeSet.pollFirst() removes the first element in treeSet and
returns the removed element (line 32). treeSet.pollLast() removes the last element in
treeSet and returns the removed element (line 33).

Note
All the concrete classes in Java Collections Framework (see Figure 22.1) have at least two
constructors. One is the no-arg constructor that constructs an empty collection. The
other constructs instances from a collection. Thus the TreeSet class has the construc-
tor TreeSet(Collection c) for constructing a TreeSet from a collection c. In
this example, new TreeSet<String>(set) creates an instance of TreeSet from
the collection set.

Tip
If you don’t need to maintain a sorted set when updating a set, you should use a hash
set, because it takes less time to insert and remove elements in a hash set. When you
need a sorted set, you can create a tree set from the hash set.

If you create a TreeSet using its no-arg constructor, the compareTo method is used to
compare the elements in the set, assuming that the class of the elements implements the
Comparable interface. To use a comparator, you have to use the constructor
TreeSet(Comparator comparator) to create a sorted set that uses the compare method
in the comparator to order the elements in the set.

Listing 23.5 gives a program that demonstrates how to sort elements in a tree set using the
Comparator interface.

LISTING 23.5 TestTreeSetWithComparator.java
1 import java.util.*;
2
3 public class TestTreeSetWithComparator {

23.2 Sets 837

✓Point✓Check

4 public static void main(String[] args) {
5 // Create a tree set for geometric objects using a comparator
6 Set<GeometricObject> set =
7
8 set.add(new Rectangle(4, 5));
9 set.add(new Circle(40));
10 set.add(new Circle(40));
11 set.add(new Rectangle(4, 1));
12
13 // Display geometric objects in the tree set
14 System.out.println("A sorted set of geometric objects");
15
16 System.out.println("area = " + element.getArea());
17 }
18 }

for (GeometricObject element: set)

new TreeSet<GeometricObject>(new GeometricObjectComparator());
tree set

display elements

A sorted set of geometric objects
area = 4.0
area = 20.0
area = 5023.548245743669

The GeometricObjectComparator class is defined in Listing 22.4. The program creates a
tree set of geometric objects using the GeometricObjectComparator for comparing the
elements in the set (lines 6–7).

The Circle and Rectangle classes were defined in Section 15.2, Abstract Classes. They
are all subclasses of GeometricObject. They are added to the set (lines 8–11).

Two circles of the same radius are added to the tree set (lines 9–10), but only one is stored,
because the two circles are equal and the set does not allow duplicates.

23.1 How do you create an instance of Set? How do you insert a new element in a set?
How do you remove an element from a set? How do you find the size of a set?

23.2 If the two objects o1 and o2 are equal, what is o1.equals(o2) and
o1.hashCode() == o2.hashCode()?

23.3 What are the differences between HashSet, LinkedHashSet, and TreeSet?

23.4 How do you traverse the elements in a set?

23.5 How do you sort the elements in a set using the compareTo method in the
Comparable interface? How do you sort the elements in a set using the
Comparator interface? What would happen if you added an element that could not
be compared with the existing elements in a tree set?

23.6 Suppose that set1 is a set that contains the strings red, yellow, and green, and
that set2 is another set that contains the strings red, yellow, and blue. Answer the
following questions:

■ What are in set1 and set2 after executing set1.addAll(set2)?

■ What are in set1 and set2 after executing set1.add(set2)?

■ What are in set1 and set2 after executing set1.removeAll(set2)?

■ What are in set1 and set2 after executing set1.remove(set2)?

■ What are in set1 and set2 after executing set1.retainAll(set2)?

■ What is in set1 after executing set1.clear()?

838 Chapter 23 Sets and Maps

Key
Point

23.7 Show the output of the following code:

import java.util.*;

public class Test {
public static void main(String[] args) {
LinkedHashSet<String> set1 = new LinkedHashSet<String>();
set1.add("New York");
LinkedHashSet<String> set2 = set1;
LinkedHashSet<String> set3 =
(LinkedHashSet<String>)(set1.clone());

set1.add("Atlanta");
System.out.println("set1 is " + set1);
System.out.println("set2 is " + set2);
System.out.println("set3 is " + set3);

}
}

23.8 Show the output of the following code:

import java.util.*;
import java.io.*;

public class Test {
public static void main(String[] args) throws Exception {
ObjectOutputStream output = new ObjectOutputStream(
new FileOutputStream("c:\\test.dat"));

LinkedHashSet<String> set1 = new LinkedHashSet<String>();
set1.add("New York");
LinkedHashSet<String> set2 =
(LinkedHashSet<String>)set1.clone();

set1.add("Atlanta");
output.writeObject(set1);
output.writeObject(set2);
output.close();

ObjectInputStream input = new ObjectInputStream(
new FileInputStream("c:\\test.dat"));

set1 = (LinkedHashSet<String>)input.readObject();
set2 = (LinkedHashSet<String>)input.readObject();
System.out.println(set1);
System.out.println(set2);
output.close();

}
}

23.3 Comparing the Performance of Sets and Lists
Sets are more efficient than lists for storing nonduplicate elements. Lists are useful for
accessing elements through the index.

The elements in a list can be accessed through the index. However, sets do not support index-
ing, because the elements in a set are unordered. To traverse all elements in a set, use a for-
each loop. We now conduct an interesting experiment to test the performance of sets and lists.
Listing 23.6 gives a program that shows the execution time of (1) testing whether an element
is in a hash set, linked hash set, tree set, array list, and linked list, and (2) removing elements
from a hash set, linked hash set, tree set, array list, and linked list.

23.3 Comparing the Performance of Sets and Lists 839

LISTING 23.6 SetListPerformanceTest.java
1 import java.util.*;
2
3 public class SetListPerformanceTest {
4 static final int N = 50000;
5
6 public static void main(String[] args) {
7 // Add numbers 0, 1, 2, ..., N - 1 to the array list
8
9 for (int i = 0; i < N; i++)
10
11 Collections.shuffle(list); // Shuffle the array list
12
13 // Create a hash set, and test its performance
14
15 System.out.println("Member test time for hash set is " +
16 getTestTime(set1) + " milliseconds");
17 System.out.println("Remove element time for hash set is " +
18 getRemoveTime(set1) + " milliseconds");
19
20 // Create a linked hash set, and test its performance
21
22 System.out.println("Member test time for linked hash set is " +
23 getTestTime(set2) + " milliseconds");
24 System.out.println("Remove element time for linked hash set is "
25 + getRemoveTime(set2) + " milliseconds");
26
27 // Create a tree set, and test its performance
28
29 System.out.println("Member test time for tree set is " +
30 getTestTime(set3) + " milliseconds");
31 System.out.println("Remove element time for tree set is " +
32 getRemoveTime(set3) + " milliseconds");
33
34 // Create an array list, and test its performance
35
36 System.out.println("Member test time for array list is " +
37 getTestTime(list1) + " milliseconds");
38 System.out.println("Remove element time for array list is " +
39 getRemoveTime(list1) + " milliseconds");
40
41 // Create a linked list, and test its performance
42
43 System.out.println("Member test time for linked list is " +
44 getTestTime(list2) + " milliseconds");
45 System.out.println("Remove element time for linked list is " +
46 getRemoveTime(list2) + " milliseconds");
47 }
48
49 public static long getTestTime(Collection<Integer> c) {
50 long startTime = System.currentTimeMillis();
51
52 // Test if a number is in the collection
53 for (int i = 0; i < N; i++)
54
55
56 return System.currentTimeMillis() - startTime;
57 }
58

c.contains((int)(Math.random() * 2 * N));

Collection<Integer> list2 = new LinkedList<Integer>(list);

Collection<Integer> list1 = new ArrayList<Integer>(list);

Collection<Integer> set3 = new TreeSet<Integer>(list);

Collection<Integer> set2 = new LinkedHashSet<Integer>(list);

Collection<Integer> set1 = new HashSet<Integer>(list);

list.add(i);

List<Integer> list = new ArrayList<Integer>(); create test data

shuffle

a hash set

a linked hash set

a tree set

an array list

a linked list

start time

test membership

return execution time

840 Chapter 23 Sets and Maps

✓Point✓Check

59 public static long getRemoveTime(Collection<Integer> c) {
60 long startTime = System.currentTimeMillis();
61
62 for (int i = 0; i < N; i++)
63
64
65 return System.currentTimeMillis() - startTime;
66 }
67 }

c.remove(i);remove from container

return execution time

Member test time for hash set is 20 milliseconds
Remove element time for hash set is 27 milliseconds
Member test time for linked hash set is 27 milliseconds
Remove element time for linked hash set is 26 milliseconds
Member test time for tree set is 47 milliseconds
Remove element time for tree set is 34 milliseconds
Member test time for array list is 39802 milliseconds
Remove element time for array list is 16196 milliseconds
Member test time for linked list is 52197 milliseconds
Remove element time for linked list is 14870 milliseconds

The program creates a list for numbers from 0 to N-1 (for N 50000) (lines 8–10) and shuf-
fles the list (line 11). From this list, the program creates a hash set (line 14), a linked hash set
(line 21), a tree set (line 28), an array list (line 35), and a linked list (line 42). The program
obtains the execution time for testing whether a number is in the hash set (line 16), linked
hash set (line 23), tree set (line 30), array list (line 37), and linked list (line 44), and obtains
the execution time for removing the elements from the hash set (line 18), linked hash set (line
25), tree set (line 32), array list (line 39), and linked list (line 46).

The getTestTime method invokes the contains method to test whether a number is in
the container (line 54) and the getRemoveTime method invokes the remove method to
remove an element from the container (line 63).

As these runtimes illustrate, sets are much more efficient than lists for testing whether an
element is in a set or a list. Therefore, the No-Fly list should be implemented using a
set instead of a list, because it is much faster to test whether an element is in a set than in a list.

You may wonder why sets are more efficient than lists. The questions will be answered in
Chapters 26 and 28 when we introduce the implementations of lists and sets.

23.9 Suppose you need to write a program that stores non-duplicate elements, what data
structure should you use?

23.10 Suppose you need to write a program that stores non-duplicate elements in the order
of insertion, what data structure should you use?

23.11 Suppose you need to write a program that stores non-duplicate elements in increasing
order of the element values, what data structure should you use?

23.12 Suppose you need to write a program that stores a fixed number of the elements (pos-
sibly duplicates), what data structure should you use?

23.13 Suppose you need to write a program that stores the elements in a list with frequent
operations to add and insert elements at the end of the list, what data structure
should you use?

23.14 Suppose you need to write a program that stores the elements in a list with frequent
operations to add and insert elements at the beginning of the list, what data structure
should you use?

=

sets are better

23.4 Case Study: Counting Keywords 841

Key
Point

23.4 Case Study: Counting Keywords
This section presents an application that counts the number of the keywords in a Java
source file.

For each word in a Java source file, we need to determine whether the word is a keyword. To
handle this efficiently, store all the keywords in a HashSet and use the contains method to
test if a word is in the keyword set. Listing 23.7 gives this program.

LISTING 23.7 CountKeywords.java
1 import java.util.*;
2 import java.io.*;
3
4 public class CountKeywords {
5 public static void main(String[] args) throws Exception {
6 Scanner input = new Scanner(System.in);
7 System.out.print("Enter a Java source file: ");
8 String filename = input.nextLine();
9
10 File file = new File(filename);
11 if (file.exists()) {
12 System.out.println("The number of keywords in " + filename
13 + " is " +);
14 }
15 else {
16 System.out.println("File " + filename + " does not exist");
17 }
18 }
19
20 public static int countKeywords(File file) throws Exception {
21 // Array of all Java keywords + true, false and null
22 String[] keywordString = {"abstract", "assert", "boolean",
23 "break", "byte", "case", "catch", "char", "class", "const",
24 "continue", "default", "do", "double", "else", "enum",
25 "extends", "for", "final", "finally", "float", "goto",
26 "if", "implements", "import", "instanceof", "int",
27 "interface", "long", "native", "new", "package", "private",
28 "protected", "public", "return", "short", "static",
29 "strictfp", "super", "switch", "synchronized", "this",
30 "throw", "throws", "transient", "try", "void", "volatile",
31 "while", "true", "false", "null"};
32
33 Set<String> keywordSet =
34
35 int count = 0;
36
37 Scanner input = new Scanner(file);
38
39 while (input.hasNext()) {
40 String word = input.next();
41 if ()
42 count++;
43 }
44
45 return count;
46 }
47 }

keywordSet.contains(word)

new HashSet<String>(Arrays.asList(keywordString));

countKeywords(file)

enter a filename

file exists?

count keywords

keywords

keyword set

is a keyword?

842 Chapter 23 Sets and Maps

✓Point✓Check

Key
Point

Corresponding
element value

Entry

Search key

A map

Corresponding
value

Entry

Search key

(b)(a)

111-34-3434 John

132-56-6290 Peter

FIGURE 23.2 The entries consisting of key/value pairs are stored in a map.

Enter a Java source file:
The number of keywords in c:\Welcome.java is 5

c:\Welcome.java

Enter a Java source file:
File c:\TTT.java does not exist

c:\TTT.java

The program prompts the user to enter a Java source filename (line 7) and reads the filename
(line 8). If the file exists, the countKeywords method is invoked to count the keywords in the
file (line 13).

The countKeywords method creates an array of strings for the keywords (lines 22–31)
and creates a hash set from this array (lines 33–34). It then reads each word from the file and
tests if the word is in the set (line 41). If so, the program increases the count by 1 (line 42).

You may rewrite the program to use a LinkedHashSet, TreeSet, ArrayList, or
LinkedList to store the keywords. However, using a HashSet is the most efficient for
this program.

23.15 Will the CountKeywords program work if lines 33–34 are changed to

<String> keywordSet =
new <String>(Arrays.asList(keywordString));

23.16 Will the CountKeywords program work if lines 33–34 are changed to

<String> keywordSet =
new <String>(Arrays.asList(keywordString));

23.5 Maps
You can create a map using one of its three concrete classes: HashMap,
LinkedHashMap, or TreeMap.

A map is a container object that stores a collection of key/value pairs. It enables fast retrieval,
deletion, and updating of the pair through the key. A map stores the values along with the keys.
The keys are like indexes. In List, the indexes are integers. In Map, the keys can be any objects.
A map cannot contain duplicate keys. Each key maps to one value. A key and its corresponding
value form an entry stored in a map, as shown in Figure 23.2a. Figure 23.2b shows a map in
which each entry consists of a Social Security number as the key and a name as the value.

ArrayList
List

LinkedHashSet
Set

map

23.5 Maps 843

SortedMap

HashMap LinkedHashMap

TreeMap

Interfaces Abstract Classes Concrete Classes

Map

NavigableMap

AbstractMap

FIGURE 23.3 A map stores key/value pairs.

+clear(): void Removes all entries from this map.
+containsKey(key: Object): boolean

+containsValue(value: Object): boolean

+isEmpty(): boolean
+keySet(): Set<K>
+put(key: K, value: V): V
+putAll(m: Map<? extends K,? extends
 V>): void

+get(key: Object): V
+entrySet(): Set<Map.Entry<K,V>>

Returns true if this map contains an entry for the
 specified key.

Returns true if this map maps one or more keys to the
 specified value.
Returns a set consisting of the entries in this map.
Returns the value for the specified key in this map.
Returns true if this map contains no entries.
Returns a set consisting of the keys in this map.
Puts an entry into this map.

Removes the entries for the specified key.
Returns the number of entries in this map.
Returns a collection consisting of the values in this map.

Adds all the entries from m to this map.

+remove(key: Object): V
+size(): int
+values(): Collection<V>

«interface»
java.util.Map<K,V>

FIGURE 23.4 The Map interface maps keys to values.

There are three types of maps: HashMap, LinkedHashMap, and TreeMap. The common fea-
tures of these maps are defined in the Map interface. Their relationship is shown in Figure 23.3.

The Map interface provides the methods for querying, updating, and obtaining a collection
of values and a set of keys, as shown in Figure 23.4.

The update methods include clear, put, putAll, and remove. The clear() method
removes all entries from the map. The put(K key, V value) method associates a value with
a key in the map. If the map formerly contained an entry for this key, the old value is replaced by
the new value and the old value associated with the key is returned. The putAll(Map m)
method adds all entries in m to this map. The remove(Object key)method removes the entry
for the specified key from the map.

The query methods include containsKey, containsValue, isEmpty, and size. The
containsKey(Object key) method checks whether the map contains an entry for the
specified key. The containsValue(Object value) method checks whether the map con-
tains an entry for this value. The isEmpty() method checks whether the map contains any
entries. The size() method returns the number of entries in the map.

You can obtain a set of the keys in the map using the keySet() method, and a collection
of the values in the map using the values() method. The entrySet() method returns a set
of objects that implement the Map.Entry<K, V> interface, where Entry is an inner inter-
face for the Map interface, as shown in Figure 23.5. Each object in the set is a specific
key/value pair in the underlying map.

update methods

query methods

keySet()

values()

entrySet()

844 Chapter 23 Sets and Maps

+getKey(): K

+getValue(): V

+setValue(value: V): void

Returns the key from this entry.

Returns the value from this entry.

Replaces the value in this entry with a new value.

«interface»
java.util.Map.Entry<K,V>

FIGURE 23.5 The Map.Entry interface operates on an entry in the map.

java.util.AbstractMap<K,V>

java.util.HashMap<K,V>

java.util.LinkedHashMap<K,V>

+LinkedHashMap()

+LinkedHashMap(m: Map<? extends K,? extends V>)

+LinkedHashMap(initialCapacity: int,
 loadFactor: float, accessOrder: boolean)

java.util.TreeMap<K,V>

+TreeMap()
+TreeMap(m: Map<? extends K,? extends V>)
+TreeMap(c: Comparator<? super K>)

«interface»
java.util.SortedMap<K,V>

+firstKey(): K

+lastKey(): K

+comparator(): Comparator<? super K>)

+headMap(toKey: K): SortedMap<K,V>

+tailMap(fromKey: K): SortedMap<K,V>

«interface»
java.util.Map<K, V>

«interface»
java.util.NavigableMap<K, V>

+floorKey(key: K): K
+ceilingKey(key: K): K
+lowerKey(key: K): K
+higherKey(key: K): K
+pollFirstEntry(): Map.EntrySet<K, V>
+pollLastEntry(): Map.EntrySet<K, V>

+HashMap()

+HashMap(m: Map<? extends K, ? extends V>)

+HashMap(initialCapacity: int,loadFactor: float)

FIGURE 23.6 The Java Collections Framework provides three concrete map classes.

The AbstractMap class is a convenience abstract class that implements all the methods in
the Map interface except the entrySet() method.

The SortedMap interface extends the Map interface to maintain the entries in ascending
order of keys with the additional methods firstKey() and lastKey() for returning the
lowest and highest key, headMap(toKey) for returning the portion of the map whose keys
are less than toKey, and tailMap(fromKey) for returning the portion of the map whose
keys are greater than or equal to fromKey.

The HashMap, LinkedHashMap, and TreeMap classes are three concrete implementa-
tions of the Map interface, as shown in Figure 23.6.

AbstractMap

concrete implementation

23.5 Maps 845

The HashMap class is efficient for locating a value, inserting an entry, and deleting an entry.
LinkedHashMap extends HashMap with a linked-list implementation that supports an

ordering of the entries in the map. The entries in a HashMap are not ordered, but the entries in
a LinkedHashMap can be retrieved either in the order in which they were inserted into the
map (known as the insertion order) or in the order in which they were last accessed, from
least recently to most recently accessed (access order). The no-arg constructor constructs a
LinkedHashMap with the insertion order. To construct a LinkedHashMap with the access
order, use LinkedHashMap(initialCapacity, loadFactor, true).

The TreeMap class is efficient for traversing the keys in a sorted order. The keys can be
sorted using the Comparable interface or the Comparator interface. If you create a
TreeMap using its no-arg constructor, the compareTo method in the Comparable interface
is used to compare the keys in the map, assuming that the class for the keys implements the
Comparable interface. To use a comparator, you have to use the TreeMap(Comparator
comparator) constructor to create a sorted map that uses the compare method in the com-
parator to order the entries in the map based on the keys.

SortedMap is a subinterface of Map, which guarantees that the entries in the map are
sorted. Additionally, it provides the methods firstKey() and lastKey() for returning the
first and last keys in the map, and headMap(toKey) and tailMap(fromKey) for returning
a portion of the map whose keys are less than toKey and greater than or equal to fromKey.

NavigableMap extends SortedMap to provide the navigation methods lowerKey(key),
floorKey(key), ceilingKey(key), and higherKey(key) that return keys respectively
less than, less than or equal, greater than or equal, and greater than a given key and return null
if there is no such key. The pollFirstEntry() and pollLastEntry() methods remove
and return the first and last entry in the tree map, respectively.

Note
Prior to Java 2, java.util.Hashtable was used for mapping keys with values.
Hashtable was redesigned to fit into the Java Collections Framework with all its meth-
ods retained for compatibility. Hashtable implements the Map interface and is used in
the same way as HashMap, except that Hashtable is synchronized.

Listing 23.8 gives an example that creates a hash map, a linked hash map, and a tree map for
mapping students to ages. The program first creates a hash map with the student’s name as its
key and the age as its value. The program then creates a tree map from the hash map and
displays the entries in ascending order of the keys. Finally, the program creates a linked hash
map, adds the same entries to the map, and displays the entries.

LISTING 23.8 TestMap.java
1 import java.util.*;
2
3 public class TestMap {
4 public static void main(String[] args) {
5 // Create a HashMap
6
7
8 hashMap.put("Anderson", 31);
9 hashMap.put("Lewis", 29);
10 hashMap.put("Cook", 29);
11
12 System.out.println("Display entries in HashMap");
13 System.out.println(hashMap + "\n");
14
15 // Create a TreeMap from the preceding HashMap
16
17 new TreeMap<String, Integer>(hashMap);

Map<String, Integer> treeMap =

hashMap.put("Smith", 30);
Map<String, Integer> hashMap = new HashMap<String, Integer>();

HashMap

LinkedHashMap

insertion order

access order

TreeMap

SortedMap

NavigableMap

Hashtable

hash map
linked hash map

tree map

create map
add entry

tree map

846 Chapter 23 Sets and Maps

✓Point✓Check

18 System.out.println("Display entries in ascending order of key");
19 System.out.println(treeMap);
20
21 // Create a LinkedHashMap
22
23
24 linkedHashMap.put("Smith", 30);
25 linkedHashMap.put("Anderson", 31);
26 linkedHashMap.put("Lewis", 29);
27 linkedHashMap.put("Cook", 29);
28
29 // Display the age for Lewis
30 System.out.println("\nThe age for " + "Lewis is " +
31 linkedHashMap.get("Lewis"));
32
33 System.out.println("Display entries in LinkedHashMap");
34 System.out.println(linkedHashMap);
35 }
36 }

new LinkedHashMap<String, Integer>(16, 0.75f, true);
Map<String, Integer> linkedHashMap =linked hash map

Display entries in HashMap
{Cook=29, Smith=30, Lewis=29, Anderson=31}

Display entries in ascending order of key
{Anderson=31, Cook=29, Lewis=29, Smith=30}

The age for Lewis is 29
Display entries in LinkedHashMap
{Smith=30, Anderson=31, Cook=29, Lewis=29}

As shown in the output, the entries in the HashMap are in random order. The entries in the
TreeMap are in increasing order of the keys. The entries in the LinkedHashMap are in the
order of their access, from least recently accessed to most recently.

All the concrete classes that implement the Map interface have at least two constructors.
One is the no-arg constructor that constructs an empty map, and the other constructs a map
from an instance of Map. Thus, new TreeMap<String, Integer>(hashMap) (lines
16–17) constructs a tree map from a hash map.

You can create an insertion-ordered or access-ordered linked hash map. An access-ordered
linked hash map is created in lines 22–23. The most recently accessed entry is placed at the
end of the map. The entry with the key Lewis is last accessed in line 31, so it is displayed last
in line 34.

Tip
If you don’t need to maintain an order in a map when updating it, use a HashMap.
When you need to maintain the insertion order or access order in the map, use a
LinkedHashMap. When you need the map to be sorted on keys, use a TreeMap.

23.17 How do you create an instance of Map? How do you add an entry to a map consisting
of a key and a value? How do you remove an entry from a map? How do you find the
size of a map? How do you traverse entries in a map?

23.18 Describe and compare HashMap, LinkedHashMap, and TreeMap.

23.19 Show the printout of the following code:

public class Test {
public static void main(String[] args) {

23.6 Case Study: Occurrences of Words 847

Key
Point

Map map = new LinkedHashMap();
map.put("123", "John Smith");
map.put("111", "George Smith");
map.put("123", "Steve Yao");
map.put("222", "Steve Yao");
System.out.println("(1) " + map);
System.out.println("(2) " + new TreeMap(map));

}
}

23.6 Case Study: Occurrences of Words
This case study writes a program that counts the occurrences of words in a text and
displays the words and their occurrences in alphabetical order of the words.

The program uses a TreeMap to store an entry consisting of a word and its count. For
each word, check whether it is already a key in the map. If not, add an entry to the
map with the word as the key and value 1. Otherwise, increase the value for the word
(key) by 1 in the map. Assume the words are case insensitive; e.g., Good is treated the
same as good.

Listing 23.9 gives the solution to the problem.

LISTING 23.9 CountOccurrenceOfWords.java
1 import java.util.*;
2
3 public class CountOccurrenceOfWords {
4 public static void main(String[] args) {
5 // Set text in a string
6 String text = "Good morning. Have a good class. " +
7 "Have a good visit. Have fun!";
8
9 // Create a TreeMap to hold words as key and count as value
10
11
12 String[] words = text.split("[\n\t\r.,;:!?(){}]");
13 for (int i = 0; i < words.length; i++) {
14
15
16 if (key.length() > 0) {
17 if () {
18
19 }
20 else {
21 int value = map.get(key);
22 value++;
23
24 }
25 }
26 }
27
28 // Get all entries into a set
29
30
31 // Get key and value from each entry
32 for (Map.Entry<String, Integer> entry: entrySet)
33 System.out.println(+ "\t" +);
34 }
35 }

entry.getValue()entry.getKey()

Set<Map.Entry<String, Integer>> entrySet = map.entrySet();

map.put(key, value);

map.put(key, 1);
!map.containsKey(key)

String key = words[i].toLowerCase();

Map<String, Integer> map = new TreeMap<String, Integer>(); tree map

split string

add entry

add entry

entry set

display entry

848 Chapter 23 Sets and Maps

✓Point✓Check

Key
Point

a 2
class 1
fun 1
good 3
have 3
morning 1
visit 1

The program creates a TreeMap (line 10) to store pairs of words and their occurrence counts.
The words serve as the keys. Since all values in the map must be stored as objects, the count
is wrapped in an Integer object.

The program extracts a word from a text using the split method (line 12) in the String
class (see Section 9.2.7). For each word extracted, the program checks whether it is already
stored as a key in the map (line 17). If not, a new pair consisting of the word and its initial
count (1) is stored in the map (line 18). Otherwise, the count for the word is incremented by 1
(lines 21–23).

The program obtains the entries of the map in a set (line 29), and traverses the set to dis-
play the count and the key in each entry (lines 32–33).

Since the map is a tree map, the entries are displayed in increasing order of words. To dis-
play them in ascending order of the occurrence counts, see Programming Exercise 23.8.

Now sit back and think how you would write this program without using map. Your new
program would be longer and more complex. You will find that map is a very efficient and
powerful data structure for solving problems such as this.

23.20 Will the CountOccurrenceOfWords program work if line 10 is changed to
Map<String, int> map = new TreeMap<String, int>();

23.21 Will the CountOccurrenceOfWords program work if line 17 is changed to
if (map.get(key) == null) {

23.22 Will the CountOccurrenceOfWords program work if lines 32–33 are changed to
for (String key: map)
System.out.println(+ "\t" +);

23.7 Singleton and Unmodifiable Collections and Maps
You can create singleton sets, lists, and maps and unmodifiable sets, lists, and maps
using the static methods in the Collections class.

The Collections class contains the static methods for lists and collections. It also contains
the methods for creating immutable singleton sets, lists, and maps, and for creating read-only
sets, lists, and maps, as shown in Figure 23.7.

The Collections class defines three constants—EMPTY_SET, EMPTY_LIST, and
EMPTY_MAP—for an empty set, an empty list, and an empty map. These collections are
immutable. The class also provides the singleton(Object o) method for creating an
immutable set containing only a single item, the singletonList(Object o) method for
creating an immutable list containing only a single item, and the singletonMap(Object
key, Object value) method for creating an immutable map containing only a single entry.

The Collections class also provides six static methods for returning read-only views for
collections: unmodifiableCollection(Collection c), unmodifiableList(List
list), unmodifiableMap(Map m), unmodifiableSet(Set set),
unmodifiableSortedMap(SortedMap m), and unmodifiableSortedSet(SortedSet
s). This type of view is like a reference to the actual collection. But you cannot modify the

map.getValue(key)key

read-only view

Chapter Summary 849

java.util.Collections

+singleton(o: Object): Set

+singletonList(o: Object): List

+singletonMap(key: Object, value: Object): Map

+unmodifiableCollection(c: Collection): Collection

+unmodifiableList(list: List): List

+unmodifiableMap(m: Map): Map

+unmodifiableSet(s: Set): Set

+unmodifiableSortedMap(s: SortedMap): SortedMap

+unmodifiableSortedSet(s: SortedSet): SortedSet

Returns an immutable set containing the specified object.

Returns an immutable list containing the specified object.

Returns an immutable map with the key and value pair.

Returns a read-only view of the collection.

Returns a read-only view of the list.

Returns a read-only view of the map.

Returns a read-only view of the set.

Returns a read-only view of the sorted map.

Returns a read-only view of the sorted set.

FIGURE 23.7 The Collections class contains the static methods for creating singleton and read-only sets, lists,
and maps.

✓Point✓Check

collection through a read-only view. Attempting to modify a collection through a read-only
view will cause an UnsupportedOperationException.

23.23 What is wrong in the following code?

Set<String> set = Collections.singleton("Chicago");
set.add("Dallas");

23.24 What happens when you run the following code?

List list = Collections.unmodifiableList(Arrays.asList("Chicago",
"Boston"));

list.remove("Dallas");

KEY TERMS

hash map 845
hash set 830
linked hash map 845
linked hash set 834
map 842

set 830
read-only view 848
tree map 845
tree set 835

CHAPTER SUMMARY

1. A set stores nonduplicate elements. To allow duplicate elements to be stored in a col-
lection, you need to use a list.

2. A map stores key/value pairs. It provides a quick lookup for a value using a key.

3. Three types of sets are supported: HashSet, LinkedHashSet, and TreeSet.
HashSet stores elements in an unpredictable order. LinkedHashSet stores ele-
ments in the order they were inserted. TreeSet stores elements sorted. All the meth-
ods in HashSet, LinkedHashSet, and TreeSet are inherited from the
Collection interface.

850 Chapter 23 Sets and Maps

4. The Map interface maps keys to the elements. The keys are like indexes. In List, the
indexes are integers. In Map, the keys can be any objects. A map cannot contain dupli-
cate keys. Each key can map to at most one value. The Map interface provides the
methods for querying, updating, and obtaining a collection of values and a set of keys.

5. Three types of maps are supported: HashMap, LinkedHashMap, and TreeMap.
HashMap is efficient for locating a value, inserting an entry, and deleting an entry.
LinkedHashMap supports ordering of the entries in the map. The entries in a
HashMap are not ordered, but the entries in a LinkedHashMap can be retrieved
either in the order in which they were inserted into the map (known as the insertion
order) or in the order in which they were last accessed, from least recently accessed
to most recently (access order). TreeMap is efficient for traversing the keys in a
sorted order. The keys can be sorted using the Comparable interface or the
Comparator interface.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 23.2–23.4
23.1 (Perform set operations on hash sets) Create two hash sets {"George", "Jim",

"John", "Blake", "Kevin", "Michael"} and {"George", "Katie",
"Kevin", "Michelle", "Ryan"} and find their union, difference, and inter-
section. (You can clone the sets to preserve the original sets from being changed
by these set methods.)

23.2 (Display nonduplicate words in ascending order) Write a program that reads
words from a text file and displays all the nonduplicate words in ascending
order. The text file is passed as a command-line argument.

**23.3 (Count the keywords in Java source code) Revise the program in Listing 23.7. If
a keyword is in a comment or in a string, don’t count it. Pass the Java file name
from the command line. Assume that the Java source code is correct and line
comments and paragraph comments do not overlap.

*23.4 (Count consonants and vowels) Write a program that prompts the user to enter a
text file name and displays the number of vowels and consonants in the file. Use
a set to store the vowels A, E, I, O, and U.

***23.5 (Syntax highlighting) Write a program that converts a Java file into an HTML
file. In the HTML file, the keywords, comments, and literals are displayed in
bold navy, green, and blue, respectively. Use the command line to pass a Java
file and an HTML file. For example, the following command

java Exercise23_05 Welcome.java Welcome.html

converts Welcome.java into Welcome.html. Figure 23.8a shows a Java file.
The corresponding HTML file is shown in Figure 23.8b.

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 851

(a) (b)

FIGURE 23.8 The Java code in plain text in (a) is displayed in HTML with syntax highlighted in (b).

Sections 23.5–23.7
*23.6 (Count the occurrences of numbers entered) Write a program that reads an

unspecified number of integers and finds the one that has the most occurrences.
The input ends when the input is 0. For example, if you entered 2 3 40 3 5 4 –3
3 3 2 0, the number 3 occurred most often. If not one but several numbers have
the most occurrences, all of them should be reported. For example, since 9 and
3 appear twice in the list 9 30 3 9 3 2 4, both occurrences should be reported.

**23.7 (Revise Listing 23.9, CountOccurrenceOfWords.java) Rewrite Listing 23.9 to
display the words in ascending order of occurrence counts.

(Hint: Create a class named WordOccurrence that implements the
Comparable interface. The class contains two fields, word and count. The
compareTo method compares the counts. For each pair in the hash set in
Listing 23.9, create an instance of WordOccurrence and store it in an array
list. Sort the array list using the Collections.sort method. What would be
wrong if you stored the instances of WordOccurrence in a tree set?)

**23.8 (Count the occurrences of words in a text file) Rewrite Listing 23.9 to read the
text from a text file. The text file is passed as a command-line argument. Words
are delimited by whitespace, punctuation marks (,;.:?), quotation marks ('"),
and parentheses. Count words in case-insensitive fashion (e.g., consider Good
and good to be the same word). The words must start with a letter. Display the
output in alphabetical order of words, with each word preceded by its occur-
rence count.

**23.9 (Guess the capitals using maps) Rewrite Programming Exercise 9.17 to store
pairs of each state and its capital in a map. Your program should prompt the user
to enter a state and should display the capital for the state.

*23.10 (Count the occurrences of each keyword) Rewrite Listing 23.7 CountKey-
words.java to read in a Java source code file and count the occurrence of each
keyword in the file, but don’t count the keyword if it is in a comment or in a
string literal.

This page intentionally left blank

DEVELOPING EFFICIENT
ALGORITHMS

Objectives
■ To estimate algorithm efficiency using the Big O notation (§24.2).

■ To explain growth rates and why constants and nondominating terms can
be ignored in the estimation (§24.2).

■ To determine the complexity of various types of algorithms (§24.3).

■ To analyze the binary search algorithm (§24.4.1).

■ To analyze the selection sort algorithm (§24.4.2).

■ To analyze the insertion sort algorithm (§24.4.3).

■ To analyze the Towers of Hanoi algorithm (§24.4.4).

■ To describe common growth functions (constant, logarithmic, log-linear,
quadratic, cubic, exponential) (§24.4.5).

■ To design efficient algorithms for finding Fibonacci numbers using
dynamic programming (§24.5).

■ To find the GCD using Euclid’s algorithm (§24.6).

■ To find prime numbers using the sieve of Eratosthenes (§24.7).

■ To design efficient algorithms for finding the closest pair of points using
the divide-and-conquer approach (§24.8).

■ To solve the Eight Queens problem using the backtracking approach
(§24.9).

■ To design efficient algorithms for finding a convex hull for a set of points
(§24.10).

CHAPTER

24

854 Chapter 24 Developing Efficient Algorithms

24.1 Introduction
Algorithm design is to develop a mathematical process for solving a program.
Algorithm analysis is to predict the performance of an algorithm.

The preceding two chapters introduced classic data structures (lists, stacks, queues, priority
queues, sets, and maps) and applied them to solve problems. This chapter will use a variety of
examples to introduce common algorithmic techniques (dynamic programming, divide-and-
conquer, and backtracking) for developing efficient algorithms. Later in the book, we will
introduce efficient algorithms for trees and graphs in Chapters 27, 29, 30, and 31. Before
introducing developing efficient algorithms, we need to address the question on how to mea-
sure algorithm efficiency.

24.2 Measuring Algorithm Efficiency Using Big O
Notation

The Big O notation obtains a function for measuring algorithm time complexity based
on the input size. You can ignore multiplicative constants and nondominating terms in
the function.

Suppose two algorithms perform the same task, such as search (linear search vs. binary
search) or sort (selection sort vs. insertion sort). Which one is better? To answer this question,
you might implement these algorithms and run the programs to get execution time. But there
are two problems with this approach:

■ First, many tasks run concurrently on a computer. The execution time of a particular
program depends on the system load.

■ Second, the execution time depends on specific input. Consider, for example, linear
search and binary search. If an element to be searched happens to be the first in the
list, linear search will find the element quicker than binary search.

It is very difficult to compare algorithms by measuring their execution time. To overcome
these problems, a theoretical approach was developed to analyze algorithms independent of
computers and specific input. This approach approximates the effect of a change on the size
of the input. In this way, you can see how fast an algorithm’s execution time increases as the
input size increases, so you can compare two algorithms by examining their growth rates.

Consider linear search. The linear search algorithm compares the key with the elements
in the array sequentially until the key is found or the array is exhausted. If the key is not in
the array, it requires n comparisons for an array of size n. If the key is in the array, it
requires n/2 comparisons on average. The algorithm’s execution time is proportional to the
size of the array. If you double the size of the array, you will expect the number of compar-
isons to double. The algorithm grows at a linear rate. The growth rate has an order of mag-
nitude of n. Computer scientists use the Big O notation to represent the “order of
magnitude.” Using this notation, the complexity of the linear search algorithm is O(n), pro-
nounced as “order of n.”

For the same input size, an algorithm’s execution time may vary, depending on the input.
An input that results in the shortest execution time is called the best-case input, and an input
that results in the longest execution time is the worst-case input. Best-case analysis and worst-
case analysis are to analyze the algorithms for their best-case input and worst-case input.
Best-case and worst-case analysis are not representative, but worst-case analysis is very use-
ful. You can be assured that the algorithm will never be slower than the worst case. An
average-case analysis attempts to determine the average amount of time among all possible
inputs of the same size. Average-case analysis is ideal, but difficult to perform, because for
many problems it is hard to determine the relative probabilities and distributions of various

Key
Point

Key
Point

what is algorithm efficiency?

growth rates

Big O notation

best-case input

worst-case input

average-case analysis

24.2 Measuring Algorithm Efficiency Using Big O Notation 855

input instances. Worst-case analysis is easier to perform, so the analysis is generally con-
ducted for the worst case.

The linear search algorithm requires n comparisons in the worst case and n/2 comparisons
in the average case if you are nearly always looking for something known to be in the list.
Using the Big O notation, both cases require O(n) time. The multiplicative constant (1/2) can
be omitted. Algorithm analysis is focused on growth rate. The multiplicative constants have
no impact on growth rates. The growth rate for n/2 or 100n is the same as for n, as illustrated
in Table 24.1. Therefore,

Consider the algorithm for finding the maximum number in an array of n elements. To find
the maximum number if n is 2, it takes one comparison; if n is 3, two comparisons. In general,
it takes comparisons to find the maximum number in a list of n elements. Algorithm
analysis is for large input size. If the input size is small, there is no significance in estimating
an algorithm’s efficiency. As n grows larger, the n part in the expression dominates the
complexity. The Big O notation allows you to ignore the nondominating part (e.g., in the
expression) and highlight the important part (e.g., n in the expression). There-
fore, the complexity of this algorithm is O(n).

The Big O notation estimates the execution time of an algorithm in relation to the input
size. If the time is not related to the input size, the algorithm is said to take constant time with
the notation O(1). For example, a method that retrieves an element at a given index in an array
takes constant time, because the time does not grow as the size of the array increases.

The following mathematical summations are often useful in algorithm analysis:

24.1 Why is a constant factor ignored in the Big O notation? Why is a nondominating term
ignored in the Big O notation?

24.2 What is the order of each of the following functions?

(n2 + 1)2

n
,

(n2 + log2n)2

n
, n3 + 100n2 + n, 2n + 100n2 + 45n, n2n + n22n

20 + 21 + 22 + 23 + + ˛2(n-1) + 2n =
2n+1 - 1

2 - 1
= 2n+1 - 1 = O(2n)

a0 + a1 + a2 + a3 + + ˛a(n-1) + an =
an+1 - 1

a - 1
= O(an)

1 + 2 + 3 + + ˛(n - 1) + n =
n(n + 1)

2
= O(n2)

1 + 2 + 3 + + ˛(n - 2) + (n - 1) =
n(n - 1)

2
= O(n2)

n - 1n - 1
- ˛1

n - 1

n - 1

O(n) = O(n/2) = O(100n).

ignoring multiplicative
constants

large input size

ignoring nondominating
terms

constant time

useful summations

✓Point✓Check

TABLE 24.1 Growth Rates

f(n)
n

n n/2 100n

100 100 50 10000

200 200 100 20000

2 2 2 f(200) / f(100)

856 Chapter 24 Developing Efficient Algorithms

Key
Point

24.3 Examples: Determining Big O
This section gives several examples of determining Big O for repetition, sequence, and
selection statements.

Example 1
Consider the time complexity for the following loop:

for (i = 1; i <= n; i++) {
k = k + 5;

}

It is a constant time, c, for executing

k = k + 5;

Since the loop is executed n times, the time complexity for the loop is

Example 2
What is the time complexity for the following loop?

for (i = 1; i <= n; i++) {
for (j = 1; j <= n; j++) {
k = k + i + j;

}
}

It is a constant time, c, for executing

k = k + i + j;

The outer loop executes n times. For each iteration in the outer loop, the inner loop is exe-
cuted n times. Thus, the time complexity for the loop is

An algorithm with the time complexity is called a quadratic algorithm. The quadratic
algorithm grows quickly as the problem size increases. If you double the input size, the time
for the algorithm is quadrupled. Algorithms with a nested loop are often quadratic.

Example 3
Consider the following loop:

for (i = 1; i <= n; i++) {
for (j = 1; j <= i; j++) {
k = k + i + j;

}
}

The outer loop executes n times. For the inner loop is executed one time, two
times, and n times. Thus, the time complexity for the loop is

= O(n2)

= (c/2) n2 + (c/2)n

= cn(n + 1)/2
T(n) = c + 2c + 3c + 4c + . . . + nc

i = 1, 2, . . . ,

O(n2)

T(n) = (a constant c) * n * n = O(n2)

T(n) = (a constant c) * n = O(n).

quadratic time

24.3 Examples: Determining Big O 857

Example 4
Consider the following loop:

for (i = 1; i <= n; i++) {
for (j = 1; j <= 20; j++) {
k = k + i + j;

}
}

The inner loop executes 20 times, and the outer loop n times. Therefore, the time complex-
ity for the loop is

Example 5
Consider the following sequences:

for (j = 1; j <= 10; j++) {
k = k + 4;

}

for (i = 1; i <= n; i++) {
for (j = 1; j <= 20; j++) {
k = k + i + j;

}
}

The first loop executes 10 times, and the second loop 20 * n times. Thus, the time complex-
ity for the loop is

Example 6
Consider the following selection statement:

if (list.contains(e)) {
System.out.println(e);

}
else

for (Object t: list) {
System.out.println(t);

}

Suppose the list contains n elements. The execution time for list.contains(e) is O(n).
The loop in the else clause takes O(n) time. Hence, the time complexity for the entire
statement is

Example 7
Consider the computation of for an integer n. A simple algorithm would multiply a n
times, as follows:

result = 1;
for (int i = 1; i <= n; i++)
result *= a;

an

= O(n) + O(n) = O(n)

T(n) = if test time + worst@case time(if clause, else clause)

T(n) = 10 * c + 20 * c * n = O(n)

T(n) = 20 * c * n = O(n)

858 Chapter 24 Developing Efficient Algorithms

✓Point✓Check

The algorithm takes O(n) time. Without loss of generality, assume You can improve
the algorithm using the following scheme:

result = a;
for (int i = 1; i <= k; i++)
result = result * result;

The algorithm takes O(logn) time. For an arbitrary n, you can revise the algorithm and prove
that the complexity is still O(logn). (See Checkpoint Question 24.7.)

Note
For simplicity, since 0(logn) 0(log2n) 0(logan), the constant base is omitted.

24.3 Count the number of iterations in the following loops.

==

n = 2k.

omitting base

int count = 1;
while (count < 30) {
count = count * 2;

}

(a)

int count = 15;
while (count < 30) {
count = count * 3;

}

(b)

int count = 1;
while (count < n) {
count = count * 2;

}

(c)

int count = 15;
while (count < n) {
count = count * 3;

}

(d)

24.4 How many stars are displayed in the following code if n is 10? How many if n is 20?
Use the Big O notation to estimate the time complexity.

for (int i = 0; i < n; i++) {
System.out.print('*');

}

(a)

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
System.out.print('*');

}
}

(b)

for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
System.out.print('*');

}
}

}

(c)

for (int k = 0; k < 10; k++) {
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
System.out.print('*');

}
}

}

(d)

24.4 Analyzing Algorithm Time Complexity 859

24.5 Use the Big O notation to estimate the time complexity of the following methods:

public static void mA(int n) {
for (int i = 0; i < n; i++) {
System.out.print(Math.random());

}
}

public static void mB(int n) {
for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++)
System.out.print(Math.random());

}
}

public static void mC(int[] m) {
for (int i = 0; i < m.length; i++) {
System.out.print(m[i]);

}

for (int i = m.length - 1; i >= 0;)
{
System.out.print(m[i]);
i--;

}
}

24.6 Design an O(n) time algorithm for computing the sum of numbers from n1 to n2 for
Can you design an O(1) for performing the same task?

24.7 Example 7 in Section 24.3 assumes Revise the algorithm for an arbitrary n
and prove that the complexity is still O(logn).

24.4 Analyzing Algorithm Time Complexity
This section analyzes the complexity of several well-known algorithms: binary search,
selection sort, insertion sort, and Towers of Hanoi.

24.4.1 Analyzing Binary Search
The binary search algorithm presented in Listing 6.7, BinarySearch.java, searches for a key in
a sorted array. Each iteration in the algorithm contains a fixed number of operations, denoted
by c. Let T(n) denote the time complexity for a binary search on a list of n elements. Without
loss of generality, assume n is a power of 2 and Since a binary search eliminates
half of the input after two comparisons,

Ignoring constants and nondominating terms, the complexity of the binary search algorithm is
O(logn). An algorithm with the O(logn) time complexity is called a logarithmic algorithm.
The base of the log is 2, but the base does not affect a logarithmic growth rate, so it can be
omitted. The logarithmic algorithm grows slowly as the problem size increases. In the case of
binary search, each time you double the array size, at most one more comparison will be
required. If you square the input size of any logarithmic time algorithm, you only double the
time of execution. So a logarithmic-time algorithm is very efficient.

= O(logn)

= T(1) + c logn = 1 + (logn)c

T(n) = T ¢n

2
≤ + c = T ¢ n

22 ≤ + c + c = T ¢ n

2k ≤ + kc

k = logn.

n = 2k.

(n1 6 n2).

public static void mD(int[] m) {
for (int i = 0; i < m.length; i++) {

for (int j = 0; j < i; j++)
System.out.print(m[i] * m[j]);

}
}

Key
Point

binary search animation on
the Companion Website

logarithmic time

(a) (b)

(d)(c)

860 Chapter 24 Developing Efficient Algorithms

24.4.2 Analyzing Selection Sort
The selection sort algorithm presented in Listing 6.8, SelectionSort.java, finds the smallest
element in the list and swaps it with the first element. It then finds the smallest element
remaining and swaps it with the first element in the remaning list, and so on until the remain-
ing list contains only one element left to be sorted. The number of comparisons is for
the first iteration, for the second iteration, and so on. Let T(n) denote the complexity
for selection sort and c denote the total number of other operations such as assignments and
additional comparisons in each iteration. Thus,

Therefore, the complexity of the selection sort algorithm is

24.4.3 Analyzing Insertion Sort
The insertion sort algorithm presented in Listing 6.9, InsertionSort.java, sorts a list of ele-
ments by repeatedly inserting a new element into a sorted partial array until the whole array is
sorted. At the kth iteration, to insert an element into an array of size k, it may take k compar-
isons to find the insertion position, and k moves to insert the element. Let T(n) denote the
complexity for insertion sort and c denote the total number of other operations such as assign-
ments and additional comparisons in each iteration. Thus,

Therefore, the complexity of the insertion sort algorithm is Hence, the selection sort
and insertion sort are of the same time complexity.

24.4.4 Analyzing the Towers of Hanoi Problem
The Towers of Hanoi problem presented in Listing 20.8, TowersOfHanoi.java, recursively
moves n disks from tower A to tower B with the assistance of tower C as follows:

1. Move the first disks from A to C with the assistance of tower B.

2. Move disk n from A to B.

3. Move disks from C to B with the assistance of tower A.

The complexity of this algorithm is measured by the number of moves. Let T(n) denote the num-
ber of moves for the algorithm to move n disks from tower A to tower B. Thus T(1) is 1. Thus,

= 2(2T(n - 2) + 1) + 1

= 2T(n - 1) + 1

T(n) = T(n - 1) + 1 + T(n - 1)

n - 1

n - 1

O(n2).

= O(n2)

= 2
(n - 1)n

2
+ cn - c = n2 - n + cn - c

= 2(1 + 2 + . . . + n - 1) + c(n - 1)

T(n) = (2 + c) + (2 * 2 + c) + . . . + (2 * (n - 1) + c)

O(n2).

= O(n2)

=
(n - 1)(n - 1 + 1)

2
+ c(n - 1) =

n2

2
-

n

2
+ cn - c

T(n) = (n - 1) + c + (n - 2) + c + . . . + 2 + c + 1 + c

n - 2
n - 1

selection sort animation on
the Companion Website

insertion search animation on
the Companion Website

24.4 Analyzing Algorithm Time Complexity 861

An algorithm with time complexity is called an exponential algorithm. As the input
size increases, the time for the exponential algorithm grows exponentially. Exponential
algorithms are not practical for large input size. Suppose the disk is moved at a rate of 1 per
second. It would take years to move 32 disks and

billion years to move 64 disks.

24.4.5 Common Recurrence Relations
Recurrence relations are a useful tool for analyzing algorithm complexity. As shown in
the preceding examples, the complexity for binary search, selection sort and insertion

sort, and the Towers of Hanoi is and

respectively. Table 24.2 summarizes the common recurrence relations.2T(n - 1) + O(1),

T(n) =T(n) = T¢n

2
≤ + c, T(n) = T(n - 1) + O(n),

264/(365 * 24 * 60 * 60) = 585
232/(365 * 24 * 60 * 60) = 136

O(2n)

= 2n-1 + 2n-2 + . . . + 2 + 1 = (2n - 1) = O(2n)

= 2n-1T(1) + 2n-2 + . . . + 2 + 1

= 2(2(2T(n - 3) + 1) + 1) + 1

O(2n)

exponential time

TABLE 24.2 Common Recurrence Functions

Recurrence Relation Result Example

T(n) = T(n/2) + O(1) T(n) = O(logn) Binary search, Euclid's GCD

T(n) = T(n - 1) + O(1) T(n) = O(n) Linear search

T(n) = 2T(n/2) + O(1) T(n) = O(n) Checkpoint Question 24.20

T(n) = 2T(n/2) + O(n) T(n) = O(n logn) Merge sort (Chapter 25)

T(n) = T(n - 1) + O(n) T(n) = O(n2) Selection sort, insertion sort

T(n) = 2T(n - 1) + O(1) T(n) = O(2n) Towers of Hanoi

T(n) = T(n - 1) + T(n - 2) + O(1) T(n) = O(2n) Recursive Fibonacci algorithm

24.4.6 Comparing Common Growth Functions
The preceding sections analyzed the complexity of several algorithms. Table 24.3 lists some
common growth functions and shows how growth rates change as the input size doubles
from to n = 50.n = 25

TABLE 24.3 Change of Growth Rates

Function Name n = 25 n = 50 f(50)/f(25)

O(1) Constant time 1 1 1

O(logn) Logarithmic time 4.64 5.64 1.21

O(n) Linear time 25 50 2

O(n logn) Log-linear time 116 282 2.43

O(n2) Quadratic time 625 2,500 4

O(n3) Cubic time 15,625 125,000 8

O(2n) Exponential time 3.36 * 107 1.27 * 1015 3.35 * 107

862 Chapter 24 Developing Efficient Algorithms

✓Point✓Check

Key
Point

O(1)

O(logn)

O(n)

O(n logn)

O(2n) O(n3)
O(n2)

FIGURE 24.1 As the size n increases, the function grows.

These functions are ordered as follows, as illustrated in Figure 24.1.

O(1) 6 O(logn) 6 O(n) 6 O(n logn) 6 O(n2) 6 O(n3) 6 O(2n)

24.8 Put the following growth functions in order:

24.9 Estimate the time complexity for adding two matrices, and for multiplying an
matrix by an matrix.

24.10 Describe an algorithm for finding the occurrence of the max element in an array.
Analyze the complexity of the algorithm.

24.11 Describe an algorithm for removing duplicates from an array. Analyze the complex-
ity of the algorithm.

24.12 Analyze the following sorting algorithm:

for (int i = 0; i < list.length - 1; i++) {
if (list[i] > list[i + 1]) {
swap list[i] with list[i + 1];
i = -1;

}
}

24.5 Finding Fibonacci Numbers Using Dynamic
Programming

This section analyzes and designs an efficient algorithm for finding Fibonacci numbers
using dynamic programming.

Section 20.3, Case Study: Computing Fibonacci Numbers, gave a recursive method for find-
ing the Fibonacci number, as follows:

/** The method for finding the Fibonacci number */
public static long {
if (index == 0) // Base case
return 0;

else if (index == 1) // Base case
return 1;

else // Reduction and recursive calls
return ;

}
fib(index - 1) + fib(index - 2)

fib(long index)

m * kn * m
n * m

5n3

4032
, 44 logn, 10n logn, 500, 2n2,

2n

45
, 3n

24.5 Finding Fibonacci Numbers Using Dynamic Programming 863

f0 f1 f2
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89 ...

indices: 0 1 2 3 4 5 6 7 8 9 10 11

f0 f1 f2
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89 ...

indices: 0 1 2 3 4 5 6 7 8 9 10 11

f0 f1 f2
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89 ...

indices: 0 1 2 3 4 5 6 7 8 9 10 11

We can now prove that the complexity of this algorithm is For convenience, let the
index be n. Let T(n) denote the complexity for the algorithm that finds fib(n) and c denote
the constant time for comparing the index with 0 and 1; that is, T(1) is c. Thus,

Similar to the analysis of the Towers of Hanoi problem, we can show that T(n) is
However, this algorithm is not efficient. Is there an efficient algorithm for finding a

Fibonacci number? The trouble with the recursive fib method is that the method is invoked
redundantly with the same arguments. For example, to compute fib(4), fib(3) and
fib(2) are invoked. To compute fib(3), fib(2) and fib(1) are invoked. Note that
fib(2) is redundantly invoked. We can improve it by avoiding repeated calling of the fib
method with the same argument. Note that a new Fibonacci number is obtained by adding the
preceding two numbers in the sequence. If you use the two variables f0 and f1 to store the
two preceding numbers, the new number, f2, can be immediately obtained by adding f0 with
f1. Now you should update f0 and f1 by assigning f1 to f0 and assigning f2 to f1, as
shown in Figure 24.2.

O(2n).

= 22T(n - 2) + 2c + c

… 2(2T(n - 2) + c) + c

… 2T(n - 1) + c

T(n) = T(n - 1) + T(n - 2) + c

O(2n).

The new method is implemented in Listing 24.1.

LISTING 24.1 ImprovedFibonacci.java
1 import java.util.Scanner;
2
3 public class ImprovedFibonacci {
4 /** Main method */
5 public static void main(String args[]) {
6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8 System.out.print("Enter an index for the Fibonacci number: ");
9
10
11 // Find and display the Fibonacci number
12 System.out.println(
13 "Fibonacci number at index " + index + " is " +);
14 }
15
16 /** The method for finding the Fibonacci number */

fib(index)

int index = input.nextInt(); input

invoke fib

FIGURE 24.2 Variables f0, f1, and f2 store three consecutive Fibonacci numbers in the series.

864 Chapter 24 Developing Efficient Algorithms

✓Point✓Check

Key
Point

17 public static long fib(long n) {
18 // For fib(0)
19 // For fib(1)
20 long f2 = 1; // For fib(2)
21
22 if (n == 0)
23 return f0;
24 else if (n == 1)
25 return f1;
26 else if (n == 2)
27 return f2;
28
29 for (int i = 3; i <= n; i++) {
30 f0 = f1;
31 f1 = f2;
32
33 }
34
35 return f2;
36 }
37 }

f2 = f0 + f1;

long f1 = 1;
long f0 = 0;f0

f1
f2

update f0, f1, f2

Enter an index for the Fibonacci number:
Fibonacci number at index 6 is 8

6

Enter an index for the Fibonacci number:
Fibonacci number at index 7 is 13

7

Obviously, the complexity of this new algorithm is O(n). This is a tremendous improvement
over the recursive algorithm.

The algorithm for computing Fibonacci numbers presented here uses an approach known as
dynamic programming. Dynamic programming is the process of solving subproblems, then
combining the solutions of the subproblems to obtain an overall solution. This naturally leads to
a recursive solution. However, it would be inefficient to use recursion, because the subproblems
overlap. The key idea behind dynamic programming is to solve each subproblem only once and
store the results for subproblems for later use to avoid redundant computing of the subproblems.

24.13 What is dynamic programming? Give an example of dynamic programming.

24.14 Why is the recursive Fibonacci algorithm inefficient, but the nonrecursive Fibonacci
algorithm efficient?

24.6 Finding Greatest Common Divisors Using
Euclid’s Algorithm

This section presents several algorithms in the search for an efficient algorithm for
finding the greatest common divisor of two integers.

The greatest common divisor (GCD) of two integers is the largest number that can evenly
divide both integers. Listing 4.9, GreatestCommonDivisor.java, presented a brute-force algo-
rithm for finding the greatest common divisor of two integers m and n. Brute force refers to an
algorithmic approach that solves a problem in the simplest or most direct or obvious way. As
a result, such an algorithm can end up doing far more work to solve a given problem than a
cleverer or more sophisticated algorithm might do. On the other hand, a brute-force algorithm

O(2n)
O(n)

dynamic programming

GCD

brute force

24.6 Finding Greatest Common Divisors Using Euclid’s Algorithm 865

is often easier to implement than a more sophisticated one and, because of this simplicity,
sometimes it can be more efficient.

The brute-force algorithm checks whether k (for k = 2, 3, 4, and so on) is a common divisor
for n1 and n2, until k is greater than n1 or n2. The algorithm can be described as follows:

public static int gcd(int m, int n) {
int gcd = 1;

for (int k = 2; k <= m && k <= n; k++) {
if (m % k == 0 && n % k == 0)
gcd = k;

}

return gcd;
}

Assuming the complexity of this algorithm is obviously O(n).
Is there a better algorithm for finding the GCD? Rather than searching a possible divisor

from 1 up, it is more efficient to search from n down. Once a divisor is found, the divisor is
the GCD. Therefore, you can improve the algorithm using the following loop:

for (int k = n; k >= 1; k--) {
if (m % k == 0 && n % k == 0) {
gcd = k;
break;

}
}

This algorithm is better than the preceding one, but its worst-case time complexity is still O(n).
A divisor for a number n cannot be greater than n / 2, so you can further improve the

algorithm using the following loop:

for (int k = m / 2; k >= 1; k--) {
if (m % k == 0 && n % k == 0) {
gcd = k;
break;

}
}

However, this algorithm is incorrect, because n can be a divisor for m. This case must be con-
sidered. The correct algorithm is shown in Listing 24.2.

LISTING 24.2 GCD.java
1 import java.util.Scanner;
2
3 public class GCD {
4 /** Find GCD for integers m and n */
5 public static int gcd(int m, int n) {
6 int gcd = 1;
7
8 if (m % n == 0) return n;
9
10 for (int k = n / 2; k >= 1; k--) {
11 if (m % k == 0 && n % k == 0) {
12 gcd = k;
13 break;
14 }
15 }

m � n, assume m � n

O(n)

improved solutions

check divisor

GCD found

866 Chapter 24 Developing Efficient Algorithms

16
17 return gcd;
18 }
19
20 /** Main method */
21 public static void main(String[] args) {
22 // Create a Scanner
23 Scanner input = new Scanner(System.in);
24
25 // Prompt the user to enter two integers
26 System.out.print("Enter first integer: ");
27 int m = input.nextInt();
28 System.out.print("Enter second integer: ");
29 int n = input.nextInt();
30
31 System.out.println("The greatest common divisor for " + m +
32 " and " + n + " is " + gcd(m, n));
33 }
34 }

input

input

Enter first integer:

Enter second integer:

The greatest common divisor for 2525 and 125 is 25

125

2525

Enter first integer:

Enter second integer:

The greatest common divisor for 3 and 3 is 3

3

3

Assuming the for loop is executed at most n/2 times, which cuts the time by half
from the previous algorithm. The time complexity of this algorithm is still O(n), but practi-
cally, it is much faster than the algorithm in Listing 4.8.

Note
The Big O notation provides a good theoretical estimate of algorithm efficiency. How-
ever, two algorithms of the same time complexity are not necessarily equally efficient. As
shown in the preceding example, both algorithms in Listings 4.9 and 24.2 have the same
complexity, but in practice the one in Listing 24.2 is obviously better.

A more efficient algorithm for finding the GCD was discovered by Euclid around 300 B.C.
This is one of the oldest known algorithms. It can be defined recursively as follows:

Let gcd(m, n) denote the GCD for integers m and n:

■ If m % n is 0, gcd (m, n) is n.

■ Otherwise, gcd(m, n) is gcd(n, m % n).

It is not difficult to prove the correctness of this algorithm. Suppose m % n = r. Thus, m =
qn + r, where q is the quotient of m / n. Any number that is divisible by m and n must also
be divisible by r. Therefore, gcd(m, n) is the same as gcd(n, r), where r = m % n. The
algorithm can be implemented as in Listing 24.3.

LISTING 24.3 GCDEuclid.java
1 import java.util.Scanner;
2
3 public class GCDEuclid {

m � n,
O(n)

practical consideration

Euclid’s algorithm

4 /** Find GCD for integers m and n */
5 public static int gcd(int m, int n) {
6 if (m % n == 0)
7 return n;
8 else

9 return gcd(n, m % n);
10 }
11
12 /** Main method */
13 public static void main(String[] args) {
14 // Create a Scanner
15 Scanner input = new Scanner(System.in);
16
17 // Prompt the user to enter two integers
18 System.out.print("Enter first integer: ");
19 int m = input.nextInt();
20 System.out.print("Enter second integer: ");
21 int n = input.nextInt();
22
23 System.out.println("The greatest common divisor for " + m +
24 " and " + n + " is " + gcd(m, n));
25 }
26 }

base case

reduction

input

input

Enter first integer:

Enter second integer:

The greatest common divisor for 2525 and 125 is 25

125

2525

Enter first integer:

Enter second integer:

The greatest common divisor for 3 and 3 is 3

3

3

In the best case when m % n is 0, the algorithm takes just one step to find the GCD. It is dif-
ficult to analyze the average case. However, we can prove that the worst-case time complexity
is O(logn).

Assuming we can show that m % n < m / 2, as follows:

■ If n <= m / 2, m % n < m / 2, since the remainder of m divided by n is always
less than n.

■ If n > m / 2, m % n = m – n < m / 2. Therefore, m % n < m / 2.

Euclid’s algorithm recursively invokes the gcd method. It first calls gcd(m, n), then calls
gcd(n, m % n), and gcd(m % n, n % (m % n)), and so on, as follows:

gcd(m, n)
= gcd(n, m % n)
= gcd(m % n, n % (m % n))
= ...

Since m % n < m / 2 and n % (m % n) < n / 2, the argument passed to the gcd method
is reduced by half after every two iterations. After invoking gcd two times, the second para-
meter is less than n/2. After invoking gcd four times, the second parameter is less than n/4.

After invoking gcd six times, the second parameter is less than Let k be the number of
n

23.

m � n,

best case

average case

worst case

24.6 Finding Greatest Common Divisors Using Euclid’s Algorithm 867

868 Chapter 24 Developing Efficient Algorithms

✓Point✓Check

TABLE 24.4 Comparisons of GCD Algorithms

Algorithm Complexity Description

Listing 4.9 O(n) Brute-force, checking all possible divisors

Listing 24.2 O(n) Checking half of all possible divisors

Listing 24.3 O(logn) Euclid's algorithm

times the gcd method is invoked. After invoking gcd k times, the second parameter is less
than which is greater than or equal to 1. That is,

Therefore, So the time complexity of the gcd method is O(logn).
The worst case occurs when the two numbers result in the most divisions. It turns out that

two successive Fibonacci numbers will result in the most divisions. Recall that the Fibonacci
series begins with 0 and 1, and each subsequent number is the sum of the preceding two num-
bers in the series, such as:

0 1 1 2 3 5 8 13 21 34 55 89 . . .

The series can be recursively defined as

fib(0) = 0;
fib(1) = 1;
fib(index) = fib(index - 2) + fib(index - 1); index >= 2

For two successive Fibonacci numbers fib(index) and fib(index - 1),

gcd(fib(index), fib(index - 1))
= gcd(fib(index - 1), fib(index - 2))
= gcd(fib(index - 2), fib(index - 3))
= gcd(fib(index - 3), fib(index - 4))
= ...
= gcd(fib(2), fib(1))
= 1

For example,

gcd(21, 13)
= gcd(13, 8)
= gcd(8, 5)
= gcd(5, 3)
= gcd(3, 2)
= gcd(2, 1)
= 1

Therefore, the number of times the gcd method is invoked is the same as the index. We can
prove that where This is a tighter bound than

Table 24.4 summarizes the complexity of three algorithms for finding the GCD.
index … 2 logn.

n = fib(index - 1).index … 1.44 logn,

k … 2 logn.

n

2(k/2) � 1 = 7 n � 2(k/2) = 7 logn � k/2 = 7 k … 2 logn

n

2(k/2),

24.15 Prove that the following algorithm for finding the GCD of the two integers m and n

is incorrect.

int gcd = 1;
for (int k = Math.min(Math.sqrt(n), Math.sqrt(m)); k >= 1; k--) {

24.7 Efficient Algorithms for Finding Prime Numbers 869

Key
Point

if (m % k == 0 && n % k == 0) {
gcd = k;
break;

}
}

24.7 Efficient Algorithms for Finding Prime Numbers
This section presents several algorithms in the search for an efficient algorithm for
finding prime numbers.

A $150,000 award awaits the first individual or group who discovers a prime number with at
least 100,000,000 decimal digits (w2.eff.org/awards/coop-prime-rules.php).

Can you design a fast algorithm for finding prime numbers?
An integer greater than 1 is prime if its only positive divisor is 1 or itself. For example, 2,

3, 5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.
How do you determine whether a number n is prime? Listing 4.14 presented a brute-force

algorithm for finding prime numbers. The algorithm checks whether 2, 3, 4, 5, . . . , or n - 1
is divisible by n. If not, n is prime. This algorithm takes O(n) time to check whether n is
prime. Note that you need to check only whether 2, 3, 4, 5, . . . , and n/2 is divisible by n. If
not, n is prime. This algorithm is slightly improved, but it is still of O(n).

In fact, we can prove that if n is not a prime, n must have a factor that is greater than 1 and
less than or equal to Here is the proof. Since n is not a prime, there exist two numbers p
and q such that n pq with Note that p must be less than or equal
to Hence, you need to check only whether 2, 3, 4, 5, . . . , or is divisible by n. If not,
n is prime. This significantly reduces the time complexity of the algorithm to

Now consider the algorithm for finding all the prime numbers up to n. A straightforward
implementation is to check whether i is prime for i 2, 3, 4, . . . , n. The program is given
in Listing 24.4.

LISTING 24.4 PrimeNumbers.java
1 import java.util.Scanner;
2
3 public class PrimeNumbers {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6 System.out.print("Find all prime numbers <= n, enter n: ");
7 int n = input.nextInt();
8
9 final int NUMBER_PER_LINE = 10; // Display 10 per line
10 int count = 0; // Count the number of prime numbers
11 int number = 2; // A number to be tested for primeness
12
13 System.out.println("The prime numbers are:");
14
15 // Repeatedly find prime numbers
16
17 // Assume the number is prime
18 boolean isPrime = true; // Is the current number prime?
19
20 // Test if number is prime
21
22
23 if (number % divisor == 0) { // If true, number is not prime
24 isPrime = false; // Set isPrime to false
25 break; // Exit the for loop

divisor++) {
for (int divisor = 2; divisor <= (int)(Math.sqrt(number));

while (number <= n) {

=

O(2n).
2n2n.

n = 2n 2n.1 6 p … q.=
2n.

what is prime?

check prime

870 Chapter 24 Developing Efficient Algorithms

26 }
27 }
28
29 // Print the prime number and increase the count
30
31 // Increase the count
32
33 if (count % NUMBER_PER_LINE == 0) {
34 // Print the number and advance to the new line
35 System.out.printf("%7d\n", number);
36 }
37 else

38 System.out.printf("%7d", number);
39 }
40
41 // Check if the next number is prime
42
43 }
44
45 System.out.println("\n" + count +
46 " prime(s) less than or equal to " + n);
47 }
48 }

number++;

count++;
if (isPrime) {increase count

check next number

Find all prime numbers <= n, enter n:
The prime numbers are:

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71

...

...
168 prime(s) less than or equal to 1000

1000

The program is not efficient if you have to compute Math.sqrt(number) for every iteration
of the for loop (line 21). A good compiler should evaluate Math.sqrt(number) only once
for the entire for loop. To ensure this happens, you can explicitly replace line 21 with the fol-
lowing two lines:

int = (int)(Math.sqrt(number));
for (int divisor = 2; divisor <= ; divisor++) {

In fact, there is no need to actually compute Math.sqrt(number) for every number. You
need look only for the perfect squares such as 4, 9, 16, 25, 36, 49, and so on. Note that for all
the numbers between 36 and 48, inclusively, their (int)(Math.sqrt(number)) is 6. With
this insight, you can replace the code in lines 16–26 with the following:

...

// Repeatedly find prime numbers
while (number <= n) {
// Assume the number is prime
boolean isPrime = true; // Is the current number prime?

// Test if number is prime

if (squareRoot * squareRoot < number) squareRoot++;

int squareRoot = 1;

squareRoot
squareRoot

24.7 Efficient Algorithms for Finding Prime Numbers 871

for (int divisor = 2; divisor <= squareRoot; divisor++) {
if (number % divisor == 0) { // If true, number is not prime
isPrime = false; // Set isPrime to false
break; // Exit the for loop

}
}

...

Now we turn our attention to analyzing the complexity of this program. Since it takes
steps in the for loop (lines 21–27) to check whether number i is prime, the algorithm takes

steps to find all the prime numbers less than or equal to n.
Observe that

Therefore, the time complexity for this algorithm is
To determine whether i is prime, the algorithm checks whether 2, 3, 4, 5, . . . , and are

divisible by i. This algorithm can be further improved. In fact, you need to check only whether
the prime numbers from 2 to are possible divisors for i.

We can prove that if i is not prime, there must exist a prime number p such that and
Here is the proof. Assume that i is not prime; let p be the smallest factor of i. p must

be prime, otherwise, p has a factor k with k is also a factor of i, which contradicts
that p be the smallest factor of i. Therefore, if i is not prime, you can find a prime number
from 2 to that is divisible by i. This leads to a more efficient algorithm for finding all
prime numbers up to n, as shown in Listing 24.5.

LISTING 24.5 EfficientPrimeNumbers.java
1 import java.util.Scanner;
2
3 public class EfficientPrimeNumbers {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6 System.out.print("Find all prime numbers <= n, enter n: ");
7 int n = input.nextInt();
8
9 // A list to hold prime numbers
10 java.util.List<Integer> list =
11 new java.util.ArrayList<Integer>();
12
13 final int NUMBER_PER_LINE = 10; // Display 10 per line
14 int count = 0; // Count the number of prime numbers
15 int number = 2; // A number to be tested for primeness
16 // Check whether number <= squareRoot
17
18 System.out.println("The prime numbers are \n");
19
20 // Repeatedly find prime numbers
21 while (number <= n) {
22 // Assume the number is prime
23 boolean isPrime = true; // Is the current number prime?
24
25
26
27 // Test whether number is prime
28 for (int k = 0; k < list.size()
29 && list.get(k) <= squareRoot; k++) {
30 if (number % list.get(k) == 0) { // If true, not prime

if (squareRoot * squareRoot < number) squareRoot++;

int squareRoot = 1;

2i

2 … k 6 p.
p … q.

i = pq
2i

2i
O(n2n).

22 + 23 + 24 + . . . + 2n … n2n

22 + 23 + 24 + . . . + 2n

2i

check prime

872 Chapter 24 Developing Efficient Algorithms

31 isPrime = false; // Set isPrime to false
32 break; // Exit the for loop
33 }
34 }
35
36 // Print the prime number and increase the count
37 if (isPrime) {
38 count++; // Increase the count
39 list.add(number); // Add a new prime to the list
40 if (count % NUMBER_PER_LINE == 0) {
41 // Print the number and advance to the new line
42 System.out.println(number);
43 }
44 else

45 System.out.print(number + " ");
46 }
47
48 // Check whether the next number is prime
49 number++;
50 }
51
52 System.out.println("\n" + count +
53 " prime(s) less than or equal to " + n);
54 }
55 }

increase count

check next number

Find all prime numbers <= n, enter n:
The prime numbers are:

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71

...

...
168 prime(s) less than or equal to 1000

1000

Let (i) denote the number of prime numbers less than or equal to i. The primes under 20 are
2, 3, 5, 7, 11, 13, 17, and 19. Therefore, (2) is 1, (3) is 2, (6) is 3, and (20) is 8.

It has been proved that (i) is approximately (see primes.utm.edu/howmany.shtml).

For each number i, the algorithm checks whether a prime number less than or equal to
is divisible by i. The number of the prime numbers less than or equal to is

Thus, the complexity for finding all prime numbers up to n is

Since for and

222

log 2
+

223

log 3
+

224

log 4
+

225

log 5
+

226

log 6
+

227

log 7
+

228

log 8
+ . . . +

22n

logn
6

2n2n

logn

n � 16,i 6 n
2i

log i
6
2n

logn

222

log 2
+

223

log 3
+

224

log 4
+

225

log 5
+

226

log 6
+

227

log 7
+

228

log 8
+ . . . +

22n

logn

2i

log2i
=

22i

logi

2i
2i

i

logi
p

pppp
p

24.7 Efficient Algorithms for Finding Prime Numbers 873

� � T T T T T T T T T T T T T T T T T T T T T T T T T T initial

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

k = 2

index

primes array

� � T T F T F T F T F T F T F T F T F T F T F T F T F T

k = 3 � � T T F T F T F F F T F T F F F T F T F F F T F T F F

k = 5 � � T T F T F T F F F T F T F F F T F T F F F T F F F F

Figure 24.3 The values in primes are changed with each prime number k.

Therefore, the complexity of this algorithm is

This algorithm is another example of dynamic programming. The algorithm stores the
results of the subproblems in the array list and uses them later to check whether a new num-
ber is prime.

Is there any algorithm better than Let us examine the well-known Eratosthenes

algorithm for finding prime numbers. Eratosthenes (276–194 B.C.) was a Greek mathematician
who devised a clever algorithm, known as the Sieve of Eratosthenes, for finding all prime num-
bers His algorithm is to use an array named primes of n Boolean values. Initially, all ele-
ments in primes are set true. Since the multiples of 2 are not prime, set primes[2 * i] to
false for all as shown in Figure 24.3. Since we don’t care about primes[0]
and primes[1], these values are marked in the figure.*

2 … i … n/2,

… n.

O¢n2n

logn
≤?

O¢n2n

logn
≤ .

dynamic programming

Sieve of Eratosthenes

Since the multiples of 3 are not prime, set primes[3 * i] to false for all
Because the multiples of 5 are not prime, set primes[5 * i] to false for all
Note that you don’t need to consider the multiples of 4, because the multiples of 4 are also the
multiples of 2, which have already been considered. Similarly, multiples of 6, 8, and 9 need
not be considered. You only need to consider the multiples of a prime number k = 2, 3, 5, 7,
11, . . . , and set the corresponding element in primes to false. Afterward, if primes[i]
is still true, then i is a prime number. As shown in Figure 24.3, 2, 3, 5, 7, 11, 13, 17, 19, and
23 are prime numbers. Listing 24.6 gives the program for finding the prime numbers using the
Sieve of Eratosthenes algorithm.

LISTING 24.6 SieveOfEratosthenes.java
1 import java.util.Scanner;
2
3 public class SieveOfEratosthenes {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6 System.out.print("Find all prime numbers <= n, enter n: ");
7 int n = input.nextInt();
8
9 // Prime number sieve
10
11 // Initialize primes[i] to true
12 for (int i = 0; i < primes.length; i++) {
13
14 }
15
16 for (int k = 2; k <= n / k; k++) {
17 if (primes[k]) {
18 for (int i = k; i <= n / k; i++) {
19 // k * i is not primeprimes[k * i] = false;

primes[i] = true;

boolean[] primes = new boolean[n + 1];

5 … i … n/5.
3 … i … n/3.

sieve

initialize sieve

nonprime

874 Chapter 24 Developing Efficient Algorithms

20 }
21 }
22 }
23
24 int count = 0; // Count the number of prime numbers found so far
25 // Print prime numbers
26 for (int i = 2; i < primes.length; i++) {
27 if (primes[i]) {
28 count++;
29 if (count % 10 == 0)
30 System.out.printf("%7d\n", i);
31 else

32 System.out.printf("%7d", i);
33 }
34 }
35
36 System.out.println("\n" + count +
37 " prime(s) less than or equal to " + n);
38 }
39 }

Find all prime numbers <= n, enter n:
The prime numbers are:

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71

...

...
168 prime(s) less than or equal to 1000

1000

Note that k <= n / k (line 16). Otherwise, k * i would be greater than n (line 19). What
is the time complexity of this algorithm?

For each prime number k (line 17), the algorithm sets primes[k * i] to false (line 19).
This is performed n / k – k + 1 times in the for loop (line 18). Thus, the complexity for
finding all prime numbers up to n is

This upper bound is very loose. The actual time complexity is much better than

The Sieve of Eratosthenes algorithm is good for a small n such that the array

primes can fit in the memory.
Table 24.5 summarizes the complexity of these three algorithms for finding all prime num-

bers up to n.

O¢n2n

logn
≤ .

O¢n2n

logn
≤

= O¢n
2n

logn
≤

= O¢n

2
+

n

3
+

n

5
+

n

7
+

n

11
+ . . .≤ 6 O(np(n))

n

2
- 2 + 1 +

n

3
- 3 + 1 +

n

5
- 5 + 1 +

n

7
- 7 + 1 +

n

11
- 11 + 1. . .

24.8 Finding the Closest Pair of Points Using Divide-and-Conquer 875

TABLE 24.5 Comparisons of Prime-Number Algorithms

Algorithm Complexity Description

Listing 4.14 O(n2) Brute-force, checking all possible divisors

Listing 24.4 O(n2n) Checking divisors up to 2n

Listing 24.5 O¢n2n

logn
≤ Checking prime divisors up to 2n

Listing 24.6 O¢n2n

logn
≤ Sieve of Eratosthenes

✓Point✓Check

Key
Point

FIGURE 24.4 The closet-pair animation draws a line to connect the closest pair of points
dynamically as points are added and removed interactively.

24.16 Prove that if n is not prime, there must exist a prime number p such that

and p is a factor of n.

24.17 Describe how the sieve of Eratosthenes is used to find the prime numbers.

24.8 Finding the Closest Pair of Points Using Divide-
and-Conquer

This section presents efficient algorithms for finding the closest pair of points using
divide-and-conquer.

Given a set of points, the closest-pair problem is to find the two points that are nearest to each
other. As shown in Figure 24.4, a line is drawn to connect the two nearest points in the closest-
pair animation.

p 6= 2n

Section 7.6, Case Study: Finding the Closest Pair, presented a brute-force algorithm for
finding the closest pair of points. The algorithm computes the distances between all pairs of
points and finds the one with the minimum distance. Clearly, the algorithm takes time.
Can we design a more efficient algorithm?

We will use an approach called divide-and-conquer to solve this problem. The approach
divides the problem into subproblems, solves the subproblems, then combines the solutions
of the subproblems to obtain the solution for the entire problem. Unlike the dynamic pro-
gramming approach, the subproblems in the divide-and-conquer approach don’t overlap. A
subproblem is like the original problem with a smaller size, so you can apply recursion to
solve the problem. In fact, all the solutions for recursive problems follow the divide-and-
conquer approach.

Listing 24.7 describes how to solve the closest pair problem using the divide-and-
conquer approach.

O(n2)

closest-pair animation on
Companion Website

divide-and-conquer

876 Chapter 24 Developing Efficient Algorithms

mid

d2

d1

d

(a) (b) (c)

d

stripL stripR

S1 S2

d d

stripL stripR

p d p

q[r]

stripL stripR

FIGURE 24.5 The midpoint divides the points into two sets of equal size.

LISTING 24.7 Algorithm for Finding the Closest Pair
Step 1: Sort the points in increasing order of x-coordinates. For the
points with the same x-coordinates, sort on y-coordinates. This results
in a sorted list S of points.

Step 2: Divide S into two subsets, S1 and S2, of equal size using the
midpoint in the sorted list. Let the midpoint be in S1. Recursively find
the closest pair in S1 and S2. Let d1 and d2 denote the distance of the
closest pairs in the two subsets, respectively.

Step 3: Find the closest pair between a point in S1 and a point in S2 and
denote their distance as d3. The closest pair is the one with the dis-
tance min(d1, d2, d3).

Selection sort and insertion sort take time. In Chapter 25 we will introduce merge sort and
heap sort. These sorting algorithms take O(n logn) time. Step 1 can be done in O(n logn) time.

Step 3 can be done in O(n) time. Let We already know that the closest-pair
distance cannot be larger than d. For a point in and a point in to form the closest pair in S,
the left point must be in stripL and the right point in stripR, as illustrated in Figure 24.5a.

For a point p in stripL, you need only consider a right point within the rectangle,
as shown in 24.5b. Any right point outside the rectangle cannot form the closest pair with p.
Since the closest-pair distance in is greater than or equal to d, there can be at most six
points in the rectangle. Thus, for each point in stripL, at most six points in stripR need to
be considered.

S2

d * 2d

S2S1

d = min(d1, d2).

O(n2)

For each point p in stripL, how do you locate the points in the corresponding rec-
tangle area in stripR? This can be done efficiently if the points in stripL and stripR are
sorted in increasing order of their y-coordinates. Let pointsOrderedOnY be the list of the
points sorted in increasing order of y-coordinates. pointsOrderedOnY can be obtained
beforehand in the algorithm. stripL and stripR can be obtained from
pointsOrderedOnY in Step 3 as shown in Listing 24.8.

LISTING 24.8 Algorithm for Obtaining stripL
and stripR

1 for each point p in pointsOrderedOnY
2 if (p is in S1 and mid.x – p.x <= d)
3 append p to stripL;
4 else if (p is in S2 and p.x - mid.x <= d)
5 append p to stripR;

d * 2d

stripL

stripR

24.9 Solving the Eight Queen Problem Using Backtracking 877

✓Point✓Check

Key
Point

Let the points in stripL and stripR be and as shown in
Figure 24.5c. The closest pair between a point in stripL and a point in stripR can be found
using the algorithm described in Listing 24.9.

LISTING 24.9 Algorithm for Finding the Closest Pair
in Step 3

1 d = min(d1, d2);
2 r = 0; // r is the index in stripR
3 for (each point p in stripL) {
4 // Skip the points below the rectangle area
5 while (r < stripR.length && q[r].y <= p.y - d)
6 r++;
7
8 let r1 = r;
9 while (r1 < stripR.length && |q[r1].y – p.y| <= d) {
10 // Check if (p, q[r1]) is a possible closest pair
11 if (distance(p, q[r1]) < d) {
12 d = distance(p, q[r1]);
13 (p, q[r1]) is now the current closest pair;
14 }
15
16 r1 = r1 + 1;
17 }
18 }

The points in stripL are considered from in this order. For a point p in
stripL, skip the points in stripR that are below p.y – d (lines 5–6). Once a point is
skipped, it will no longer be considered. The while loop (lines 9–17) checks whether (p,
q[r1]) is a possible closest pair. There are at most six such q[r1] pairs, so the complexity
for finding the closest pair in Step 3 is O(n).

Let T(n) denote the time complexity for this algorithm. Thus,

Therefore, the closest pair of points can be found in O(n logn) time. The complete implemen-
tation of this algorithm is left as an exercise (see Programming Exercise 24.7).

24.18 What is the divide-and-conquer approach? Give an example.

24.19 What is the difference between divide-and-conquer and dynamic programming?

24.20 Can you design an algorithm for finding the minimum element in a list using divide-
and-conquer? What is the complexity of this algorithm?

24.9 Solving the Eight Queens Problem Using
Backtracking

This section solves the Eight Queens problem using the backtracking approach.

The Eight Queens problem, introduced in Programming Exercise 20.34, is to find a solution
to place a queen in each row on a chessboard such that no two queens can attack each other.
The problem was solved using recursion. In this section, we will introduce a common algo-
rithm design technique called backtracking for solving this problem. The backtracking
approach searches for a candidate solution incrementally, abandoning that option as soon as
it determines that the candidate cannot possibly be a valid solution, and then looks for a
new candidate.

T(n) = 2T(n/2) + O(n) = O(n logn)

p0, p1, . . . , pk

{q0, q1, c , qt},{p0, p1, c , pk}

update closest pair

backtracking

878 Chapter 24 Developing Efficient Algorithms

(a) (b)

0
4
7
5

2
6

1
3

queens[0]
queens[1]
queens[2]
queens[3]
queens[4]
queens[5]
queens[6]
queens[7]

Figure 24.6 queens[i] denotes the position of the queen in row i.

You can use a two-dimensional array to represent a chessboard. However, since each row
can have only one queen, it is sufficient to use a one-dimensional array to denote the position
of the queen in the row. Thus, you can define the queens array as:

int[] queens = new int[8];

Assign j to queens[i] to denote that a queen is placed in row i and column j. Figure 24.6a
shows the contents of the queens array for the chessboard in Figure 24.6b.

The search starts from the first row with where k is the index of the current row
being considered. The algorithm checks whether a queen can be possibly placed in the jth col-
umn in the row for in this order. The search is implemented as follows:

■ If successful, it continues to search for a placement for a queen in the next row. If the
current row is the last row, a solution is found.

■ If not successful, it backtracks to the previous row and continues to search for a new
placement in the next column in the previous row.

■ If the algorithm backtracks to the first row and cannot find a new placement for a
queen in this row, no solution can be found.

To see how the algorithm works, go to www.cs.armstrong.edu/liang/animation/
EightQueensAnimation.html.

Listing 24.10 gives the program that displays a solution for the Eight Queens problem.

LISTING 24.10 EightQueens.java
1 import java.awt.*;
2 import javax.swing.*;
3
4 public class EightQueens extends JApplet {
5 public static final int SIZE = 8; // The size of the chessboard
6 // queens are placed at (i, queens[i])
7 // -1 indicates that no queen is currently placed in the ith row
8 // Initially, place a queen at (0, 0) in the 0th row
9 private int[] queens = {-1, -1, -1, -1, -1, -1, -1, -1};

10
11 public EightQueens() {
12 if (search()) // Search for a solution
13 add(new ChessBoard(), BorderLayout.CENTER);
14 else

15 JOptionPane.showMessageDialog(null, "No solution found");
16 }
17
18 /** Search for a solution */

j = 0, 1, c , 7,

k = 0,search algorithm

Eight Queens animation on
the Companion Website

initialize the board

search for solution

www.cs.armstrong.edu/liang/animation/EightQueensAnimation.html
www.cs.armstrong.edu/liang/animation/EightQueensAnimation.html

24.9 Solving the Eight Queen Problem Using Backtracking 879

19 private boolean search() {
20 // k - 1 indicates the number of queens placed so far
21 // We are looking for a position in the kth row to place a queen
22 int k = 0;
23 while (k >= 0 && k <= 7) {
24 // Find a position to place a queen in the kth row
25 int j = findPosition(k);
26 if (j < 0) {
27 queens[k] = -1;
28 k--; // back track to the previous row
29 } else {
30 queens[k] = j;
31 k++;
32 }
33 }
34
35 if (k == -1)
36 return false; // No solution
37 else

38 return true; // A solution is found
39 }
40
41 public int findPosition(int k) {
42 int start = queens[k] + 1; // Search for a new placement
43
44 for (int j = start; j < 8; j++) {
45 if (isValid(k, j))
46 return j; // (k, j) is the place to put the queen now
47 }
48
49 return -1;
50 }
51
52 /** Return true if a queen can be placed at (row, column) */
53 public boolean isValid(int row, int column) {
54 for (int i = 1; i <= row; i++)
55 if (queens[row - i] == column // Check column
56 || queens[row - i] == column - i // Check up-left diagonal
57 || queens[row - i] == column + i) // Check up-right diagonal
58 return false; // There is a conflict
59 return true; // No conflict
60 }
61
62 class ChessBoard extends JPanel {
63 private java.net.URL url
64 = getClass().getResource("image/queen.jpg");
65 private Image queenImage = new ImageIcon(url).getImage();
66
67 ChessBoard() {
68 setBorder(BorderFactory.createLineBorder(Color.BLACK, 2));
69 }
70
71 @Override
72 protected void paintComponent(Graphics g) {
73 super.paintComponent(g);
74
75 // Paint the queens
76 for (int i = 0; i < SIZE; i++) {
77 int j = queens[i]; // The position of the queen in row i
78 g.drawImage(queenImage, j * getWidth() / SIZE,

find a column

backtrack

place a queen

search the next row

880 Chapter 24 Developing Efficient Algorithms

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

upright diagonal

check
column

upleft
(row, column)

Figure 24.7 Invoking isValid(row, column) checks whether a queen can be placed at
(row, column).

✓Point✓Check

Key
Point

79 i * getHeight() / SIZE, getWidth() / SIZE,
80 getHeight() / SIZE, this);
81 }
82
83 // Draw the horizontal and vertical lines
84 for (int i = 1; i < SIZE; i++) {
85 g.drawLine(0, i * getHeight() / SIZE,
86 getWidth(), i * getHeight() / SIZE);
87 g.drawLine(i * getWidth() / SIZE, 0,
88 i * getWidth() / SIZE, getHeight());
89 }
90 }
91 }
92 }

The program invokes search() (line 12) to search for a solution. Initially, no queens are
placed in any rows (line 9). The search now starts from the first row with k = 0 (line 22) and
finds a place for the queen (line 25). If successful, place it in the row (line 30) and consider the
next row (line 31). If not successful, backtrack to the previous row (lines 27–28).

The findPosition(k) method searches for a possible position to place a queen in row k
starting from queen[k] + 1 (line 42). It checks whether a queen can be placed at start,
start + 1, . . . , and 7, in this order (lines 44–47). If possible, return the column index (line
46); otherwise, return -1 (line 49).

The isValid(row, column) method is called to check whether placing a queen at the
specified position causes a conflict with the queens placed earlier (line 45). It ensures that no
queen is placed in the same column (line 55), in the upper-left diagonal (line 56), or in the
upper-right diagonal (line 57), as shown in Figure 24.7.

24.21 What is backtracking? Give an example.

24.22 If you generalize the Eight Queens problem to the n-Queens problem in an n-by-n
chessboard, what will be the complexity of the algorithm?

24.10 Computational Geometry: Finding a Convex Hull
This section presents efficient geometric algorithms for finding a convex hull for a
set of points.

Computational geometry is to study the algorithms for geometrical problems. It has applica-
tions in computer graphics, games, pattern recognition, image processing, robotics, geograph-
ical information systems, and computer-aided design and manufacturing. Section 24.8
presented a geometrical algorithm for finding the closest pair of points. This section intro-
duces geometrical algorithms for finding a convex hull.

main method omitted

24.10 Computational Geometry: Finding a Convex Hull 881

(a) A convex hull (b) A nonconvex polygon (c) Convex hull animation

v3

v2

v1

v4

v5
v0

v1

v3

v2

v0v5

v4

FIGURE 24.8 A convex hull is the smallest convex polygon that contains a set of points.

(a) Step 1 (b) Step 2 (c) Repeat Step 2 (d) H is found

t1 = h0t0

t0

t1

t1
t0h0

FIGURE 24.9 (a) is the rightmost lowest point in S. (b) Step 2 finds point (c) A convex hull is expanded repeatedly.
(d) A convex hull is found when becomes h0.t1

t1.h0

Given a set of points, a convex hull is the smallest convex polygon that encloses all these
points, as shown in Figure 24.8a. A polygon is convex if every line connecting two vertices is
inside the polygon. For example, the vertices v0, v1, v2, v3, v4, and v5 in Figure 24.8a form
a convex polygon, but not in Figure 24.8b, because the line that connects v3 and v1 is not
inside the polygon.

convex hull

convex hull animation on the
Companion Website

A convex hull has many applications in game programming, pattern recognition, and
image processing. Before we introduce the algorithms, it is helpful to get acquainted with the
concept using an interactive tool from www.cs.armstrong.edu/liang/animation/ConvexHull.html, as
shown in Figure 24.8c. This tool allows you to add and remove points and displays the convex
hull dynamically.

Many algorithms have been developed to find a convex hull. This section introduces two
popular algorithms: the gift-wrapping algorithm and Graham’s algorithm.

24.10.1 Gift-Wrapping Algorithm
An intuitive approach, called the gift-wrapping algorithm, works as shown in Listing 24.11:

LISTING 24.11 Finding a Convex Hull Using Gift-
Wrapping Algorithm

Step 1: Given a list of points S, let the points in S be labeled s0, s1,
..., sk. Select the rightmost lowest point S. As shown in Figure 24.9a, h0
is such a point. Add h0 to list H. (H is initially empty. H will hold all
points in the convex hull after the algorithm is finished.) Let t0 be h0.

Step 2: Let t1 be s0.
For every point p in S,
if p is on the right side of the direct line from t0 to t1, then
let t1 be p.

(After Step 2, no points lie on the right side of the direct line from t0
to t1, as shown in Figure 24.9b.)

www.cs.armstrong.edu/liang/animation/ConvexHull.html

882 Chapter 24 Developing Efficient Algorithms

(a) Step 1 (b) Step 2 (c) p3 into H (d) p2 off H

p0 p0 p0 p0

XX

p1 p1

p1
p2 p2 p2

p3
p3

x-axis x-axis x-axis

FIGURE 24.10 (a) is the rightmost lowest point in S. (b) Points are sorted by their angles. (c–d) A convex hull is dis-
covered incrementally.

p0

Step 3: If t1 is h0 (see Figure 24.9d), the points in H form a convex
hull for S. Otherwise, add t1 to H, let t0 be t1, and go back to Step 2
(see Figure 24.9c).

The convex hull is expanded incrementally. The correctness is supported by the fact that no
points lie on the right side of the direct line from to after Step 2. This ensures that every
line segment with two points in S falls inside the polygon.

Finding the rightmost lowest point in Step 1 can be done in O(n) time. Whether a point is
on the left side of a line, right side, or on the line can be determined in O(1) time (see Pro-
gramming Exercise 3.32). Thus, it takes O(n) time to find a new point in Step 2. Step 2 is
repeated h times, where h is the size of the convex hull. Therefore, the algorithm takes O(hn)
time. In the worst-case analysis, h is n.

The implementation of this algorithm is left as an exercise (see Programming Exercise 24.9).

24.10.2 Graham’s Algorithm
A more efficient algorithm was developed by Ronald Graham in 1972, as shown in Listing 24.12.

LISTING 24.12 Finding a Convex Hull Using Graham's
Algorithm

Step 1: Given a list of points S, select the rightmost lowest point and
name it p0. As shown in Figure 24.10a, p0 is such a point.

t1

t1t0

correctness of the algorithm

time complexity of the
algorithm

Step 2: Sort the points in S angularly along the x-axis with p0 as the
center, as shown in Figure 24.10b. If there is a tie and two points have
the same angle, discard the one that is closer to p0. The points in S are
now sorted as p0, p1, p2, ..., pn-1.

Step 3: Push p0, p1, and p2 into stack H. (After the algorithm finishes,
H contains all the points in the convex hull.)

Step 4:
i = 3;
while (i < n) {
Let t1 and t2 be the top first and second element in stack H;
if (pi is on the left side of the direct line from t2 to t1) {
Push pi to H;
i++; // Consider the next point in S.

}
else
Pop the top element off stack H.

}

Step 5: The points in H form a convex hull.

The convex hull is discovered incrementally. Initially, and form a convex hull.
Consider is outside of the current convex hull since points are sorted in increasing order
of their angles. If is strictly on the left side of the line from to (see Figure 24.10c),p2p1p3

p3. p3

p2p0, p1,

Chapter Summary 883

✓Point✓Check

push into H. Now and form a convex hull. If is on the right side of the line
from to (see Figure 24.10d), pop out of H and push into H. Now and form
a convex hull and is inside of this convex hull. You can prove by induction that all the
points in H in Step 5 form a convex hull for all the points in the input list S.

Finding the rightmost lowest point in Step 1 can be done in O(n) time. The angles can be
computed using trigonometry functions. However, you can sort the points without actually com-
puting their angles. Observe that would make a greater angle than if and only if lies on
the left side of the line from to Whether a point is on the left side of a line can be deter-
mined in O(1) time, as shown in Programming Exercise 3.32. Sorting in Step 2 can be done in
O(n logn) time using the merge-sort or heap-sort algorithms that will be introduced in Chapter
25. Step 4 can be done in O(n) time. Therefore, the algorithm takes O(n logn) time.

The implementation of this algorithm is left as an exercise (see Programming Exercise 24.11).

24.23 What is a convex hull?

24.24 Describe the gift-wrapping algorithm for finding a convex hull. Should list H be
implemented using an ArrayList or a LinkedList?

24.25 Describe Graham’s algorithm for finding a convex hull. Why does the algorithm use
a stack to store the points in a convex hull?

KEY TERMS

p1.p0

p2p1p2

p2

p3p0, p1,p3p2p2p1

p3p3p0, p1, p2,p3

correctness of the algorithm

time complexity of the
algorithm

average-case analysis 854
backtracking approach 877
best-case input 854
Big O notation 854
constant time 855
convex hull 881
divide-and-conquer approach 875

dynamic programming approach 864
exponential time 861
growth rate 854
logarithmic time 859
quadratic time 856
worst-case input 854

CHAPTER SUMMARY

1. The Big O notation is a theoretical approach for analyzing the performance of an
algorithm. It estimates how fast an algorithm’s execution time increases as the input
size increases, which enables you to compare two algorithms by examining their
growth rates.

2. An input that results in the shortest execution time is called the best-case input and
one that results in the longest execution time is called the worst-case input. Best case
and worst case are not representative, but worst-case analysis is very useful. You can
be assured that the algorithm will never be slower than the worst case.

3. An average-case analysis attempts to determine the average amount of time among
all possible input of the same size. Average-case analysis is ideal, but difficult to per-
form, because for many problems it is hard to determine the relative probabilities and
distributions of various input instances.

4. If the time is not related to the input size, the algorithm is said to take constant time
with the notation O(1).

5. Linear search takes O(n) time. An algorithm with the O(n) time complexity is called
a linear algorithm. Binary search takes O(logn) time. An algorithm with the O(logn)
time complexity is called a logarithmic algorithm.

884 Chapter 24 Developing Efficient Algorithms

6. The worst-time complexity for selection sort and insertion sort is An algorithm
with the time complexity is called a quadratic algorithm.

7. The time complexity for the Towers of Hanoi problem is An algorithm with
the time complexity is called an exponential algorithm.

8. A Fibonacci number at a given index can be found in O(n) time using dynamic
programming.

9. Dynamic programming is the process of solving subproblems, then combining the
solutions of the subproblems to obtain an overall solution. The key idea behind
dynamic programming is to solve each subproblem only once and store the results for
subproblems for later use to avoid redundant computing of the subproblems.

10. Euclid’s GCD algorithm takes O(logn) time.

11. All prime numbers less than or equal to n can be found in time.

12. The closest pair can be found in O(n logn) time using the divide-and-conquer approach.

13. The divide-and-conquer approach divides the problem into subproblems, solves
the subproblems, then combines the solutions of the subproblems to obtain the
solution for the entire problem. Unlike the dynamic programming approach, the
subproblems in the divide-and-conquer approach don’t overlap. A subproblem is
like the original problem with a smaller size, so you can apply recursion to solve
the problem.

14. The Eight Queens problem can be solved using backtracking.

15. The backtracking approach searches for a candidate solution incrementally, abandon-
ing that option as soon as it determines that the candidate cannot possibly be a valid
solution, and then looks for a new candidate.

16. A convex hull for a set of points can be found in time using the gift-wrapping
algorithm and in O(n logn) time using the Graham’s algorithm.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

*24.1 (Maximum consecutive increasingly ordered substring) Write a program that
prompts the user to enter a string and displays the maximum consecutive increas-
ingly ordered substring. Analyze the time complexity of your program. Here is a
sample run:

O(n2)

O¢n2n

logn
≤

O(2n)
O(2n).

O(n2)
O(n2).

Enter a string:
Wel

Welcome

www.cs.armstrong.edu/liang/intro9e/test.html

40 41 42 43 44 45

Listing 24.2 GCD

Listing 24.3 GCDEuclid

Programming Exercises 885

**24.2 (Maximum increasingly ordered subsequence) Write a program that prompts the
user to enter a string and displays the maximum increasingly ordered subsequence
of characters. Analyze the time complexity of your program. Here is a sample run:

Enter a string:
Welo

Welcome

*24.3 (Pattern matching) Write a program that prompts the user to enter two strings and
tests whether the second string is a substring of the first string. Suppose the neigh-
boring characters in the string are distinct. (Don’t use the indexOf method in the
String class.) Analyze the time complexity of your algorithm. Your algorithm
needs to be at least O(n) time. Here is a sample run of the program:

Enter a string s1:

Enter a string s2:

matched at index 3

come

Welcome to Java

*24.4 (Pattern matching) Write a program that prompts the user to enter two strings and
tests whether the second string is a substring of the first string. (Don’t use the
indexOf method in the String class.) Analyze the time complexity of your algo-
rithm. Here is a sample run of the program:

Enter a string s1:

Enter a string s2:

matched at index 6

sip

Mississippi

*24.5 (Same-number subsequence) Write an O(n) program that prompts the user to enter
a sequence of integers ending with 0 and finds the longest subsequence with the
same number. Here is a sample run of the program:

Enter a series of numbers ending with 0:

The longest same number sequence starts at index 3 with 4
values of 8

2 4 4 8 8 8 8 2 4 4 0

*24.6 (Execution time for GCD) Write a program that obtains the execution time for
finding the GCD of every two consecutive Fibonacci numbers from the index 40 to
index 45 using the algorithms in Listings 24.2 and 24.3. Your program should
print a table like this:

(Hint: You can use the following code template to obtain the execution time.)

long startTime = System.currentTimeMillis();
perform the task;
long endTime = System.currentTimeMillis();
long executionTime = endTime - startTime;

886 Chapter 24 Developing Efficient Algorithms

**24.7 (Closest pair of points) Section 24.8 introduced an algorithm for finding the clos-
est pair of points using a divide-and-conquer approach. Implement the algorithm
to meet the following requirements:

■ Define the classes Point and CompareY in the same way as in Programming
Exercise 22.4.

■ Define a class named Pair with the data fields p1 and p2 to represent two
points, and a method named getDistance() that returns the distance between
the two points.

■ Implement the following methods:

/** Return the distance of the closest pair of points */
public static Pair getClosestPair(double[][] points)

/** Return the distance of the closest pair of points */
public static Pair getClosestPair(Point[] points)

/** Return the distance of the closest pair of points
* in pointsOrderedOnX[low..high]. This is a recursive
* method. pointsOrderedOnX and pointsOrderedOnY are
* not changed in the subsequent recursive calls.
*/

public static Pair distance(Point[] pointsOrderedOnX,
int low, int high, Point[] pointsOrderedOnY)

/** Compute the distance between two points p1 and p2 */
public static double distance(Point p1, Point p2)

/** Compute the distance between points (x1, y1) and (x2, y2) */
public static double distance(double x1, double y1,

double x2, double y2)

**24.8 (All prime numbers up to 10,000,000,000) Write a program that finds all prime
numbers up to 10,000,000,000. There are approximately 455,052,511 such
prime numbers. Your program should meet the following requirements:

■ Your program should store the prime numbers in a binary data file, named
PrimeNumbers.dat. When a new prime number is found, the number is
appended to the file.

■ To find whether a new number is prime, your program should load the prime
numbers from the file to an array of the long type of size 10000. If no number
in the array is a divisor for the new number, continue to read the next 10000
prime numbers from the data file, until a divisor is found or all numbers in the
file are read. If no divisor is found, the new number is prime.

■ Since this program takes a long time to finish, you should run it as a batch job
from a UNIX machine. If the machine is shut down and rebooted, your program
should resume by using the prime numbers stored in the binary data file rather
than start over from scratch.

**24.9 (Geometry: gift-wrapping algorithm for finding a convex hull) Section 24.10.1
introduced the gift-wrapping algorithm for finding a convex hull for a set of
points. Assume that the Java’s coordinate system is used for the points. Implement
the algorithm using the following method:

/** Return the points that form a convex hull */
public static ArrayList<MyPoint> getConvexHull(double[][] s)

MyPoint is a static inner class defined as follows:

static class MyPoint {
double x, y;

MyPoint(double x, double y) {
this.x = x; this.y = y;

}
}

Write a test program that prompts the user to enter the set size and the points and
displays the points that form a convex hull. Here is a sample run:

How many points are in the set?
Enter 6 points:
The convex hull is
(1.5, 34.5) (5.5, 9.0) (6.0, 2.4) (2.5, 2.0) (1.0, 2.4)

1 2.4 2.5 2 1.5 34.5 5.5 6 6 2.4 5.5 9
6

24.10 (Number of prime numbers) Exercise 24.8 stores the prime numbers in a file named
PrimeNumbers.dat. Write a program that finds the number of prime numbers that
are less than or equal to 10, 100, 1,000, 10,000, 100,000, 1,000,000,
10,000,000, 100,000,000, 1,000,000,000, and 10,000,000,000. Your
program should read the data from PrimeNumbers.dat. Note that the data file may
continue to grow as more prime numbers are stored in the file.

**24.11 (Geometry: Graham’s algorithm for finding a convex hull) Section 24.10.2 intro-
duced Graham’s algorithm for finding a convex hull for a set of points. Assume
that the Java’s coordinate system is used for the points. Implement the algorithm
using the following method:

Programming Exercises 887

/** Return the points that form a convex hull */
public static ArrayList<MyPoint> getConvexHull(double[][] s)

MyPoint is a static inner class defined as follows:

private static class MyPoint implements Comparable<MyPoint> {
double x, y;

MyPoint rightMostLowestPoint;

MyPoint(double x, double y) {
this.x = x; this.y = y;

}

public void setRightMostLowestPoint(MyPoint p) {
rightMostLowestPoint = p;

}

@Override
public int compareTo(MyPoint o) {
// Implement it to compare this point with point o
// angularly along the x-axis with rightMostLowestPoint
// as the center, as shown in Figure 24.10b. By implementing
// the Comparable interface, you can use the Array.sort
// method to sort the points to simplify coding.

}

888 Chapter 24 Developing Efficient Algorithms

8000000 10000000 12000000 14000000 16000000 18000000

Listing 24.4

Listing 24.5

Listing 24.6

(a) (b) Crossed polygon

FIGURE 24.11 (a) Exercise24.15 displays a non-crossed polygon for a set of points. (b) Two
or more sides intersect in a crossed polygon.

Write a test program that prompts the user to enter the set size and the points and
displays the points that form a convex hull. Here is a sample run:

How many points are in the set?
Enter 6 points:
The convex hull is
(1.5, 34.5) (5.5, 9.0) (6.0, 2.4) (2.5, 2.0) (1.0, 2.4)

1 2.4 2.5 2 1.5 34.5 5.5 6 6 2.4 5.5 9
6

*24.12 (Last 100 prime numbers) Exercise 24.8 stores the prime numbers in a file named
PrimeNumbers.dat. Write an efficient program that reads the last 100 numbers
in the file. (Hint: Don’t read all numbers from the file. Skip all numbers before the
last 100 numbers in the file.)

**24.13 (Geometry: convex hull applet) Exercise 24.11 finds a convex hull for a set of
points entered from the console. Write an applet that enables the user to
add/remove points by clicking the left/right mouse button, and displays a convex
hull, as shown in Figure 24.8c.

*24.14 (Execution time for prime numbers) Write a program that obtains the execution
time for finding all the prime numbers less than 8,000,000, 10,000,000,
12,000,000, 14,000,000, 16,000,000, and 18,000,000 using the algorithms in
Listings 24.4–24.6. Your program should print a table like this:

**24.15 (Geometry: non-cross polygon) Write an applet that enables the user to
add/remove points by clicking the left/right mouse button, and displays a non-
crossed polygon that links all the points, as shown in Figure 24.11a. A polygon is
crossed if two or more sides intersect, as shown in Figure 24.11b. Use the follow-
ing algorithm to construct a polygon from a set of points.

FIGURE 24.12 The program animates a linear search.

Step 1: Given a set of points S, select the rightmost lowest
point p0 in the set S.

Step 2: Sort the points in S angularly along the x-axis with
p0 as the center. If there is a tie and two points have the
same angle, the one that is closer to p0 is considered greater.
The points in S are now sorted as p0, p1, p2, ..., pn-1.

Step 3: The sorted points form a non-cross polygon.

**24.16 (Linear search animation) Write an applet that animates the linear search algo-
rithm. Create an array that consists of 20 distinct numbers from 1 to 20 in a random
order. The array elements are displayed in a histogram, as shown in Figure 24.12.
You need to enter a search key in the text field. Clicking the Step button causes the
program to perform one comparison in the algorithm and repaints the histogram
with a bar indicating the search position. This button also freezes the text field to
prevent its value from being changed. When the algorithm is finished, display a
dialog box to inform the user. Clicking the Reset button creates a new random array
for a new start. This button also makes the text field editable.

**24.17 (Closest-pair animation) Write an applet that enables the user to add/remove
points by clicking the left/right mouse button, and displays a line that connects
the pair of nearest points, as shown in Figure 24.4.

**24.18 (Binary search animation) Write an applet that animates the binary search
algorithm. Create an array with numbers from 1 to 20 in this order. The array
elements are displayed in a histogram, as shown in Figure 24.13. You need to

FIGURE 24.13 The program animates a binary search.

Programming Exercises 889

890 Chapter 24 Developing Efficient Algorithms

(a) (b)

FIGURE 24.14 The program finds the largest block of 1s.

enter a search key in the text field. Clicking the Step button causes the pro-
gram to perform one comparison in the algorithm. Use a light-gray color to
paint the bars for the numbers in the current search range and use a black
color to paint the a bar indicating the middle number in the search range. The
Step button also freezes the text field to prevent its value from being changed.
When the algorithm is finished, display a dialog box to inform the user.
Clicking the Reset button enables a new search to start. This button also
makes the text field editable.

*24.19 (Largest block) The problem for finding a largest block is described in Program-
ming Exercise 7.35. Design a dynamic programming algorithm for solving this
problem in time. Write a test program that displays a 10-by-10 square
matrix, as shown in Figure 24.14. Each element in the matrix is 0 or 1, randomly
generated with a click of the Refresh button. Display each number centered in a
text field. Use a text field for each entry. Allow the user to change the entry value.
Click the Find Largest Block button to find a largest square submatrix that con-
sists of 1s. Highlight the numbers in the block, as shown in Figure 24.14b. See
www.cs.armstrong.edu/liang/animation/FindLargestBlock.html for an interactive test.

O(n2)

***24.20 (Game: multiple Sudoku solutions) The complete solution for the Sudoku prob-
lem is given in Supplement VI.A. A Sudoku problem may have multiple solu-
tions. Modify Sudoku.java in Supplement VI.A to display the total number of
the solutions. Display two solutions if multiple solutions exist.

***24.21 (Game: Sudoku) The complete solution for the Sudoku problem is given in Sup-
plement VI.A. Write a program that lets the user enter the input from the text
fields in an applet, as shown in Figure 24.15. Clicking the Solve button displays
the result.

***24.22 (Game: recursive Sudoku) Write a recursive solution for the Sudoku problem.

***24.23 (Game: multiple Eight Queens solution) Write an applet to display all possible
solutions for the Eight Queens puzzle in a scroll pane, as shown in Figure 24.16.
For each solution, put a label to denote the solution number. (Hint: Place all
solution panels into one panel and place this one panel into a JScrollPane.)

www.cs.armstrong.edu/liang/animation/FindLargestBlock.html

FIGURE 24.15 The program solves the Sudoku problem.

FIGURE 24.16 All solutions are placed in a scroll pane.

The solution panel class should override the getPreferredSize() method to
ensure that a solution panel is displayed properly. See Listing 13.3, Fig-
urePanel.java, for how to override getPreferredSize().

**24.24 (Find the smallest number) Write a method that uses the divide-and-conquer
approach to find the smallest number in a list.

***24.25 (Game: Sudoku) Revise Exercise 24.21 to display all solutions for the Sudoku
game, as shown in Figure 24.17a. When you click the Solve button, the pro-
gram stores all solutions in an ArrayList. Each element in the list is a two-
dimensional 9-by-9 grid. If the program has multiple solutions, the OK button
appears as shown in Figure 24.17b. You can click the Next button to display the
next solution, as shown in Figure 24.17c. When the Clear button is clicked, the
cells are cleared and the Next button is hidden.

Programming Exercises 891

892 Chapter 24 Developing Efficient Algorithms

(a) (b) (c)

FIGURE 24.17 The program can display multiple Sudoku solutions.

SORTING

Objectives
■ To study and analyze time complexity of various sorting algorithms

(§§25.2–25.7).

■ To design, implement, and analyze bubble sort (§25.2).

■ To design, implement, and analyze merge sort (§25.3).

■ To design, implement, and analyze quick sort (§25.4).

■ To design and implement a binary heap (§25.5).

■ To design, implement, and analyze heap sort (§25.5).

■ To design, implement, and analyze bucket sort and radix sort (§25.6).

■ To design, implement, and analyze external sort for files that have a large
amount of data (§25.7).

CHAPTER

25

894 Chapter 25 Sorting

Key
Point

Key
Point

25.1 Introduction
Sorting algorithms are good examples for studying algorithm design and analysis.

When presidential candidate Barack Obama visited Google in 2007, Google CEO Eric
Schmidt asked Obama the most efficient way to sort a million 32-bit integers
(www.youtube.com/watch?v=k4RRi_ntQc8). Obama answered that the bubble sort would be the
wrong way to go. Was he right? We will examine different sorting algorithms in this chapter
and see if he was correct.

Sorting is a classic subject in computer science. There are three reasons to study sorting
algorithms.

■ First, sorting algorithms illustrate many creative approaches to problem solving, and
these approaches can be applied to solve other problems.

■ Second, sorting algorithms are good for practicing fundamental programming tech-
niques using selection statements, loops, methods, and arrays.

■ Third, sorting algorithms are excellent examples to demonstrate algorithm
performance.

The data to be sorted might be integers, doubles, characters, or objects. Section 6.11, Sort-
ing Arrays, presented selection sort and insertion sort for numeric values. The selection sort
algorithm was extended to sort an array of objects in Section 21.5, Case Study: Sorting an
Array of Objects. The Java API contains several overloaded sort methods for sorting primitive
type values and objects in the java.util.Arrays and java.util.Collections classes.
For simplicity, this chapter assumes:

1. data to be sorted are integers,

2. data are stored in an array, and

3. data are sorted in ascending order.

The programs can be easily modified to sort other types of data, to sort in descending
order, or to sort data in an ArrayList or a LinkedList.

There are many algorithms for sorting. You have already learned selection sort and inser-
tion sort. This chapter introduces bubble sort, merge sort, quick sort, bucket sort, radix sort,
and external sort.

25.2 Bubble Sort
A bubble sort sorts the array in multiple phases. Each pass successively swaps the
neighboring elements if the elements are not in order.

The bubble sort algorithm makes several passes through the array. On each pass, successive
neighboring pairs are compared. If a pair is in decreasing order, its values are swapped; other-
wise, the values remain unchanged. The technique is called a bubble sort or sinking sort,
because the smaller values gradually “bubble” their way to the top and the larger values sink
to the bottom. After the first pass, the last element becomes the largest in the array. After the
second pass, the second-to-last element becomes the second largest in the array. This process
is continued until all elements are sorted.

Figure 25.1a shows the first pass of a bubble sort on an array of six elements (2 9 5 4 8 1).
Compare the elements in the first pair (2 and 9), and no swap is needed because they are
already in order. Compare the elements in the second pair (9 and 5), and swap 9 with 5
because 9 is greater than 5. Compare the elements in the third pair (9 and 4), and swap 9
with 4. Compare the elements in the fourth pair (9 and 8), and swap 9 with 8. Compare the

why study sorting?

what data to sort?

bubble sort

bubble sort illustration

bubble sort on the
Companion Website

www.youtube.com/watch?v=k4RRi_ntQc8

25.2 Bubble Sort 895

(a) 1st pass (b) 2nd pass (c) 3rd pass (d) 4th pass (e) 5th pass

2 5 9 4 8 1

2 4 8 15 9

2 4 9 15 8

2 4 1 95 8

2 5 8 19 4

2 5 8 94 1

2 5 8 94 1

2 1 8 94 5

2 4 8 91 5

2 1 8 94 5 1 4 8 92 52 4 1 95 8

2 4 5 8 1 9

2 4 5 8 1 9

2 4 5 1 8 9

FIGURE 25.1 Each pass compares and orders the pairs of elements sequentially.

elements in the fifth pair (9 and 1), and swap 9 with 1. The pairs being compared are
highlighted and the numbers already sorted are italicized in Figure 25.1.

The first pass places the largest number (9) as the last in the array. In the second pass, as
shown in Figure 25.1b, you compare and order pairs of elements sequentially. There is no
need to consider the last pair, because the last element in the array is already the largest. In the
third pass, as shown in Figure 25.1c, you compare and order pairs of elements sequentially
except the last two elements, because they are already in order. So in the kth pass, you don’t
need to consider the last elements, because they are already ordered.

The algorithm for a bubble sort is described in Listing 25.1.

LISTING 25.1 Bubble Sort Algorithm
1 for (int k = 1; k < list.length; k++) {
2 // Perform the kth pass
3 for (int i = 0; i < list.length - k; i++) {
4 if (list[i] > list[i + 1])
5 swap list[i] with list[i + 1];
6 }
7 }

Note that if no swap takes place in a pass, there is no need to perform the next pass, because
all the elements are already sorted. You can use this property to improve the algorithm in
Listing 25.1 as in Listing 25.2.

LISTING 25.2 Improved Bubble Sort Algorithm
1 boolean needNextPass = true;
2 for (int k = 1; k < list.length && needNextPass; k++) {
3 // Array may be sorted and next pass not needed
4
5 // Perform the kth pass
6 for (int i = 0; i < list.length – k; i++) {
7 if (list[i] > list[i + 1]) {
8 swap list[i] with list[i + 1];
9 // Next pass still needed
10 }
11 }
12 }

The algorithm can be implemented in Listing 25.3.

LISTING 25.3 BubbleSort.java
1 public class BubbleSort {
2 /** Bubble sort method */
3 public static void bubbleSort(int[] list) {
4 boolean needNextPass = true;
5

needNextPass = true;

needNextPass = false;

k - 1
algorithm

896 Chapter 25 Sorting

✓Point✓Check

Key
Point

6
7 // Array may be sorted and next pass not needed
8 needNextPass = false;
9
10 if (list[i] > list[i + 1]) {
11 // Swap list[i] with list[i + 1]
12 int temp = list[i];
13 list[i] = list[i + 1];
14 list[i + 1] = temp;
15
16 needNextPass = true; // Next pass still needed
17 }
18 }
19 }
20 }
21
22 /** A test method */
23 public static void main(String[] args) {
24 int[] list = {2, 3, 2, 5, 6, 1, -2, 3, 14, 12};
25
26 for (int i = 0; i < list.length; i++)
27 System.out.print(list[i] + " ");
28 }
29 }

bubbleSort(list);

for (int i = 0; i < list.length - k; i++) {

for (int k = 1; k < list.length && needNextPass; k++) {

perform one pass

-2 1 2 2 3 3 5 6 12 14

In the best-case analysis, the bubble sort algorithm needs just the first pass to find that the
array is already sorted—no next pass is needed. Since the number of comparisons is in
the first pass, the best-case time for a bubble sort is O(n).

In the worst-case analysis, the bubble sort algorithm requires passes. The first pass
makes comparisons; the second pass makes comparisons; and so on; the last
pass makes 1 comparison. Thus, the total number of comparisons is:

Therefore, the worst-case time for a bubble sort is

25.1 Describe how a bubble sort works. What is the time complexity for a bubble sort?

25.2 Use Figure 25.1 as an example to show how to apply a bubble sort on

25.3 If a list is already sorted, how many comparisons will the bubbleSort method
perform?

25.3 Merge Sort
The merge sort algorithm can be described recursively as follows: The algorithm
divides the array into two halves and applies a merge sort on each half recursively.
After the two halves are sorted, merge them.

The algorithm for a merge sort is given in Listing 25.4.

{45, 11, 50, 59, 60, 2, 4, 7, 10}.

O(n2).

=
(n - 1)n

2
=

n2

2
-

n

2
= O(n2)

(n - 1) + (n - 2) + . . . + 2 + 1

n - 2n - 1
n - 1

n - 1
bubble sort time complexity

merge sort

25.3 Merge Sort 897

split

split

2

split

9 5 4 8 1 6 7

merge

81 6 7

1 7 8

1 4 6 7 8 9

merge

merge

divide

conquer

2 5 8 1 6 79 4

8 1 6 7

2 54 9

2 9

2 9

2 59 4

5 4

4 5

2 5

8 1 6 7

6

FIGURE 25.2 Merge sort employs a divide-and-conquer approach to sort the array.

LISTING 25.4 Merge Sort Algorithm
1 public static void mergeSort(int[] list) {
2 if (list.length > 1) {
3 mergeSort(list[0 ... list.length / 2]);
4 mergeSort(list[list.length / 2 + 1 ... list.length]);
5 merge list[0 ... list.length / 2] with
6 list[list.length / 2 + 1 ... list.length];
7 }
8 }

Figure 25.2 illustrates a merge sort of an array of eight elements (2 9 5 4 8 1 6 7). The origi-
nal array is split into (2 9 5 4) and (8 1 6 7). Apply a merge sort on these two subarrays recur-
sively to split (2 9 5 4) into (2 9) and (5 4) and (8 1 6 7) into (8 1) and (6 7). This process
continues until the subarray contains only one element. For example, array (2 9) is split into
the subarrays (2) and (9). Since array (2) contains a single element, it cannot be further split.
Now merge (2) with (9) into a new sorted array (2 9); merge (5) with (4) into a new sorted
array (4 5). Merge (2 9) with (4 5) into a new sorted array (2 4 5 9), and finally merge (2 4 5
9) with (1 6 7 8) into a new sorted array (1 2 4 5 6 7 8 9).

The recursive call continues dividing the array into subarrays until each subarray contains
only one element. The algorithm then merges these small subarrays into larger sorted subar-
rays until one sorted array results.

The merge sort algorithm is implemented in Listing 25.5.

LISTING 25.5 MergeSort.java
1 public class MergeSort {
2 /** The method for sorting the numbers */
3
4 if (list.length > 1) {
5 // Merge sort the first half
6 int[] firstHalf = new int[list.length / 2];
7 System.arraycopy(list, 0, firstHalf, 0, list.length / 2);
8
9
10 // Merge sort the second half
11 int secondHalfLength = list.length - list.length / 2;
12 int[] secondHalf = new int[secondHalfLength];

mergeSort(firstHalf);

public static void mergeSort(int[] list) {

base condition
sort first half
sort second half
merge two halves

merge sort illustration

base case

sort first half

898 Chapter 25 Sorting

13 System.arraycopy(list, list.length / 2,
14 secondHalf, 0, secondHalfLength);
15
16
17 // Merge firstHalf with secondHalf into list
18
19 }
20 }
21
22 /** Merge two sorted lists */
23
24 int current1 = 0; // Current index in list1
25 int current2 = 0; // Current index in list2
26 int current3 = 0; // Current index in temp
27
28 while (current1 < list1.length && current2 < list2.length) {
29 if (list1[current1] < list2[current2])
30
31 else

32
33 }
34
35 while (current1 < list1.length)
36
37
38 while (current2 < list2.length)
39
40 }
41
42 /** A test method */
43 public static void main(String[] args) {
44 int[] list = {2, 3, 2, 5, 6, 1, -2, 3, 14, 12};
45
46 for (int i = 0; i < list.length; i++)
47 System.out.print(list[i] + " ");
48 }
49 }

The mergeSort method (lines 3–20) creates a new array firstHalf, which is a copy of the
first half of list (line 7). The algorithm invokes mergeSort recursively on firstHalf
(line 8). The length of the firstHalf is list.length / 2 and the length of the
secondHalf is list.length - list.length / 2. The new array secondHalf was cre-
ated to contain the second part of the original array list. The algorithm invokes mergeSort
recursively on secondHalf (line 15). After firstHalf and secondHalf are sorted, they
are merged to list (line 18). Thus, array list is now sorted.

The merge method (lines 23–40) merges two sorted arrays list1 and list2 into array
temp. current1 and current2 point to the current element to be considered in list1 and
list2 (lines 24–26). The method repeatedly compares the current elements from list1 and
list2 and moves the smaller one to temp. current1 is increased by 1 (line 30) if the
smaller one is in list1 and current2 is increased by 1 (line 32) if the smaller one is in
list2. Finally, all the elements in one of the lists are moved to temp. If there are still
unmoved elements in list1, copy them to temp (lines 35–36). If there are still unmoved
elements in list2, copy them to temp (lines 38–39).

Figure 25.3 illustrates how to merge the two arrays list1 (2 4 5 9) and list2 (1 6 7 8).
Initially the current elements to be considered in the arrays are 2 and 1. Compare them and
move the smaller element 1 to temp, as shown in Figure 25.3a. current2 and current3 are
increased by 1. Continue to compare the current elements in the two arrays and move the

mergeSort(list);

temp[current3++] = list2[current2++];

temp[current3++] = list1[current1++];

temp[current3++] = list2[current2++];

temp[current3++] = list1[current1++];

public static void merge(int[] list1, int[] list2, int[] temp) {

merge(firstHalf, secondHalf, list);

mergeSort(secondHalf);sort second half

merge two halves

list1 to temp

list2 to temp

rest of list1 to temp

rest of list2 to temp

merge animation on
Companion Website

25.3 Merge Sort 899

(a) After moving 1 to temp

2 5 9

current1 current2

current3

4 1 7 86

1

current1 current2

current3

2 5

5

94

4

1 7

7

8

8

6

61 2

current1 current2

2 5 9

current3

4 1 7 86

54 7 8 961 2

 (b) After moving all the
elements in list2 to temp

 (c) After moving 9 to
temp

FIGURE 25.3 Two sorted arrays are merged into one sorted array.

(a)

Divide Copy second halfCopy first half

Merge to list

Recursive sort

Merge

secondHalf
(temporary array)

firstHalf
(temporary array)

New sorted list

Original list

(b)

Divide

Copy this to the
original list

Recursively sort

Merge

Sort second half of
the original array

Sort first half of
the original array

New sorted temporary list

Original list

FIGURE 25.4 Temporary arrays are created to support a merge sort.

smaller one to temp until one of the arrays is completely moved. As shown in Figure 25.3b,
all the elements in list2 are moved to temp and current1 points to element 9 in list1.
Copy 9 to temp, as shown in Figure 25.3c.

The mergeSort method creates two temporary arrays (lines 6, 12) during the dividing
process, copies the first half and the second half of the array into the temporary arrays (lines
7, 13), sorts the temporary arrays (lines 8, 15), and then merges them into the original array
(line 18), as shown in Figure 25.4a. You can rewrite the code to recursively sort the first half
of the array and the second half of the array without creating new temporary arrays, and then
merge the two arrays into a temporary array and copy its contents to the original array, as
shown in Figure 25.4b. This is left for you to do in Programming Exercise 25.20.

Note
A merge sort can be implemented efficiently using parallel processing. See Section
32.18, Parallel Programming, for a parallel implementation of a merge sort.

Let T(n) denote the time required for sorting an array of n elements using a merge sort. With-
out loss of generality, assume n is a power of 2. The merge sort algorithm splits the array into
two subarrays, sorts the subarrays using the same algorithm recursively, and then merges the
subarrays. Therefore,

T(n) = T¢n

2
≤ + T¢n

2
≤ + mergetime

merge sort time complexity

list2

pivot

list1

900 Chapter 25 Sorting

Key
Point

✓Point✓Check

The first is the time for sorting the first half of the array, and the second is the

time for sorting the second half. To merge two subarrays, it takes at most comparisons
to compare the elements from the two subarrays and n moves to move elements to the tempo-
rary array. Thus, the total time is Therefore,

The complexity of a merge sort is O(n logn). This algorithm is better than selection sort, insertion
sort, and bubble sort, because the time complexity of these algorithms is The sort method
in the java.util.Arrays class is implemented using a variation of the merge sort algorithm.

25.4 Describe how a merge sort works. What is the time complexity for a merge sort?

25.5 Use Figure 25.2 as an example to show how to apply a merge sort on

25.6 What is wrong if lines 6–15 in Listing 25.5, MergeSort.java, are replaced by the fol-
lowing code?

int[] firstHalf = new int[list.length / 2];
System.arraycopy(list, 0, firstHalf, 0, list.length / 2);
mergeSort(firstHalf);

// Merge sort the second half
int secondHalfLength = list.length - list.length / 2 ;
int[] secondHalf = new int[secondHalfLength];
System.arraycopy(list, list.length / 2 ,
secondHalf, 0, secondHalfLength);

mergeSort(secondHalf);

25.4 Quick Sort
A quick sort works as follows: The algorithm selects an element, called the pivot, in
the array. It divides the array into two parts, so that all the elements in the first part
are less than or equal to the pivot and all the elements in the second part are greater
than the pivot. The quick sort algorithm is then recursively applied to the first part and
then the second part.

The quick sort algorithm, developed by C.A.R. Hoare in 1962, is described in Listing 25.6.

LISTING 25.6 Quick Sort Algorithm
1 public static void quickSort(int[] list) {
2 if (list.length > 1) {
3 select a pivot;
4 partition list into list1 and list2 such that
5 all elements in list1 <= pivot and
6 all elements in list2 > pivot;
7 quickSort(list1);
8 quickSort(list2);
9 }
10 }

Each partition places the pivot in the right place. The selection of the pivot affects the perfor-
mance of the algorithm. Ideally, the algorithm should choose the pivot that divides the two
parts evenly. For simplicity, assume the first element in the array is chosen as the pivot.
(Programming Exercise 25.4 proposes an alternative strategy for selecting the pivot.)

+ 1

- 1

+ 1

+ 1

{45, 11, 50, 59, 60, 2, 4, 7, 10}.

O(n2).

T(n) = T¢n

2
≤ + T¢n

2
≤ + 2n - 1 = O(n logn)

2n - 1.

n - 1

T¢n

2
≤T¢n

2
≤

O(n logn) merge sort

quick sort

base condition
select the pivot
partition the list

sort first part
sort second part

how to partition

25.4 Quick Sort 901

(a) The original array

pivot

5 761048392

(b) The original array is partitioned

pivotpivot

4 769850312

(d) The partial array (0 2 1 3) is
 partitioned

pivot

0 2 1 3

(e) The partial array (2 1 3) is
 partitioned1 2 3

(c) The partial array (4 2 1 3 0) is
 partitioned

pivot

0 2 1 3 4

FIGURE 25.5 The quick sort algorithm is recursively applied to partial arrays.

Figure 25.5 illustrates how to sort an array (5 2 9 3 8 4 0 1 6 7) using quick sort. Choose the
first element, 5, as the pivot. The array is partitioned into two parts, as shown in Figure 25.5b.
The highlighted pivot is placed in the right place in the array. Apply quick sort on two partial
arrays (4 2 1 3 0) and then (8 9 6 7). The pivot 4 partitions (4 2 1 3 0) into just one partial array
(0 2 1 3), as shown in Figure 25.5c. Apply quick sort on (0 2 1 3). The pivot 0 partitions it into
just one partial array (2 1 3), as shown in Figure 25.5d. Apply quick sort on (2 1 3). The pivot
2 partitions it into (1) and (3), as shown in Figure 25.5e. Apply quick sort on (1). Since the
array contains just one element, no further partition is needed.

The quick sort algorithm is implemented in Listing 25.7. There are two overloaded
quickSort methods in the class. The first method (line 2) is used to sort an array. The sec-
ond is a helper method (line 6) that sorts a partial array with a specified range.

LISTING 25.7 QuickSort.java
1 public class QuickSort {
2
3 quickSort(list, 0, list.length - 1);
4 }
5
6
7 if (last > first) {
8 int pivotIndex = partition(list, first, last);
9 quickSort(list, first, pivotIndex - 1);
10 quickSort(list, pivotIndex + 1, last);
11 }
12 }
13
14 /** Partition the array list[first..last] */
15
16 int pivot = list[first]; // Choose the first element as the pivot
17 int low = first + 1; // Index for forward search
18 int high = last; // Index for backward search
19
20 while (high > low) {
21 // Search forward from left
22 while (low <= high && list[low] <= pivot)
23
24

low++;

public static int partition(int[] list, int first, int last) {

public static void quickSort(int[] list, int first, int last) {

public static void quickSort(int[] list) {

quick sort illustration

sort method

helper method

recursive call

forward

902 Chapter 25 Sorting

25 // Search backward from right
26 while (low <= high && list[high] > pivot)
27
28
29 // Swap two elements in the list
30 if (high > low) {
31 int temp = list[high];
32
33 list[low] = temp;
34 }
35 }
36
37 while (high > first && list[high] >= pivot)
38 high--;
39
40 // Swap pivot with list[high]
41 if (pivot > list[high]) {
42 list[first] = list[high];
43 list[high] = pivot;
44
45 }
46 else {
47
48 }
49 }
50
51 /** A test method */
52 public static void main(String[] args) {
53 int[] list = {2, 3, 2, 5, 6, 1, -2, 3, 14, 12};
54 quickSort(list);
55 for (int i = 0; i < list.length; i++)
56 System.out.print(list[i] + " ");
57 }
58 }

return first;

return high;

list[high] = list[low];

high--;
backward

swap

place pivot
pivot’s new index

pivot’s original index

-2 1 2 2 3 3 5 6 12 14

The partition method (lines 15–49) partitions the array list[first..last] using the
pivot. The first element in the partial array is chosen as the pivot (line 16). Initially low points
to the second element in the partial array (line 17) and high points to the last element in the
partial array (line 18).

Starting from the left, the method searches forward in the array for the first element that is
greater than the pivot (lines 22–23), then searches from the right backward for the first ele-
ment in the array that is less than or equal to the pivot (lines 26–27). It then swaps these two
elements and repeats the same search and swap operations until all the elements are searched
in a while loop (lines 20–35).

The method returns the new index for the pivot that divides the partial array into two
parts if the pivot has been moved (line 44). Otherwise, it returns the original index for the
pivot (line 47).

Figure 25.6 illustrates how to partition an array (5 2 9 3 8 4 0 1 6 7). Choose the first ele-
ment, 5, as the pivot. Initially low is the index that points to element 2 and high points to ele-
ment 7, as shown in Figure 25.6a. Advance index low forward to search for the first element
(9) that is greater than the pivot and move index high backward to search for the first element
(1) that is less than or equal to the pivot, as shown in Figure 25.6b. Swap 9 with 1, as shown in
Figure 25.6c. Continue the search and move low to point to element 8 and high to point to
element 0, as shown in Figure 25.6d. Swap element 8 with 0, as shown in Figure 25.6e.

partition illustration

partition animation on
Companion Website

25.4 Quick Sort 903

Continue to move low until it passes high, as shown in Figure 25.6f. Now all the elements
are examined. Swap the pivot with element 4 at index high. The final partition is shown in
Figure 25.6g. The index of the pivot is returned when the method is finished.

To partition an array of n elements, it takes n comparisons and n moves in the worst-case
analysis. Thus, the time required for partition is O(n).

In the worst case, the pivot divides the array each time into one big subarray with the other
array empty. The size of the big subarray is one less than the one before divided. The algo-
rithm requires time.

In the best case, the pivot divides the array each time into two parts of about the same size.
Let T(n) denote the time required for sorting an array of n elements using quick sort. Thus,

recursive quick sort on partition time
two subarrays

Similar to the merge sort analysis, T(n) = O(n logn).

T(n) = T¢n

2
≤ + T¢n

2
≤ + n.

(n - 1) + (n - 2) + . . . + 2 + 1 = O(n2)

O(n) partition time

worst-case timeO(n2)

O(n logn) best-case time

5

pivot low high

(b) Search forward and backward

The index of the pivot is returned

2 9 3 8 4 0 1 6 7

5

pivot low high

(a) Initialize pivot, low, and high2 9 3 8 4 0 1 6 7

5

pivot low high

(c) 9 is swapped with 12 1 3 8 4 0 9 6 7

5

pivot low high

(d) Continue search2 1 3 8 4 0 9 6 7

5

pivot low high

(e) 8 is swapped with 02 1 3 0 4 8 9 6 7

5

pivot low high

(f) When high < low, search is over2 1 3 0 4 8 9 6 7

4

pivot

(g) Pivot is in the right place2 1 3 0 5 8 9 6 7

FIGURE 25.6 The partition method returns the index of the pivot after it is put in the
correct place.

904 Chapter 25 Sorting

✓Point✓Check

Key
Point

(a) A heap (b) (c) (d)
22 29

32

39

14

42

22

32

42

14 3322 29

32

42

14 33

39 39

22 29

32

42

FIGURE 25.7 A binary heap is a special complete binary tree.

On the average, the pivot will not divide the array into two parts of the same size or one
empty part each time. Statistically, the sizes of the two parts are very close. Therefore, the
average time is O(n logn). The exact average-case analysis is beyond the scope of this book.

Both merge sort and quick sort employ the divide-and-conquer approach. For merge sort,
the bulk of the work is to merge two sublists, which takes place after the sublists are sorted.
For quick sort, the bulk of the work is to partition the list into two sublists, which takes place
before the sublists are sorted. Merge sort is more efficient than quick sort in the worst case,
but the two are equally efficient in the average case. Merge sort requires a temporary array for
sorting two subarrays. Quick sort does not need additional array space. Thus, quick sort is
more space efficient than merge sort.

25.7 Describe how quick sort works. What is the time complexity for a quick sort?

25.8 Why is quick sort more space efficient than merge sort?

25.9 Use Figure 25.5 as an example to show how to apply a quick sort on

25.5 Heap Sort
A heap sort uses a binary heap. It first adds all the elements to a heap and then
removes the largest elements successively to obtain a sorted list.

Heap sorts use a binary heap, which is a complete binary tree. A binary tree is a hierarchical
structure. It either is empty or it consists of an element, called the root, and two distinct binary
trees, called the left subtree and right subtree. The length of a path is the number of the edges
in the path. The depth of a node is the length of the path from the root to the node.

A binary heap is a binary tree with the following properties:

■ Shape property: It is a complete binary tree.

■ Heap property: Each node is greater than or equal to any of its children.

A binary tree is complete if each of its levels is full, except that the last level may not be full
and all the leaves on the last level are placed leftmost. For example, in Figure 25.7, the binary
trees in (a) and (b) are complete, but the binary trees in (c) and (d) are not complete. Further,
the binary tree in (a) is a heap, but the binary tree in (b) is not a heap, because the root (39) is
less than its right child (42).

{45, 11, 50, 59, 60, 2, 4, 7, 10}.

Note
Heap is a term with many meanings in computer science. In this chapter, heap means a
binary heap.

O(n logn) average-case time

quick sort vs. merge sort

heap sort
root

left subtree

right subtree

length

depth

complete binary tree

heap

25.5 Heap Sort 905

heap animation on
Companion Website

Pedagogical Note
A heap can be implemented efficiently for inserting keys and for deleting the root. For an
interactive demo on how a heap works, go to www.cs.armstrong.edu/liang/animation/
HeapAnimation.html, as shown in Figure 25.8.

25.5.1 Storing a Heap
A heap can be stored in an ArrayList or an array if the heap size is known in advance. The
heap in Figure 25.9a can be stored using the array in Figure 25.9b. The root is at position 0,
and its two children are at positions 1 and 2. For a node at position i, its left child is at position

its right child is at position and its parent is For example, the node
for element 39 is at position 4, so its left child (element 14) is at its right child
(element 33) is at and its parent (element 42) is at 1 ((4 - 1)/2).10 (2 * 4 + 2),

9 (2 * 4 + 1),
(i - 1)/2.2i + 2,2i + 1,

FIGURE 25.8 The heap animation tool enables you to insert a key and delete the root visually.

22 29

32

42

62

14 33

39

30 17

44

59

9

13

(a) A heap

62

[0]

42 59 32 39 44 13 22 29 14 33 30 17

[12]

9

[13][11][10][9][8][7][6][5][4][3][2][1]

(b) A heap stored in an array

parent left

right

FIGURE 25.9 A binary heap can be implemented using an array.

25.5.2 Adding a New Node
To add a new node to the heap, first add it to the end of the heap and then rebuild the tree
as follows:

Let the last node be the current node;
while (the current node is greater than its parent) {
Swap the current node with its parent;
Now the current node is one level up;

}

www.cs.armstrong.edu/liang/animation/HeapAnimation.html
www.cs.armstrong.edu/liang/animation/HeapAnimation.html

906 Chapter 25 Sorting

(a) After adding 3 (b) After adding 5 (c) After adding 1

(d) After adding 19 (e) After adding 11 (f) After adding 22
3

5

19

1

3 5

11

19

1

3 5

11

22

1

19

3

3

5

3

5

1

FIGURE 25.10 Elements 3, 5, 1, 19, 11, and 22 are inserted into the heap.

(a) Add 88 to a heap (b) After swapping 88 with 19 (c) After swapping 88 with 22

11

22

19

1 883 5 3 5

11

22

1 19

88

1 193 5

11

88

22

FIGURE 25.11 Rebuild the heap after adding a new node.

Suppose a heap is initially empty. That heap is shown in Figure 25.10, after adding numbers
3, 5, 1, 19, 11, and 22 in this order.

25.5.3 Removing the Root
Often you need to remove the maximum element, which is the root in a heap. After the root is
removed, the tree must be rebuilt to maintain the heap property. The algorithm for rebuilding
the tree can be described as follows:

Move the last node to replace the root;
Let the root be the current node;
while (the current node has children and the current node is

smaller than one of its children) {
Swap the current node with the larger of its children;
Now the current node is one level down;

}

Figure 25.12 shows the process of rebuilding a heap after the root 62 is removed from Figure
25.9a. Move the last node, 9, to the root, as shown in Figure 25.12a. Swap 9 with 59, as shown
in Figure 25.12b; swap 9 with 44, as shown in Figure 25.12c; and swap 9 with 30, as shown
in Figure 25.12d.

Now consider adding 88 into the heap. Place the new node 88 at the end of the tree, as shown
in Figure 25.11a. Swap 88 with 19, as shown in Figure 25.18b. Swap 88 with 22, as shown in
Figure 25.11c.

25.5 Heap Sort 907

Figure 25.13 shows the process of rebuilding a heap after the root, 59, is removed from Figure
25.12d. Move the last node, 17, to the root, as shown in Figure 25.13a. Swap 17 with 44, as
shown in Figure 25.13b, and then swap 17 with 30, as shown in Figure 25.13c.

22 29 14 33 30 17

32 39 44 13

42 59

9

(a) After moving 9 to the root

22 29 14 33 30 17

32 39 44 13

42 9

59

(b) After swapping 9 with 59

22 29 14 33 30 17

32 39 9 13

42 44

59

(c) After swapping 9 with 44

22 29 14 33 179

32 39 30 13

42 44

59

(d) After swapping 9 with 30

FIGURE 25.12 Rebuild the heap after the root 62 is removed.

(a) After moving 17 to the root (b) After swapping 17 with 44
22 29 14 33 9

32 39 30 13

42

44

17

22 29 14 33 9

32 39 13

3042

44

17

(c) After swapping 17 with 30

22 29 14 33 9

32 39 30 13

42 44

17

FIGURE 25.13 Rebuild the heap after the root, 59, is removed.

908 Chapter 25 Sorting

Heap<E extends Comparable<E>>

-list: java.util.ArrayList<E>

+Heap()
+Heap(objects: E[])

+remove(): E
+add(newObject: E): void

+getSize(): int

Creates a default empty heap.
Creates a heap with the specified objects.

Removes the root from the heap and returns it.
Adds a new object to the heap.

Returns the size of the heap.

Figure 25.14 The Heap class provides operations for manipulating a heap.

25.5.4 The Heap Class
Now you are ready to design and implement the Heap class. The class diagram is shown in
Figure 25.14. Its implementation is given in Listing 25.8.

LISTING 25.8 Heap.java
1 public class Heap<E extends Comparable<E>> {
2
3
4 /** Create a default heap */
5 {
6 }
7
8 /** Create a heap from an array of objects */
9 {
10 for (int i = 0; i < objects.length; i++)
11 add(objects[i]);
12 }
13
14 /** Add a new object into the heap */
15 {
16 list.add(newObject); // Append to the heap
17 int currentIndex = list.size() - 1; // The index of the last node
18
19 while (currentIndex > 0) {
20 int parentIndex = (currentIndex - 1) / 2;
21 // Swap if the current object is greater than its parent
22 if (list.get(currentIndex).compareTo(
23 list.get(parentIndex)) > 0) {
24 E temp = list.get(currentIndex);
25 list.set(currentIndex, list.get(parentIndex));
26 list.set(parentIndex, temp);
27 }
28 else

29 break; // The tree is a heap now
30
31 currentIndex = parentIndex;
32 }
33 }
34
35 /** Remove the root from the heap */
36 {public E remove()

public void add(E newObject)

public Heap(E[] objects)

public Heap()

private java.util.ArrayList<E> list = new java.util.ArrayList<E>();internal heap representation

no-arg constructor

constructor

add a new object
append the object

swap with parent

heap now

remove the root

25.5 Heap Sort 909

37 if (list.size() == 0) return null;
38
39 E removedObject = list.get(0);
40 list.set(0, list.get(list.size() - 1));
41 list.remove(list.size() - 1);
42
43 int currentIndex = 0;
44 while (currentIndex < list.size()) {
45 int leftChildIndex = 2 * currentIndex + 1;
46 int rightChildIndex = 2 * currentIndex + 2;
47
48 // Find the maximum between two children
49 if (leftChildIndex >= list.size()) break; // The tree is a heap
50 int maxIndex = leftChildIndex;
51 if (rightChildIndex < list.size()) {
52 if (list.get(maxIndex).compareTo(
53 list.get(rightChildIndex)) < 0) {
54 maxIndex = rightChildIndex;
55 }
56 }
57
58 // Swap if the current node is less than the maximum
59 if (list.get(currentIndex).compareTo(
60 list.get(maxIndex)) < 0) {
61 E temp = list.get(maxIndex);
62
63
64
65 }
66 else

67 break; // The tree is a heap
68 }
69
70 return removedObject;
71 }
72
73 /** Get the number of nodes in the tree */
74 {
75 return list.size();
76 }
77 }

A heap is represented using an array list internally (line 2). You can change the array list to
other data structures, but the Heap class contract will remain unchanged.

The add(E newObject) method (lines 15–33) appends the object to the tree and then
swaps the object with its parent if the object is greater than its parent. This process continues
until the new object becomes the root or is not greater than its parent.

The remove() method (lines 36–71) removes and returns the root. To maintain the heap
property, the method moves the last object to the root position and swaps it with its larger
child if it is less than the larger child. This process continues until the last object becomes a
leaf or is not less than its children.

25.5.5 Sorting Using the Heap Class
To sort an array using a heap, first create an object using the Heap class, add all the elements
to the heap using the add method, and remove all the elements from the heap using the
remove method. The elements are removed in descending order. Listing 25.9 gives a program
for sorting an array using a heap.

public int getSize()

currentIndex = maxIndex;
list.set(currentIndex, temp);
list.set(maxIndex, list.get(currentIndex));

empty heap

root
new root
remove the last

adjust the tree

compare two children

swap with the larger child

910 Chapter 25 Sorting

✓Point✓Check

LISTING 25.9 HeapSort.java
1 public class HeapSort {
2 /** Heap sort method */
3
4 // Create a Heap of integers
5 Heap<E> heap = new Heap<E>();
6
7 // Add elements to the heap
8 for (int i = 0; i < list.length; i++)
9 heap.add(list[i]);
10
11 // Remove elements from the heap
12 for (int i = list.length - 1; i >= 0; i--)
13 list[i] = heap.remove();
14 }
15
16 /** A test method */
17 public static void main(String[] args) {
18 Integer[] list = {-44, -5, -3, 3, 3, 1, -4, 0, 1, 2, 4, 5, 53};
19
20 for (int i = 0; i < list.length; i++)
21 System.out.print(list[i] + " ");
22 }
23 }

heapSort(list);

public static <E extends Comparable> void heapSort(E[] list) {

create a Heap

add element

remove element

invoke sort method

-44 -5 -4 -3 0 1 1 2 3 3 4 5 53

25.5.6 Heap Sort Time Complexity
Let us turn our attention to analyzing the time complexity for the heap sort. Let h denote the
height for a heap of n elements. The height of a heap is the number of nodes in the longest
path from the root to a leaf node. Since a heap is a complete binary tree, the first level has 1
node, the second level has 2 nodes, the kth level has nodes, the level has
nodes, and the hth level has at least 1 and at most nodes. Therefore,

That is,

Thus, and Therefore,
Hence, the height of the heap is O(logn).

Since the add method traces a path from a leaf to a root, it takes at most h steps to add a new
element to the heap. Thus, the total time for constructing an initial heap is O(n logn) for an array
of n elements. Since the remove method traces a path from a root to a leaf, it takes at most h
steps to rebuild a heap after removing the root from the heap. Since the remove method is
invoked n times, the total time for producing a sorted array from a heap is O(n logn).

Both merge sorts and heap sorts require O(n logn) time. A merge sort requires a temporary
array for merging two subarrays; a heap sort does not need additional array space. Therefore,
a heap sort is more space efficient than a merge sort.

25.10 What is a complete binary tree? What is a heap? Describe how to remove the root
from a heap and how to add a new object to a heap.

log(n + 1) + 1.
log(n + 1) … h 6log(n + 1) … h.h 6 log(n + 1) + 1

h - 1 6 log(n + 1) … h

2h-1 6 n + 1 … 2h

2h-1 - 1 6 n … 2h - 1

1 + 2 + . . . + 2h-2 6 n … 1 + 2 + . . . + 2h-2 + 2h-1

2h-1
2h-2(h - 1)2k-1

height of a heap

O(n logn) worst-case time

heap sort vs. merge sort

25.6 Bucket Sort and Radix Sort 911

22 29

32

42

62

14 33

39

17 30

44

59

9

13

25.11 What is the return value from invoking the remove method if the heap is empty?

25.12 Add the elements 4, 5, 1, 2, 9, and 3 into a heap in this order. Draw the diagrams to
show the heap after each element is added.

25.13 Show the heap after the root in the heap in Figure 25.13c is removed.

25.14 What is the time complexity of inserting a new element into a heap and what is the
time complexity of deleting an element from a heap?

25.15 Show the steps of creating a heap using

25.16 Given the following heap, show the steps of removing all nodes from the heap.

{45, 11, 50, 59, 60, 2, 4, 7, 10}.

25.17 Which of the following statements are wrong?

1 Heap<Object> heap1 = new Heap<Object>();
2 Heap<Number> heap2 = new Heap<Number>();
3 Heap<BigInteger> heap3 = new Heap<BigInteger>();
4 Heap<Calendar> heap4 = new Heap<Calendar>();
5 Heap<String> heap5 = new Heap<String>();

25.6 Bucket Sort and Radix Sort
Bucket sorts and radix sorts are efficient for sorting integers.

All sort algorithms discussed so far are general sorting algorithms that work for any types of
keys (e.g., integers, strings, and any comparable objects). These algorithms sort the elements
by comparing their keys. The lower bound for general sorting algorithms is O(n logn), so no
sorting algorithms based on comparisons can perform better than O(n logn). However, if the
keys are small integers, you can use a bucket sort without having to compare the keys.

The bucket sort algorithm works as follows. Assume the keys are in the range from 0 to t.
We need t + 1 buckets labeled 0, 1, . . . , and t. If an element’s key is i, the element is put
into the bucket i. Each bucket holds the elements with the same key value.

Key
Point

bucket sort

Elements
with key 0

bucket[0]

Elements
with key 1

bucket[1]

Elements
with key 2

bucket[2]

Elements
with key t

bucket[t]

. . .

You can use an ArrayList to implement a bucket. The bucket sort algorithm for sorting a list
of elements can be described as follows:

void bucketSort(E[] list) {
E[] bucket = (E[])new java.util.ArrayList[t+1];

// Distribute the elements from list to buckets
for (int i = 0; i < list.length; i++) {

912 Chapter 25 Sorting

int key = list[i].getKey();

if (bucket[key] == null)
bucket[key] = new java.util.ArrayList();

bucket[key].add(list[i]);
}

// Now move the elements from the buckets back to list
int k = 0; // k is an index for list
for (int i = 0; i < bucket.length; i++) {
if (bucket[i] != null) {
for (int j = 0; j < bucket[i].size(); j++)
list[k++] = bucket[i].get(j);

}
}

}

Clearly, it takes time to sort the list and uses space, where n is the list size.
Note that if t is too large, using the bucket sort is not desirable. Instead, you can use a radix

sort. The radix sort is based on the bucket sort, but a radix sort uses only ten buckets.
It is worthwhile to note that a bucket sort is stable, meaning that if two elements in the

original list have the same key value, their order is not changed in the sorted list. That is, if
element and element have the same key and precedes in the original list, still pre-
cedes in the sorted list.

Assume that the keys are positive integers. The idea for the radix sort is to divide the keys
into subgroups based on their radix positions. It applies a bucket sort repeatedly for the key
values on radix positions, starting from the least-significant position.

Consider sorting the elements with the following keys:

331, 454, 230, 34, 343, 45, 59, 453, 345, 231, 9

Apply the bucket sort on the last radix position, and the elements are put into the buckets
as follows:

e2

e1e2e1e2e1

O(n + t)O(n + t)

stable

radix sort

radix sort on Companion
Website

queue

queue

230

bucket[0]

331
231

bucket[1] bucket[2]

343
453

bucket[3]

454
34

bucket[4]

45
345

bucket[5] bucket[6] bucket[7] bucket[8]

59
9

bucket[9]

9

bucket[0] bucket[1] bucket[2]

230
331
231
34

bucket[3]

343
45

345

bucket[4]

453
454
59

bucket[5] bucket[6] bucket[7] bucket[8] bucket[9]

After being removed from the buckets, the elements are in the following order:

23 , 33 , 23 , 34 , 45 , 45 , 3 , 4 , 34 , 5 ,

Apply the bucket sort on the second-to-last radix position, and the elements are put into the
buckets as follows:

99554433110

After being removed from the buckets, the elements are in the following order:

9, 2 0, 3 1, 2 1, 4, 3 3, 5, 3 5, 4 3, 4 4, 9

(Note that 9 is 009.)

5554443333

25.7 External Sort 913

Apply the bucket sort on the third-to-last radix position, and the elements are put into the
buckets as follows:

queue

✓Point✓Check

9
34
45
59

bucket[0] bucket[1]

230
231

bucket[2]

331
343
345

bucket[3]

453
454

bucket[4] bucket[5] bucket[6] bucket[7] bucket[8] bucket[9]

After being removed from the buckets, the elements are in the following order:

9, 34, 45, 59, 30, 31, 31, 43, 45, 53, 454

The elements are now sorted.
Radix sort takes O(dn) time to sort n elements with integer keys, where d is the maximum

number of the radix positions among all keys.

25.18 Can you sort a list of strings using a bucket sort?

25.19 Show how the radix sort works using the numbers 454, 34, 23, 43, 74, 86, and 76.

25.7 External Sort
You can sort a large amount data using an external sort.

All the sort algorithms discussed in the preceding sections assume that all the data to be sorted
are available at one time in internal memory, such as in an array. To sort data stored in an
external file, you must first bring the data to the memory and then sort it internally. However,
if the file is too large, all the data in the file cannot be brought to memory at one time. This
section discusses how to sort data in a large external file. This is called an external sort.

For simplicity, assume that two million int values are stored in a binary file named
largedata.dat. This file was created using the program in Listing 25.10.

LISTING 25.10 CreateLargeFile.java
1 import java.io.*;
2
3 public class CreateLargeFile {
4 public static void main(String[] args) throws Exception {
5
6
7
8
9 for (int i = 0; i < 800004; i++)
10
11
12
13
14 // Display first 100 numbers
15 DataInputStream input =
16 new DataInputStream(new FileInputStream("largedata.dat"));
17 for (int i = 0; i < 100; i++)
18 System.out.print(input.readInt() + " ");
19
20 input.close();
21 }
22 }

output.close();

output.writeInt((int)(Math.random() * 1000000));

new FileOutputStream("largedata.dat")));
new BufferedOutputStream(

DataOutputStream output = new DataOutputStream(

433322

Key
Point

external sort

a binary output stream

output an int value

close output file

read an int value

close input file

914 Chapter 25 Sorting

569193 131317 608695 776266 767910 624915 458599 5010 ... (omitted)

A variation of merge sort can be used to sort this file in two phases:

Phase I: Repeatedly bring data from the file to an array, sort the array using an internal
sorting algorithm, and output the data from the array to a temporary file. This process is
shown in Figure 25.15. Ideally, you want to create a large array, but its maximum size
depends on how much memory is allocated to the JVM by the operating system. Assume
that the maximum array size is 100,000 int values. In the temporary file, every 100,000
int values are sorted. They are denoted as and where the last segment,
may contain less than 100000 values.

Sk,Sk,S1, S2, . . . ,

Program

Array

……

Original file

Temporary file

S1 S2 Sk

Unsorted

Sorted
segment

Sorted
segment

Sorted
segment

FIGURE 25.15 The original file is sorted in segments.

S1 S2 S3 S4 S5 S6 S7 S8

S1, S2 merged

S1, S2, S3, S4 merged S5, S6, S7, S8 merged

S3, S4 merged S5, S6 merged S7, S8 merged

Merge step

Merge step

Merge step

S1, S2, S3, S4, S5, S6, S7, S8 merged Final sorted
segment

FIGURE 25.16 Sorted segments are merged iteratively.

Phase II: Merge a pair of sorted segments (e.g., with with and so on) into
a larger sorted segment and save the new segment into a new temporary file. Continue the
same process until only one sorted segment results. Figure 25.16 shows how to merge eight
segments.

S4, . . . ,S2, S3S1

Note
It is not necessary to merge two successive segments. For example, you can merge S1

with S5, S2 with S6, S3 with S7, and S4 with S8, in the first merge step. This observation
is useful in implementing Phase II efficiently.

25.7 External Sort 915

25.7.1 Implementing Phase I
Listing 25.11 gives the method that reads each segment of data from a file, sorts the
segment, and stores the sorted segments into a new file. The method returns the number of
segments.

LISTING 25.11 Creating Initial Sorted Segments
1 /** Sort original file into sorted segments */
2 private static int initializeSegments
3 (int segmentSize, String originalFile, String f1)
4 throws Exception {
5 int[] list = new int[segmentSize];
6 DataInputStream input = new DataInputStream(
7 new BufferedInputStream(new FileInputStream(originalFile)));
8 DataOutputStream output = new DataOutputStream(
9 new BufferedOutputStream(new FileOutputStream(f1)));
10
11 int numberOfSegments = 0;
12 while (input.available() > 0) {
13 numberOfSegments++;
14 int i = 0;
15 for (; input.available() > 0 && i < segmentSize; i++) {
16 list[i] = input.readInt();
17 }
18
19 // Sort an array list[0..i-1]
20 java.util.Arrays.sort(list, 0, i);
21
22 // Write the array to f1.dat
23 for (int j = 0; j < i; j++) {
24 output.writeInt(list[j]);
25 }
26 }
27
28 input.close();
29 output.close();
30
31 return numberOfSegments;
32 }

The method creates an array with the maximum size in line 5, a data input stream for the orig-
inal file in line 6, and a data output stream for a temporary file in line 8. Buffered streams are
used to improve performance.

Lines 14–17 read a segment of data from the file into the array. Line 20 sorts the array.
Lines 23–25 write the data in the array to the temporary file.

The number of segments is returned in line 31. Note that every segment has
MAX_ARRAY_SIZE number of elements except the last segment, which may have fewer
elements.

25.7.2 Implementing Phase II
In each merge step, two sorted segments are merged to form a new segment. The size of the
new segment is doubled. The number of segments is reduced by half after each merge step. A
segment is too large to be brought to an array in memory. To implement a merge step, copy
half the number of segments from the file f1.dat to a temporary file f2.dat. Then merge the
first remaining segment in f1.dat with the first segment in f2.dat into a temporary file named
f3.dat, as shown in Figure 25.17.

original file

file with sorted segments

sort a segment

output to file

close file

return # of segments

916 Chapter 25 Sorting

S1 S2 S3 S4 S5 S6 S7 S8 f1.dat

S1 S2 S3 S4 f2.dat

Copy to f2.dat

f3.datS1, S5 merged S2, S6 merged S3, S7 merged S4, S8 merged

FIGURE 25.17 Sorted segments are merged iteratively.

Note
f1.dat may have one segment more than f2.dat. If so, move the last segment into
f3.dat after the merge.

Listing 25.12 gives a method that copies the first half of the segments in f1.dat to f2.dat.
Listing 25.13 gives a method that merges a pair of segments in f1.dat and f2.dat. Listing 25.14
gives a method that merges two segments.

LISTING 25.12 Copying First Half Segments
1 private static void copyHalfToF2(int numberOfSegments,
2 int segmentSize, DataInputStream f1, DataOutputStream f2)
3 throws Exception {
4 for (int i = 0; i < (numberOfSegments / 2) * segmentSize; i++) {
5 f2.writeInt(f1.readInt());
6 }
7 }

LISTING 25.13 Merging All Segments
1 private static void mergeSegments(int numberOfSegments,
2 int segmentSize, DataInputStream f1, DataInputStream f2,
3 DataOutputStream f3) throws Exception {
4 for (int i = 0; i < numberOfSegments; i++) {
5 mergeTwoSegments(segmentSize, f1, f2, f3);
6 }
7
8 // If f1 has one extra segment, copy it to f3
9 while (f1.available() > 0) {
10 f3.writeInt(f1.readInt());
11 }
12 }

LISTING 25.14 Merging Two Segments
1 private static void mergeTwoSegments(int segmentSize,
2 DataInputStream f1, DataInputStream f2,
3 DataOutputStream f3) throws Exception {
4 int intFromF1 = f1.readInt();
5 int intFromF2 = f2.readInt();
6 int f1Count = 1;
7 int f2Count = 1;
8
9 while (true) {
10 if (intFromF1 < intFromF2) {
11 f3.writeInt(intFromF1);

input stream f1
output stream f2

segments copied

input stream f1 and f2
output stream f3

merge two segments

extra segment in f1?

input stream f1 and f2
output stream f3
read from f1
read from f2

write to f3

25.7 External Sort 917

12 if (f1.available() == 0 || f1Count++ >= segmentSize) {
13 f3.writeInt(intFromF2);
14 break;

15 }
16 else {
17 intFromF1 = f1.readInt();
18 }
19 }
20 else {
21 f3.writeInt(intFromF2);
22 if (f2.available() == 0 || f2Count++ >= segmentSize) {
23 f3.writeInt(intFromF1);
24 break;

25 }
26 else {
27 intFromF2 = f2.readInt();
28 }
29 }
30 }
31
32 while (f1.available() > 0 && f1Count++ < segmentSize) {
33 f3.writeInt(f1.readInt());
34 }
35
36 while (f2.available() > 0 && f2Count++ < segmentSize) {
37 f3.writeInt(f2.readInt());
38 }
39 }

25.7.3 Combining Two Phases
Listing 25.15 gives the complete program for sorting int values in largedata.dat and storing
the sorted data in sortedfile.dat.

LISTING 25.15 SortLargeFile.java
1 import java.io.*;
2
3 public class SortLargeFile {
4 public static final int MAX_ARRAY_SIZE = 100000;
5 public static final int BUFFER_SIZE = 100000;
6
7 public static void main(String[] args) throws Exception {
8 // Sort largedata.dat to sortedfile.dat
9 sort("largedata.dat", "sortedfile.dat");
10
11 // Display the first 100 numbers in the sorted file
12 displayFile("sortedfile.dat");
13 }
14
15 /** Sort data in source file and into target file */
16
17 throws Exception {
18 // Implement Phase 1: Create initial segments
19 int numberOfSegments =
20
21
22 // Implement Phase 2: Merge segments recursively
23
24 "f1.dat", "f2.dat", "f3.dat", targetfile);

merge(numberOfSegments, MAX_ARRAY_SIZE,

initializeSegments(MAX_ARRAY_SIZE, sourcefile, "f1.dat");

public static void sort(String sourcefile, String targetfile)

segment in f1 finished

write to f3

segment in f2 finished

remaining f1 segment

remaining f2 segment

max array size
I/O stream buffer size

create initial segments

merge recursively

918 Chapter 25 Sorting

25 }
26
27 /** Sort original file into sorted segments */
28 private static int initializeSegments
29 (int segmentSize, String originalFile, String f1)
30 throws Exception {
31 // Same as Listing 25.11, so omitted
32 }
33
34 private static void merge(int numberOfSegments, int segmentSize,
35 String f1, String f2, String f3, String targetfile)
36 throws Exception {
37 if (numberOfSegments > 1) {
38
39
40
41 }
42 else { // Rename f1 as the final sorted file
43 File sortedFile = new File(targetfile);
44 if (sortedFile.exists()) sortedFile.delete();
45 new File(f1).renameTo(sortedFile);
46 }
47 }
48
49 private static void mergeOneStep(int numberOfSegments,
50 int segmentSize, String f1, String f2, String f3)
51 throws Exception {
52 DataInputStream f1Input = new DataInputStream(
53 new BufferedInputStream(new FileInputStream(f1), BUFFER_SIZE));
54 DataOutputStream f2Output = new DataOutputStream(
55 new BufferedOutputStream(new FileOutputStream(f2), BUFFER_SIZE));
56
57 // Copy half number of segments from f1.dat to f2.dat
58
59 f2Output.close();
60
61 // Merge remaining segments in f1 with segments in f2 into f3
62 DataInputStream f2Input = new DataInputStream(
63 new BufferedInputStream(new FileInputStream(f2), BUFFER_SIZE));
64 DataOutputStream f3Output = new DataOutputStream(
65 new BufferedOutputStream(new FileOutputStream(f3), BUFFER_SIZE));
66
67
68
69
70 f1Input.close();
71 f2Input.close();
72 f3Output.close();
73 }
74
75 /** Copy first half number of segments from f1.dat to f2.dat */
76 private static void copyHalfToF2(int numberOfSegments,
77 int segmentSize, DataInputStream f1, DataOutputStream f2)
78 throws Exception {
79 // Same as Listing 25.12, so omitted
80 }
81
82 /** Merge all segments */
83 private static void mergeSegments(int numberOfSegments,
84 int segmentSize, DataInputStream f1, DataInputStream f2,

segmentSize, f1Input, f2Input, f3Output);
mergeSegments(numberOfSegments / 2,

copyHalfToF2(numberOfSegments, segmentSize, f1Input, f2Output);

f3, f1, f2, targetfile);
merge((numberOfSegments + 1) / 2, segmentSize * 2,
mergeOneStep(numberOfSegments, segmentSize, f1, f2, f3);merge one step

merge recursively

final sorted file

input stream f1Input

output stream f2Output

copy half segments to f2
close f2Output

input stream f2Input

output stream f3Output

merge two segments

close streams

25.7 External Sort 919

85 DataOutputStream f3) throws Exception {
86 // Same as Listing 25.13, so omitted
87 }
88
89 /** Merges two segments */
90 private static void mergeTwoSegments(int segmentSize,
91 DataInputStream f1, DataInputStream f2,
92 DataOutputStream f3) throws Exception {
93 // Same as Listing 25.14, so omitted
94 }
95
96 /** Display the first 100 numbers in the specified file */
97 public static void displayFile(String filename) {
98 try {
99 DataInputStream input =
100 new DataInputStream(new FileInputStream(filename));
101 for (int i = 0; i < 100; i++)
102 System.out.print(input.readInt() + " ");
103 input.close();
104 }
105 catch (IOException ex) {
106 ex.printStackTrace();
107 }
108 }
109 }

display file

0 1 1 1 2 2 2 3 3 4 5 6 8 8 9 9 9 10 10 11 . . . (omitted)

Before you run this program, first run Listing 25.10, CreateLargeFile.java, to create the file
largedata.dat. Invoking sort("largedata.dat", "sortedfile.dat") (line 9) reads
data from largedata.dat and writes sorted data to sortedfile.dat. Invoking
displayFile("sortedfile.dat") (line 12) displays the first 100 numbers in the speci-
fied file. Note that the files are created using binary I/O. You cannot view them using a text
editor such as Notepad.

The sort method first creates initial segments from the original array and stores the
sorted segments in a new file, f1.dat (lines 19–20), then produces a sorted file in
targetfile (lines 23–24).

The merge method

merge(int numberOfSegments, int segmentSize,
String f1, String f2, String f3, String targetfile)

merges the segments in f1 into f3 using f2 to assist the merge. The merge method is invoked
recursively with many merge steps. Each merge step reduces the numberOfSegments by
half and doubles the sorted segment size. After the completion of one merge step, the next
merge step merges the new segments in f3 to f2 using f1 to assist the merge. The statement
to invoke the new merge method is

merge((numberOfSegments + 1) / 2, segmentSize * 2,
f3, f1, f2, targetfile);

The numberOfSegments for the next merge step is (numberOfSegments + 1) / 2. For
example, if numberOfSegments is 5, numberOfSegments is 3 for the next merge step,
because every two segments are merged but one is left unmerged.

The recursive merge method ends when numberOfSegments is 1. In this case, f1 con-
tains sorted data. File f1 is renamed to targetfile (line 45).

920 Chapter 25 Sorting

✓Point✓Check

bubble sort 894
bucket sort 911
complete binary tree 904
external sort 913
heap 904

heap sort 904
height of a heap 910
merge sort 896
quick sort 900
radix sort 912

CHAPTER SUMMARY

1. The worst-case complexity for a selection sort, insertion sort, bubble sort, and
quick sort is

2. The average-case and worst-case complexity for a merge sort is O(n logn). The aver-
age time for a quick sort is also O(n logn).

3. Heaps are a useful data structure for designing efficient algorithms such as sorting.
You learned how to define and implement a heap class, and how to insert and delete
elements to/from a heap.

4. The time complexity for a heap sort is O(n logn).

O(n2).

25.7.4 External Sort Complexity
In the external sort, the dominating cost is that of I/O. Assume n is the number of elements to
be sorted in the file. In Phase I, n number of elements are read from the original file and out-
put to a temporary file. Therefore, the I/O for Phase I is O(n).

In Phase II, before the first merge step, the number of sorted segments is where c is

MAX_ARRAY_SIZE. Each merge step reduces the number of segments by half. Thus, after the

first merge step, the number of segments is After the second merge step, the number of

segments is and after the third merge step the number of segments is After

merge steps, the number of segments has been reduced to 1. Therefore, the total number of

merge steps is

In each merge step, half the number of segments are read from file f1 and then written into
a temporary file f2. The remaining segments in f1 are merged with the segments in f2. The

number of I/Os in each merge step is O(n). Since the total number of merge steps is

the total number of I/Os is

Therefore, the complexity of the external sort is O(n logn).

25.20 Describe how external sort works. What is the complexity of the external sort algorithm?

25.21 Ten numbers are stored in the external file largedata.dat.
Trace the SortLargeFile program by hand with MAX_ARRAY_SIZE 2.

KEY TERMS

{2, 3, 4, 0, 5, 6, 7, 9, 8, 1}

O(n) * log¢n

c
≤ = O(n logn)

log¢n

c
≤ ,

log¢n

c
≤ .

log¢n

c
≤n

23c
.

n

22c
,

n

2c
.

n

c
,

Programming Exercises 921

5. Bucket sorts and radix sorts are specialized sorting algorithms for integer keys. These
algorithms sort keys using buckets rather than by comparing keys. They are more
efficient than general sorting algorithms.

6. A variation of the merge sort—called an external sort—can be applied to sort large
amounts of data from external files.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 25.2–25.4
25.1 (Generic bubble sort) Write the following two generic methods using bubble

sort. The first method sorts the elements using the Comparable interface and
the second uses the Comparator interface.

public static <E extends Comparable<E>>
void bubbleSort(E[] list)

public static <E> void bubbleSort(E[] list,
Comparator<? super E> comparator)

25.2 (Generic merge sort) Write the following two generic methods using merge
sort. The first method sorts the elements using the Comparable interface and
the second uses the Comparator interface.

public static <E extends Comparable<E>>
void mergeSort(E[] list)

public static <E> void mergeSort(E[] list,
Comparator<? super E> comparator)

25.3 (Generic quick sort) Write the following two generic methods using quick sort.
The first method sorts the elements using the Comparable interface and the
second uses the Comparator interface.

public static <E extends Comparable<E>>
void quickSort(E[] list)

public static <E> void quickSort(E[] list,
Comparator<? super E> comparator)

25.4 (Improve quick sort) The quick sort algorithm presented in the book selects the
first element in the list as the pivot. Revise it by selecting the median among the
first, middle, and last elements in the list.

*25.5 (Generic heap sort) Write the following two generic methods using heap sort.
The first method sorts the elements using the Comparable interface and the
second uses the Comparator interface.

public static <E extends Comparable<E>>
void heapSort(E[] list)

public static <E> void heapSort(E[] list,
Comparator<? super E> comparator)

25.6 (Check order) Write the following overloaded methods that check whether an
array is ordered in ascending order or descending order. By default, the method

www.cs.armstrong.edu/liang/intro9e/test.html

922 Chapter 25 Sorting

checks ascending order. To check descending order, pass false to the ascend-
ing argument in the method.

public static boolean ordered(int[] list)
public static boolean ordered(int[] list, boolean ascending)
public static boolean ordered(double[] list)
public static boolean ordered

(double[] list, boolean descending)
public static <E extends Comparable<E>>
boolean ordered(E[] list)

public static <E extends Comparable<E>> boolean ordered
(E[] list, boolean ascending)

public static <E> boolean ordered(E[] list,
Comparator<? super E> comparator)

public static <E> boolean ordered(E[] list,
Comparator<? super E> comparator, boolean ascending)

Section 25.5
25.7 (Min-heap) The heap presented in the text is also known as a max-heap, in

which each node is greater than or equal to any of its children. A min-heap is
a heap in which each node is less than or equal to any of its children. Min-
heaps are often used to implement priority queues. Revise the Heap class in
Listing 25.8 to implement a min-heap.

*25.8 (Sort using a heap) Implement the following sort method using a heap.

public static <E extends Comparable<E>> void sort(E[] list)

*25.9 (Generic Heap using Comparator) Revise Heap in Listing 25.8, using a
generic parameter and a Comparator for comparing objects. Define a new
constructor with a Comparator as its argument as follows:

Heap(Comparator<? super E> comparator)

**25.10 (Heap visualization) Write a Java applet that displays a heap graphically, as shown
in Figure 25.8. The applet lets you insert and delete an element from the heap.

25.11 (Heap clone and equals) Implement the clone and equals method in the
Heap class.

Section 25.6
*25.12 (Radix sort) Write a program that randomly generates 1,000,000 integers and

sorts them using radix sort.

*25.13 (Execution time for sorting) Write a program that obtains the execution time of
selection sort, bubble sort, merge sort, quick sort, heap sort, and radix sort for
input size 50,000, 100,000, 150,000, 200,000, 250,000, and 300,000. Your pro-
gram should create data randomly and print a table like this:

max-heap

min-heap

Array size Selection Sort Bubble Sort Merge Sort Quick Sort Heap Sort Radix Sort

50,000

100,000

150,000

200,000

250,000

300,000

Programming Exercises 923

(Hint: You can use the following code template to obtain the execution time.)

long startTime = System.currentTimeMillis();
perform the task;
long endTime = System.currentTimeMillis();
long executionTime = endTime - startTime;

The text gives a recursive quick sort. Write a nonrecursive version in this exercise.

Section 25.7
*25.14 (Execution time for external sorting) Write a program that obtains the execu-

tion time of external sorts for integers of size 5,000,000, 10,000,000,
15,000,000, 20,000,000, 25,000,000, and 30,000,000. Your program should
print a table like this:

*25.16 (Bubble sort animation) Write a Java applet that animates the bubble sort algo-
rithm. Create an array that consists of 20 distinct numbers from 1 to 20 in a
random order. The array elements are displayed in a histogram, as shown in
Figure 25.18b. Clicking the Step button causes the program to perform one
comparison in the algorithm and repaints the histogram for the new array.

File size 5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000

Time

Comprehensive
*25.15 (Selection sort animation) Write a Java applet that animates the selection sort

algorithm. Create an array that consists of 20 distinct numbers from 1 to 20 in a
random order. The array elements are displayed in a histogram, as shown in
Figure 25.18a. Clicking the Step button causes the program to perform an iter-
ation of the outer loop in the algorithm and repaints the histogram for the new
array. Color the last bar in the sorted subarray. When the algorithm is finished,
display a dialog box to inform the user. Clicking the Reset button creates a new
random array for a new start. (You can easily modify the program to animate
the insertion algorithm.)

(a) (b)

FIGURE 25.18 (a) The program animates selection sort. (b) The program animates bubble sort.

924 Chapter 25 Sorting

FIGURE 25.19 The program animates radix sort.

Color the bar that represents the number being considered in the swap. When
the algorithm is finished, display a dialog box to inform the user. Clicking the
Reset button creates a new random array for a new start.

*25.17 (Radix sort animation) Write a Java applet that animates the radix sort algo-
rithm. Create an array that consists of 20 random numbers from 0 to 1,000.
The array elements are displayed, as shown in Figure 25.19. Clicking the Step
button causes the program to place a number in a bucket. The number that has
just been placed is displayed in red. Once all the numbers are placed in the
buckets, clicking the Step button collects all the numbers from the buckets and
moves them back to the array. When the algorithm is finished, clicking the
Step button displays a dialog box to inform the user. Clicking the Reset button
creates a new random array for a new start.

*25.18 (Merge animation) Write a Java applet that animates the merge of two sorted
lists. Create two arrays, list1 and list2, each of which consists of 8 random
numbers from 1 to 999. The array elements are displayed, as shown in Figure
25.20a. Clicking the Step button causes the program to move an element from
list1 or list2 to temp. Clicking the Reset button creates two new random
arrays for a new start. When the algorithm is finished, clicking the Step button
displays a dialog box to inform the user.

(a) (b)

FIGURE 25.20 The program animates a merge of two sorted lists. (b) The program animates a partition for quick sort.

Programming Exercises 925

*25.19 (Quick sort partition animation) Write a Java applet that animates the partition
for a quick sort. The applet creates a list that consists of 20 random numbers
from 1 to 999. The list is displayed, as shown in Figure 25.20b. Clicking the
Step button causes the program to move low to the right or high to the left, or
swap the elements at low and high. Clicking the Reset button creates a new list
of random numbers for a new start. When the algorithm is finished, clicking the
Step button displays a dialog box to inform the user.

*25.20 (Modify merge sort) Rewrite the mergeSort method to recursively sort the
first half of the array and the second half of the array without creating new tem-
porary arrays, and then merge the two into a temporary array and copy its con-
tents to the original array, as shown in Figure 25.4b.

This page intentionally left blank

IMPLEMENTING LISTS,
STACKS, QUEUES,
AND PRIORITY QUEUES

Objectives
■ To design common features of lists in an interface and provide skeleton

implementation in a convenience abstract class (§26.2).

■ To design and implement an array list using an array (§26.3).

■ To design and implement a linked list using a linked structure (§26.4).

■ To design and implement a stack class using an array list and a queue class
using a linked list (§26.5).

■ To design and implement a priority queue using a heap (§26.6).

CHAPTER

26

928 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

Key
Point

Key
Point

26.1 Introduction
This chapter focuses on implementing data structures.

Lists, stacks, queues, and priority queues are classic data structures typically covered in a data
structures course. They are supported in the Java API, and their uses were presented in
Chapter 22, Lists, Stacks, Queues, and Priority Queues. This chapter will examine how these
data structures are implemented under the hood. Implementation of sets and maps is covered
in Chapter 28. Through these examples, you will learn how to design and implement custom
data structures.

26.2 Common Features for Lists
Common features of lists are defined in the List interface.

A list is a popular data structure for storing data in sequential order—for example, a list of
students, a list of available rooms, a list of cities, a list of books. You can perform the follow-
ing operations on most lists:

■ Retrieve an element from the list.

■ Insert a new element into the list.

■ Delete an element from the list.

■ Find out how many elements are in the list.

■ Determine whether an element is in the list.

■ Check whether the list is empty.

There are two ways to implement a list. One is to use an array to store the elements. Array size
is fixed. If the capacity of the array is exceeded, you need to create a new, larger array and copy
all the elements from the current array to the new array. The other approach is to use a linked
structure. A linked structure consists of nodes. Each node is dynamically created to hold an
element. All the nodes are linked together to form a list. Thus you can define two classes for
lists. For convenience, let’s name these two classes MyArrayList and MyLinkedList. These
two classes have common operations but different implementations.

Design Guide
The common operations can be generalized in an interface or an abstract class. A good
strategy is to combine the virtues of interfaces and abstract classes by providing both an
interface and a convenience abstract class in the design so that the user can use either of
them, whichever is convenient. The abstract class provides a skeletal implementation of the
interface, which minimizes the effort required to implement the interface.

Pedagogical Note
For an interactive demo on how array lists and linked lists work, go to www.cs.armstrong.edu/liang/
animation/ArrayListAnimation.html and www.cs.armstrong.edu/liang/animation/LinkedListAnimation.html,
as shown in Figure 26.1.

Let us name the interface MyList and the convenience abstract class MyAbstractList.
Figure 26.2 shows the relationship of MyList, MyAbstractList, MyArrayList, and
MyLinkedList. The methods in MyList and the methods implemented in MyAbstractList
are shown in Figure 26.3. Listing 26.1 gives the source code for MyList.

convenience abstract class for
interface

list animation on Companion
Website

www.cs.armstrong.edu/liang/animation/ArrayListAnimation.html
www.cs.armstrong.edu/liang/animation/ArrayListAnimation.html
www.cs.armstrong.edu/liang/animation/LinkedListAnimation.html

26.2 Common Features for Lists 929

MyList MyAbstractList

MyArrayList

MyLinkedList

java.lang.Iterable

Figure 26.2 MyList defines a common interface for MyAbstractList, MyArrayList,
and MyLinkedList.

(a) Array list animation (b) Linked list animation

FIGURE 26.1 The animation tool enables you to see how array lists and linked lists work.

LISTING 26.1 MyList.java
1 {
2 /** Add a new element at the end of this list */
3
4
5 /** Add a new element at the specified index in this list */
6
7
8 /** Clear the list */
9
10
11 /** Return true if this list contains the element */
12
13
14 /** Return the element from this list at the specified index */
15
16
17 /** Return the index of the first matching element in this list.
18 * Return -1 if no match. */
19
20
21 /** Return true if this list doesn't contain any elements */
22
23
24 /** Return the index of the last matching element in this list
25 * Return -1 if no match. */
26
27
28 /** Remove the first occurrence of the element e from this list.
29 * Shift any subsequent elements to the left.
30 * Return true if the element is removed. */

public int lastIndexOf(E e);

public boolean isEmpty();

public int indexOf(E e);

public E get(int index);

public boolean contains(E e);

public void clear();

public void add(int index, E e);

public void add(E e);

public interface MyList<E> extends java.lang.Iterable<E>

add(e)

add(index, e)

clear()

contains(e)

get(index)

indexOf(e)

isEmpty(e)

lastIndexOf(e)

930 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

+add(e: E): void

«interface»
MyList<E>

+set(index: int, e: E): E
+remove(index: int): E
+size(): int
+remove(e: E): boolean
+lastIndexOf(e: E): int
+isEmpty(): boolean
+indexOf(e: E): int
+get(index: int): E
+contains(e: E): boolean
+clear(): void
+add(index: int, e: E): void

MyAbstractList<E>

#size: int

+remove(e: E): boolean
+size(): int
+isEmpty(): boolean
+add(e: E): void
#MyAbstractList(objects: E[])

Appends a new element at the end of this list.

Sets the element at the specified index and returns the element being replaced.
Removes the element at the specified index and returns the removed element.
Returns the number of elements in this list.
Removes the element from this list.
Returns the index of the last matching element in this list.
Returns true if this list does not contain any elements.
Returns the index of the first matching element in this list.
Returns the element from this list at the specified index.
Returns true if this list contains the specified element.
Removes all the elements from this list.
Inserts a new element at the specified index in this list.

«interface»
java.lang.Iterable<E>

+iterator(): Iterator<E> Returns an iterator for the elements in this collection.

#MyAbstractList()

The size of the list.

Creates a default list.

Implements the remove method.
Implements the size method.
Implements the isEmpty method.
Implements the add method.
Creates a list from an array of objects.

Figure 26.3 MyList defines the methods for manipulating a list. MyAbstractList provides a partial implementation
of the MyList interface.

31
32
33 /** Remove the element at the specified position in this list.
34 * Shift any subsequent elements to the left.
35 * Return the element that was removed from the list. */
36
37
38 /** Replace the element at the specified position in this list
39 * with the specified element and return the old element. */
40
41
42 /** Return the number of elements in this list */
43
44 }

MyAbstractList declares variable size to indicate the number of elements in the list.
The methods isEmpty(), size(), add(E), and remove(E) can be implemented in the
class, as shown in Listing 26.2.

public int size();

public Object set(int index, E e);

public E remove(int index);

public boolean remove(E e);remove(e)

remove(index)

set(index, e)

size(e)

26.2 Common Features for Lists 931

LISTING 26.2 MyAbstractList.java
1 {
2 protected int size = 0; // The size of the list
3
4 /** Create a default list */
5 {
6 }
7
8 /** Create a list from an array of objects */
9 {
10 for (int i = 0; i < objects.length; i++)
11 add(objects[i]);
12 }
13
14 @Override /** Add a new element at the end of this list */
15 {
16 add(size, e);
17 }
18
19 @Override /** Return true if this list doesn't contain any elements */
20 {
21 return size == 0;
22 }
23
24 @Override /** Return the number of elements in this list */
25 {
26 return size;
27 }
28
29 @Override /** Remove the first occurrence of the element e
30 * from this list. Shift any subsequent elements to the left.
31 * Return true if the element is removed. */
32 {
33 if (indexOf(e) >= 0) {
34 remove(indexOf(e));
35 return true;
36 }
37 else
38 return false;
39 }
40 }

public boolean remove(E e)

public int size()

public boolean isEmpty()

public void add(E e)

protected MyAbstractList(E[] objects)

protected MyAbstractList()

public abstract class MyAbstractList<E> implements MyList<E>
size

no-arg constructor

constructor

implement add(E e)

implement isEmpty()

implement size()

implement remove(E e)

The following sections give the implementation for MyArrayList and MyLinkedList,
respectively.

Design Guide
Protected data fields are rarely used. However, making size a protected data field in the
MyAbstractList class is a good choice. The subclass of MyAbstractList can
access size, but nonsubclasses of MyAbstractList in different packages cannot
access it. As a general rule, you can declare protected data fields in abstract classes.

26.1 Suppose list is an instance of MyList, can you get an iterator for list using
list.iterator()?

26.2 Can you create a list using new MyAbstractList() ?

26.3 What methods in MyList are overridden in MyAbstractList?

26.4 What are the benefits of defining both the MyList interface and the MyAbstractList
class?

protected data field

✓Point✓Check

932 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

Key
Point

0 1 … i i + 1 k – 1 k + 1Before inserting
e at insertion point i

…

data.length - 1
Insertion point

0 1 … i i + 1After inserting
e at insertion point i,
list size is
incremented by 1

…

…shift…

data.length - 1e inserted here

k

k + 1ki + 2

e0

e

e1 … ei ei+1
… ek–1 ekei–1

e0 e1 … e ei+1ei
… ek–1 ekei–1

FIGURE 26.4 Inserting a new element into the array requires that all the elements after the
insertion point be shifted one position to the right, so that the new element can be inserted at
the insertion point.

Before deleting the
element at index i e0

 0 1 … i i + 1 k – 1

e1 … ei ei+1

…

… ek–1

data.length - 1Delete this element ...shift...

e0

 0 1 … iAfter deleting the
element, list size is
decremented by 1

e1 …

…

… ek

data.length - 1

ek

k

ei–1

ei–1

k – 1

ei+1

k – 2

ek–1

k

FIGURE 26.5 Deleting an element from the array requires that all the elements after the
deletion point be shifted one position to the left.

26.3 Array Lists
An array list is implemented using an array.

An array is a fixed-size data structure. Once an array is created, its size cannot be changed. Never-
theless, you can still use arrays to implement dynamic data structures. The trick is to create a larger
new array to replace the current array, if the current array cannot hold new elements in the list.

Initially, an array, say data of E[] type, is created with a default size. When inserting a
new element into the array, first make sure that there is enough room in the array. If not, cre-
ate a new array twice as large as the current one. Copy the elements from the current array to
the new array. The new array now becomes the current array. Before inserting a new element
at a specified index, shift all the elements after the index to the right and increase the list size
by 1, as shown in Figure 26.4.

Note
The data array is of type E[]. Each cell in the array actually stores the reference of an object.

To remove an element at a specified index, shift all the elements after the index to the left
by one position and decrease the list size by 1, as shown in Figure 26.5.

MyArrayList uses an array to implement MyAbstractList, as shown in Figure 26.6. Its
implementation is given in Listing 26.3.

26.3 Array Lists 933

-data: E[]

+MyArrayList()
+MyArrayList(objects: E[])
+trimToSize(): void

-ensureCapacity(): void
-checkIndex(index: int): void

MyAbstractList<E>

Creates a default array list.
Creates an array list from an array of objects.
Trims the capacity of this array list to the list’s
 current size.
Doubles the current array size if needed.
Throws an exception if the index is out of
 bounds in the list.

MyArrayList<E>

Figure 26.6 MyArrayList implements a list using an array.

LISTING 26.3 MyArrayList.java
1 public class MyArrayList<E> extends MyAbstractList<E> {
2 public static final int INITIAL_CAPACITY = 16;
3 private E[] data = new Object[INITIAL_CAPACITY];
4
5 /** Create a default list */
6 {
7 }
8
9 /** Create a list from an array of objects */
10
11 for (int i = 0; i < objects.length; i++)
12 add(objects[i]); // Warning: don't use super(objects)!
13 }
14
15 @Override /** Add a new element at the specified index */
16
17 ensureCapacity();
18
19 // Move the elements to the right after the specified index
20 for (int i = size - 1; i >= index; i--)
21 data[i + 1] = data[i];
22
23 // Insert new element to data[index]
24 data[index] = e;
25
26 // Increase size by 1
27 size++;
28 }
29
30 /** Create a new larger array, double the current size + 1 */
31
32 if (size >= data.length) {
33 E[] newData = (E[])(new Object[size * 2 + 1]);
34 System.arraycopy(data, 0, newData, 0, size);
35 data = newData;
36 }
37 }
38

private void ensureCapacity() {

public void add(int index, E e) {

public MyArrayList(E[] objects) {

public MyArrayList()

(E[])
initial capacity
create an array

no-arg constructor

constructor

add

ensureCapacity

double capacity + 1

934 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

39 @Override /** Clear the list */
40
41 data = (E[])new Object[INITIAL_CAPACITY];
42 size = 0;
43 }
44
45 @Override /** Return true if this list contains the element */
46
47 for (int i = 0; i < size; i++)
48 if (e.equals(data[i])) return true;
49
50 return false;
51 }
52
53 @Override /** Return the element at the specified index */
54
55 checkIndex(index);
56 return data[index];
57 }
58
59
60 if (index < 0 || index >= size)
61 throw new IndexOutOfBoundsException
62 ("index " + index + " out of bounds");
63 }
64
65 @Override /** Return the index of the first matching element
66 * in this list. Return -1 if no match. */
67
68 for (int i = 0; i < size; i++)
69 if (e.equals(data[i])) return i;
70
71 return -1;
72 }
73
74 @Override /** Return the index of the last matching element
75 * in this list. Return -1 if no match. */
76
77 for (int i = size - 1; i >= 0; i--)
78 if (e.equals(data[i])) return i;
79
80 return -1;
81 }
82
83 @Override /** Remove the element at the specified position
84 * in this list. Shift any subsequent elements to the left.
85 * Return the element that was removed from the list. */
86
87 checkIndex(index);
88
89 E e = data[index];
90
91 // Shift data to the left
92 for (int j = index; j < size - 1; j++)
93 data[j] = data[j + 1];
94
95 data[size - 1] = null; // This element is now null
96
97 // Decrement size
98 size--;

public E remove(int index) {

public int lastIndexOf(E e) {

public int indexOf(E e) {

private void checkIndex(int index) {

public E get(int index) {

public boolean contains(E e) {

public void clear() {clear

contains

get

checkIndex

indexOf

lastIndexOf

remove

26.3 Array Lists 935

99
100 return e;
101 }
102
103 @Override /** Replace the element at the specified position
104 * in this list with the specified element. */
105
106 checkIndex(index);
107 E old = data[index];
108 data[index] = e;
109 return old;
110 }
111
112 @Override
113
114 StringBuilder result = new StringBuilder("[");
115
116 for (int i = 0; i < size; i++) {
117 result.append(data[i]);
118 if (i < size - 1) result.append(", ");
119 }
120
121 return result.toString() + "]";
122 }
123
124 /** Trims the capacity to current size */
125
126 if (size != data.length) {
127 E[] newData = (E[])(new Object[size]);
128 System.arraycopy(data, 0, newData, 0, size);
129 data = newData;
130 } // If size == capacity, no need to trim
131 }
132
133 @Override /** Override iterator() defined in Iterable */
134
135 return new ArrayListIterator();
136 }
137
138
139
140 private int current = 0; // Current index
141
142 @Override
143 public boolean hasNext() {
144 return (current < size);
145 }
146
147 @Override
148 public E next() {
149 return data[current++];
150 }
151
152 @Override
153 public void remove() {
154 MyArrayList.this.remove(current);
155 }
156 }
157 }

implements java.util.Iterator<E> {
private class ArrayListIterator

public java.util.Iterator<E> iterator() {

public void trimToSize() {

public String toString() {

public E set(int index, E e) { set

toString

trimToSize

iterator

936 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

The constant INITIAL_CAPACITY (line 2) is used to create an initial array data (line 3).
Owing to generics type erasure, you cannot create a generic array using the syntax new
e[INITIAL_CAPACITY]. To circumvent this limitation, an array of the Object type is cre-
ated in line 3 and cast into E[].

Note that the implementation of the second constructor in MyArrayList is the same as for
MyAbstractList. Can you replace lines 11–12 with super(objects)? See Checkpoint
Question 26.8 for answers.

The add(int index, E e) method (lines 16–28) inserts element e at the specified
index in the array. This method first invokes ensureCapacity() (line 17), which ensures
that there is a space in the array for the new element. It then shifts all the elements after the
index one position to the right before inserting the element (lines 20–21). After the element is
added, size is incremented by 1 (line 27). Note that the variable size is defined as
protected in MyAbstractList, so it can be accessed in MyArrayList.

The ensureCapacity() method (lines 31–37) checks whether the array is full. If so,
the program creates a new array that doubles the current array copies the current
array to the new array using the System.arraycopy method, and sets the new array as the
current array.

The clear() method (lines 40–43) creates a new array using the size as
INITIAL_CAPACITY and resets the variable size to 0. The class will work if line 41 is
deleted. However, the class will have a memory leak, because the elements are still in the
array, although they are no longer needed. By creating a new array and assigning it to data,
the old array and the elements stored in the old array become garbage, which will be auto-
matically collected by the JVM.

The contains(E e) method (lines 46–51) checks whether element e is contained in the
array by comparing e with each element in the array using the equals method.

The get(int index) method (lines 54–57) checks if index is within the range and
returns data[index] if index is in the range.

The checkIndex(int index) method (lines 59–63) checks if index is within the
range. If not, the method throws an IndexOutOfBoundsException (line 61).

The indexOf(E e) method (lines 67–72) compares element e with the elements in the
array, starting from the first one. If a match is found, the index of the element is returned; oth-
erwise, –1 is returned.

The lastIndexOf(E e) method (lines 76–81) compares element e with the elements in
the array, starting from the last one. If a match is found, the index of the element is returned;
otherwise, –1 is returned.

The remove(int index) method (lines 86–101) shifts all the elements after the index
one position to the left (lines 92–93) and decrements size by 1 (line 98). The last element is
not used anymore and is set to null (line 95).

The set(int index, E e) method (lines 105–110) simply assigns e to data[index]
to replace the element at the specified index with element e.

The toString() method (lines 113–122) overrides the toString method in the Object
class to return a string representing all the elements in the list.

The trimToSize() method creates a new array whose size matches the current array-list
size (line 127), copies the current array to the new array using the System.arraycopy
method (line 128), and sets the new array as the current array (line 129). Note that if size ==
capacity, there is no need to trim the size of the array.

The iterator() method defined in the java.lang.Iterable interface is imple-
mented to return an instance on java.util.Iterator (lines 134–136). The
ArrayListIterator class implements Iterator with concrete methods for hasNext,
next, and remove (lines 143–155). It uses current to denote the current position of the
element being traversed (line 140).

Listing 26.4 gives an example that creates a list using MyArrayList. It uses the add
method to add strings to the list and the remove method to remove strings. Since

size + 1,

add

ensureCapacity

clear

contains

checkIndex

indexOf

lastIndexOf

remove

set

toString

trimToSize

iterator

26.3 Array Lists 937

MyArrayList implements Iterable, the elements can be traversed using a for-each loop
(lines 35–36).

LISTING 26.4 TestMyArrayList.java
1 public class TestMyArrayList {
2 public static void main(String[] args) {
3 // Create a list
4
5
6 // Add elements to the list
7 // Add it to the list
8 System.out.println("(1) " + list);
9
10 list.add(0, "Canada"); // Add it to the beginning of the list
11 System.out.println("(2) " + list);
12
13 list.add("Russia"); // Add it to the end of the list
14 System.out.println("(3) " + list);
15
16 list.add("France"); // Add it to the end of the list
17 System.out.println("(4) " + list);
18
19 list.add(2, "Germany"); // Add it to the list at index 2
20 System.out.println("(5) " + list);
21
22 list.add(5, "Norway"); // Add it to the list at index 5
23 System.out.println("(6) " + list);
24
25 // Remove elements from the list
26 // Same as list.remove(0) in this case
27 System.out.println("(7) " + list);
28
29 list.remove(2); // Remove the element at index 2
30 System.out.println("(8) " + list);
31
32 list.remove(list.size() - 1); // Remove the last element
33 System.out.print("(9) " + list + "\n(10) ");
34
35 for (String s: list)
36 System.out.print(s.toUpperCase() + " ");
37 }
38 }

list.remove("Canada");

list.add("America");

MyList<String> list = new MyArrayList<String>(); create a list

add to list

remove from list

using iterator

(1) [America]
(2) [Canada, America]
(3) [Canada, America, Russia]
(4) [Canada, America, Russia, France]
(5) [Canada, America, Germany, Russia, France]
(6) [Canada, America, Germany, Russia, France, Norway]
(7) [America, Germany, Russia, France, Norway]
(8) [America, Germany, France, Norway]
(9) [America, Germany, France]
(10) AMERICA GERMANY FRANCE

26.5 What are the limitations of the array data type?

26.6 MyArrayList is implemented using an array, and an array is a fixed-size data struc-
ture. Why is MyArrayList considered a dynamic data structure?

✓Point✓Check

938 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

Key
Point

26.7 Show the length of the array in MyArrayList after each of the following statements
is executed.

1 MyArrayList<Double> list = new MyArrayList<Double>();
2 list.add(1.5);
3 list.trimToSize();
4 list.add(3.4);
5 list.add(7.4);
6 list.add(17.4);

26.8 What is wrong if lines 11–12 in Listing 26.3, MyArrayList.java,

for (int i = 0; i < objects.length; i++)
add(objects[i]);

are replaced by

super(objects);

or

data = objects;
size = objects.length;

26.9 If you change the code in line 33 in Listing 26.3, MyArrayList.java, from

E[] newData = (E[])(new Object[size * 2 + 1]);

to

E[] newData = (E[])(new Object[size * 2]);

the program is incorrect. Can you find the reason?

26.10 Will the MyArrayList class have memory leak if the following code in line 41 is
deleted?

data = (E[])new Object[INITIAL_CAPACITY];

26.4 Linked Lists
A linked list is implemented using a linked structure.

Since MyArrayList is implemented using an array, the methods get(int index) and
set(int index, E e) for accessing and modifying an element through an index and the
add(E e) method for adding an element at the end of the list are efficient. However, the meth-
ods add(int index, E e) and remove(int index) are inefficient, because they require
shifting a potentially large number of elements. You can use a linked structure to implement a
list to improve efficiency for adding and removing an element at the beginning of a list.

26.4.1 Nodes
In a linked list, each element is contained in an object, called the node. When a new element
is added to the list, a node is created to contain it. Each node is linked to its next neighbor, as
shown in Figure 26.7.

A node can be created from a class defined as follows:

class Node<E> {
E element;

26.4 Linked Lists 939

Node<E> next;

public Node(E e) {
element = e;

}
}

We use the variable head to refer to the first node in the list, and the variable tail to the last
node. If the list is empty, both head and tail are null. Here is an example that creates a
linked list to hold three nodes. Each node stores a string element.

Step 1: Declare head and tail.

Node<String> head = ;
Node<String> tail = ;null

null

element 1head
next

Node 1
element 2
next

Node 2
… element n

null

Node n
tail

FIGURE 26.7 A linked list consists of any number of nodes chained together.

After the first node is inserted

head

head = new Node<String>("Chicago");
last = head;

tail
"Chicago"
next: null

FIGURE 26.8 Append the first node to the list.

Step 3: Create the second node and append it into the list, as shown in Figure 26.9a. To
append the second node to the list, link the first node with the new node. The new
node is now the tail node, so you should move tail to point to this new node, as
shown in Figure 26.9b.

head "Chicago"
next

"Denver"
next: null

tail

head "Chicago"
next

"Denver"
next: null

tail

tail.next = new Node<String>("Denver");

tail = tail.next;

(a)

(b)

FIGURE 26.9 Append the second node to the list.

Step 4: Create the third node and append it to the list, as shown in Figure 26.10a. To
append the new node to the list, link the last node in the list with the new node. The

The list is empty now

head and tail are both null. The list is empty.

Step 2: Create the first node and append it to the list, as shown in Figure 26.8. After
the first node is inserted in the list, head and tail point to this node.

940 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

head "Chicago"
next

"Denver"
next

"Dallas"
next: null

tail

head "Chicago"
next

"Denver"
next

"Dallas"
next: null

tail

tail.next = new Node<String>("Dallas");

tail = tail.next;

(a)

(b)

FIGURE 26.10 Append the third node to the list.

new node is now the tail node, so you should move tail to point to this new node, as
shown in Figure 26.10b.

Each node contains the element and a data field named next that points to the next element.
If the node is the last in the list, its pointer data field next contains the value null. You can
use this property to detect the last node. For example, you can write the following loop to tra-
verse all the nodes in the list.

1 Node current = head;
2 while (current) {
3 System.out.println(current.element);
4
5 }

The variable current points initially to the first node in the list (line 1). In the loop, the
element of the current node is retrieved (line 3), and then current points to the next node
(line 4). The loop continues until the current node is null.

26.4.2 The MyLinkedList Class
The MyLinkedList class uses a linked structure to implement a dynamic list. It extends
MyAbstractList. In addition, it provides the methods addFirst, addLast,
removeFirst, removeLast, getFirst, and getLast, as shown in Figure 26.11.

current = current.next;

!= null
current pointer
check last node

next node

-head: Node<E>
-tail: Node<E>

+MyLinkedList()
+MyLinkedList(elements: E[])
+addFirst(e: E): void
+addLast(e: E): void
+getFirst(): E
+getLast(): E
+removeFirst(): E
+removeLast(): E

1

m

Link

1

MyAbstractList<E>

Creates a default linked list.
Creates a linked list from an array of elements.
Adds an element to the head of the list.
Adds an element to the tail of the list.
Returns the first element in the list.
Returns the last element in the list.
Removes the first element from the list.
Removes the last element from the list.

MyLinkedList<E>

element: E
next: Node<E>

Node<E>

Figure 26.11 MyLinkedList implements a list using a linked list of nodes.

26.4 Linked Lists 941

Assuming that the class has been implemented, Listing 26.5 gives a test program that
uses the class.

LISTING 26.5 TestMyLinkedList.java
1 public class TestMyLinkedList {
2 /** Main method */
3 public static void main(String[] args) {
4 // Create a list for strings
5
6
7 // Add elements to the list
8 // Add it to the list
9 System.out.println("(1) " + list);
10
11 // Add it to the beginning of the list
12 System.out.println("(2) " + list);
13
14 // Add it to the end of the list
15 System.out.println("(3) " + list);
16
17 // Add it to the end of the list
18 System.out.println("(4) " + list);
19
20 // Add it to the list at index 2
21 System.out.println("(5) " + list);
22
23 // Add it to the list at index 5
24 System.out.println("(6) " + list);
25
26 // Same as list.addFirst("Poland")
27 System.out.println("(7) " + list);
28
29 // Remove elements from the list
30 // Same as list.remove("Poland") in this case
31 System.out.println("(8) " + list);
32
33 // Remove the element at index 2
34 System.out.println("(9) " + list);
35
36 // Remove the last element
37 System.out.print("(10) " + list + "\n(11) ");
38
39
40 System.out.print(s.toUpperCase() + " ");
41 }
42 }

for (String s: list)

list.remove(list.size() - 1);

list.remove(2);

list.remove(0);

list.add(0, "Poland");

list.add(5, "Norway");

list.add(2, "Germany");

list.addLast("France");

list.add("Russia");

list.add(0, "Canada");

list.add("America");

MyLinkedList<String> list = new MyLinkedList<String>(); create list

append element
print list

insert element

append element

append element

insert element

insert element

insert element

remove element

remove element

remove element

traverse using iterator

(1) [America]
(2) [Canada, America]
(3) [Canada, America, Russia]
(4) [Canada, America, Russia, France]
(5) [Canada, America, Germany, Russia, France]
(6) [Canada, America, Germany, Russia, France, Norway]
(7) [Poland, Canada, America, Germany, Russia, France, Norway]
(8) [Canada, America, Germany, Russia, France, Norway]
(9) [Canada, America, Russia, France, Norway]
(10) [Canada, America, Russia, France]
(11) CANADA AMERICA RUSSIA FRANCE

942 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

26.4.3 Implementing MyLinkedList
Now let us turn our attention to implementing the MyLinkedList class. We will discuss how to
implement the methods addFirst, addLast, add(index, e), removeFirst, removeLast,
and remove(index) and leave the other methods in the MyLinkedList class as exercises.

26.4.3.1 Implementing addFirst(e)
The addFirst(e) method creates a new node for holding element e. The new node becomes
the first node in the list. It can be implemented as follows:

1 public void addFirst(E e) {
2 // Create a new node
3 // link the new node with the head
4 // head points to the new node
5 // Increase list size
6
7 if () // The new node is the only node in list
8 tail = head;
9 }

The addFirst(e) method creates a new node to store the element (line 2) and inserts the
node at the beginning of the list (line 3), as shown in Figure 26.12a. After the insertion, head
should point to this new element node (line 4), as shown in Figure 26.12b.

tail == null

size++;
head = newNode;
newNode.next = head;
Node<E> newNode = new Node<E>(e);create a node

link with head
head to new node
increase size

was empty?

create a node

(a) Before a new node is inserted.

This is
the new
node

(b) After a new node is inserted.

head

head

…

A new node
to be inserted
here

tail

…e0

next

e
next

ei

next
ei+1

next
ek

null

… …e0

next

e
next

ei

next
ei+1

next
ek

null

tail

FIGURE 26.12 A new element is added to the beginning of the list.

If the list is empty (line 7), both head and tail will point to this new node (line 8). After
the node is created, size should be increased by 1 (line 5).

26.4.3.2 Implementing addLast(e)
The addLast(e) method creates a node to hold the element and appends the node at the end
of the list. It can be implemented as follows:

1 public void addLast(E e) {
2 // Create a new node for e
3

Node<E> newNode = new Node<E>(e);

26.4 Linked Lists 943

4 if (tail == null) {
5 // The only node in list
6 }
7 else {
8 // Link the new with the last node
9 tail = tail.next; // tail now points to the last node
10 }
11
12 size++; // Increase size
13 }

The addLast(e) method creates a new node to store the element (line 2) and appends it to
the end of the list. Consider two cases:

1. If the list is empty (line 4), both head and tail will point to this new node (line 5);

2. Otherwise, link the node with the last node in the list (line 8). tail should now point to
this new node (line 9). Figure 26.13a and Figure 26.13b show the new node for element
e before and after the insertion.

In any case, after the node is created, the size should be increased by 1 (line 12).

tail.next = newNode;

head = tail = newNode;

increase size

(a) Before a new node is inserted.

A new node
is appended
in the list

(b) After a new node is inserted.

head

…
A new node
to be inserted
here

tail

…e0

next

e
null

ei

next
ei+1

next
ek

null

head

… tail…e0

next

e
null

ei

next
ei+1

next
ek

next

FIGURE 26.13 A new element is added at the end of the list.

26.4.3.3 Implementing add(index, e)
The add(index, e) method inserts an element into the list at the specified index. It can be
implemented as follows:

1 public void add(int index, E e) {
2 // Insert first
3 // Insert last
4 else { // Insert in the middle
5 Node<E> current = head;
6 for (int i = 1; i < index; i++)
7 current = current.next;
8 Node<E> temp = current.next;
9
10 (current.next).next = temp;

current.next = new Node<E>(e);

else if (index >= size) addLast(e);
if (index == 0) addFirst(e); insert first

insert last

create a node

944 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

11 size++;
12 }
13 }

There are three cases when inserting an element into the list:

1. If index is 0, invoke addFirst(e) (line 2) to insert the element at the beginning
of the list.

2. If index is greater than or equal to size, invoke addLast(e) (line 3) to insert the ele-
ment at the end of the list.

3. Otherwise, create a new node to store the new element and locate where to insert it.
As shown in Figure 26.14a, the new node is to be inserted between the nodes
current and temp. The method assigns the new node to current.next and assigns
temp to the new node’s next, as shown in Figure 26.14b. The size is now increased
by 1 (line 11).

increase size

26.4.3.4 Implementing removeFirst()
The removeFirst() method removes the first element from the list. It can be implemented
as follows:

1 public E removeFirst() {
2 // Nothing to delete
3 else {
4 Node<E> temp = head; // Keep the first node temporarily
5 // Move head to point to next node
6 // Reduce size by 1
7 // List becomes empty
8 return temp.element; // Return the deleted element
9 }
10 }

if (head == null) tail = null;
size--;
head = head.next;

if (size == 0) return null;nothing to remove

keep old head
new head
decrease size
destroy the node

(a) Before a new node is inserted.

(b) After a new node is inserted.

head

…

A new node
to be inserted
here

tail

…e0

next
ei

next
ei+1

next
ek

null

current temp

e
null

A new node
is inserted in
the list

current temphead

…

tail

…e0

next

e
next

ei

next
ei+1

next
ek

null

FIGURE 26.14 A new element is inserted in the middle of the list.

26.4 Linked Lists 945

Consider two cases:

1. If the list is empty, there is nothing to delete, so return null (line 2).

2. Otherwise, remove the first node from the list by pointing head to the second node.
Figure 26.15a and Figure 26.15b show the linked list before and after the deletion. The
size is reduced by 1 after the deletion (line 6). If the list becomes empty, after removing
the element, tail should be set to null (line 7).

(a) Before the node is deleted.

(b) After the node is deleted.

…e1

next
ei

next

…ei+1

next
ek

null
e0

next

head

…

Delete this node

tail

e1

next
ei

next

…ei+1

next
ek

null
e0

next

head

This node is deleted

tail

FIGURE 26.15 The first node is deleted from the list.

26.4.3.5 Implementing removeLast()
The removeLast() method removes the last element from the list. It can be implemented
as follows:

1 public E removeLast() {
2 // Nothing to remove
3 // Only one element in the list
4 Node<E> temp = head;
5 head = tail = null; // list becomes empty
6 size = 0;
7 return temp.element;
8 }
9 else {
10 Node<E> current = head;
11
12 for (int i = 0; i < size - 2; i++)
13 current = current.next;
14
15 Node<E> temp = tail;
16
17
18 size--;
19 return temp.element;
20 }
21 }

tail.next = null;
tail = current;

else if (size == 1) {
if (size == 0) return null; empty?

size 1?

head and tail null
size is 0
return element

size 7 1

move tail

reduce size
return element

946 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

(a) Before the node is deleted.

(b) After the node is deleted.

head

…

Delete this node

tail

e1

next
ek–2

next
ek–1

next
ek

null
e0

next

current

head

…

This node is deleted

tail

e1

next
ek–2

next
ek–1

null
ek

null
e0

next

FIGURE 26.16 The last node is deleted from the list.

Consider three cases:

1. If the list is empty, return null (line 2).

2. If the list contains only one node, this node is destroyed; head and tail both become
null (line 5). The size becomes 0 after the deletion (line 6) and the element value of
the deleted node is returned (line 7).

3. Otherwise, the last node is destroyed (line 17) and the tail is repositioned to point to
the second-to-last node. Figure 26.16a and Figure 26.16b show the last node before and
after it is deleted. The size is reduced by 1 after the deletion (line 18) and the element
value of the deleted node is returned (line 19).

26.4.3.6 Implementing remove(index)
The remove(index) method finds the node at the specified index and then removes it. It can
be implemented as follows:

1 public E remove(int index) {
2 // Out of range
3 // Remove first
4 // Remove last
5 else {
6 Node<E> previous = head;
7
8 for (int i = 1; i < index; i++) {
9 previous = previous.next;
10 }
11
12
13
14 size--;
15 return current.element;
16 }
17 }

previous.next = current.next;
Node<E> current = previous.next;

else if (index == size - 1) return removeLast();
else if (index == 0) return removeFirst();
if (index < 0 || index >= size) return null;out of range

remove first
remove last

locate previous

locate current
remove from list
reduce size
return element

26.4 Linked Lists 947

Consider four cases:

1. If index is beyond the range of the list (i.e., index < 0 || index >= size), return
null (line 2).

2. If index is 0, invoke removeFirst() to remove the first node (line 3).

3. If index is size - 1, invoke removeLast() to remove the last node (line 4).

4. Otherwise, locate the node at the specified index. Let current denote this node and
previous denote the node before this node, as shown in Figure 26.17a. Assign
current.next to previous.next to eliminate the current node, as shown in
Figure 26.17b.

Listing 26.6 gives the implementation of MyLinkedList. The implementation of get(index),
indexOf(e), lastIndexOf(e), contains(e), and set(index, e) is omitted and left as
an exercise. The iterator() method defined in the java.lang.Iterable interface is
implemented to return an instance on java.util.Iterator (lines 126–128). The
LinkedListIterator class implements Iterator with concrete methods for hasNext,
next, and remove (lines 134–149). This implementation uses current to point to the current
position of the element being traversed (line 132). Initially, current points to the head of the list.

LISTING 26.6 MyLinkedList.java
1 public class MyLinkedList<E> extends MyAbstractList<E> {
2
3
4 /** Create a default list */
5
6 }
7
8 /** Create a list from an array of objects */
9
10 super(objects);
11 }
12
13 /** Return the head element in the list */
14
15 if (size == 0) {
16 return null;

public E getFirst() {

public MyLinkedList(E[] objects) {

public MyLinkedList() {

private Node<E> head, tail;

iterator

head, tail

no-arg constructor

constructor

(a) Before the node is deleted.

(b) After the node is deleted.

head

…

Delete this node

e0

next
Ek–1

next
ek

next

previous current tail

…ek–1

next
ek

null

current.next

previous current.nexthead

…

tail

…e0

next
ek–1

next
ek–1

next
ek

null

FIGURE 26.17 A node is deleted from the list.

getFirst

948 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

17 }
18 else {
19 return head.element;
20 }
21 }
22
23 /** Return the last element in the list */
24
25 if (size == 0) {
26 return null;
27 }
28 else {
29 return tail.element;
30 }
31 }
32
33 /** Add an element to the beginning of the list */
34
35 // Implemented in §26.4.3.1, so omitted here
36 }
37
38 /** Add an element to the end of the list */
39
40 // Implemented in §26.4.3.2, so omitted here
41 }
42
43 @Override /** Add a new element at the specified index
44 * in this list. The index of the head element is 0 */
45
46 // Implemented in §26.4.3.3, so omitted here
47 }
48
49 /** Remove the head node and
50 * return the object that is contained in the removed node. */
51
52 // Implemented in §26.4.3.4, so omitted here
53 }
54
55 /** Remove the last node and
56 * return the object that is contained in the removed node. */
57
58 // Implemented in §26.4.3.5, so omitted here
59 }
60
61 @Override /** Remove the element at the specified position in this
62 * list. Return the element that was removed from the list. */
63
64 // Implemented earlier in §26.4.3.6, so omitted here
65 }
66
67 @Override
68
69 StringBuilder result = new StringBuilder("[");
70
71 Node<E> current = head;
72 for (int i = 0; i < size; i++) {
73 result.append(current.element);
74 current = current.next;
75 if (current != null) {
76 result.append(", "); // Separate two elements with a comma

public String toString() {

public E remove(int index) {

public E removeLast() {

public E removeFirst() {

public void add(int index, E e) {

public void addLast(E e) {

public void addFirst(E e) {

public E getLast() {getLast

addFirst

addLast

add

removeFirst

removeLast

remove

toString

26.4 Linked Lists 949

77 }
78 else {
79 result.append("]"); // Insert the closing] in the string
80 }
81 }
82
83 return result.toString();
84 }
85
86 @Override /** Clear the list */
87
88 size = 0;
89 head = tail = null;
90 }
91
92 @Override /** Return true if this list contains the element e */
93
94 System.out.println("Implementation left as an exercise");
95 return true;
96 }
97
98 @Override /** Return the element at the specified index */
99
100 System.out.println("Implementation left as an exercise");
101 return null;
102 }
103
104 @Override /** Return the index of the head matching element
105 * in this list. Return -1 if no match. */
106
107 System.out.println("Implementation left as an exercise");
108 return 0;
109 }
110
111 @Override /** Return the index of the last matching element
112 * in this list. Return -1 if no match. */
113
114 System.out.println("Implementation left as an exercise");
115 return 0;
116 }
117
118 @Override /** Replace the element at the specified position
119 * in this list with the specified element. */
120
121 System.out.println("Implementation left as an exercise");
122 return null;
123 }
124
125 @Override /** Override iterator() defined in Iterable */
126
127 return new LinkedListIterator();
128 }
129
130 private class LinkedListIterator
131 implements java.util.Iterator<E> {
132 private Node<E> current = head; // Current index
133
134 @Override
135 public boolean hasNext() {
136 return (current != null);

public java.util.Iterator<E> iterator() {

public E set(int index, E e) {

public int lastIndexOf(E e) {

public int indexOf(E e) {

public E get(int index) {

public boolean contains(E e) {

public void clear() { clear

contains

get

indexOf

lastIndexOf

set

iterator

LinkedListIterator class

950 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

TABLE 26.1 Time Complexities for Methods in MyArrayList and MyLinkedList

Methods MyArrayList/ArrayList MyLinkedList/LinkedList

add(e: E) O(1) O(1)

add(index: int, e: E) O(n) O(n)

clear() O(1) O(1)

contains(e: E) O(n) O(n)

get(index: int) O(1) O(n)

indexOf(e: E) O(n) O(n)

isEmpty() O(1) O(1)

lastIndexOf(e: E) O(n) O(n)

remove(e: E) O(n) O(n)

size() O(1) O(1)

remove(index: int) O(n) O(n)

set(index: int, e: E) O(n) O(n)

addFirst(e: E) O(n) O(1)

removeFirst() O(n) O(1)

137 }
138
139 @Override
140 public E next() {
141 E e = current.element;
142 current = current.next;
143 return e;
144 }
145
146 @Override
147 public void remove() {
148 System.out.println("Implementation left as an exercise");
149 }
150 }
151
152 // This class is only used in LinkedList, so it is private.
153 // This class does not need to access any
154 // instance members of LinkedList, so it is defined static.
155
156 E element;
157 Node<E> next;
158
159 public Node(E element) {
160 this.element = element;
161 }
162 }
163 }

26.6.4 MyArrayList vs. MyLinkedList
Both MyArrayList and MyLinkedList can be used to store a list. MyArrayList is imple-
mented using an array and MyLinkedList is implemented using a linked list. The overhead
of MyArrayList is smaller than that of MyLinkedList. However, MyLinkedList is more
efficient if you need to insert elements into and delete elements from the beginning of the list.
Table 26.1 summarizes the complexity of the methods in MyArrayList and MyLinkedList.

private static class Node<E> {Node inner class

(a) Circular linked list

...
Node 1 Node 2 Node n

element1
next

element2
next

element2
next

head

(b) Doubly linked list

...

...

Node 1

element1
next
null

head tail
Node 2

element2
next

previous

Node n

element2
null

previous

(c) Circular doubly linked list

Node 1

element1
next

previous

head
Node 2

element2
next

previous

Node n

element2
next

previous

FIGURE 26.18 Linked lists may appear in various forms.

Note that MyArrayList is the same as java.util.ArrayList and MyLinkedList is the
same as java.util.LinkedList.

26.4.5 Variations of Linked Lists
The linked list introduced in the preceding sections is known as a singly linked list. It contains
a pointer to the list’s first node, and each node contains a pointer to the next node sequentially.
Several variations of the linked list are useful in certain applications.

A circular, singly linked list is like a singly linked list, except that the pointer of the last
node points back to the first node, as shown in Figure 26.18a. Note that tail is not needed for
circular linked lists. head points to the current node in the list. Insertion and deletion take
place at the current node. A good application of a circular linked list is in the operating system
that serves multiple users in a timesharing fashion. The system picks a user from a circular list
and grants a small amount of CPU time, then moves on to the next user in the list.

A doubly linked list contains nodes with two pointers. One points to the next node and the
other to the previous node, as shown in Figure 26.18b. These two pointers are conveniently
called a forward pointer and a backward pointer. Thus, a doubly linked list can be traversed for-
ward and backward. The java.util.LinkedList class is implemented using a doubly linked
list, and it supports traversing of the list forward and backward using the ListIterator.

A circular, doubly linked list is like a doubly linked list, except that the forward pointer of
the last node points to the first node and the backward pointer of the first pointer points to the
last node, as shown in Figure 26.18c.

The implementations of these linked lists are left as exercises.

26.11 Both MyArrayList and MyLinkedList are used to store a list of objects. Why do
we need both types of lists?

26.12 Draw a diagram to show the linked list after each of the following statements is executed.

MyLinkedList<Double> list = new MyLinkedList<Double>();
list.add(1.5);
list.add(6.2);

✓Point✓Check

26.4 Linked Lists 951

952 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

Key
Point

Data1
Data2

Data1 Data1
Data2
Data3

Data2 Data3

Data2
Data3

Data1 Data2

Data3

Data1

Data3

FIGURE 26.19 A queue holds objects in a first-in, first-out fashion.

(a) Stack animation (b) Queue animation

FIGURE 26.20 The animation tool enables you to see how stacks and queues work.

list.add(3.4);
list.add(7.4);
list.remove(1.5);
list.remove(2);

26.13 What is the time complexity of the addFirst(e) and removeFirst() methods in
MyLinkedList?

26.14 Suppose you need to store a list of elements. If the number of elements in the pro-
gram is fixed, what data structure should you use? If the number of elements in the
program changes, what data structure should you use?

26.15 If you have to add or delete the elements at the beginning of a list, should you use
MyArrayList or MyLinkedList? If most of the operations on a list involve retrieving
an element at a given index, should you use MyArrayList or MyLinkedList?

26.5 Stacks and Queues
Stacks can be implemented using array lists and queues can be implemented using
linked lists.

A stack can be viewed as a special type of list whose elements are accessed, inserted, and
deleted only from the end (top), as shown in Figure 10.10. A queue represents a waiting list.
It can be viewed as a special type of list whose elements are inserted into the end (tail) of the
queue, and are accessed and deleted from the beginning (head), as shown in Figure 26.19.

stack and queue animation
on Companion Website

Pedagogical Note
For an interactive demo on how stacks and queues work, go to www.cs.armstrong.edu/liang/
animation/StackAnimation.html, and www.cs.armstrong.edu/liang/animation/QueueAnimation.html,
as shown in Figure 26.20.

www.cs.armstrong.edu/liang/animation/StackAnimation.html
www.cs.armstrong.edu/liang/animation/StackAnimation.html
www.cs.armstrong.edu/liang/animation/QueueAnimation.html

26.5 Stacks and Queues 953

(a) Using inheritance

(b) Using composition

ArrayList GenericStack LinkedList GenericQueue

GenericStack ArrayList GenericQueue LinkedList

Figure 26.21 GenericStack and GenericQueue may be implemented using inheritance
or composition.

GenericQueue<E>

-list: java.util.LinkedList<E>

+enqueue(e: E): void
+dequeue(): E
+getSize(): int

Adds an element to this queue.

Returns the number of elements in this queue.
Removes an element from this queue.

Figure 26.22 GenericQueue uses a linked list to provide a first-in, first-out data structure.

Since the insertion and deletion operations on a stack are made only at the end of the stack,
it is more efficient to implement a stack with an array list than with a linked list. Since dele-
tions are made at the beginning of the list, it is more efficient to implement a queue using a
linked list than an array list. This section implements a stack class using an array list and a
queue class using a linked list.

There are two ways to design the stack and queue classes:

■ Using inheritance: You can define a stack class by extending ArrayList, and a
queue class by extending LinkedList, as shown in Figure 26.21a.

■ Using composition: You can define an array list as a data field in the stack class, and
a linked list as a data field in the queue class, as shown in Figure 26.21b.

Both designs are fine, but using composition is better because it enables you to define a com-
pletely new stack class and queue class without inheriting the unnecessary and inappropriate
methods from the array list and linked list. The implementation of the stack class using the com-
position approach was given in Listing 21.1, GenericStack.java. Listing 26.7 implements the
GenericQueue class using the composition approach. Figure 26.22 shows the UML of the class.

LISTING 26.7 GenericQueue.java
1 {
2
3
4
5 {
6 list.addLast(e);
7 }
8
9 {
10 return list.removeFirst();
11 }
12
13 {
14 return list.size();
15 }

public int getSize()

public E dequeue()

public void enqueue(E e)

= new java.util.LinkedList<E>();
private java.util.LinkedList<E> list

public class GenericQueue<E>

inheritance

composition

linked list

enqueue

dequeue

getSize

954 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

16
17 @Override
18 public String toString() {
19 return "Queue: " + list.toString();
20 }
21 }

A linked list is created to store the elements in a queue (lines 2–3). The enqueue(e)
method (lines 5–7) adds element e into the tail of the queue. The dequeue() method (lines
9–11) removes an element from the head of the queue and returns the removed element. The
getSize() method (lines 13–15) returns the number of elements in the queue.

Listing 26.8 gives an example that creates a stack using GenericStack and a queue using
GenericQueue. It uses the push (enqueue) method to add strings to the stack (queue) and
the pop (dequeue) method to remove strings from the stack (queue).

LISTING 26.8 TestStackQueue.java
1 public class TestStackQueue {
2 public static void main(String[] args) {
3 // Create a stack
4
5
6
7 // Add elements to the stack
8 // Push it to the stack
9 System.out.println("(1) " + stack);
10
11 stack.push("Susan"); // Push it to the the stack
12 System.out.println("(2) " + stack);
13
14 stack.push("Kim"); // Push it to the stack
15 stack.push("Michael"); // Push it to the stack
16 System.out.println("(3) " + stack);
17
18 // Remove elements from the stack
19 System.out.println("(4) " +);
20 System.out.println("(5) " + stack.pop());
21 System.out.println("(6) " + stack);
22
23 // Create a queue
24
25
26 // Add elements to the queue
27 // Add it to the queue
28 System.out.println("(7) " + queue);
29
30 queue.enqueue("Susan"); // Add it to the queue
31 System.out.println("(8) " + queue);
32
33 queue.enqueue("Kim"); // Add it to the queue
34 queue.enqueue("Michael"); // Add it to the queue
35 System.out.println("(9) " + queue);
36
37 // Remove elements from the queue
38 System.out.println("(10) " +);
39 System.out.println("(11) " + queue.dequeue());
40 System.out.println("(12) " + queue);
41 }
42 }

queue.dequeue()

queue.enqueue("Tom");

GenericQueue<String> queue = new GenericQueue<String>();

stack.pop()

stack.push("Tom");

new GenericStack<String>();
GenericStack<String> stack =

toString

26.6 Priority Queues 955

✓Point✓Check

(1) stack: [Tom]
(2) stack: [Tom, Susan]
(3) stack: [Tom, Susan, Kim, Michael]
(4) Michael
(5) Kim
(6) stack: [Tom, Susan]
(7) Queue: [Tom]
(8) Queue: [Tom, Susan]
(9) Queue: [Tom, Susan, Kim, Michael]
(10) Tom
(11) Susan
(12) Queue: [Kim, Michael]

For a stack, the push(e) method adds an element to the top of the stack, and the pop()
method removes the top element from the stack and returns the removed element. It is easy to
see that the time complexity for the push and pop methods is O(1).

For a queue, the enqueue(e) method adds an element to the tail of the queue, and the
dequeue() method removes the element from the head of the queue. It is easy to see that the
time complexity for the enqueue and dequeue methods is O(1).

26.16 You can use inheritance or composition to design the data structures for stacks and
queues. Discuss the pros and cons of these two approaches.

26.17 If LinkedList is replaced by ArrayList in lines 2–3 in Listing 26.7 Generic-
Queue.java, what will be the time complexity for the enqueue and dequeue methods?

26.18 Which lines of the following code are wrong?

1 List<String> list = new ArrayList<String>();
2 list.add("Tom");
3 list = new LinkedList<String>();
4 list.add("Tom");
5 list = new GenericStack<String>();
6 list.add("Tom");

26.6 Priority Queues
Priority queues can be implemented using heaps.

An ordinary queue is a first-in, first-out data structure. Elements are appended to the end of
the queue and removed from the beginning. In a priority queue, elements are assigned with
priorities. When accessing elements, the element with the highest priority is removed first.
For example, the emergency room in a hospital assigns priority numbers to patients; the
patient with the highest priority is treated first.

A priority queue can be implemented using a heap, in which the root is the object with the
highest priority in the queue. Heaps were introduced in Section 25.5, Heap Sort. The class dia-
gram for the priority queue is shown in Figure 26.23. Its implementation is given in Listing 26.9.

Key
Point

MyPriorityQueue
<E extends Comparable<E>>

-heap: Heap<E>

+enqueue(element: E): void
+dequeue(): E
+getSize(): int

Adds an element to this queue.
Removes an element from this queue.
Returns the number of elements in this queue.

Figure 26.23 MyPriorityQueue uses a heap to provide a largest-in, first-out data structure.

stack time complexity

queue time complexity

956 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

LISTING 26.9 MyPriorityQueue.java
1 public class MyPriorityQueue<E extends Comparable<E>> {
2
3
4 {
5 heap.add(newObject);
6 }
7
8 public E dequeue() {
9 return heap.remove();

10 }
11
12 {
13 return heap.getSize();
14 }
15 }

Listing 26.10 gives an example of using a priority queue for patients. The Patient class
is defined in lines 19–37. Four patients are created with associated priority values in lines 3–6.
Line 8 creates a priority queue. The patients are enqueued in lines 10–13. Line 16 dequeues a
patient from the queue.

LISTING 26.10 TestPriorityQueue.java
1 public class TestPriorityQueue {
2 public static void main(String[] args) {
3
4 Patient patient2 = new Patient("Jim", 1);
5 Patient patient3 = new Patient("Tim", 5);
6 Patient patient4 = new Patient("Cindy", 7);
7
8
9
10
11 priorityQueue.enqueue(patient2);
12 priorityQueue.enqueue(patient3);
13 priorityQueue.enqueue(patient4);
14
15 while ()
16 System.out.print(+ " ");
17 }
18
19 static class Patient {
20 private String name;
21 private int priority;
22
23 public Patient(String name, int priority) {
24 this.name = name;
25 this.priority = priority;
26 }
27
28 @Override
29 public String toString() {
30 return name + "(priority:" + priority + ")";
31 }
32
33 @Override
34 {public int compareTo(Patient patient)

implements Comparable<Patient>

priorityQueue.dequeue()
priorityQueue.getSize() > 0

priorityQueue.enqueue(patient1);
= new MyPriorityQueue<Patient>();

MyPriorityQueue<Patient> priorityQueue

Patient patient1 = new Patient("John", 2);

public int getSize()

public void enqueue(E newObject)

private Heap<E> heap = new Heap<E>();heap for priority queue

enqueue

dequeue

getsize

create a patient

create a priority queue

add to queue

remove from queue

inner class Patient

compareTo

Programming Exercises 957

✓Point✓Check

35 return this.priority - patient.priority;
36 }
37 }
38 }

Cindy(priority:7) Tim(priority:5) John(priority:2) Jim(priority:1)

26.19 What is a priority queue?

26.20 What are the time complexity of the enqueue, dequeue , and getSize methods in
MyProrityQueue?

26.21 Which of the following statements are wrong?

1 MyPriorityQueue<Object> q1 = new MyPriorityQueue<Object>();
2 MyPriorityQueue<Number> q2 = new MyPriorityQueue<Number>();
3 MyPriorityQueue<Integer> q3 = new MyPriorityQueue<Integer>();
4 MyPriorityQueue<Date> q4 = new MyPriorityQueue<Date>();
5 MyPriorityQueue<String> q5 = new MyPriorityQueue<String>();

CHAPTER SUMMARY

1. You learned how to implement array lists, linked lists, stacks, and queues.

2. To define a data structure is essentially to define a class. The class for a data structure
should use data fields to store data and provide methods to support operations such as
insertion and deletion.

3. To create a data structure is to create an instance from the class. You can then apply
the methods on the instance to manipulate the data structure, such as inserting an ele-
ment into the data structure or deleting an element from the data structure.

4. You learned how to implement a priority queue using a heap.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

26.1 (Add set operations in MyList) Define the following methods in MyList and
implement them in MyAbstractList:

/** Adds the elements in otherList to this list.
* Returns true if this list changed as a result of the call */

public boolean addAll(MyList<E> otherList);

/** Removes all the elements in otherList from this list
* Returns true if this list changed as a result of the call */

public boolean removeAll(MyList<E> otherList);

/** Retains the elements in this list that are also in otherList
* Returns true if this list changed as a result of the call */

public boolean retainAll(MyList<E> otherList);

www.cs.armstrong.edu/liang/intro9e/test.html

958 Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues

Write a test program that creates two MyArrayLists, list1 and list2, with
the initial values {"Tom", "George", "Peter", "Jean", "Jane"} and
{"Tom", "George", "Michael", "Michelle", "Daniel"}, then per-
form the following operations:

■ Invokes list1.addAll(list2), and displays list1 and list2.
■ Recreates list1 and list2 with the same initial values, invokes

list1.removeAll(list2), and displays list1 and list2.
■ Recreates list1 and list2 with the same initial values, invokes

list1.retainAll(list2), and displays list1 and list2.

*26.2 (Implement MyLinkedList) The implementations of the methods
contains(E e), get(int index), indexOf(E e), lastIndexOf(E e),
and set(int index, E e) are omitted in the text. Implement these methods.

*26.3 (Implement a doubly linked list) The MyLinkedList class used in Listing 26.6
is a one-way directional linked list that enables one-way traversal of the list.
Modify the Node class to add the new field name previous to refer to the pre-
vious node in the list, as follows:

public class Node<E> {
E element;
Node<E> next;
Node<E> previous;

public Node(E e) {
element = e;

}
}

Implement a new class named MyTwoWayLinkedList that uses a doubly
linked list to store elements. The MyLinkedList class in the text
extends MyAbstractList. Define MyTwoWayLinkedList to extend the
java.util.AbstractSequentialList class. You need to implement the
methods listIterator() and listIterator(int index). Both return
an instance of java.util.ListIterator<E>. The former sets the cursor to
the head of the list and the latter to the element at the specified index.

26.4 (Use the GenericStack class) Write a program that displays the first 50
prime numbers in descending order. Use a stack to store the prime numbers.

26.5 (Implement GenericQueue using inheritance) In Section 26.5, Stacks and
Queues, GenericQueue is implemented using composition. Define a new
queue class that extends java.util.LinkedList.

*26.6 (Generic PriorityQueue using Comparator) Revise MyPriorityQueue in
Listing 26.9, using a generic parameter for comparing objects. Define a new
constructor with a Comparator as its argument as follows:

PriorityQueue(Comparator<? super E> comparator)

**26.7 (Animation: linked list) Write an applet to animate search, insertion, and dele-
tion in a linked list, as shown in Figure 26.1b. The Search button searches to
determine whether the specified value is in the list. The Delete button deletes
the specified value from the list. The Insert button inserts the value into the
specified index in the list.

Programming Exercises 959

(a) (b)

FIGURE 26.24 The applet animates the work of a doubly linked list.

*26.8 (Animation: array list) Write an applet to animate search, insertion, and dele-
tion in an array list, as shown in Figure 26.1a. The Search button searches to
determine whether the specified value is in the list. The Delete button deletes
the specified value from the list. The Insert button inserts the value into the
specified index in the list.

*26.9 (Animation: queue) Write an applet to animate the enqueue and dequeue
operations on a queue, as shown in Figure 26.20b.

*26.10 (Animation: stack) Write an applet to animate push and pop in a stack, as
shown in Figure 26.20a.

*26.11 (Animation: doubly linked list) Write an applet to animate search, insertion, and
deletion in a doubly linked list, as shown in Figure 26.24a. The Search button
searches to determine whether the specified value is in the list. The Delete but-
ton deletes the specified value from the list. The Insert button inserts the value
into the specified index in the list. Also add two buttons named Forward Tra-
versal and Backward Traversal for displaying the elements in a message dialog
box forward and backward order, respectively, using iterators, as shown in
Figure 26.24b.

This page intentionally left blank

BINARY SEARCH TREES

Objectives
■ To design and implement a binary search tree (§27.2).

■ To represent binary trees using linked data structures (§27.2.1).

■ To search an element in a binary search tree (§27.2.2).

■ To insert an element into a binary search tree (§27.2.3).

■ To traverse elements in a binary tree (§27.2.4).

■ To design and implement the Tree interface, AbstractTree class,
and the BST class (§27.2.5).

■ To delete elements from a binary search tree (§27.3).

■ To display a binary tree graphically (§27.4).

■ To create iterators for traversing a binary tree (§27.5).

■ To implement Huffman coding for compressing data using
a binary tree (§27.6).

CHAPTER

27

962 Chapter 27 Binary Search Trees

67 107

60

55

5745

R

M T

(a) (b)

100

G

F

A

FIGURE 27.1 Each node in a binary tree has zero, one, or two subtrees.

27.1 Introduction
A tree is a classic data structure with many important applications.

A tree provides a hierarchical organization in which data are stored in the nodes. This chap-
ter introduces binary search trees. You will learn how to construct a binary search tree, how
to search an element, insert an element, delete an element, and traverse elements in a binary
search tree.

27.2 Binary Search Trees
A binary search tree can be implemented using a linked structure.

Recall that lists, stacks, and queues are linear structures that consist of a sequence of
elements. A binary tree is a hierarchical structure. It either is empty or consists of an
element, called the root, and two distinct binary trees, called the left subtree and right
subtree, either or both of which may be empty. Examples of binary trees are shown in
Figure 27.1.

The length of a path is the number of the edges in the path. The depth of a node is
the length of the path from the root to the node. The set of all nodes at a given depth
is sometimes called a level of the tree. Siblings are nodes that share the same parent
node. The root of a left (right) subtree of a node is called a left (right) child of the
node. A node without children is called a leaf. The height of an empty tree is 0. The
height of a nonempty tree is the length of the path from the root node to its furthest

Consider the tree in Figure 27.1a. The length of the path from node 60 to 45 is
2. The depth of node 60 is 0, the depth of node 55 is 1, and the depth of node 45 is 2. The
height of the tree is 3. Nodes 45 and 57 are siblings. Nodes 45, 57, 67, and 107 are at the
same level.

A special type of binary tree called a binary search tree (BST) is often useful. A BST (with
no duplicate elements) has the property that for every node in the tree, the value of any node
in its left subtree is less than the value of the node, and the value of any node in its right sub-
tree is greater than the value of the node. The binary trees in Figure 27.1 are all BSTs.

Pedagogical Note
For an interactive GUI demo to see how a BST works, go to www.cs.armstrong.edu/liang/
animation/BSTAnimation.html, as shown in Figure 27.2.

leaf + 1.

Key
Point

Key
Point

binary tree

root

left subtree
right subtree

length

depth

level

sibling

leaf

height

binary search tree

BST animation on Companion
Website

www.cs.armstrong.edu/liang/animation/BSTAnimation.html
www.cs.armstrong.edu/liang/animation/BSTAnimation.html

27.2 Binary Search Trees 963

60

55

45 57

root

100

67 107

FIGURE 27.3 A binary tree can be represented using a set of linked nodes.

FIGURE 27.2 The animation tool enables you to insert, delete, and search elements.

27.2.1 Representing Binary Search Trees
A binary tree can be represented using a set of linked nodes. Each node contains a value and
two links named left and right that reference the left child and right child, respectively, as
shown in Figure 27.3.

A node can be defined as a class, as follows:

class TreeNode<E> {
protected E element;
protected TreeNode<E> left;
protected TreeNode<E> right;

public TreeNode(E e) {
element = e;

}
}

The variable root refers to the root node of the tree. If the tree is empty, root is null. The
following code creates the first three nodes of the tree in Figure 27.3.

// Create the root node
TreeNode<Integer> root = new TreeNode<Integer>(new Integer(60));

964 Chapter 27 Binary Search Trees

// Create the left child node
root.left = new TreeNode<Integer>(new Integer(55));

// Create the right child node
root.right = new TreeNode<Integer>(new Integer(100));

27.2.2 Searching for an Element
To search for an element in the BST, you start from the root and scan down from it until a
match is found or you arrive at an empty subtree. The algorithm is described in Listing 27.1.
Let current point to the root (line 2). Repeat the following steps until current is null
(line 4) or the element matches current.element (line 12).

■ If element is less than current.element, assign current.left to current

(line 6).

■ If element is greater than current.element, assign current.right to
current (line 9).

■ If element is equal to current.element, return true (line 12).

If current is null, the subtree is empty and the element is not in the tree (line 14).

LISTING 27.1 Searching for an Element in a BST
1 public boolean search(E element) {
2 TreeNode<E> current = root; // Start from the root
3
4 while (current != null)
5 if (element < current.element) {
6 current = current.left; // Go left
7 }
8 else if (element > current.element) {
9 current = current.right; // Go right
10 }
11 else // Element matches current.element
12 return true; // Element is found
13
14 return false; // Element is not in the tree
15 }

27.2.3 Inserting an Element into a BST
To insert an element into a BST, you need to locate where to insert it in the tree. The key idea
is to locate the parent for the new node. Listing 27.2 gives the algorithm.

LISTING 27.2 Inserting an Element into a BST
1 boolean insert(E e) {
2 if (tree is empty)
3 // Create the node for e as the root;
4 else {
5 // Locate the parent node
6 parent = current = root;
7 while (current != null)
8 if (e < the value in current.element) {
9 parent = current; // Keep the parent
10 current = current.left; // Go left
11 }
12 else if (e > the value in current.element) {
13 parent = current; // Keep the parent

start from root

left subtree

right subtree

found

not found

create a new node

locate parent

left child

27.2 Binary Search Trees 965

14 current = current.right; // Go right
15 }
16 else

17 return false; // Duplicate node not inserted
18
19 // Create a new node for e and attach it to parent
20
21 return true; // Element inserted
22 }
23 }

If the tree is empty, create a root node with the new element (lines 2–3). Otherwise, locate the
parent node for the new element node (lines 6–17). Create a new node for the element and link
this node to its parent node. If the new element is less than the parent element, the node for the
new element will be the left child of the parent. If the new element is greater than the parent
element, the node for the new element will be the right child of the parent.

For example, to insert 101 into the tree in Figure 27.3, after the while loop finishes in the
algorithm, parent points to the node for 107, as shown in Figure 27.4a. The new node for
101 becomes the left child of the parent. To insert 59 into the tree, after the while loop fin-
ishes in the algorithm, the parent points to the node for 57, as shown in Figure 27.4b. The new
node for 59 becomes the right child of the parent.

27.2.4 Tree Traversal
Tree traversal is the process of visiting each node in the tree exactly once. There are several
ways to traverse a tree. This section presents inorder, postorder, preorder, depth-first, and
breadth-first traversals.

With inorder traversal, the left subtree of the current node is visited first recursively, then
the current node, and finally the right subtree of the current node recursively. The inorder tra-
versal displays all the nodes in a BST in increasing order.

With postorder traversal, the left subtree of the current node is visited recursively first,
then recursively the right subtree of the current node, and finally the current node itself. An
application of postorder is to find the size of the directory in a file system. As shown in Figure
27.5, each directory is an internal node and a file is a leaf node. You can apply postorder to get
the size of each file and subdirectory before finding the size of the root directory.

With preorder traversal, the current node is visited first, then recursively the left subtree of the
current node, and finally the right subtree of the current node recursively. Depth-first traversal is
the same as preorder traversal. An application of preorder is to print a structured document. As
shown in Figure 27.6, you can print a book’s table of contents using preorder traversal.

right child

tree traversal

inorder traversal

postorder traversal

(a) Inserting 101

parent

60

55

45 57

root

100

67 107

101

(b) Inserting 59

parent

60

55

45 57

root

100

67 107

10159

FIGURE 27.4 Two new elements are inserted into the tree.

preorder traversal

depth-first traversal

+

1 2

966 Chapter 27 Binary Search Trees

Note
You can reconstruct a binary search tree by inserting the elements in their preorder. The
reconstructed tree preserves the parent and child relationship for the nodes in the origi-
nal binary search tree.

With breadth-first traversal, the nodes are visited level by level. First the root is visited,
then all the children of the root from left to right, then the grandchildren of the root from left
to right, and so on.

For example, in the tree in Figure 27.4b, the inorder is

45 55 57 59 60 67 100 101 107

The postorder is

45 59 57 55 67 101 107 100 60

The preorder is

60 55 45 57 59 100 67 107 101

The breadth-first traversal is

60 55 100 45 57 67 107 59 101

You can use the following tree to help remember inorder, postorder, and preorder.

breadth-first traversal

directory

d2d1
f1 f2 . . .fm dn

. . . d12d11
f11 f1m f21 fn1 fnk. . .

FIGURE 27.5 A directory contains files and subdirectories.

Chapter 1 . . .

book

Chapter n

Section 1 Section 2 . . .

Chapter 2

FIGURE 27.6 A tree can be used to represent a structured document such as a book and its
chapters and sections.

The inorder is 1 + 2, the postorder is 1 2 +, and the preorder is + 1 2.

BST<E>TreeNode<E>

#root: TreeNode<E>

#size: int

+BST()

+BST(objects: E[])

+path(e: E):
java.util.List<TreeNode<E>>

1

m

#element: E

#left: TreeNode<E>

#right: TreeNode<E>

Link

0

The root of the tree.

The number of nodes in the tree.

Creates a default BST.

Creates a BST from an array of elements.

Returns the path of nodes from the root leading to
the node for the specified element. The element
may not be in the tree.

AbstractTree<E>

«interface»
Tree<E>

27.2 Binary Search Trees 967

FIGURE 27.7 The Tree interface defines common operations for trees, and the AbstractTree class partially
implements Tree.

27.2.5 The BST Class
Following the design pattern of the Java Collections Framework API, we use an interface
named Tree to define all common operations for trees and provide an abstract class named
AbstractTree that partially implements Tree, as shown in Figure 27.7. A concrete BST
class can be defined to extend AbstractTree, as shown in Figure 27.8.

Returns true if the specified element is in the tree.

Returns true if the element is added successfully.

Returns true if the element is removed from the tree successfully.

Prints the nodes in inorder traversal.

Prints the nodes in preorder traversal.

Prints the nodes in postorder traversal.

Returns the number of elements in the tree.

Returns true if the tree is empty.

Removes all elements from the tree.

AbstractTree<E>

+search(e: E): boolean

«interface»
Tree<E>

+clear(): void

+isEmpty(): boolean

+getSize(): int

+postorder(): void

+preorder(): void

+inorder(): void

+delete(e: E): boolean

+insert(e: E): boolean

Returns an iterator for traversing the elements in this collection+iterator(): Iterator<E>

«interface»
java.lang.Iterable<E>

FIGURE 27.8 The BST class defines a concrete BST.

968 Chapter 27 Binary Search Trees

Listings 27.3, 27.4, and 27.5 give the implementations for Tree, AbstractTree, and BST.

LISTING 27.3 Tree.java
1
2 /** Return true if the element is in the tree */
3
4
5 /** Insert element e into the binary search tree.
6 * Return true if the element is inserted successfully. */
7
8
9 /** Delete the specified element from the tree.
10 * Return true if the element is deleted successfully. */
11
12
13 /** Inorder traversal from the root*/
14
15
16 /** Postorder traversal from the root */
17
18
19 /** Preorder traversal from the root */
20
21
22 /** Get the number of nodes in the tree */
23
24
25 /** Return true if the tree is empty */
26
27
28 /** Return an iterator to traverse elements in the tree */
29
30 }

LISTING 27.4 AbstractTree.java
1
2 implements Tree<E> {
3 @Override /** Inorder traversal from the root*/
4
5 }
6
7 @Override /** Postorder traversal from the root */
8
9 }
10
11 @Override /** Preorder traversal from the root */
12
13 }
14
15 @Override /** Return true if the tree is empty */
16
17 return getSize() == 0;
18 }
19
20 @Override /** Return an iterator for the tree */
21
22 return null;
23 }
24 }

public java.util.Iterator<E> iterator() {

public boolean isEmpty() {

public void preorder() {

public void postorder() {

public void inorder() {

public abstract class AbstractTree<E extends Comparable<E>>

public java.util.Iterator<E> iterator();

public boolean isEmpty();

public int getSize();

public void preorder();

public void postorder();

public void inorder();

public boolean delete(E e);

public boolean insert(E e);

public boolean search(E e);

public interface Tree<E extends Comparable<E>> extends Iterable<E> {interface

search

insert

delete

inorder

postorder

preorder

getSize

isEmpty

iterator

abstract class

default inorder
implementation

default postorder
implementation

default preorder
implementation

isEmpty implementation

default iterator
implementation

27.2 Binary Search Trees 969

LISTING 27.5 BST.java
1
2 extends AbstractTree<E> {
3
4
5
6 /** Create a default binary search tree */
7
8 }
9
10 /** Create a binary search tree from an array of objects */
11
12 for (int i = 0; i < objects.length; i++)
13 insert(objects[i]);
14 }
15
16 @Override /** Return true if the element is in the tree */
17
18 TreeNode<E> current = root; // Start from the root
19
20 while (current != null) {
21 if (e.compareTo(current.element) < 0) {
22 current = current.left;
23 }
24 else if (e.compareTo(current.element) > 0) {
25 current = current.right;
26 }
27 else // element matches current.element
28 return true; // Element is found
29 }
30
31 return false;
32 }
33
34 @Override /** Insert element e into the binary search tree.
35 * Return true if the element is inserted successfully. */
36
37 if (root == null)
38 root = createNewNode(e); // Create a new root
39 else {
40 // Locate the parent node
41 TreeNode<E> parent = null;
42 TreeNode<E> current = root;
43 while (current != null)
44 if (e.compareTo(current.element) < 0) {
45 parent = current;
46 current = current.left;
47 }
48 else if (e.compareTo(current.element) > 0) {
49 parent = current;
50 current = current.right;
51 }
52 else

53 return false; // Duplicate node not inserted
54
55 // Create the new node and attach it to the parent node
56
57 parent.left = createNewNode(e);
58 else

if (e.compareTo(parent.element) < 0)

public boolean insert(E e) {

public boolean search(E e) {

public BST(E[] objects) {

public BST() {

protected int size = 0;
protected TreeNode<E> root;

public class BST<E extends Comparable<E>> BST class

root
size

no-arg constructor

constructor

search

compare objects

insert

new root

compare objects

link to parent

970 Chapter 27 Binary Search Trees

59 parent.right = createNewNode(e);
60 }
61
62 size++;
63 return true; // Element inserted
64 }
65
66
67 return new TreeNode<E>(e);
68 }
69
70 @Override /** Inorder traversal from the root*/
71
72 inorder(root);
73 }
74
75 /** Inorder traversal from a subtree */
76
77 if (root == null) return;
78 inorder(root.left);
79 System.out.print(root.element + " ");
80 inorder(root.right);
81 }
82
83 @Override /** Postorder traversal from the root */
84
85 postorder(root);
86 }
87
88 /** Postorder traversal from a subtree */
89
90 if (root == null) return;
91 postorder(root.left);
92 postorder(root.right);
93 System.out.print(root.element + " ");
94 }
95
96 @Override /** Preorder traversal from the root */
97
98 preorder(root);
99 }
100
101 /** Preorder traversal from a subtree */
102
103 if (root == null) return;
104 System.out.print(root.element + " ");
105 preorder(root.left);
106 preorder(root.right);
107 }
108
109 /** This inner class is static, because it does not access
110 any instance members defined in its outer class */
111
112 protected E element;
113 protected TreeNode<E> left;
114 protected TreeNode<E> right;
115
116 public TreeNode(E e) {
117 element = e;
118 }

public static class TreeNode<E extends Comparable<E>> {

protected void preorder(TreeNode<E> root) {

public void preorder() {

protected void postorder(TreeNode<E> root) {

public void postorder() {

protected void inorder(TreeNode<E> root) {

public void inorder() {

protected TreeNode<E> createNewNode(E e) {

increase size

create new node

inorder

recursive helper method

postorder

recursive helper method

preorder

recursive helper method

inner class

27.2 Binary Search Trees 971

119 }
120
121 @Override /** Get the number of nodes in the tree */
122
123 return size;
124 }
125
126 /** Returns the root of the tree */
127
128 return root;
129 }
130
131 /** Returns a path from the root leading to the specified element */
132
133 java.util.ArrayList<TreeNode<E>> list =
134 new java.util.ArrayList<TreeNode<E>>();
135 TreeNode<E> current = root; // Start from the root
136
137 while (current != null) {
138 list.add(current); // Add the node to the list
139 if (e.compareTo(current.element) < 0) {
140 current = current.left;
141 }
142 else if (e.compareTo(current.element) > 0) {
143 current = current.right;
144 }
145 else

146 break;
147 }
148
149 return list; // Return an array of nodes
150 }
151
152 @Override /** Delete an element from the binary search tree.
153 * Return true if the element is deleted successfully.
154 * Return false if the element is not in the tree. */
155
156 // Locate the node to be deleted and also locate its parent node
157 TreeNode<E> parent = null;
158 TreeNode<E> current = root;
159 while (current != null) {
160 if (e.compareTo(current.element) < 0) {
161 parent = current;
162 current = current.left;
163 }
164 else if (e.compareTo(current.element) > 0) {
165 parent = current;
166 current = current.right;
167 }
168 else

169 break; // Element is in the tree pointed at by current
170 }
171
172 if (current == null)
173 return false; // Element is not in the tree
174
175 // Case 1: current has no left children
176
177 // Connect the parent with the right child of the current node
178 if (parent == null) {

if (current.left == null) {

public boolean delete(E e) {

public java.util.ArrayList<TreeNode<E>> path(E e) {

public TreeNode<E> getRoot() {

public int getSize() { getSize

getRoot

path

delete

locate parent
locate current

current found

not found

Case 1

972 Chapter 27 Binary Search Trees

179 root = current.right;
180 }
181 else {
182 if (e.compareTo(parent.element) < 0)
183 parent.left = current.right;
184 else

185 parent.right = current.right;
186 }
187 }
188 else {
189 // Case 2: The current node has a left child.
190 // Locate the rightmost node in the left subtree of
191 // the current node and also its parent.
192 TreeNode<E> parentOfRightMost = current;
193 TreeNode<E> rightMost = current.left;
194
195 while (rightMost.right != null) {
196 parentOfRightMost = rightMost;
197 rightMost = rightMost.right; // Keep going to the right
198 }
199
200 // Replace the element in current by the element in rightMost
201 current.element = rightMost.element;
202
203 // Eliminate rightmost node
204 if (parentOfRightMost.right == rightMost)
205 parentOfRightMost.right = rightMost.left;
206 else

207 // Special case: parentOfRightMost == current
208 parentOfRightMost.left = rightMost.left;
209 }
210
211 size—–;
212 return true; // Element deleted
213 }
214
215 @Override /** Obtain an iterator. Use inorder. */
216
217 return new InorderIterator();
218 }
219
220 // Inner class InorderIterator
221
222 // Store the elements in a list
223
224 new java.util.ArrayList<E>();
225 // Point to the current element in list
226
227
228 inorder(); // Traverse binary tree and store elements in list
229 }
230
231 /** Inorder traversal from the root*/
232
233 inorder(root);
234 }
235
236 /** Inorder traversal from a subtree */

private void inorder() {

public InorderIterator() {

private int current = 0;

private java.util.ArrayList<E> list =

private class InorderIterator implements java.util.Iterator<E> {

public java.util.Iterator<E> iterator() {

reconnect parent

reconnect parent

Case 2

locate parentOfRightMost
locate rightMost

replace current

reconnect
parentOfRightMost

reduce size
successful deletion

iterator

iterator class

internal list

current position

obtain inorder list

27.2 Binary Search Trees 973

237
238 if (root == null) return;
239 inorder(root.left);
240 list.add(root.element);
241 inorder(root.right);
242 }
243
244 @Override /** More elements for traversing? */
245
246 if (current < list.size())
247 return true;
248
249 return false;
250 }
251
252 @Override /** Get the current element and move to the next */
253
254 return list.get(current++);
255 }
256
257 @Override /** Remove the current element */
258
259 delete(list.get(current)); // Delete the current element
260 list.clear(); // Clear the list
261 inorder(); // Rebuild the list
262 }
263 }
264
265 /** Remove all elements from the tree */
266
267 root = null;
268 size = 0;
269 }
270 }

The insert(E e) method (lines 36–64) creates a node for element e and inserts it into
the tree. If the tree is empty, the node becomes the root. Otherwise, the method finds an appro-
priate parent for the node to maintain the order of the tree. If the element is already in the tree,
the method returns false; otherwise it returns true.

The inorder() method (lines 71–81) invokes inorder(root) to traverse the entire
tree. The method inorder(TreeNode root) traverses the tree with the specified root. This
is a recursive method. It recursively traverses the left subtree, then the root, and finally the
right subtree. The traversal ends when the tree is empty.

The postorder() method (lines 84–94) and the preorder() method (lines 97–107) are
implemented similarly using recursion.

The path(E e) method (lines 132–150) returns a path of the nodes as an array list. The
path starts from the root leading to the element. The element may not be in the tree. For
example, in Figure 27.4a, path(45) contains the nodes for elements 60, 55, and 45, and
path(58) contains the nodes for elements 60, 55, and 57.

The implementation of delete() and iterator() (lines 155–269) will be discussed in
Sections 27.3 and 27.5.

Listing 27.6 gives an example that creates a binary search tree using BST (line 4). The
program adds strings into the tree (lines 5–11), traverses the tree in inorder, postorder, and
preorder (lines 14–20), searches for an element (line 24), and obtains a path from the node
containing Peter to the root (lines 28–31).

public void clear() {

public void remove() {

public E next() {

public boolean hasNext() {

private void inorder(TreeNode<E> root) {

hasNext in iterator?

get next element

remove the current

refresh list

clear

LISTING 27.6 TestBST.java
1 public class TestBST {
2 public static void main(String[] args) {
3 // Create a BST
4
5
6 tree.insert("Michael");
7 tree.insert("Tom");
8 tree.insert("Adam");
9 tree.insert("Jones");
10 tree.insert("Peter");
11 tree.insert("Daniel");
12
13 // Traverse tree
14 System.out.print("Inorder (sorted): ");
15
16 System.out.print("\nPostorder: ");
17
18 System.out.print("\nPreorder: ");
19
20 System.out.print("\nThe number of nodes is " + tree.getSize());
21
22 // Search for an element
23 System.out.print("\nIs Peter in the tree? " +
24);
25
26 // Get a path from the root to Peter
27 System.out.print("\nA path from the root to Peter is: ");
28 java.util.ArrayList<BST.TreeNode<String>> path
29 = ;
30 for (int i = 0; && i < path.size(); i++)
31 System.out.print(path.get(i).element + " ");
32
33 Integer[] numbers = {2, 4, 3, 1, 8, 5, 6, 7};
34 BST<Integer> intTree = new BST<Integer>(numbers);
35 System.out.print("\nInorder (sorted): ");
36 intTree.inorder();
37 }
38 }

path != null
tree.path("Peter")

tree.search("Peter")

tree.preorder();

tree.postorder();

tree.inorder();

tree.insert("George");
BST<String> tree = new BST<String>();create tree

insert

inorder

postorder

preorder
getSize

search

Inorder (sorted): Adam Daniel George Jones Michael Peter Tom
Postorder: Daniel Adam Jones Peter Tom Michael George
Preorder: George Adam Daniel Michael Jones Tom Peter
The number of nodes is 7
Is Peter in the tree? true
A path from the root to Peter is: George Michael Tom Peter
Inorder (sorted): 1 2 3 4 5 6 7 8

974 Chapter 27 Binary Search Trees

The program checks path != null in line 30 to ensure that the path is not null before
invoking path.get(i). This is an example of defensive programming to avoid potential
runtime errors.

The program creates another tree for storing int values (line 34). After all the elements
are inserted in the trees, the trees should appear as shown in Figure 27.9.

If the elements are inserted in a different order (e.g., Daniel, Adam, Jones, Peter, Tom,
Michael, George), the tree will look different. However, the inorder traversal prints elements
in the same order as long as the set of elements is the same. The inorder traversal displays a
sorted list.

✓Point✓Check

Key
Point

27.3 Deleting Elements from a BST 975

27.1 Show the result of inserting 44 into Figure 27.4b.

27.2 Show the inorder, preorder, and postorder of traversing the elements in the binary tree
shown in Figure 27.1b.

27.3 If a set of elements is inserted into a BST in two different orders, will the two corre-
sponding BSTs look the same? Will the inorder traversal be the same? Will the postorder
traversal be the same? Will the preorder traversal be the same?

27.4 What is the time complexity of inserting an element into a BST?

27.3 Deleting Elements from a BST
To delete an element from a BST, first locate it in the tree and then consider two
cases—whether or not the node has a left child—before deleting the element and
reconnecting the tree.

The insert(element) method was presented in Section 27.2.3. Often you need to delete an
element from a binary search tree. Doing so is far more complex than adding an element into
a binary search tree.

To delete an element from a binary search tree, you need to first locate the node that
contains the element and also its parent node. Let current point to the node that contains
the element in the binary search tree and parent point to the parent of the current node.
The current node may be a left child or a right child of the parent node. There are two
cases to consider.

Case 1: The current node does not have a left child, as shown in Figure 27.10a. In
this case, simply connect the parent with the right child of the current node, as shown in
Figure 27.10b.

For example, to delete node 10 in Figure 27.11a, you would connect the parent of node 10
with the right child of node 10, as shown in Figure 27.11b.

locating element

George

MichaelAdam

Daniel Jones Tom

Peter

root

(b)(a)

2

1

root

4

3 8

5

6

7

FIGURE 27.9 The BSTs in Listing 27.6 are pictured here after they are created.

976 Chapter 27 Binary Search Trees

delete a leaf

special case

parentparent

Subtree

(a) (b)

Subtree

current may be a left or
right child of parent

Subtree may be a left or
right subtree of parent

current points the node
to be deleted

current

No left child

FIGURE 27.10 Case 1: The current node has no left child.

(a)

20

10

16

root

40

30 80

5027

(b)

20

16

root

40

30 80

5027

FIGURE 27.11 Case 1: Deleting node 10 from (a) results in (b).

Note
If the current node is a leaf, it falls into Case 1. For example, to delete element 16 in
Figure 27.11a, connect its right child (in this case, it is null) to the parent of node 16.
In this case, the right child of node 16 is null.

Case 2: The current node has a left child. Let rightMost point to the node that contains the
largest element in the left subtree of the current node and parentOfRightMost point to the
parent node of the rightMost node, as shown in Figure 27.12a. Note that the rightMost node
cannot have a right child but may have a left child. Replace the element value in the current
node with the one in the rightMost node, connect the parentOfRightMost node with the left
child of the rightMost node, and delete the rightMost node, as shown in Figure 27.12b.

For example, consider deleting node 20 in Figure 27.13a. The rightMost node has the
element value 16. Replace the element value 20 with 16 in the current node and make node
10 the parent for node 14, as shown in Figure 27.13b.

Note
If the left child of current does not have a right child, current.left points to the
large element in the left subtree of current. In this case, rightMost is
current.left and parentOfRightMost is current. You have to take care of this
special case to reconnect the right child of rightMost with parentOfRightMost.

27.3 Deleting Elements from a BST 977

FIGURE 27.12 Case 2: The current node has a left child.

FIGURE 27.13 Case 2: Deleting node 20 from (a) results in (b).

.

.

.

parent

Right subtree

(a) (b)

current may be a left or
right child of parent

current points to the node
to be deleted

current

parentOfRightMost

rightMost

leftChildOfRightMost

.

.

.

parent

Right subtree

current

parentOfRightMost

Content copied to
current and the node
is deleted

leftChildOfRightMost

The content of the current
node is replaced by the content of
the rightMost node. The rightMost
node is deleted.

(a) (b)

20

10

16

root

rightMost

40

30 80

502714

16

10

root

40

30 80

502714

The algorithm for deleting an element from a binary search tree can be described in
Listing 27.7.

LISTING 27.7 Deleting an Element from a BST
1 boolean delete(E e) {
2 Locate element e in the tree;
3 if element e is not found

delete method

not in the tree

978 Chapter 27 Binary Search Trees

4 return true;
5
6 Let current be the node that contains e and parent be
7 the parent of current;
8
9 if (current has no left child) // Case 1
10 Connect the right child of
11 current with parent; now current is not referenced, so
12 it is eliminated;
13 else // Case 2
14 Locate the rightmost node in the left subtree of current.
15 Copy the element value in the rightmost node to current.
16 Connect the parent of the rightmost node to the left child
17 of rightmost node;
18
19 return true; // Element deleted
20 }

The complete implementation of the delete method is given in lines 155–213 in Listing
27.5. The method locates the node (named current) to be deleted and also locates its parent
(named parent) in lines 157–170. If current is null, the element is not in the tree. There-
fore, the method returns false (line 173). Please note that if current is root, parent is
null. If the tree is empty, both current and parent are null.

Case 1 of the algorithm is covered in lines 176–187. In this case, the current node has no
left child (i.e., current.left == null). If parent is null, assign current.right to
root (lines 178–180). Otherwise, assign current.right to either parent.left or
parent.right, depending on whether current is a left or right child of parent (182–185).

Case 2 of the algorithm is covered in lines 188–209. In this case, current has a left child.
The algorithm locates the rightmost node (named rightMost) in the left subtree of the
current node and also its parent (named parentOfRightMost) (lines 195–198). Replace
the element in current by the element in rightMost (line 201); assign rightMost.left
to either parentOfRightMost.right or parentOfRightMost.left (lines 204–208),
depending on whether rightMost is a right or left child of parentOfRightMost.

Listing 27.8 gives a test program that deletes the elements from the binary search tree.

LISTING 27.8 TestBSTDelete.java
1 public class TestBSTDelete {
2 public static void main(String[] args) {
3 BST<String> tree = new BST<String>();
4 tree.insert("George");
5 tree.insert("Michael");
6 tree.insert("Tom");
7 tree.insert("Adam");
8 tree.insert("Jones");
9 tree.insert("Peter");
10 tree.insert("Daniel");
11 printTree(tree);
12
13 System.out.println("\nAfter delete George:");
14
15 printTree(tree);
16
17 System.out.println("\nAfter delete Adam:");
18
19 printTree(tree);
20
21 System.out.println("\nAfter delete Michael:");
22 tree.delete("Michael");

tree.delete("Adam");

tree.delete("George");

locate parent

Case 1

Case 2

delete an element

delete an element

delete an element

27.3 Deleting Elements from a BST 979

23 printTree(tree);
24 }
25
26 public static void printTree(BST tree) {
27 // Traverse tree
28 System.out.print("Inorder (sorted): ");
29 tree.inorder();
30 System.out.print("\nPostorder: ");
31 tree.postorder();
32 System.out.print("\nPreorder: ");
33 tree.preorder();
34 System.out.print("\nThe number of nodes is " + tree.getSize());
35 System.out.println();
36 }
37 }

Inorder (sorted): Adam Daniel George Jones Michael Peter Tom
Postorder: Daniel Adam Jones Peter Tom Michael George
Preorder: George Adam Daniel Michael Jones Tom Peter
The number of nodes is 7

After delete George:
Inorder (sorted): Adam Daniel Jones Michael Peter Tom
Postorder: Adam Jones Peter Tom Michael Daniel
Preorder: Daniel Adam Michael Jones Tom Peter
The number of nodes is 6

After delete Adam:
Inorder (sorted): Daniel Jones Michael Peter Tom
Postorder: Jones Peter Tom Michael Daniel
Preorder: Daniel Michael Jones Tom Peter
The number of nodes is 5

After delete Michael:
Inorder (sorted): Daniel Jones Peter Tom
Postorder: Peter Tom Jones Daniel
Preorder: Daniel Jones Tom Peter
The number of nodes is 4

Figures 27.14–27.16 show how the tree evolves as the elements are deleted from it.

George

MichaelAdam

Daniel Jones Tom

Peter

Delete this
node

(a) Deleting George (b) After George is deleted

Daniel

MichaelAdam

Jones Tom

Peter

FIGURE 27.14 Deleting George falls into Case 2.

980 Chapter 27 Binary Search Trees

FIGURE 27.15 Deleting Adam falls into Case 1.

Daniel

MichaelAdam

Jones Tom

Peter

(a) Deleting Adam (b) After Adam is deleted

Delete this
node

Daniel

Michael

Jones Tom

Peter

FIGURE 27.16 Deleting Michael falls into Case 2.

Daniel

Michael

Jones Tom

Peter

(a) Deleting Michael (b) After Michael is deleted

Daniel

Jones

Tom

Peter

Delete this
node

BST time complexity

✓Point✓Check

Note
It is obvious that the time complexity for the inorder, preorder, and postorder is O(n),
since each node is traversed only once. The time complexity for search, insertion, and
deletion is the height of the tree. In the worst case, the height of the tree is O(n). If a
tree is well-balanced, the height would be O(logn). We will introduce well-balanced
binary trees in Chapter 29 and bonus Chapters 47 and 48.

27.5 Show the result of deleting 55 from the tree in Figure 27.4b.

27.6 Show the result of deleting 60 from the tree in Figure 27.4b.

27.7 What is the time complexity of deleting an element from a BST?

27.8 Is the algorithm correct if lines 204–208 in Listing 27.5 in Case 2 of the delete()
method are replaced by the following code?

parentOfRightMost.right = rightMost.left;

27.4 Tree Visualization 981

FIGURE 27.17 A binary tree is displayed graphically.

Key
Point

(a) Inserting 50, 25, 35, 30, and 60 (b) After 50 is deleted

27.4 Tree Visualization
You can use recursion to display a binary tree.

Pedagogical Note
One challenge facing the data-structure course is to motivate students. Displaying a
binary tree graphically will not only help you understand the working of a binary tree but
perhaps also stimulate your interest in programming. You can apply visualization tech-
niques to other projects.

How do you display a binary tree? It is a recursive structure, so you can display a binary tree
using recursion. You can simply display the root, then display the two subtrees recursively.
The techniques for displaying the Sierpinski triangle (Listing 20.9, SierpinskiTriangle.java)
can be applied to displaying a binary tree. For simplicity, we assume the keys are positive
integers less than 100. Listings 27.9 and 27.10 give the program, and Figure 27.17 shows
some sample runs of the program.

LISTING 27.9 DisplayBST.java
1 import javax.swing.*;
2
3 public class DisplayBST extends JApplet {
4 public DisplayBST() {
5 add(new TreeControl(new BST<Integer>()));
6 }
7 }

LISTING 27.10 TreeControl.java
1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4
5 public class TreeControl extends JPanel {
6 // A binary tree to be displayed
7 private JTextField jtfKey = new JTextField(5);
8
9 private JButton jbtInsert = new JButton("Insert");
10 private JButton jbtDelete = new JButton("Delete");
11

private TreeView view = new TreeView();

private BST<Integer> tree;

create a view

main method omitted

binary tree

paint tree

982 Chapter 27 Binary Search Trees

12 /** Construct a view for a binary tree */
13 public TreeControl(BST<Integer> tree) {
14 this.tree = tree; // Set a binary tree to be displayed
15 setUI();
16 }
17
18 /** Initialize UI for binary tree */
19 private void setUI() {
20 this.setLayout(new BorderLayout());
21 add(view, BorderLayout.CENTER);
22 JPanel panel = new JPanel();
23 panel.add(new JLabel("Enter a key: "));
24 panel.add(jtfKey);
25 panel.add(jbtInsert);
26 panel.add(jbtDelete);
27 add(panel, BorderLayout.SOUTH);
28
29
30 @Override // Process the Insert button event
31 public void actionPerformed(ActionEvent e) {
32 int key = Integer.parseInt(jtfKey.getText());
33 if (tree.search(key)) { // key is in the tree already
34 JOptionPane.showMessageDialog(null,
35 key + " is already in the tree");
36 }
37 else {
38 // Insert a new key
39 // Redisplay the tree
40 }
41 }
42 });
43
44
45 @Override // Process the Delete button event
46 public void actionPerformed(ActionEvent e) {
47 int key = Integer.parseInt(jtfKey.getText());
48 if (!tree.search(key)) { // key is not in the tree
49 JOptionPane.showMessageDialog(null,
50 key + " is not in the tree");
51 }
52 else {
53 // Delete a key
54 // Redisplay the tree
55 }
56 }
57 });
58 }
59
60 // Inner class TreeView for displaying a tree on a panel
61 class TreeView extends JPanel {
62 private int radius = 20; // Tree node radius
63 private int vGap = 50; // Gap between two levels in a tree
64
65 @Override
66 protected void paintComponent(Graphics g) {
67 super.paintComponent(g);
68
69 if (tree.getRoot() != null) {
70 // Display tree recursively
71 displayTree(g, tree.getRoot(), getWidth() / 2, 30,

view.repaint();
tree.delete(key);

jbtDelete.addActionListener(new ActionListener() {

view.repaint();
tree.insert(key);

jbtInsert.addActionListener(new ActionListener() {

create UI

insert button listener

insert key
repaint the tree

delete button listener

delete key
repaint the tree

TreeView class

display tree

27.4 Tree Visualization 983

72
73 }
74 }
75
76 /** Display a subtree rooted at position (x, y) */
77 private void displayTree(Graphics g,
78 BST.TreeNode<Integer> root, int x, int y, int hGap) {
79 // Display the root
80
81 g.drawString(root.element + "", x - 6, y + 4);
82
83 if (root.left != null) {
84 // Draw a line to the left node
85
86 // Draw the left subtree recursively
87
88 }
89
90 if (root.right != null) {
91 // Draw a line to the right node
92
93 // Draw the right subtree recursively
94
95 }
96 }
97
98 /** Connect two circles centered at (x1, y1) and (x2, y2) */
99 private void connectTwoCircles(Graphics g,
100 int x1, int y1, int x2, int y2) {
101 double d = Math.sqrt(vGap * vGap + (x2 - x1) * (x2 - x1));
102 int x11 = (int)(x1 - radius * (x1 - x2) / d);
103 int y11 = (int)(y1 - radius * (y1 - y2) / d);
104 int x21 = (int)(x2 + radius * (x1 - x2) / d);
105 int y21 = (int)(y2 + radius * (y1 - y2) / d);
106 g.drawLine(x11, y11, x21, y21);
107 }
108 }
109 }

After a new key is inserted into the tree (line 38), the tree is repainted (line 39) to reflect the
change. After a key is deleted (line 53), the tree is repainted (line 54) to reflect the change.

The node is displayed as a circle with radius 20 (line 62). The distance between two
levels in the tree is defined in vGap 50 (line 63). hGap (line 77) defines the distance
between two nodes horizontally. This value is reduced by half (hGap / 2) in the next level
when the displayTree method is called recursively (lines 87, 94). Note that vGap is not
changed in the tree.

Invoking connectTwoCircles connects a parent with a left or right child. You need to
find the two endpoints (x11, y11) and (x21, y21) in order to connect the two nodes, as shown
in Figure 27.18. The mathematical calculation for finding the two ends is illustrated in
Figure 27.18. Note that

y11 - y1

radius
=

y2 - y1

d
, so y11 = y1 + radius *

y2 - y1

d

x11 - x1

radius
=

x2 - x1

d
, so x11 = x1 + radius *

x2 - x1

d
,

d = 2vGap2 + (x2 - x1)
2

displayTree(g, root.right, x + hGap, y + vGap, hGap / 2);

connectTwoCircles(g, x + hGap, y + vGap, x, y);

displayTree(g, root.left, x - hGap, y + vGap, hGap / 2);

connectTwoCircles(g, x - hGap, y + vGap, x, y);

g.drawOval(x - radius, y - radius, 2 * radius, 2 * radius);

getWidth() / 4);

paint a node

connect two nodes

draw left subtree

connect two nodes

draw right subtree

984 Chapter 27 Binary Search Trees

The program assumes that the keys are integers. You can easily modify the program with a
generic type to display keys of characters or short strings.

27.9 How many times will the displayTree method be invoked if the tree is empty? How
many times will the displayTree method be invoked if the tree has 100 nodes?

27.10 In what order are the nodes in the tree visited by the displayTree method: inorder,
preorder, or postorder?

27.5 Iterators
BST is iterable because it is defined as a subtype of the java.lang.Iterable interface.

The methods inorder(), preorder(), and postorder() display the elements in
inorder, preorder, and postorder in a binary tree. These methods are limited to dis-
playing the elements in a tree. If you wish to process the elements in a binary tree rather than
display them, these methods cannot be used. Recall that an iterator is provided for traversing
the elements in a set or list. You can apply the same approach in a binary tree to provide a uni-
form way of traversing the elements in a binary tree.

The java.lang.Iterable interface defines the iterator method, which returns an
instance of the java.util.Iterator interface. The java.util.Iterator interface (see
Figure 27.19) defines the common features of iterators.

✓Point✓Check

Key
Point

iterator

FIGURE 27.18 You need to find the position of the endpoints to connect two nodes.

FIGURE 27.19 The Iterator interface defines a uniform way of traversing the elements in
a container.

(x2, y2)

d
vGap

(x2-x1)

(x21, y21)

(x11, y11)

(x1, y1)

«interface»
java.util.Iterator

+hasNext(): boolean

+next(): Object

+remove(): void

Returns true if the iterator has more elements.

Returns the next element in the iterator.

Removes from the underlying container the last element
returned by the iterator (optional operation).

The Tree interface extends java.lang.Iterable. Since BST is a subclass of
AbstractTree and AbstractTree implements Tree, BST is a subtype of Iterable. The
Iterable interface contains the iterator() method that returns an instance of
java.util.Iterator.

27.5 Iterators 985

You can traverse a binary tree in inorder, preorder, or postorder. Since inorder is used fre-
quently, we will use inorder for traversing the elements in a binary tree. We define an iterator
class named InorderIterator to implement the java.util.Iterator interface in
Listing 27.5 (lines 221–263). The iterator method simply returns an instance of
InorderIterator (line 217).

The InorderIterator constructor invokes the inorder method (line 228). The
inorder(root) method (lines 237–242) stores all the elements from the tree in list. The
elements are traversed in inorder.

Once an Iterator object is created, its current value is initialized to 0 (line 225),
which points to the first element in the list. Invoking the next() method returns the current
element and moves current to point to the next element in the list (line 253).

The hasNext() method checks whether current is still in the range of list (line 246).
The remove() method removes the current element from the tree (line 259). Afterward, a

new list is created (lines 260–261). Note that current does not need to be changed.
Listing 27.11 gives a test program that stores the strings in a BST and displays all strings

in uppercase.

LISTING 27.11 TestBSTWithIterator.java
1 public class TestBSTWithIterator {
2 public static void main(String[] args) {
3 BST<String> tree = new BST<String>();
4 tree.insert("George");
5 tree.insert("Michael");
6 tree.insert("Tom");
7 tree.insert("Adam");
8 tree.insert("Jones");
9 tree.insert("Peter");
10 tree.insert("Daniel");
11
12 for (String s: tree)
13 System.out.print(s.toUpperCase() + " ");
14 }
15 }

how to create an iterator

using an iterator
get uppercase letters

ADAM DANIEL GEORGE JONES MICHAEL PETER TOM

The for-each loop (lines 12–13) uses an iterator to traverse all elements in the tree.

Design Guide
Iterator is an important software design pattern. It provides a uniform way of traversing
the elements in a container, while hiding the container’s structural details. By imple-
menting the same interface java.util.Iterator, you can write a program that
traverses the elements of all containers in the same way.

Note
java.util.Iterator defines a forward iterator, which traverses the element in the
iterator in a forward direction, and each element can be traversed only once. The Java
API also provides the java.util.ListIterator, which supports traversing in both
forward and backward directions. If your data structure warrants flexible traversing, you
may define iterator classes as a subtype of java.util.ListIterator.

The implementation of the iterator is not efficient. Every time you remove an element through
the iterator, the whole list is rebuilt (line 261 in Listing 27.5 BST.java). The client should always

iterator pattern
advantages of iterators

variations of iterators

986 Chapter 27 Binary Search Trees

✓Point✓Check

Key
Point

FIGURE 27.20 The codes for characters are constructed based on the occurrence of charac-
ters in the text using a coding tree.

Character
M
p
s
i

Code
000
001
01
1

Frequency
1
2
4
4

M p

10 s

0 i

0

1

1

(a) Huffman coding tree (b) Character code table

use the delete method in the BinraryTree class to remove an element. To prevent the user
from using the remove method in the iterator, implement the iterator as follows:

public void remove() {
throw new UnsupportedOperationException
("Removing an element from the iterator is not supported");

}

After making the remove method unsupported by the iterator class, you can implement the
iterator more efficiently without having to maintain a list for the elements in the tree. You can
use a stack to store the nodes, and the node on the top of the stack contains the element that is
to be returned from the next() method. If the tree is well-balanced, the maximum stack size
will be O(logn).

27.11 What is an iterator?

27.12 What method is defined in the java.lang.Iterable<E> interface?

27.13 Suppose you delete extends Iterable<E> from line 1 in Listing 27.3, Tree.java.
Will Listing 27.11 still compile?

27.14 What is the benefit of being a subtype of Iterable<E>?

27.6 Case Study: Data Compression
Huffman coding compresses data by using fewer bits to encode characters that
occur more frequently. The codes for the characters are constructed based on the
occurrence of the characters in the text using a binary tree, called the Huffman
coding tree.

Compressing data is a common task. There are many utilities available for compressing files.
This section introduces Huffman coding, invented by David Huffman in 1952.

In ASCII, every character is encoded in 8 bits. If a text consists of 100 characters, it will
take 800 bits to represent the text. The idea of Huffman coding is to use a fewer bits to encode
frequently used characters in the text and more bits to encode less frequently used characters
to reduce the overall size of the file. In Huffman coding, the characters’ codes are constructed
based on the characters’ occurrence in the text using a binary tree, called the Huffman coding
tree. Suppose the text is Mississippi. Its Huffman tree can be shown as in Figure 27.20a.
The left and right edges of a node are assigned a value 0 and 1, respectively. Each character is
a leaf in the tree. The code for the character consists of the edge values in the path from the
root to the leaf, as shown in Figure 27.20b. Since i and s appear more than M and p in the text,
they are assigned shorter codes.

Huffman coding

27.6 Case Study: Data Compression 987

FIGURE 27.21 The coding tree is built by repeatedly combining the two smallest-weighted trees.

(b)(a)

weight: 1
‘M’

weight: 4
‘s’

weight: 4
‘i’

weight: 2
‘p’

weight: 4
‘s’

weight: 4
‘i’

weight: 3

weight: 1
‘M’

weight: 2
‘p’

(c)

weight: 1
‘M’

weight: 2
‘p’

weight: 4
‘i’

weight: 7

weight: 3 weight: 4
‘s’

(d)

weight: 1
‘M’

weight: 2
‘p’

weight: 4
‘i’

weight: 7

0

0 1

0 1

1

weight: 11

weight: 3 weight: 4
‘s’

The coding tree is also used for decoding a sequence of bits into characters. To do so, start
with the first bit in the sequence and determine whether to go to the left or right branch of the
tree’s root based on the bit value. Consider the next bit and continue to go down to the left or
right branch based on the bit value. When you reach a leaf, you have found a character. The
next bit in the stream is the first bit of the next character. For example, the stream 011001 is
decoded to sip, with 01 matching s, 1 matching i, and 001 matching p.

To construct a Huffman coding tree, use an algorithm as follows:

1. Begin with a forest of trees. Each tree contains a node for a character. The weight of the
node is the frequency of the character in the text.

2. Repeat the following action to combine trees until there is only one tree: Choose two
trees with the smallest weight and create a new node as their parent. The weight of the
new tree is the sum of the weight of the subtrees.

3. For each interior node, assign its left edge a value 0 and right edge a value 1. All leaf
nodes represent characters in the text.

Here is an example of building a coding tree for the text Mississippi. The frequency
table for the characters is shown in Figure 27.20b. Initially the forest contains single-node
trees, as shown in Figure 27.21a. The trees are repeatedly combined to form large trees until
only one tree is left, as shown in Figures 27.21b–d.

decoding

construct coding tree

It is worth noting that no code is a prefix of another code. This property ensures that the
streams can be decoded unambiguously.

Pedagogical Note
For an interactive GUI demo to see how Huffman coding works, go to www.cs.armstrong.
edu/liang/animation/HuffmanCodingAnimation.html, as shown in Figure 27.22.

prefix property

Huffman coding animation on
Companion Website

www.cs.armstrong.edu/liang/animation/HuffmanCodingAnimation.html
www.cs.armstrong.edu/liang/animation/HuffmanCodingAnimation.html

988 Chapter 27 Binary Search Trees

The algorithm used here is an example of a greedy algorithm. A greedy algorithm is often
used in solving optimization problems. The algorithm makes the choice that is optimal locally
in the hope that this choice will lead to a globally optimal solution. In this case, the algorithm
always chooses two trees with the smallest weight and creates a new node as their parent. This
intuitive optimal local solution indeed leads to a final optimal solution for constructing a
Huffman tree. As another example, consider changing money into the fewest possible coins.
A greedy algorithm would take the largest possible coin first. For example, for 98¢, you
would use three quarters to make 75¢, additional two dimes to make 95¢, and additional three
pennies to make the 98¢. The greedy algorithm finds an optimal solution for this problem.
However, a greedy algorithm is not always going to find the optimal result; see the bin pack-
ing problem in Programming Exercise 27.22.

Listing 27.12 gives a program that prompts the user to enter a string, displays the frequency
table of the characters in the string, and displays the Huffman code for each character.

LISTING 27.12 HuffmanCode.java
1 import java.util.Scanner;
2
3 public class HuffmanCode {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6 System.out.print("Enter text: ");
7 String text = input.nextLine();
8
9 // Count frequency
10
11 System.out.printf("%-15s%-15s%-15s%-15s\n",
12 "ASCII Code", "Character", "Frequency", "Code");
13
14 // Create a Huffman tree
15 // Get codes
16
17 for (int i = 0; i < codes.length; i++)
18 if (counts[i] != 0) // (char)i is not in text if counts[i] is 0
19 System.out.printf("%-15d%-15s%-15d%-15s\n",

String[] codes = getCode(tree.root);
Tree tree = getHuffmanTree(counts);

int[] counts = getCharacterFrequency(text);

greedy algorithm

count frequency

get Huffman tree

FIGURE 27.22 The animation tool enables you to create and view a Huffman tree, and it performs encoding and decoding
using the tree.

code for each character

27.6 Case Study: Data Compression 989

20 i, (char)i + "", counts[i], codes[i]);
21 }
22
23 /** Get Huffman codes for the characters
24 * This method is called once after a Huffman tree is built
25 */
26
27 if (root == null) return null;
28 String[] codes = new String[2 * 128];
29 assignCode(root, codes);
30 return codes;
31 }
32
33 /* Recursively get codes to the leaf node */
34
35 if (root.left != null) {
36 root.left.code = root.code + "0";
37 assignCode(root.left, codes);
38
39 root.right.code = root.code + "1";
40 assignCode(root.right, codes);
41 }
42 else {
43 codes[(int)root.element] = root.code;
44 }
45 }
46
47 /** Get a Huffman tree from the codes */
48
49 // Create a heap to hold trees
50 Heap<Tree> heap = new Heap<Tree>(); // Defined in Listing 25.10
51 for (int i = 0; i < counts.length; i++) {
52 if (counts[i] > 0)
53 heap.add(new Tree(counts[i], (char)i)); // A leaf node tree
54 }
55
56 while (heap.getSize() > 1) {
57 Tree t1 = heap.remove(); // Remove the smallest-weight tree
58 Tree t2 = heap.remove(); // Remove the next smallest
59 heap.add(new Tree(t1, t2)); // Combine two trees
60 }
61
62 return heap.remove(); // The final tree
63 }
64
65 /** Get the frequency of the characters */
66
67 int[] counts = new int[256]; // 256 ASCII characters
68
69 for (int i = 0; i < text.length(); i++)
70 counts[(int)text.charAt(i)]++; // Count the characters in text
71
72 return counts;
73 }
74
75 /** Define a Huffman coding tree */
76
77 Node root; // The root of the tree
78
79 /** Create a tree with two subtrees */

public static class Tree implements Comparable<Tree> {

public static int[] getCharacterFrequency(String text) {

public static Tree getHuffmanTree(int[] counts) {

private static void assignCode(Tree.Node root, String[] codes) {

public static String[] getCode(Tree.Node root) { getCode

assignCode

getHuffmanTree

getCharacterFrequency

Huffman tree

990 Chapter 27 Binary Search Trees

80
81 root = new Node();
82 root.left = t1.root;
83 root.right = t2.root;
84 root.weight = t1.root.weight + t2.root.weight;
85 }
86
87 /** Create a tree containing a leaf node */
88
89 root = new Node(weight, element);
90 }
91
92 @Override /** Compare trees based on their weights */
93
94 if (root.weight < t.root.weight) // Purposely reverse the order
95 return 1;
96 else if (root.weight == t.root.weight)
97 return 0;
98 else

99 return -1;
100 }
101
102
103 char element; // Stores the character for a leaf node
104 int weight; // weight of the subtree rooted at this node
105 Node left; // Reference to the left subtree
106 Node right; // Reference to the right subtree
107 String code = ""; // The code of this node from the root
108
109 /** Create an empty node */
110
111 }
112
113 /** Create a node with the specified weight and character */
114
115 this.weight = weight;
116 this.element = element;
117 }
118 }
119 }
120 }

public Node(int weight, char element) {

public Node() {

public class Node {

public int compareTo(Tree t) {

public Tree(int weight, char element) {

public Tree(Tree t1, Tree t2) {

tree node

Enter text:
ASCII Code Character Frequency Code
87 W 1 110
99 c 1 111
101 e 2 10
108 l 1 011
109 m 1 010
111 o 1 00

Welcome

The program prompts the user to enter a text string (lines 5–7) and counts the frequency of the
characters in the text (line 9). The getCharacterFrequency method (lines 66–73) creates
an array counts to count the occurrences of each of the 256 ASCII characters in the text. If a
character appears in the text, its corresponding count is increased by 1 (line 70).

getCharacterFrequency

Test Questions 991

✓Point✓Check

The program obtains a Huffman coding tree based on counts (line 14). The tree con-
sists of linked nodes. The Node class is defined in lines 102–118. Each node consists of
properties element (storing character), weight (storing weight of the subtree under this
node), left (linking to the left subtree), right (linking to the right subtree), and code
(storing the Huffman code for the character). The Tree class (lines 76–119) contains the
root property. From the root, you can access all the nodes in the tree. The Tree class imple-
ments Comparable. The trees are comparable based on their weights. The compare order
is purposely reversed (lines 93–100) so that the smallest-weight tree is removed first from
the heap of trees.

The getHuffmanTree method returns a Huffman coding tree. Initially, the single-node
trees are created and added to the heap (lines 50–54). In each iteration of the while loop
(lines 56–60), two smallest-weight trees are removed from the heap and are combined to form
a big tree, and then the new tree is added to the heap. This process continues until the heap
contains just one tree, which is our final Huffman tree for the text.

The assignCode method assigns the code for each node in the tree (lines 34–45). The
getCode method gets the code for each character in the leaf node (lines 26–31). The element
codes[i] contains the code for character (char)i, where i is from 0 to 255. Note that
codes[i] is null if (char)i is not in the text.

27.15 Every internal node in a Huffman tree has two children. Is it true?

27.16 What is a greedy algorithm? Give an example.

KEY TERMS

Node class

Tree class

getHuffmanTree

assignCode

getCode

CHAPTER SUMMARY

1. A binary search tree (BST) is a hierarchical data structure. You learned how to define
and implement a BST class, how to insert and delete elements into/from a BST, and
how to traverse a BST using inorder, postorder, preorder, depth-first, and breadth-
first searches.

2. An iterator is an object that provides a uniform way of traversing the elements in a
container, such as a set, a list, or a binary tree. You learned how to define and imple-
ment iterator classes for traversing the elements in a binary tree.

3. Huffman coding is a scheme for compressing data by using fewer bits to encode
characters that occur more frequently. The codes for characters are constructed
based on the occurrence of characters in the text using a binary tree, called the
Huffman coding tree.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

binary search tree 962
binary tree 962
breadth-first traversal 966
depth-first traversal 965
greedy algorithm 988

Huffman coding 986
inorder traversal 965
postorder traversal 965
preorder traversal 965
tree traversal 965

www.cs.armstrong.edu/liang/intro9e/test.html

992 Chapter 27 Binary Search Trees

PROGRAMMING EXERCISES

Sections 27.2–27.6
*27.1 (Add new methods in BST) Add the following new methods in BST.

/** Displays the nodes in a breadth-first traversal */
public void breadthFirstTraversal()

/** Returns the height of this binary tree, i.e., the
* number of the nodes in the longest path of the root to a leaf */

public int height()

*27.2 (Test full binary tree) A full binary tree is a binary tree with the leaves on the
same level. Add a method in the BST class to return true if the tree is a full
binary tree. (Hint: The number of nodes in a full binary tree is)

/** Returns true if the tree is a full binary tree */
boolean isFullBST()

**27.3 (Implement inorder traversal without using recursion) Implement the inorder
method in BST using a stack instead of recursion.

**27.4 (Implement preorder traversal without using recursion) Implement the
preorder method in BST using a stack instead of recursion.

**27.5 (Implement postorder traversal without using recursion) Implement the
postorder method in BST using a stack instead of recursion.

**27.6 (Find the leaves) Add a method in the BST class to return the number of the
leaves as follows:

/** Returns the number of leaf nodes */
public int getNumberOfLeaves()

**27.7 (Find the nonleaves) Add a method in the BST class to return the number of the
nonleaves as follows:

/** Returns the number of nonleaf nodes */
public int getNumberofNonLeaves()

***27.8 (Implement bidirectional iterator) The java.util.Iterator interface defines
a forward iterator. The Java API also provides the java.util.ListIterator
interface that defines a bidirectional iterator. Study ListIterator and define a
bidirectional iterator for the BST class.

**27.9 (Tree clone and equals) Implement the clone and equals methods in
the BST class.

Comprehensive
**27.10 (BST search visualization) Write a Java applet that displays a search path, as

shown in Figure 27.23a. The applet allows the user to enter a key. If the key is
not in the tree, a message dialog box is displayed. Otherwise, the nodes in the
path from the root leading to the key are colored.

**27.11 (BST animation) The preceding exercise simply highlights a search path. Write
a Java applet that animates how a search is performed. First you see that the
root is searched, and then a subtree is searched recursively. When a node is

2depth - 1.

Programming Exercises 993

(a) (b)

FIGURE 27.23 (a) The search path is highlighted. (b) The applet animates how an insertion is performed.

(a) (b)

FIGURE 27.24 When you click the Show Inorder button in (a), the tree nodes are displayed in an inorder in a message
dialog box in (b).

searched, the node is highlighted. The search stops when a key is found in the
tree, or the applet displays a message that a key is not in the tree.

**27.12 (BST insert animation) Add an Insert button to the preceding exercise to ani-
mate how insertion is performed, as shown in Figure 27.23b. When the Insert
button is clicked, the applet first animates a search. If the key is already in the
tree, display a dialog box. Otherwise, insert the key and repaint the tree.

**27.13 (Add new buttons in TreeControl) Modify Listing 27.10, TreeControl.java, to
add three new buttons— Show Inorder, Show Preorder, and Show Postorder—to
display the result in a message dialog box, as shown in Figure 27.24. You need
also to modify BST.java to implement the inorderList(), preorderList(),
and postorderList() methods so that each of these methods returns a List
of the node elements in inorder, preorder, and postorder, as follows:

public java.util.List<E> inorderList();
public java.util.List<E> preorderList();
public java.util.List<E> postorderList();

*27.14 (Generic BST using Comparator) Revise BST in Listing 27.5, using a generic
parameter and a Comparator for comparing objects. Define a new constructor
with a Comparator as its argument as follows:

BST(Comparator<? super E> comparator)

994 Chapter 27 Binary Search Trees

(a) (b) (c)

FIGURE 27.25 The animation shows the coding tree for a given text string in (a), encoded bits in (b), and the text for the
given bit sequence in (c).

BinaryTree.TreeNode<E>

#element: E

#left: TreeNode<E>

#right: TreeNode<E>

#parent: TreeNode<E>

*27.15 (Parent reference for BST) Redefine TreeNode by adding a reference to a
node’s parent, as shown below:

Add the following two new methods in BST:

/** Returns the parent for the specified node. */
public TreeNode<E> getParent(TreeNode<E> node)

/** Returns the path from the specified node to the root
* in an array list. */

public ArrayList<TreeNode<E>> getPath(TreeNode<E> node)

Write a test program that adds numbers 1, 2, . . ., 100 to the tree and displays
the paths for all leaf nodes.

**27.16 (BST animation) Write a Java applet that animates the binary search tree
insert, delete, and search methods, as shown in Figure 27.2.

**27.17 (Animation: heap) Write an applet to display a heap visually, as shown in
Figure 25.8.

***27.18 (Data compression: Huffman coding) Write a program that prompts the user to
enter a file name, then displays the frequency table of the characters in the file
and displays the Huffman code for each character.

***27.19 (Data compression: Huffman coding animation) Write an applet that enables
the user to enter text and displays the Huffman coding tree based on the text,
as shown in Figure 27.25a. Display the weight of the subtree inside the
subtree’s root circle. Display each leaf node’s character. Display the encoded
bits for the text in a dialog box, as shown in Figure 27.25b. When the user
clicks the Decode Text button, a bit string is decoded into text, as shown in
Figure 27.25c.

Programming Exercises 995

***27.20 (Compress a file) Write a program that compresses a source file into a target
file using the Huffman coding method. First use ObjectOutputStream to
output the Huffman codes into the target file, and then use BitOutputStream
in Programming Exercise 19.17 to output the encoded binary contents to the
target file. Pass the files from the command line using the following command:

java Exercise27_20 sourcefile targetfile

***27.21 (Decompress a file) The preceding exercise compresses a file. The compressed
file contains the Huffman codes and the compressed contents. Write a program
that decompresses a source file into a target file using the following command:

java Exercise27_21 sourcefile targetfile

27.22 (Bin packing using first fit) Write a program that packs the objects of various
weights into containers. Each container can hold a maximum of 10 pounds. The
program uses a greedy algorithm that places an object into the first bin in which
it would fit. Your program should prompt the user to enter the total number of
objects and the weight of each object. The program displays the total number of
containers needed to pack the objects and the contents of each container. Here
is a sample run of the program:

Enter the number of objects: 5
Enter the weights of the objects: 7 5 2 3 5 8
Container 1 contains objects with weight 7 2
Container 2 contains objects with weight 5 3
Container 3 contains objects with weight 5
Container 4 contains objects with weight 8

Does this program produce an optimal solution, that is, finding the minimum
number of containers to pack the objects?

27.23 (Bin packing with smallest object first) Rewrite the preceding program that
uses a new greedy algorithm that places an object with the smallest weight into
the first bin in which it would fit. Your program should prompt the user to
enter the total number of objects and the weight of each object. The program
displays the total number of containers needed to pack the objects and the con-
tents of each container. Here is a sample run of the program:

Enter the number of objects: 5
Enter the weights of the objects: 7 5 2 3 5 8
Container 1 contains objects with weight 2 3 5
Container 2 contains objects with weight 5
Container 3 contains objects with weight 7
Container 4 contains objects with weight 8

Does this program produce an optimal solution, that is, finding the minimum
number of containers to pack the objects?

27.24 (Optimal bin packing) Rewrite the preceding program so that it finds an opti-
mal solution that packs all objects using the smallest number of containers.
What is the time complexity of your program?

This page intentionally left blank

HASHING

Objectives
■ To understand what hashing is and what hashing is used for (§28.2).

■ To obtain the hash code for an object and design the hash function to map
a key to an index (§28.3).

■ To handle collisions using open addressing (§28.4).

■ To know the differences among linear probing, quadratic probing, and
double hashing (§28.4).

■ To handle collisions using separate chaining (§28.5).

■ To understand the load factor and the need for rehashing (§28.6).

■ To implement MyHashMap using hashing (§28.7).

■ To implement MyHashSet using hashing (§28.8).

CHAPTER

28

998 Chapter 28 Hashing

Hash function

i = hash(key)

0

1

2

i

N – 1

key value
An entry

.

.

.

.

.

FIGURE 28.1 A hash function maps a key to an index in the hash table.

Key
Point

Key
Point

28.1 Introduction
Hashing is superefficient. It takes O(1) time to search, insert, and delete an element
using hashing.

The preceding chapter introduced binary search trees. An element can be found in O(log n)
time in a well-balanced search tree. Is there a more efficient way to search for an element in a
container? This chapter introduces a technique called hashing. You can use hashing to imple-
ment a map or a set to search, insert, and delete an element in O(1) time.

28.2 What Is Hashing?
Hashing uses a hashing function to map a key to an index.

Before introducing hashing, let us review map, which is a data structure that is implemented
using hashing. Recall that a map (introduced in Section 23.5) is a container object that stores
entries. Each entry contains two parts: a key and a value. The key, also called a search key, is
used to search for the corresponding value. For example, a dictionary can be stored in a map,
in which the words are the keys and the definitions of the words are the values.

Note
A map is also called a dictionary, a hash table, or an associative array.

The Java Collections Framework defines the java.util.Map interface for modeling maps.
Three concrete implementations are java.util.HashMap, java.util.LinkedHashMap,
and java.util.TreeMap. java.util.HashMap is implemented using hashing,
java.util.LinkedHashMap using LinkedList, and java.util.TreeMap using red-
black trees. (The bonus Chapter 48 introduces red-black trees.) You will learn the concept of
hashing and use it to implement a map in this chapter.

If you know the index of an element in the array, you can retrieve the element using the
index in O(1) time. So does that mean we can store the values in an array and use the key as
the index to find the value? The answer is yes—if you can map a key to an index. The array
that stores the values is called a hash table. The function that maps a key to an index in the
hash table is called a hash function. As shown in Figure 28.1, a hash function obtains an index
from a key and uses the index to retrieve the value for the key. Hashing is a technique that
retrieves the value using the index obtained from the key without performing a search.

How do you design a hash function that produces an index from a key? Ideally, we would
like to design a function that maps each search key to a different index in the hash table. Such
a function is called a perfect hash function. However, it is difficult to find a perfect hash

why hashing?

map

key

value

dictionary

hash table

associative array

hash table

hash function

hashing

perfect hash function

28.3 Hash Functions and Hash Codes 999

✓Point✓Check

Key
Point

function. When two or more keys are mapped to the same hash value, we say that a collision
has occurred. Although there are ways to deal with collisions, which are discussed later in this
chapter, it is better to avoid collisions in the first place. Thus, you should design a fast and
easy-to-compute hash function that minimizes collisions.

28.1 What is a hash function? What is a perfect hash function? What is a collision?

28.3 Hash Functions and Hash Codes
A typical hash function first converts a search key to an integer value called a hash
code, then compresses the hash code into an index to the hash table.

Java’s root class Object has the hashCode method, which returns an integer hash code. By
default, the method returns the memory address for the object. The general contract for the
hashCode method is as follows:

1. You should override the hashCode method whenever the equals method is overridden
to ensure that two equal objects return the same hash code.

2. During the execution of a program, invoking the hashCode method multiple times
returns the same integer, provided that the object’s data are not changed.

3. Two unequal objects may have the same hash code, but you should implement the
hashCode method to avoid too many such cases.

28.3.1 Hash Codes for Primitive Types
For search keys of the type byte, short, int, and char, simply cast them to int. Therefore,
two different search keys of any one of these types will have different hash codes.

For a search key of the type float, use Float.floatToIntBits(key) as the hash
code. Note that floatToIntBits(float f) returns an int value whose bit representation
is the same as the bit representation for the floating number f. Thus, two different search keys
of the float type will have different hash codes.

For a search key of the type long, simply casting it to int would not be a good choice,
because all keys that differ in only the first 32 bits will have the same hash code. To take the
first 32 bits into consideration, divide the 64 bits into two halves and perform the exclusive-or
operation to combine the two halves. This process is called folding. The hashing code for a
long keyword is

int hashCode = (int)(key ^ (key >> 32));

Note that >> is the right-shift operator that shifts the bits 32 positions to the right. For exam-
ple, 1010110 >> 2 yields 0010101. The ^ is the bitwise exclusive-or operator. It operates
on two corresponding bits of the binary operands. For example, 1010110 ^ 0110111 yields
1100001. For more on bitwise operations, see Appendix G, Bitwise Operations.

For a search key of the type double, first convert it to a long value using the
Double.doubleToLongBits method, and then perform a folding as follows:

long bits = Double.doubleToLongBits(key);
int hashCode = (int)(bits ^ (bits >> 32));

28.3.2 Hash Codes for Strings
Search keys are often strings, so it is important to design a good hash function for strings. An
intuitive approach is to sum the Unicode of all characters as the hash code for the string. This
approach may work if two search keys in an application don’t contain the same letters, but it

collision

hash code

hashCode()

byte, short, int, char

float

long

folding

double

folding

1000 Chapter 28 Hashing

will produce a lot of collisions if the search keys contain the same letters, such as tod and
dot.

A better approach is to generate a hash code that takes the position of characters into con-
sideration. Specifically, let the hash code be

where si is s.charAt(i). This expression is a polynomial for some positive b, so this is called
a polynomial hash code. Using Horner’s rule for polynomial evaluation (see Section 9.4), the
hash code can be calculated efficiently as follows:

This computation can cause an overflow for long strings, but arithmetic overflow is ignored in
Java. You should choose an appropriate value b to minimize collisions. Experiments show
that good choices for b are 31, 33, 37, 39, and 41. In the String class, the hashCode is over-
ridden using the polynomial hash code with b being 31.

28.3.3 Compressing Hash Codes
The hash code for a key can be a large integer that is out of the range for the hash-table index,
so you need to scale it down to fit in the index’s range. Assume the index for a hash table is
between 0 and N-1. The most common way to scale an integer to between 0 and N-1 is to use

h(hashCode) = hashCode % N

To ensure that the indices are spread evenly, choose N to be a prime number greater than 2.
Ideally, you should choose a prime number for N. However, it is time consuming to find a

large prime number. In the Java API implementation for java.util.HashMap, N is set to a
value of the power of 2. There is a good reason for this choice. When N is a value of the power
of 2,

h(hashCode) = hashCode % N

is the same as

h(hashCode) = hashCode & (N – 1)

The ampersand, &, is a bitwise AND operator (see Appendix G, Bitwise Operations). The
AND of two corresponding bits yields a 1 if both bits are 1. For example, assume N = 4 and
hashCode = 11, 11 % 4 = 3, which is the same as 01011 & 00011 = 11. The & opera-
tor can be performed much faster than the % operator.

To ensure that the hashing is evenly distributed, a supplemental hash function is also used
along with the primary hash function in the implementation of java.util.HashMap. The
supplemental function is defined as:

private static int supplementalHash(int h) {
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);

}

^ and >>> are bitwise exclusive-or and unsigned right-shift operations (also introduced in
Appendix G). The bitwise operations are much faster than the multiplication, division, and
remainder operations. You should replace these operations with the bitwise operations when-
ever possible.

The complete hash function is defined as:

h(hashCode) = supplementalHash(hashCode) % N

(. . . ((s0*b + s1)b + s2)b + . . . + sN-2)b + sN-1

s0*b
(N-1) + s1*b

(N-2) + . . . + sN-1

polynomial hash code

28.4 Handling Collisions Using Open Addressing 1001

✓Point✓Check

Key
Point

This is the same as

h(hashCode) = supplementalHash(hashCode) & (N – 1)

since N is a value of the power of 2.

28.2 What is a hash code? What is the hash code for Byte, Short, Integer, and
Character?

28.3 How is the hash code for a Float object computed?

28.4 How is the hash code for a Long object computed?

28.5 How is the hash code for a Double object computed?

28.6 How is the hash code for a String object computed?

28.7 How is a hash code compressed to an integer representing the index in a hash table?

28.8 If N is a value of the power of 2, is N / 2 same as N >> 1?

28.9 If N is a value of the power of 2, is m % N same as m & (N – 1) for any integer m?

28.4 Handling Collisions Using Open Addressing
A collision occurs when two keys are mapped to the same index in a hash table.
Generally, there are two ways for handling collisions: open addressing and separate
chaining.

Open addressing is the process of finding an open location in the hash table in the event of a
collision. Open addressing has several variations: linear probing, quadratic probing, and
double hashing.

28.4.1 Linear Probing
When a collision occurs during the insertion of an entry to a hash table, linear probing finds
the next available location sequentially. For example, if a collision occurs at hashTable[k %
N], check whether hashTable[(k+1) % N] is available. If not, check hashTable[(k+2)
% N] and so on, until an available cell is found, as shown in Figure 28.2.

Note
When probing reaches the end of the table, it goes back to the beginning of the table.
Thus, the hash table is treated as if it were circular.

open addressing

0

1

2

3

4

5

6

7

8

9

10

key: 44

key: 4

key: 16

key: 28

key: 21

For simplicity, only the keys are
shown and the values are not
shown. Here N is 11 and
index = key % N.

New element with
key 26 to be inserted

Probe 3 times before
finding an empty

cell

FIGURE 28.2 Linear probing finds the next available location sequentially.

add entry

linear probing

circular hash table

1002 Chapter 28 Hashing

FIGURE 28.3 The animation tool shows how linear probing works.

To search for an entry in the hash table, obtain the index, say k, from the hash function for
the key. Check whether hashTable[k % n] contains the entry. If not, check whether
hashTable[(k+1) % n] contains the entry, and so on, until it is found, or an empty cell is
reached.

To remove an entry from the hash table, search the entry that matches the key. If the entry
is found, place a special marker to denote that the entry is available. Each cell in the hash table
has three possible states: occupied, marked, or empty. Note that a marked cell is also available
for insertion.

Linear probing tends to cause groups of consecutive cells in the hash table to be occupied.
Each group is called a cluster. Each cluster is actually a probe sequence that you must search
when retrieving, adding, or removing an entry. As clusters grow in size, they may merge into even
larger clusters, further slowing down the search time. This is a big disadvantage of linear probing.

Pedagogical Note
For an interactive GUI demo to see how linear probing works, go to www.cs.armstrong.
edu/liang/animation/HashingLinearProbingAnimation.html, as shown in Figure 28.3.

28.4.2 Quadratic Probing
Quadratic probing can avoid the clustering problem that can occur in linear probing. Linear
probing looks at the consecutive cells beginning at index k. Quadratic probing, on the other

search entry

remove entry

cluster

linear probing animation on
Companion Website

quadratic probing

www.cs.armstrong.edu/liang/animation/HashingLinearProbingAnimation.html
www.cs.armstrong.edu/liang/animation/HashingLinearProbingAnimation.html

28.4 Handling Collisions Using Open Addressing 1003

hand, looks at the cells at indices % n, for that is, k, % n, %
n, % n, . . . , and so on, as shown in Figure 28.4.

Quadratic probing works in the same way as linear probing except for a change in the
search sequence. Quadratic probing avoids linear probing’s clustering problem, but it has its
own clustering problem, called secondary clustering; that is, the entries that collide with an
occupied entry use the same probe sequence.

Linear probing guarantees that an available cell can be found for insertion as long as the
table is not full. However, there is no such guarantee for quadratic probing.

Pedagogical Note
For an interactive GUI demo to see how quadratic probing works, go to www.cs.armstrong.
edu/liang/animation/HashingQuadraticProbingAnimation.html, as shown in Figure 28.5.

28.4.3 Double Hashing
Another open addressing scheme that avoids the clustering problem is known as double hash-
ing. Starting from the initial index k, both linear probing and quadratic probing add an incre-
ment to k to define a search sequence. The increment is 1 for linear probing and j2 for
quadratic probing. These increments are independent of the keys. Double hashing uses a sec-
ondary hash function on the keys to determine the increments to avoid the clustering problem.

For example, let the primary hash function h and secondary hash function h' on a hash
table of size 11 be defined as follows:

h(k) = k % 11;
h'(k) = 7 – k % 7;

For a search key of 12, we have

h(12) = 12 % 11 = 1;
h'(k) = 7 – 12 % 7 = 2;

The probe sequence for key 12 starts at index 1 with an increment 2, as shown in Figure 28.6.
The indices of the probe sequence are as follows: 1, 3, 5, 7, 9, 0, 2, 4, 6, 8, 10. This

sequence reaches the entire table. You should design your functions to produce a probe
sequence that reaches the entire table. Note that the second function should never have a zero
value, since zero is not an increment.

(k + 9)
(k + 4)(k + 1)j � 0,(k + j2)

0

1

2

3

4

5

6

7

8

9

10

key: 44

key: 4

key: 16

key: 28

key: 21

.

.

.

For simplicity, only the keys are
shown and not the e values. Here
N is 11 and index = key % N.

New element with
key 26 to be inserted

Quadratic probe 2
times before finding

an empty cell

FIGURE 28.4 Quadratic probing increases the next index in the sequence by j2 for
j = 1, 2, 3,

secondary clustering

quadratic probing animation
on Companion Website

double hashing

www.cs.armstrong.edu/liang/animation/HashingQuadraticProbingAnimation.html
www.cs.armstrong.edu/liang/animation/HashingQuadraticProbingAnimation.html

1004 Chapter 28 Hashing

FIGURE 28.5 The animation tool shows how quadratic probing works.

0

1

2

3

4

5

6

7

8

9

10

key: 45

key: 4

key: 58

key: 27

key: 23

h(12)

0

1

2

3

4

5

6

7

8

9

10

key: 45

key: 4

key: 58

key: 27

key: 23

h(12) + h'(12)

0

1

2

3

4

5

6

7

8

9

10

key: 45

key: 4

key: 58

key: 27

key: 23

h(12) + 2*h'(12)

.

.
.
.

.

.

FIGURE 28.6 The secondary hash function in a double hashing determines the increment of the next index in the probe
sequence.

✓Point✓Check
28.10 What is open addressing? What is linear probing? What is quadratic probing? What is

double hashing?

28.11 Describe the clustering problem for linear probing.

28.12 What is secondary clustering?

28.6 Load Factor and Rehashing 1005

28.13 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120, 39,
45, and 40, using linear probing.

28.14 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120, 39,
45, and 40, using quadratic probing.

28.15 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120, 39,
45, and 40, using double hashing with the following functions:

h(k) = k % 11;
h'(k) = 7 – k % 7;

28.5 Handling Collisions Using Separate Chaining
The separate chaining scheme places all entries with the same hash index in the same
location, rather than finding new locations. Each location in the separate chaining
scheme uses a bucket to hold multiple entries.

You can implement a bucket using an array, ArrayList, or LinkedList. We will use
LinkedList for demonstration. You can view each cell in the hash table as the reference to
the head of a linked list, and elements in the linked list are chained starting from the head, as
shown in Figure 28.7.

28.16 Show the hash table of size 11 after inserting entries with the keys 34, 29, 53, 44, 120,
39, 45, and 40, using separate chaining.

28.6 Load Factor and Rehashing
The load factor measures how full a hash table is. If the load factor is exceeded,
increase the hash-table size and reload the entries into the new larger hash table. This
is called rehashing.

Load factor (lambda) measures how full a hash table is. It is the ratio of the number of

elements to the size of the hash table, that is, where n denotes the number of elements

and N the number of locations in the hash table.
Note that is zero if the map is empty. For the open addressing scheme, is between 0 and

1; is 1 if the hash table is full. For the separate chaining scheme, can be any value. As lll

ll

l =
n

N
,

l

Key
Point

separate chaining

implementing bucket

✓Point✓Check

0

1

2

3
4

5

6

7

8

9

10

key: 44

key: 28

key: 21

key: 26key: 4

key: 16

New element with
key 26 to be inserted

For simplicity, only the keys are
shown, and not the values. Here
N is 11 and index = key % N.

.

.

.

FIGURE 28.7 Separate chaining scheme chains the entries with the same hash index in a
bucket.

Key
Point

rehashing

load factor

1006 Chapter 28 Hashing

increases, the probability of a collision increases. Studies show that you should maintain the
load factor under 0.5 for the open addressing scheme and under 0.9 for the separate chain-
ing scheme.

Keeping the load factor under a certain threshold is important for the performance of hash-
ing. In the implementation of the java.util.HashMap class in the Java API, the threshold
0.75 is used. Whenever the load factor exceeds the threshold, you need to increase the hash-
table size and rehash all the entries in the map into the new larger hash table. Notice that you
need to change the hash functions, since the hash-table size has been changed. To reduce the
likelihood of rehashing, since it is costly, you should at least double the hash-table size. Even
with periodic rehashing, hashing is an efficient implementation for map.

Pedagogical Note
For an interactive GUI demo to see how separate chaining works, go to www.cs.armstrong.
edu/liang/animation/HashingUsingSeparateChainingAnimation.html, as shown in Figure 28.8.

threshold

rehash

28.17 Assume the hash table has the initial size 4 and its load factor is 0.5; show the hash
table after inserting entries with the keys 34, 29, 53, 44, 120, 39, 45, and 40, using
linear probing.

28.18 Assume the hash table has the initial size 4 and its load factor is 0.5; show the hash
table after inserting entries with the keys 34, 29, 53, 44, 120, 39, 45, and 40, using
quadratic probing.

separate chaining animation
on Companion Website

✓Point✓Check

FIGURE 28.8 The animation tool shows how separate chaining works.

www.cs.armstrong.edu/liang/animation/HashingUsingSeparateChainingAnimation.html
www.cs.armstrong.edu/liang/animation/HashingUsingSeparateChainingAnimation.html

28.7 Implementing a Map Using Hashing 1007

28.19 Assume the hash table has the initial size 4 and its load factor is 0.5; show the hash
table after inserting entries with the keys 34, 29, 53, 44, 120, 39, 45, and 40, using
separate chaining.

28.7 Implementing a Map Using Hashing
A map can be implemented using hashing.

Now you understand the concept of hashing. You know how to design a good hash function to
map a key to an index in a hash table, how to measure performance using the load factor, and
how to increase the table size and rehash to maintain the performance. This section demon-
strates how to implement a map using separate chaining.

We design our custom Map interface to mirror java.util.Map and name the interface
MyMap and a concrete class MyHashMap, as shown in Figure 28.9.

Key
Point

MyHashMap<K, V>

+clear(): void

+containsKey(key: K): boolean

+containsValue(value: V): boolean

+entrySet(): Set<Entry<K, V>>

+get(key: K): V

+isEmpty(): boolean

+keySet(): Set<K>

+put(key: K, value: V): V

+remove(key: K): void

+size(): int

+values(): Set<V>

Removes all entries from this map.

Returns true if this map contains an entry for the
 specified key.

Returns true if this map maps one or more keys to the
 specified value.

Returns a set consisting of the keys in this map.

Returns a set consisting of the entries in this map.

Returns a value for the specified key in this map.

Returns true if this map contains no mappings.

Puts a mapping in this map.

Removes the entries for the specified key.

Returns the number of mappings in this map.

Returns a set consisting of the values in this map.

Creates an empty map with default capacity 4 and
 default load factor threshold 0.75f.

+MyHashMap()

Creates a map with a specified capacity and
 default load factor threshold 0.75f.

+MyHashMap(capacity: int)

Creates a map with a specified capacity and
 load factor threshold.

+MyHashMap(capacity: int,
 loadFactorThreshold: float)

Constructs an entry with the specified key and value.

Returns the key in the entry.

Returns the value in the entry.

-key: K

-value: V

+Entry(key: K, value: V)

+getkey(): Key

+getValue(): Value

MyMap.Entry<K, V>

«interface»
MyMap<K, V>

FIGURE 28.9 MyHashMap implements the MyMap interface.

1008 Chapter 28 Hashing

How do you implement MyHashMap? If you use an ArrayList and store a new entry at
the end of the list, the search time will be O(n). If you implement MyHashMap using a binary
tree, the search time will be O(log n) if the tree is well balanced. Nevertheless, you can imple-
ment MyHashMap using hashing to obtain an O(1) time search algorithm. Listing 28.1 shows
the MyMap interface and Listing 28.2 implements MyHashMap using separate chaining.

LISTING 28.1 MyMap.java
1 public interface MyMap<K, V> {
2 /** Remove all of the entries from this map */
3 public void clear();
4
5 /** Return true if the specified key is in the map */
6 public boolean containsKey(K key);
7
8 /** Return true if this map contains the specified value */
9 public boolean containsValue(V value);
10
11 /** Return a set of entries in the map */
12 public java.util.Set<Entry<K, V>> entrySet();
13
14 /** Return the value that matches the specified key */
15 public V get(K key);
16
17 /** Return true if this map doesn't contain any entries */
18 public boolean isEmpty();
19
20 /** Return a set consisting of the keys in this map */
21 public java.util.Set<K> keySet();
22
23 /** Add an entry (key, value) into the map */
24 public V put(K key, V value);
25
26 /** Remove an entry for the specified key */
27 public void remove(K key);
28
29 /** Return the number of mappings in this map */
30 public int size();
31
32 /** Return a set consisting of the values in this map */
33 public java.util.Set<V> values();
34
35 /** Define an inner class for Entry */
36 public static class Entry<K, V> {
37 K key;
38 V value;
39
40 public Entry(K key, V value) {
41 this.key = key;
42 this.value = value;
43 }
44
45 public K getKey() {
46 return key;
47 }
48
49 public V getValue() {
50 return value;
51 }

interface MyMap

clear

containsKey

containsValue

entrySet

get

isEmpty

keySet

put

remove

size

values

Entry inner class

28.7 Implementing a Map Using Hashing 1009

52
53 @Override
54 public String toString() {
55 return "[" + key + ", " + value + "]";
56 }
57 }
58 }

LISTING 28.2 MyHashMap.java
1 import java.util.LinkedList;
2
3
4 // Define the default hash-table size. Must be a power of 2
5 private static int DEFAULT_INITIAL_CAPACITY = 4;
6
7 // Define the maximum hash-table size. 1 << 30 is same as 2^30
8 private static int MAXIMUM_CAPACITY = 1 << 30;
9
10 // Current hash-table capacity. Capacity is a power of 2
11 private int capacity;
12
13 // Define default load factor
14 private static float DEFAULT_MAX_LOAD_FACTOR = 0.75f;
15
16 // Specify a load factor used in the hash table
17 private float loadFactorThreshold;
18
19 // The number of entries in the map
20 private int size = 0;
21
22 // Hash table is an array with each cell being a linked list
23 LinkedList<MyMap.Entry<K,V>>[] table;
24
25 /** Construct a map with the default capacity and load factor */
26
27 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_MAX_LOAD_FACTOR);
28 }
29
30 /** Construct a map with the specified initial capacity and
31 * default load factor */
32
33 this(initialCapacity, DEFAULT_MAX_LOAD_FACTOR);
34 }
35
36 /** Construct a map with the specified initial capacity
37 * and load factor */
38
39 if (initialCapacity > MAXIMUM_CAPACITY)
40 this.capacity = MAXIMUM_CAPACITY;
41 else

42 this.capacity = trimToPowerOf2(initialCapacity);
43
44 this.loadFactorThreshold = loadFactorThreshold;
45 table = new LinkedList[capacity];
46 }
47
48 @Override /** Remove all of the entries from this map */
49
50 size = 0;

public void clear() {

public MyHashMap(int initialCapacity, float loadFactorThreshold) {

public MyHashMap(int initialCapacity) {

public MyHashMap() {

public class MyHashMap<K, V> implements MyMap<K, V> { class MyHashMap

default initial capacity

maximum capacity

current capacity

default load factor

load-factor threshold

size

hash table

no-arg constructor

constructor

constructor

clear

1010 Chapter 28 Hashing

51 removeEntries();
52 }
53
54 @Override /** Return true if the specified key is in the map */
55
56 if (get(key) != null)
57 return true;
58 else

59 return false;
60 }
61
62 @Override /** Return true if this map contains the value */
63
64 for (int i = 0; i < capacity; i++) {
65 if (table[i] != null) {
66 LinkedList<Entry<K, V>> bucket = table[i];
67 for (Entry<K, V> entry: bucket)
68 if (entry.getValue().equals(value))
69 return true;
70 }
71 }
72
73 return false;
74 }
75
76 @Override /** Return a set of entries in the map */
77
78 java.util.Set<MyMap.Entry<K, V>> set =
79 new java.util.HashSet<MyMap.Entry<K, V>>();
80
81 for (int i = 0; i < capacity; i++) {
82 if (table[i] != null) {
83 LinkedList<Entry<K, V>> bucket = table[i];
84 for (Entry<K, V> entry: bucket)
85 set.add(entry);
86 }
87 }
88
89 return set;
90 }
91
92 @Override /** Return the value that matches the specified key */
93
94 int bucketIndex = hash(key.hashCode());
95 if (table[bucketIndex] != null) {
96 LinkedList<Entry<K, V>> bucket = table[bucketIndex];
97 for (Entry<K, V> entry: bucket)
98 if (entry.getKey().equals(key))
99 return entry.getValue();
100 }
101
102 return null;
103 }
104
105 @Override /** Return true if this map contains no entries */
106
107 return size == 0;
108 }
109
110 @Override /** Return a set consisting of the keys in this map */

public boolean isEmpty() {

public V get(K key) {

public java.util.Set<MyMap.Entry<K,V>> entrySet() {

public boolean containsValue(V value) {

public boolean containsKey(K key) {containsKey

containsValue

entrySet

get

isEmpty

28.7 Implementing a Map Using Hashing 1011

111
112 java.util.Set<K> set = new java.util.HashSet<K>();
113
114 for (int i = 0; i < capacity; i++) {
115 if (table[i] != null) {
116 LinkedList<Entry<K, V>> bucket = table[i];
117 for (Entry<K, V> entry: bucket)
118 set.add(entry.getKey());
119 }
120 }
121
122 return set;
123 }
124
125 @Override /** Add an entry (key, value) into the map */
126
127 if (get(key) != null) { // The key is already in the map
128 int bucketIndex = hash(key.hashCode());
129 LinkedList<Entry<K, V>> bucket = table[bucketIndex];
130 for (Entry<K, V> entry: bucket)
131 if (entry.getKey().equals(key)) {
132 V oldValue = entry.getValue();
133 // Replace old value with new value
134 entry.value = value;
135 // Return the old value for the key
136 return oldValue;
137 }
138 }
139
140 // Check load factor
141 if (size >= capacity * loadFactorThreshold) {
142 if (capacity == MAXIMUM_CAPACITY)
143 throw new RuntimeException("Exceeding maximum capacity");
144
145 rehash();
146 }
147
148 int bucketIndex = hash(key.hashCode());
149
150 // Create a linked list for the bucket if not already created
151 if (table[bucketIndex] == null) {
152 table[bucketIndex] = new LinkedList<Entry<K, V>>();
153 }
154
155 // Add a new entry (key, value) to hashTable[index]
156 table[bucketIndex].add(new MyMap.Entry<K, V>(key, value));
157
158 size++; // Increase size
159
160 return value;
161 }
162
163 @Override /** Remove the entries for the specified key */
164
165 int bucketIndex = hash(key.hashCode());
166
167 // Remove the first entry that matches the key from a bucket
168 if (table[bucketIndex] != null) {
169 LinkedList<Entry<K, V>> bucket = table[bucketIndex];
170 for (Entry<K, V> entry: bucket)

public void remove(K key) {

public V put(K key, V value) {

public java.util.Set<K> keySet() { keySet

put

remove

1012 Chapter 28 Hashing

171 if (entry.getKey().equals(key)) {
172 bucket.remove(entry);
173 size—–; // Decrease size
174 break; // Remove just one entry that matches the key
175 }
176 }
177 }
178
179 @Override /** Return the number of entries in this map */
180
181 return size;
182 }
183
184 @Override /** Return a set consisting of the values in this map */
185
186 java.util.Set<V> set = new java.util.HashSet<V>();
187
188 for (int i = 0; i < capacity; i++) {
189 if (table[i] != null) {
190 LinkedList<Entry<K, V>> bucket = table[i];
191 for (Entry<K, V> entry: bucket)
192 set.add(entry.getValue());
193 }
194 }
195
196 return set;
197 }
198
199 /** Hash function */
200
201 return supplementalHash(hashCode) & (capacity - 1);
202 }
203
204 /** Ensure the hashing is evenly distributed */
205
206 h ^= (h >>> 20) ^ (h >>> 12);
207 return h ^ (h >>> 7) ^ (h >>> 4);
208 }
209
210 /** Return a power of 2 for initialCapacity */
211
212 int capacity = 1;
213 while (capacity < initialCapacity) {
214 capacity <<= 1; // Same as capacity *= 2. <= is more efficient
215 }
216
217 return capacity;
218 }
219
220 /** Remove all entries from each bucket */
221
222 for (int i = 0; i < capacity; i++) {
223 if (table[i] != null) {
224 table[i].clear();
225 }
226 }
227 }
228
229 /** Rehash the map */
230 private void rehash() {

private void removeEntries() {

private int trimToPowerOf2(int initialCapacity) {

private static int supplementalHash(int h) {

private int hash(int hashCode) {

public java.util.Set<V> values() {

public int size() {size

values

hash

supplementalHash

trimToPowerOf2

removeEntries

rehash

28.7 Implementing a Map Using Hashing 1013

231 java.util.Set<Entry<K, V>> set = entrySet(); // Get entries
232 capacity <<= 1; // Same as capacity *= 2. <= is more efficient
233 table = new LinkedList[capacity]; // Create a new hash table
234 size = 0; // Reset size to 0
235
236 for (Entry<K, V> entry: set) {
237 put(entry.getKey(), entry.getValue()); // Store to new table
238 }
239 }
240
241 @Override /** Return a string representation for this map */
242
243 StringBuilder builder = new StringBuilder("[");
244
245 for (int i = 0; i < capacity; i++) {
246 if (table[i] != null && table[i].size() > 0)
247 for (Entry<K, V> entry: table[i])
248 builder.append(entry);
249 }
250
251 builder.append("]");
252 return builder.toString();
253 }
254 }

The MyHashMap class implements the MyMap interface using separate chaining. The
parameters that determine the hash-table size and load factors are defined in the class. The
default initial capacity is 4 (line 5) and the maximum capacity is (line 8). The current
hash-table capacity is designed as a value of the power of 2 (line 11). The default load-factor
threshold is 0.75f (line 14). You can specify a custom load-factor threshold when construct-
ing a map. The custom load-factor threshold is stored in loadFactorThreshold (line 17).
The data field size denotes the number of entries in the map (line 20). The hash table is an
array. Each cell in the array is a linked list (line 23).

Three constructors are provided to construct a map. You can construct a default map with
the default capacity and load-factor threshold using the no-arg constructor (lines 26–28), a
map with the specified capacity and a default load-factor threshold (lines 32–34), and a map
with the specified capacity and load-factor threshold (lines 38–46).

The clear method removes all entries from the map (lines 49–52). It invokes
removeEntries(), which deletes all entries in the buckets (lines 221–227). The
removeEntries() method takes O(capacity) time to clear all entries in the table.

The containsKey(key) method checks whether the specified key is in the map by
invoking the get method (lines 55–60). Since the get method takes O(1) time, the
containsKey(key) method takes O(1) time.

The containsValue(value) method checks whether the value is in the map (lines
63–74). This method takes time. It is actually O(capacity), since

The entrySet() method returns a set that contains all entries in the map (lines 77–90).
This method takes O(capacity) time.

The get(key) method returns the value of the first entry with the specified key (lines
93–103). This method takes O(1) time.

The isEmpty() method simply returns true if the map is empty (lines 106–108). This
method takes O(1) time.

The keySet() method returns all keys in the map as a set. The method finds the keys from
each bucket and adds them to a set (lines 111–123). This method takes O(capacity) time.

The put(key, value) method adds a new entry into the map. The method first tests if
the key is already in the map (line 127), if so, it locates the entry and replaces the old value

capacity 7 size.
O(capacity + size)

230

public String toString() { toString

hash-table parameters

three constructors

clear

containsKey

containsValue

entrySet

get

isEmpty

keySet

put

1014 Chapter 28 Hashing

TABLE 28.1 Time Complexities for Methods in
MyHashMap

Methods Time

clear() O(capacity)

containsKey(key: Key) O(1)

containsValue(value: V) O(capacity)

entrySet() O(capacity)

get(key: K) O(1)

isEmpty() O(1)

keySet() O(capacity)

put(key: K, value: V) O(1)

remove(key: K) O(1)

size() O(1)

values() O(capacity)

rehash() O(capacity)

with the new value in the entry for the key (line 134) and the old value is returned (line 136).
If the key is new in the map, the new entry is created in the map (line 156). Before inserting
the new entry, the method checks whether the size exceeds the load-factor threshold (line
141). If so, the program invokes rehash() (line 145) to increase the capacity and store
entries into the new larger hash table.

The rehash() method first copies all entries in a set (line 231), doubles the capacity (line
232), creates a new hash table (line 233), and resets the size to 0 (line 234). The method then
copies the entries into the new hash table (lines 236–238). The rehash method takes
O(capacity) time. If no rehash is performed, the put method takes O(1) time to add a new
entry.

The remove(key) method removes the entry with the specified key in the map (lines
164–177). This method takes O(1) time.

The size() method simply returns the size of the map (lines 180–182). This method takes
O(1) time.

The values() method returns all values in the map. The method examines each entry
from all buckets and adds it to a set (lines 185–197). This method takes O(capacity) time.

The hash() method invokes the supplementalHash to ensure that the hashing is evenly
distributed to produce an index for the hash table (lines 200–208). This method takes O(1)
time.

Table 28.1 summarizes the time complexities of the methods in MyHashMap.

rehash

remove

size

values

hash

Since rehashing does not happen very often, the time complexity for the put method is
O(1). Note that the complexities of the clear, entrySet, keySet, values, and rehash
methods depend on capacity, so to avoid poor performance for these methods you should
choose an initial capacity carefully.

Listing 28.3 gives a test program that uses MyHashMap.

28.7 Implementing a Map Using Hashing 1015

LISTING 28.3 TestMyHashMap.java
1 public class TestMyHashMap {
2 public static void main(String[] args) {
3 // Create a map
4 MyMap<String, Integer> map = new MyHashMap<String, Integer>();
5 map.put("Smith", 30);
6 map.put("Anderson", 31);
7 map.put("Lewis", 29);
8 map.put("Cook", 29);
9 map.put("Smith", 65);
10
11 System.out.println("Entries in map: " + map);
12
13 System.out.println("The age for Lewis is " +
14 map.get("Lewis"));
15
16 System.out.println("Is Smith in the map? " +
17 map.containsKey("Smith"));
18 System.out.println("Is age 33 in the map? " +
19 map.containsValue(33));
20
21 map.remove("Smith");
22 System.out.println("Entries in map: " + map);
23
24 map.clear();
25 System.out.println("Entries in map: " + map);
26 }
27 }

create a map
put entries

display entries

get value

is key in map?

is value in map?

remove entry

Entries in map: [[Anderson, 31][Smith, 65][Lewis, 29][Cook, 29]]
The age for Lewis is 29
Is Smith in the map? true
Is age 33 in the map? false
Entries in map: [[Anderson, 31][Lewis, 29][Cook, 29]]
Entries in map: []

The program creates a map using MyHashMap (line 4) and adds five entries into the map
(lines 5–9). Line 5 adds key Smith with value 30 and line 9 adds Smith with value 65. The
latter value replaces the former value. The map actually has only four entries. The program
displays the entries in the map (line 11), gets a value for a key (line 14), checks whether the
map contains the key (line 17) and a value (line 19), removes an entry with the key Smith
(line 21), and redisplays the entries in the map (line 22). Finally, the program clears the map
(line 24) and displays an empty map (line 25).

28.20 What is 1 << 30 in line 8 in Listing 28.2? What are the integers resulted from 1 << 1,
1 << 2, and 1 << 3?

28.21 What are the integers resulted from 32 >> 1, 32 >> 2, 32 >> 3, and 32 >> 4?

28.22 In Listing 28.2, will the program work if LinkedList is replaced by ArrayList?

28.23 Describe how the put(key, value) method is implemented in the MyHashMap
class.

28.24 Show the printout of the following code.

MyMap<String, String> map = new MyHashMap<String, String>();
map.put("Texas", "Dallas");

✓Point✓Check

1016 Chapter 28 Hashing

Key
Point

Removes all elements from this set.

Returns true if the element is in the set.

Adds the element to the set and returns true if the element is added
 successfully.

Removes the element from the set and returns true if the set
 contained the element.

Returns true if this set does not contain any elements.

Returns the number of elements in this set.

MyHashSet<E>

+clear(): void

«interface»
MySet<E>

+size(): int

+isEmpty(): boolean

+remove(e: E): boolean

+add(e: E): boolean

+contains(e: E): boolean

«interface»
java.lang.Iterable<E>

Creates an empty set with default capacity 4 and default load
 factor threshold 0.75f.

+MyHashSet()

Creates a set with a specified capacity and default load factor
 threshold 0.75f.

+MyHashMap(capacity: int)

Creates a set with a specified capacity and load factor threshold.+MyHashMap(capacity: int,
 loadFactorThreshold: float)

+iterator(): java.util.Iterator<E>

FIGURE 28.10 MyHashSet implements the MySet interface.

map.put("Oklahoma", "Norman");
map.put("Texas", "Austin");
map.put("Oklahoma", "Tulsa");

System.out.println(map.get("Texas"));
System.out.println(map.size());

28.8 Implementing Set Using Hashing
A hash set can be implemented using a hash map.

A set (introduced in Chapter 23) is a data structure that stores distinct values. The Java
Collections Framework defines the java.util.Set interface for modeling sets. Three
concrete implementations are java.util.HashSet, java.util.LinkedHashSet, and
java.util.TreeSet. java.util.HashSet is implemented using hashing,
java.util.LinkedHashSet using LinkedList, and java.util.TreeSet using red-
black trees.

You can implement MyHashSet using the same approach as for implementing
MyHashMap. The only difference is that key/value pairs are stored in the map, while elements
are stored in the set.

We design our custom Set interface to mirror java.util.Set and name the interface
MySet and a concrete class MyHashSet, as shown in Figure 28.10.

hash set
hash map

set

MySet

MyHashSet

28.8 Implementing Set Using Hashing 1017

clear

Listing 28.4 shows the MySet interface and Listing 28.5 implements MyHashSet using
separate chaining.

LISTING 28.4 MySet.java
1 public interface MySet<E> extends java.lang.Iterable<E> {
2 /** Remove all elements from this set */
3 public void clear();
4
5 /** Return true if the element is in the set */
6 public boolean contains(E e);
7
8 /** Add an element to the set */
9 public boolean add(E e);
10
11 /** Remove the element from the set */
12 public boolean remove(E e);
13
14 /** Return true if the set doesn't contain any elements */
15 public boolean isEmpty();
16
17 /** Return the number of elements in the set */
18 public int size();
19
20 /** Return an iterator for the elements in this set */
21 public java.util.Iterator iterator();
22 }

LISTING 28.5 MyHashSet.java
1 import java.util.LinkedList;
2
3
4 // Define the default hash-table size. Must be a power of 2
5 private static int DEFAULT_INITIAL_CAPACITY = 4;
6
7 // Define the maximum hash-table size. 1 << 30 is same as 2^30
8 private static int MAXIMUM_CAPACITY = 1 << 30;
9
10 // Current hash-table capacity. Capacity is a power of 2
11 private int capacity;
12
13 // Define default load factor
14 private static float DEFAULT_MAX_LOAD_FACTOR = 0.75f;
15
16 // Specify a load-factor threshold used in the hash table
17 private float loadFactorThreshold;
18
19 // The number of elements in the set
20 private int size = 0;
21
22 // Hash table is an array with each cell being a linked list
23 private LinkedList<E>[] table;
24
25 /** Construct a set with the default capacity and load factor */
26
27 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_MAX_LOAD_FACTOR);
28 }
29

public MyHashSet() {

public class MyHashSet<E> implements MySet<E> {

contains

add

remove

isEmpty

size

iterator

class MyHashSet

default initial capacity

maximum capacity

current capacity

default max load factor

load-factor threshold

size

hash table

no-arg constructor

1018 Chapter 28 Hashing

30 /** Construct a set with the specified initial capacity and
31 * default load factor */
32
33 this(initialCapacity, DEFAULT_MAX_LOAD_FACTOR);
34 }
35
36 /** Construct a set with the specified initial capacity
37 * and load factor */
38
39 if (initialCapacity > MAXIMUM_CAPACITY)
40 this.capacity = MAXIMUM_CAPACITY;
41 else

42 this.capacity = trimToPowerOf2(initialCapacity);
43
44 this.loadFactorThreshold = loadFactorThreshold;
45 table = new LinkedList[capacity];
46 }
47
48 @Override /** Remove all elements from this set */
49
50 size = 0;
51 removeElements();
52 }
53
54 @Override /** Return true if the element is in the set */
55
56 int bucketIndex = hash(e.hashCode());
57 if (table[bucketIndex] != null) {
58 LinkedList<E> bucket = table[bucketIndex];
59 for (E element: bucket)
60 if (element.equals(e))
61 return true;
62 }
63
64 return false;
65 }
66
67 @Override /** Add an element to the set */
68
69 if (contains(e)) // Duplicate element not stored
70 return false;
71
72 if (size > capacity * loadFactorThreshold) {
73 if (capacity == MAXIMUM_CAPACITY)
74 throw new RuntimeException("Exceeding maximum capacity");
75
76 rehash();
77 }
78
79 int bucketIndex = hash(e.hashCode());
80
81 // Create a linked list for the bucket if not already created
82 if (table[bucketIndex] == null) {
83 table[bucketIndex] = new LinkedList<E>();
84 }
85
86 // Add e to hashTable[index]
87 table[bucketIndex].add(e);
88
89 size++; // Increase size

public boolean add(E e) {

public boolean contains(E e) {

public void clear() {

public MyHashSet(int initialCapacity, float loadFactorThreshold) {

public MyHashSet(int initialCapacity) {

clear

contains

add

constructor

constructor

28.8 Implementing Set Using Hashing 1019

remove

90
91 return true;
92 }
93
94 @Override /** Remove the element from the set */
95
96 if (!contains(e))
97 return false;
98
99 int bucketIndex = hash(e.hashCode());
100
101 // Create a linked list for the bucket if not already created
102 if (table[bucketIndex] != null) {
103 LinkedList<E> bucket = table[bucketIndex];
104 for (E element: bucket)
105 if (e.equals(element)) {
106 bucket.remove(element);
107 break;
108 }
109 }
110
111 size——; // Decrease size
112
113 return true;
114 }
115
116 @Override /** Return true if the set contain no elements */
117
118 return size == 0;
119 }
120
121 @Override /** Return the number of elements in the set */
122
123 return size;
124 }
125
126 @Override /** Return an iterator for the elements in this set */
127
128 return new MyHashSetIterator(this);
129 }
130
131 /** Inner class for iterator */
132
133 // Store the elements in a list
134 private java.util.ArrayList<E> list;
135 private int current = 0; // Point to the current element in list
136 private MyHashSet<E> set;
137
138 /** Create a list from the set */
139 public MyHashSetIterator(MyHashSet<E> set) {
140 this.set = set;
141 list = setToList();
142 }
143
144 @Override /** Next element for traversing? */
145 public boolean hasNext() {
146 if (current < list.size())
147 return true;
148
149 return false;

private class MyHashSetIterator implements java.util.Iterator<E> {

public java.util.Iterator<E> iterator() {

public int size() {

public boolean isEmpty() {

public boolean remove(E e) {

isEmpty

size

iterator

inner class

1020 Chapter 28 Hashing

150 }
151
152 @Override /** Get current element and move cursor to the next */
153 public E next() {
154 return list.get(current++);
155 }
156
157 /** Remove the current element and refresh the list */
158 public void remove() {
159 // Delete the current element from the hash set
160 set.remove(list.get(current));
161 list.remove(current); // Remove current element from the list
162 }
163 }
164
165 /** Hash function */
166
167 return supplementalHash(hashCode) & (capacity - 1);
168 }
169
170 /** Ensure the hashing is evenly distributed */
171
172 h ^= (h >>> 20) ^ (h >>> 12);
173 return h ^ (h >>> 7) ^ (h >>> 4);
174 }
175
176 /** Return a power of 2 for initialCapacity */
177
178 int capacity = 1;
179 while (capacity < initialCapacity) {
180 capacity <<= 1; // Same as capacity *= 2. <= is more efficient
181 }
182
183 return capacity;
184 }
185
186 /** Remove all e from each bucket */
187
188 for (int i = 0; i < capacity; i++) {
189 if (table[i] != null) {
190 table[i].clear();
191 }
192 }
193 }
194
195 /** Rehash the set */
196
197 java.util.ArrayList<E> list = setToList(); // Copy to a list
198 capacity <<= 1; // Same as capacity *= 2. <= is more efficient
199 table = new LinkedList[capacity]; // Create a new hash table
200 size = 0;
201
202 for (E element: list) {
203 add(element); // Add from the old table to the new table
204 }
205 }
206
207 /** Copy elements in the hash set to an array list */
208 private java.util.ArrayList<E> setToList() {
209 java.util.ArrayList<E> list = new java.util.ArrayList<E>();

private void rehash() {

private void removeElements() {

private int trimToPowerOf2(int initialCapacity) {

private static int supplementalHash(int h) {

private int hash(int hashCode) {hash

supplementalHash

trimToPowerOf2

rehash

setToList

28.8 Implementing Set Using Hashing 1021

210
211 for (int i = 0; i < capacity; i++) {
212 if (table[i] != null) {
213 for (E e: table[i]) {
214 list.add(e);
215 }
216 }
217 }
218
219 return list;
220 }
221
222 @Override /** Return a string representation for this set */
223
224 java.util.ArrayList<E> list = setToList();
225 StringBuilder builder = new StringBuilder("[");
226
227 // Add the elements except the last one to the string builder
228 for (int i = 0; i < list.size() - 1; i++) {
229 builder.append(list.get(i) + ", ");
230 }
231
232 // Add the last element in the list to the string builder
233 if (list.size() == 0)
234 builder.append("]");
235 else

236 builder.append(list.get(list.size() - 1) + "]");
237
238 return builder.toString();
239 }
240 }

The MyHashSet class implements the MySet interface using separate chaining. Implementing
MyHashSet is very similar to implementing MyHashMap except for the following differences:

1. The elements are stored in the hash table for MyHashSet, but the entries (key/value
pairs) are stored in the hash table for MyHashMap.

2. MySet extends java.lang.Iterable and MyHashSet implements MySet and over-
rides iterator(). So the elements in MyHashSet are iterable.

Three constructors are provided to construct a set. You can construct a default set with the
default capacity and load factor using the no-arg constructor (lines 26–28), a set with the
specified capacity and a default load factor (lines 32–34), and a set with the specified capacity
and load factor (lines 38–46).

The clear method removes all elements from the set (lines 49–52). It invokes
removeElements(), which clears all table cells (line 190). Each table cell is a linked list
that stores the elements with the same hash code. The removeElements() method takes
O(capacity) time.

The contains(element) method checks whether the specified element is in the set by
examining whether the designated bucket contains the element (lines 55–65). This method
takes O(1) time.

The add(element) method adds a new element into the set. The method first checks if
the element is already in the set (line 69). If so, the method returns false. The method then
checks whether the size exceeds the load-factor threshold (line 72). If so, the program invokes
rehash() (line 76) to increase the capacity and store elements into the new larger hash table.

The rehash() method first copies all elements in a list (line 197), doubles the capacity
(line 198), obtains a new threshold (line 198), creates a new hash table (line 199), and resets

public String toString() { toString

MyHashSet vs. MyHashMap

three constructors

clear

contains

add

rehash

1022 Chapter 28 Hashing

TABLE 28.2 Time Complexities for
Methods in MyHashSet

Methods Time

clear() O(capacity)

contains(e: E) O(1)

add(e: E) O(1)

remove(e: E) O(1)

isEmpty() O(1)

size() O(1)

iterator() O(capacity)

rehash() O(capacity)

the size to 0 (line 200). The method then copies the elements into the new larger hash table
(lines 202–204). The rehash method takes O(capacity) time. If no rehash is performed, the
add method takes O(1) time to add a new element.

The remove(element) method removes the specified element in the set (lines 95–114).
This method takes O(1) time.

The size() method simply returns the number of elements in the set (lines 122–124).
This method takes O(1) time.

The iterator() method returns an instance of java.util.Iterator. The
MyHashSetIterator class implements java.util.Iterator to create a forward iterator.
When a MyHashSetIterator is constructed, it copies all the elements in the set to a list
(line 141). The variable current points to the element in the list. Initially, current is 0 (line
135), which points to the first element in the list. MyHashSetIterator implements the
methods hasNext(), next(), and remove() in java.util.Iterator. Invoking
hasNext() returns true if current < list.size(). Invoking next() returns the current
element and moves current to point to the next element (line 153). Invoking remove()
removes the current element in the iterator from the set.

The hash() method invokes the supplementalHash to ensure that the hashing is evenly
distributed to produce an index for the hash table (lines 166–174). This method takes O(1) time.

Table 28.2 summarizes the time complexity of the methods in MyHashSet.

iterator

hash

create a set
add elements

display elements
set size

Listing 28.6 gives a test program that uses MyHashSet.

LISTING 28.6 TestMyHashSet.java
1 public class TestMyHashSet {
2 public static void main(String[] args) {
3 // Create a MyHashSet
4 MySet<String> set = new MyHashSet<String>();
5 set.add("Smith");
6 set.add("Anderson");
7 set.add("Lewis");
8 set.add("Cook");
9 set.add("Smith");

10
11 System.out.println("Elements in set: " + set);
12 System.out.println("Number of elements in set: " + set.size());
13 System.out.println("Is Smith in set? " + set.contains("Smith"));

remove

size

Chapter Summary 1023

remove element

for-each loop

clear set

14
15 set.remove("Smith");
16 System.out.print("Names in set in uppercase are ");
17 for (String s: set)
18 System.out.print(s.toUpperCase() + " ");
19
20 set.clear();
21 System.out.println("\nElements in set: " + set);
22 }
23 }

Elements in set: [Cook, Anderson, Smith, Lewis]
Number of elements in set: 4
Is Smith in set? true
Names in set in uppercase are COOK ANDERSON LEWIS
Elements in set: []

The program creates a set using MyHashSet (line 4) and adds five elements to the set
(lines 5–9). Line 5 adds Smith and line 9 adds Smith again. Since only nonduplicate
elements are stored in the set, Smith appears in the set only once. The set actually has four
elements. The program displays the elements (line 11), gets its size (line 12), checks whether
the set contains a specified element (line 13), and removes an element (line 15). Since the
elements in a set are iterable, a for-each loop is used to traverse all elements in the set (lines
17–18). Finally, the program clears the set (line 20) and displays an empty set (line 21).

28.25 Why can you use a for-each loop to traverse the elements in a set?

28.26 Describe how the add(e) method is implemented in the MyHashSet class.

28.27 In Listing 28.5, the remove method in the iterator removes the current element from
the set. It also removes the current element from the internal list (line 161):

list.remove(current); // Remove current element from the list

Is this necessary?

KEY TERMS

✓Point✓Check

associative array 998
cluster 1002
dictionary 998
double hashing 1003
hash code 999
hash function 998
hash map 1016
hash set 1016
hash table 998

linear probing 1001
load factor 1005
open addressing 1001
perfect hash function 998
polynomial hash code 1000
quadratic probing 1002
rehashing 1005
secondary clustering 1003
separate chaining 1005

CHAPTER SUMMARY

1. A map is a data structure that stores entries. Each entry contains two parts: a key and a
value. The key is also called a search key, which is used to search for the correspond-
ing value. You can implement a map to obtain O(1) time complexity on searching,
retrieval, insertion, and deletion using the hashing technique.

1024 Chapter 28 Hashing

2. A set is a data structure that stores elements. You can use the hashing technique to
implement a set to achieve O(1) time complexity on searching, insertion, and deletion
for a set.

3. Hashing is a technique that retrieves the value using the index obtained from a key
without performing a search. A typical hash function first converts a search key to an
integer value called a hash code, then compresses the hash code into an index to the
hash table.

4. A collision occurs when two keys are mapped to the same index in a hash table.
Generally, there are two ways for handling collisions: open addressing and separate
chaining.

5. Open addressing is the process of finding an open location in the hash table in the
event of collision. Open addressing has several variations: linear probing, quadratic
probing, and double hashing.

6. The separate chaining scheme places all entries with the same hash index into the
same location, rather than finding new locations. Each location in the separate chain-
ing scheme is called a bucket. A bucket is a container that holds multiple entries.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

**28.1 (Implement MyMap using open addressing with linear probing) Create a new
concrete class that implements MyMap using open addressing with linear prob-
ing. For simplicity, use f(key) = key % size as the hash function, where
size is the hash-table size. Initially, the hash-table size is 4. The table size is dou-
bled whenever the load factor exceeds the threshold (0.5).

**28.2 (Implement MyMap using open addressing with quadratic probing) Create a new
concrete class that implements MyMap using open addressing with quadratic
probing. For simplicity, use f(key) = key % size as the hash function,
where size is the hash-table size. Initially, the hash-table size is 4. The table
size is doubled whenever the load factor exceeds the threshold (0.5).

**28.3 (Implement MyMap using open addressing with double hashing) Create a new
concrete class that implements MyMap using open addressing with double hash-
ing. For simplicity, use f(key) = key % size as the hash function, where
size is the hash-table size. Initially, the hash-table size is 4. The table size is
doubled whenever the load factor exceeds the threshold (0.5).

**28.4 (Modify MyHashMap with duplicate keys) Modify MyHashMap to allow dupli-
cate keys for entries. You need to modify the implementation for the put(key,
value) method. Also add a new method named getAll(key) that returns a
set of values that match the key in the map.

**28.5 (Implement MyHashSet using MyHashMap) Implement MyHashSet using
MyHashMap. Note that you can create entries with (key, key), rather than
(key, value).

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 1025

**28.6 (Animate linear probing) Write a Java applet that animates linear probing, as
shown in Figure 28.3. You can change the initial size of the hash-table in the
applet. Assume the load-factor threshold is 0.75.

**28.7 (Animate separate chaining) Write a Java applet that animates MyHashMap, as
shown in Figure 28.8. You can change the initial size of the table. Assume the
load-factor threshold is 0.75.

**28.8 (Animate quadratic probing) Write a Java applet that animates quadratic prob-
ing, as shown in Figure 28.5. You can change the initial size of the hash-table in
the applet. Assume the load-factor threshold is 0.75.

**28.9 (Compare MyHashSet and MyArrayList) MyArrayList is defined in Listing
26.3. Write a program that generates 1000000 random integers between 0 and
999999, shuffles them, and stores them in a MyArrayList and in a
MyHashSet. Generate a list of 1000000 random integers between 0 and
1999999. For each number in the list, test if it is in the array list and in the hash
set. Run your program to display the total test time for the array list and for the
hash set.

This page intentionally left blank

AVL TREES

Objectives
■ To know what an AVL tree is (§29.1).

■ To understand how to rebalance a tree using the LL rotation,
LR rotation, RR rotation, and RL rotation (§29.2).

■ To design the AVLTree class by extending the BST class (§29.3).

■ To insert elements into an AVL tree (§29.4).

■ To implement tree rebalancing (§29.5).

■ To delete elements from an AVL tree (§29.6).

■ To implement the AVLTree class (§29.7).

■ To test the AVLTree class (§29.8).

■ To analyze the complexity of search, insertion, and deletion operations
in AVL trees (§29.9).

CHAPTER

29

1028 Chapter 29 AVL Trees

FIGURE 29.1 The animation tool enables you to insert, delete, and search elements.

29.1 Introduction
AVL Tree is a balanced binary search tree.

Chapter 27 introduced binary search trees. The search, insertion, and deletion times for a binary
tree depend on the height of the tree. In the worst case, the height is O(n). If a tree is perfectly
balanced–i.e., a complete binary tree—its height is log n. Can we maintain a perfectly balanced
tree? Yes, but doing so will be costly. The compromise is to maintain a well-balanced tree—that
is, the heights of every node’s two subtrees are about the same. This chapter introduces AVL
trees. Web Chapters 47 and 48 introduce 2-4 trees and red-black trees.

AVL trees are well balanced. AVL trees were invented in 1962 by two Russian computer
scientists, G. M. Adelson-Velsky and E. M. Landis (hence the name AVL). In an AVL tree, the
difference between the heights of every node’s two subtrees is 0 or 1. It can be shown that the
maximum height of an AVL tree is O(log n).

The process for inserting or deleting an element in an AVL tree is the same as in a regular
binary search tree, except that you may have to rebalance the tree after an insertion or deletion
operation. The balance factor of a node is the height of its right subtree minus the height of its
left subtree. A node is said to be balanced if its balance factor is -1, 0, or 1. A node is con-
sidered left-heavy if its balance factor is -1, and right-heavy if its balance factor is +1.

Pedagogical Note
For an interactive GUI demo to see how an AVL tree works, go to www.cs.armstrong.edu/
liang/animation/AVLTreeAnimation.html, as shown in Figure 29.1.

29.2 Rebalancing Trees
After inserting or deleting an element from an AVL tree, if the tree becomes
unbalanced, perform a rotation operation to rebalance the tree.

If a node is not balanced after an insertion or deletion operation, you need to rebalance it. The
process of rebalancing a node is called rotation. There are four possible rotations: LL, RR,
LR, and RL.

LL rotation: An LL imbalance occurs at a node A, such that A has a balance factor of
-2 and a left child B with a balance factor of -1 or 0, as shown in Figure 29.2a. This type of
imbalance can be fixed by performing a single right rotation at A, as shown in Figure 29.2b.

RR rotation: An RR imbalance occurs at a node A, such that A has a balance factor of
+2 and a right child B with a balance factor of +1 or 0, as shown in Figure 29.3a. This

Key
Point

perfectly balanced tree

well-balanced tree

AVL tree

O(log n)

balance factor

balanced
left-heavy
right-heavy

AVL tree animation on
Companion Website

Key
Point

rotation

LL rotation

LL imbalance

RR rotation

RR imbalance

www.cs.armstrong.edu/liang/animation/AVLTreeAnimation.html
www.cs.armstrong.edu/liang/animation/AVLTreeAnimation.html

29.2 Rebalancing Trees 1029

A �2

B�1 or 0

T2

T3

T1h � 1

h

h

T2’s height is h or
h � 1

h � 1

A 0 or �1

B0 or 1

T2 T3

T1

h h

(a) (b)

A �2

B �1 or 0

T2

T3

T1 h � 1

h

h

T2’s height is
h or h � 1

h � 1

A0 or �1

B 0 or �1

T2T3

T1

hh

(a) (b)

FIGURE 29.3 An RR rotation fixes an RR imbalance.

FIGURE 29.2 An LL rotation fixes an LL imbalance.

type of imbalance can be fixed by performing a single left rotation at A, as shown in
Figure 29.3b.

LR rotation: An LR imbalance occurs at a node A, such that A has a balance factor of -2
and a left child B with a balance factor of +1, as shown in Figure 29.4a. Assume B’s right child
is C. This type of imbalance can be fixed by performing a double rotation at A (first a single
left rotation at B and then a single right rotation at A), as shown in Figure 29.4b.

RL rotation: An RL imbalance occurs at a node A, such that A has a balance factor of +2
and a right child B with a balance factor of -1, as shown in Figure 29.5a. Assume B’s left
child is C. This type of imbalance can be fixed by performing a double rotation at A (first a
single right rotation at B and then a single left rotation at A), as shown in Figure 29.5b.

29.1 What is an AVL tree? Describe the following terms: balance factor, left-heavy, and
right-heavy.

29.2 Show the balance factor of each node in the trees shown in Figure 29.6.

29.3 Describe LL rotation, RR rotation, LR rotation, and RL rotation for an AVL tree.

LR rotation

LR imbalance

RL rotation

RL imbalance

✓Point✓Check

1030 Chapter 29 AVL Trees

B0 or �1 0 or 1

C 0

T2T1 h h

A

T4T3 hh

(a) (b)

A �2

B�1

T1

T4

h

h

�1, 0 or 1C

T3T2 hh

T2 and T3 can be
different heights, but
at least one must
have height of h.

FIGURE 29.4 An LR rotation fixes an LR imbalance.

A0 or �1 0 or 1

C 0

T2T1 h h

B

T4T3 hh

(a) (b)

A �2

B�1

T4

T1

h

h

0, �1, or 1 C

T3T2 hh
T2 and T3 can be
different heights, but
at least one must
have height of h.

FIGURE 29.5 An RL rotation fixes an RL imbalance.

(a) (b)

55

60

45

100

67 107

87

55

60

45

100

67 107

87 187105

FIGURE 29.6 A balance factor determines whether a node is balanced.

29.3 Designing Classes for AVL Trees 1031

29.3 Designing Classes for AVL Trees
Since an AVL tree is a binary search tree, AVLTree is designed as a subclass of BST.

An AVL tree is a binary tree, so you can define the AVLTree class to extend the BST class, as
shown in Figure 29.7. The BST and TreeNode classes are defined in Section 27.2.5.

Key
Point

AVLTree<E>

+AVLTree()

+AVLTree(objects: E[])

#createNewNode(): AVLTreeNode<E>

+insert(e: E): boolean

+delete(e: E): boolean

-updateHeight(node:
 AVLTreeNode<E>): void

Creates an empty AVL tree.

Creates an AVL tree from an array of objects.

Overrides this method to create an AVLTreeNode.

Returns true if the element is added successfully.

Balances the nodes in the path from the node for
 the element to the root if needed.

BST<E>

1

m

Link

0

-balancePath(e: E): void

Returns the balance factor of the node.-balanceFactor(node:
 AVLTreeNode<E>): int

Performs LL balance.-balanceLL(A: TreeNode<E>,
 parentOfA: TreeNode<E>): void

Performs LR balance.-balanceLR(A: TreeNode<E>,
 parentOfA: TreeNode<E>): void

Performs RR balance.-balanceRR(A: TreeNode<E>,
 parentOfA: TreeNode<E>): void

Performs RL balance.-balanceRL(A: TreeNode<E>,
 parentOfA: TreeNode<E>): void

AVLTreeNode<E>

#height: int

TreeNode<E>

Returns true if the element is removed from the
 tree successfully.

Resets the height of the specified node.

FIGURE 29.7 The AVLTree class extends BST with new implementations for the insert and delete methods.

In order to balance the tree, you need to know each node’s height. For convenience, store
the height of each node in AVLTreeNode and define AVLTreeNode to be a subclass of
BST.TreeNode. Note that TreeNode is defined as a static inner class in BST. AVLTreeNode
will be defined as a static inner class in AVLTree. TreeNode contains the data fields
element, left, and right, which are inherited by AVLTreeNode. Thus, AVLTreeNode
contains four data fields, as shown in Figure 29.8.

In the BST class, the createNewNode() method creates a TreeNode object. This method
is overridden in the AVLTree class to create an AVLTreeNode. Note that the return type of
the createNewNode() method in the BST class is TreeNode, but the return type of the
createNewNode() method in the AVLTree class is AVLTreeNode. This is fine, since
AVLTreeNode is a subclass of TreeNode.

Searching for an element in an AVLTree is the same as searching in a regular binary tree,
so the search method defined in the BST class also works for AVLTree.

The insert and delete methods are overridden to insert and delete an element and per-
form rebalancing operations if necessary to ensure that the tree is balanced.

AVLTreeNode

createNewNode()

1032 Chapter 29 AVL Trees

29.4 What are the data fields in the AVLTreeNode class?

29.5 True or false: AVLTreeNode is a subclass of TreeNode?

29.6 True or false: AVLTree is a subclass of BST.

29.4 Overriding the insert Method
Inserting an element into an AVL tree is the same as inserting it to a BST, except that
the tree may need to be rebalanced.

A new element is always inserted as a leaf node. As a result of adding a new node, the heights
of the new leaf node’s ancestors may increase. After inserting a new node, check the nodes
along the path from the new leaf node up to the root. If an unbalanced node is found, perform
an appropriate rotation using the algorithm in Listing 29.1.

LISTING 29.1 Balancing Nodes on a Path
1 balancePath(E e) {
2 Get the path from the node that contains element e to the root,
3 as illustrated in Figure 29.9;
4 for each node A in the path leading to the root {
5 Update the height of A;
6 Let parentOfA denote the parent of A,
7 which is the next node in the path, or null if A is the root;
8
9 switch (balanceFactor(A)) {

10 case -2: if balanceFactor(A.left) == -1 or 0

11 Perform LL rotation; // See Figure 29.2
12 else

13 Perform LR rotation; // See Figure 29.4
14 break;
15 case +2: if balanceFactor(A.right) == +1 or 0

16 Perform RR rotation; // See Figure 29.3
17 else

18 Perform RL rotation; // See Figure 29.5
19 } // End of switch
20 } // End of for
21 } // End of method

The algorithm considers each node in the path from the new leaf node to the root. Update
the height of the node on the path. If a node is balanced, no action is needed. If a node is not
balanced, perform an appropriate rotation.

✓Point✓Check

Key
Point

get the path

update node height
get parent node

is balanced?

LL rotation

LR rotation

RR rotation

RL rotation

#element: E

#height: int

#left: TreeNode<E>

#right: TreeNode<E>

node: AVLTreeNode<E>

FIGURE 29.8 An AVLTreeNode contains the protected data fields element, height,
left, and right.

29.5 Implementing Rotations 1033

29.7 For the AVL tree in Figure 29.6a, show the new AVL tree after adding element 40.
What rotation do you perform in order to rebalance the tree? Which node was
unbalanced?

29.8 For the AVL tree in Figure 29.6a, show the new AVL tree after adding element 50.
What rotation do you perform in order to rebalance the tree? Which node was
unbalanced?

29.9 For the AVL tree in Figure 29.6a, show the new AVL tree after adding element 80.
What rotation do you perform in order to rebalance the tree? Which node was
unbalanced?

29.10 For the AVL tree in Figure 29.6a, show the new AVL tree after adding element 89.
What rotation do you perform in order to rebalance the tree? Which node was
unbalanced?

29.5 Implementing Rotations
An unbalanced tree becomes balanced by performing an appropriate rotation operation.

Section 29.2, Rebalancing Trees, illustrated how to perform rotations at a node. Listing 29.2
gives the algorithm for the LL rotation, as illustrated in Figure 29.2.

LISTING 29.2 LL Rotation Algorithm
1 balanceLL(TreeNode A, TreeNode parentOfA) {
2 Let B be the left child of A.
3
4 if (A is the root)
5 Let B be the new root
6 else {
7 if (A is a left child of parentOfA)
8 Let B be a left child of parentOfA;
9 else

10 Let B be a right child of parentOfA;
11 }
12
13 Make T2 the left subtree of A by assigning B.right to A.left;
14 Make A the right child of B by assigning A to B.right;
15 Update the height of node A and node B;
16 } // End of method

✓Point✓Check

New node contains element e

root

parentOfA

A

FIGURE 29.9 The nodes along the path from the new leaf node may become unbalanced.

left child of A

reconnect B’s parent

move subtrees

adjust height

Key
Point

1034 Chapter 29 AVL Trees

Note that the height of nodes A and B can be changed, but the heights of other nodes in the tree
are not changed. You can implement the RR, LR, and RL rotations in a similar manner.

29.6 Implementing the delete Method
Deleting an element from an AVL tree is the same as deleing it from a BST, except that
the tree may need to be rebalanced.

As discussed in Section 27.3, Deleting Elements from a BST, to delete an element from a
binary tree, the algorithm first locates the node that contains the element. Let current point
to the node that contains the element in the binary tree and parent point to the parent of the
current node. The current node may be a left child or a right child of the parent node.
Two cases arise when deleting an element.

Case 1: The current node does not have a left child, as shown in Figure 27.10a. To delete
the current node, simply connect the parent node with the right child of the current
node, as shown in Figure 27.10b.

The height of the nodes along the path from the parent node up to the root may have
decreased. To ensure that the tree is balanced, invoke

balancePath(parent.element); // Defined in Listing 29.1

Case 2: The current node has a left child. Let rightMost point to the node that con-
tains the largest element in the left subtree of the current node and parentOfRightMost
point to the parent node of the rightMost node, as shown in Figure 27.12a. The
rightMost node cannot have a right child but it may have a left child. Replace the element
value in the current node with the one in the rightMost node, connect the
parentOfRightMost node with the left child of the rightMost node, and delete the
rightMost node, as shown in Figure 27.12b.

The height of the nodes along the path from parentOfRightMost up to the root may
have decreased. To ensure that the tree is balanced, invoke

balancePath(parentOfRightMost); // Defined in Listing 29.1

29.11 For the AVL tree in Figure 29.6a, show the new AVL tree after deleting element
107. What rotation do you perform in order to rebalance the tree? Which node was
unbalanced?

29.12 For the AVL tree in Figure 29.6a, show the new AVL tree after deleting element 60.
What rotation do you perform in order to rebalance the tree? Which node was
unbalanced?

29.13 For the AVL tree in Figure 29.6a, show the new AVL tree after deleting element 55.
What rotation did you perform in order to rebalance the tree? Which node was
unbalanced?

29.14 For the AVL tree in Figure 29.6b, show the new AVL tree after deleting elements 67
and 87. What rotation did you perform in order to rebalance the tree? Which node
was unbalanced?

29.7 The AVLTree Class
The AVLTree class extends the BST class to override the insert and delete

methods to rebalance the tree if necessary.

Listing 29.3 gives the complete source code for the AVLTree class.

Key
Point

✓Point✓Check

Key
Point

29.7 The AVLTree Class 1035

LISTING 29.3 AVLTree.java
1
2 /** Create an empty AVL tree */
3
4 }
5
6 /** Create an AVL tree from an array of objects */
7
8 super(objects);
9 }
10
11 @Override /** Override createNewNode to create an AVLTreeNode */
12
13 return new AVLTreeNode<E>(e);
14 }
15
16 @Override /** Insert an element and rebalance if necessary */
17
18 boolean successful = super.insert(e);
19 if (!successful)
20 return false; // e is already in the tree
21 else {
22 balancePath(e); // Balance from e to the root if necessary
23 }
24
25 return true; // e is inserted
26 }
27
28 /** Update the height of a specified node */
29
30 if (node.left == null && node.right == null) // node is a leaf
31 node.height = 0;
32 else if (node.left == null) // node has no left subtree
33 node.height = 1 + ((AVLTreeNode<E>)(node.right)).height;
34 else if (node.right == null) // node has no right subtree
35 node.height = 1 + ((AVLTreeNode<E>)(node.left)).height;
36 else

37 node.height = 1 +
38 Math.max(((AVLTreeNode<E>)(node.right)).height,
39 ((AVLTreeNode<E>)(node.left)).height);
40 }
41
42 /** Balance the nodes in the path from the specified
43 * node to the root if necessary
44 */
45
46 java.util.ArrayList<TreeNode<E>> path = path(e);
47 for (int i = path.size() - 1; i >= 0; i—–) {
48 AVLTreeNode<E> A = (AVLTreeNode<E>)(path.get(i));
49 updateHeight(A);
50 AVLTreeNode<E> parentOfA = (A == root) ? null :
51 (AVLTreeNode<E>)(path.get(i - 1));
52
53 switch (balanceFactor(A)) {
54 case -2:
55 if (balanceFactor((AVLTreeNode<E>)A.left) <= 0) {
56 balanceLL(A, parentOfA); // Perform LL rotation
57 }
58 else {

private void balancePath(E e) {

private void updateHeight(AVLTreeNode<E> node) {

public boolean insert(E e) {

protected AVLTreeNode<E> createNewNode(E e) {

public AVLTree(E[] objects) {

public AVLTree() {

public class AVLTree<E extends Comparable<E>> extends BST<E> {

no-arg constructor

constructor

create AVL tree node

override insert

balance tree

update node height

balance nodes
get path

consider a node
update height
get height

left-heavy

LL rotation

1036 Chapter 29 AVL Trees

59 balanceLR(A, parentOfA); // Perform LR rotation
60 }
61 break;
62 case +2:
63 if (balanceFactor((AVLTreeNode<E>)A.right) >= 0) {
64 balanceRR(A, parentOfA); // Perform RR rotation
65 }
66 else {
67 balanceRL(A, parentOfA); // Perform RL rotation
68 }
69 }
70 }
71 }
72
73 /** Return the balance factor of the node */
74
75 if (node.right == null) // node has no right subtree
76 return -node.height;
77 else if (node.left == null) // node has no left subtree
78 return +node.height;
79 else

80 return ((AVLTreeNode<E>)node.right).height -
81 ((AVLTreeNode<E>)node.left).height;
82 }
83
84 /** Balance LL (see Figure 29.2) */
85
86 TreeNode<E> B = A.left; // A is left-heavy and B is left-heavy
87
88 if (A == root) {
89 root = B;
90 }
91 else {
92 if (parentOfA.left == A) {
93 parentOfA.left = B;
94 }
95 else {
96 parentOfA.right = B;
97 }
98 }
99
100 A.left = B.right; // Make T2 the left subtree of A
101 B.right = A; // Make A the left child of B
102 updateHeight((AVLTreeNode<E>)A);
103 updateHeight((AVLTreeNode<E>)B);
104 }
105
106 /** Balance LR (see Figure 29.4) */
107
108 TreeNode<E> B = A.left; // A is left-heavy
109 TreeNode<E> C = B.right; // B is right-heavy
110
111 if (A == root) {
112 root = C;
113 }
114 else {
115 if (parentOfA.left == A) {
116 parentOfA.left = C;
117 }
118 else {

private void balanceLR(TreeNode<E> A, TreeNode<E> parentOfA) {

private void balanceLL(TreeNode<E> A, TreeNode<E> parentOfA) {

private int balanceFactor(AVLTreeNode<E> node) {

LR rotation

right-heavy

RR rotation

RL rotation

get balance factor

LL rotation

update height

LR rotation

29.7 The AVLTree Class 1037

119 parentOfA.right = C;
120 }
121 }
122
123 A.left = C.right; // Make T3 the left subtree of A
124 B.right = C.left; // Make T2 the right subtree of B
125 C.left = B;
126 C.right = A;
127
128 // Adjust heights
129 updateHeight((AVLTreeNode<E>)A);
130 updateHeight((AVLTreeNode<E>)B);
131 updateHeight((AVLTreeNode<E>)C);
132 }
133
134 /** Balance RR (see Figure 29.3) */
135
136 TreeNode<E> B = A.right; // A is right-heavy and B is right-heavy
137
138 if (A == root) {
139 root = B;
140 }
141 else {
142 if (parentOfA.left == A) {
143 parentOfA.left = B;
144 }
145 else {
146 parentOfA.right = B;
147 }
148 }
149
150 A.right = B.left; // Make T2 the right subtree of A
151 B.left = A;
152 updateHeight((AVLTreeNode<E>)A);
153 updateHeight((AVLTreeNode<E>)B);
154 }
155
156 /** Balance RL (see Figure 29.5) */
157
158 TreeNode<E> B = A.right; // A is right-heavy
159 TreeNode<E> C = B.left; // B is left-heavy
160
161 if (A == root) {
162 root = C;
163 }
164 else {
165 if (parentOfA.left == A) {
166 parentOfA.left = C;
167 }
168 else {
169 parentOfA.right = C;
170 }
171 }
172
173 A.right = C.left; // Make T2 the right subtree of A
174 B.left = C.right; // Make T3 the left subtree of B
175 C.left = A;
176 C.right = B;
177
178 // Adjust heights

private void balanceRL(TreeNode<E> A, TreeNode<E> parentOfA) {

private void balanceRR(TreeNode<E> A, TreeNode<E> parentOfA) {

update height

RR rotation

update height

RL rotation

1038 Chapter 29 AVL Trees

179 updateHeight((AVLTreeNode<E>)A);
180 updateHeight((AVLTreeNode<E>)B);
181 updateHeight((AVLTreeNode<E>)C);
182 }
183
184 @Override /** Delete an element from the AVL tree.
185 * Return true if the element is deleted successfully
186 * Return false if the element is not in the tree */
187
188 if (root == null)
189 return false; // Element is not in the tree
190
191 // Locate the node to be deleted and also locate its parent node
192 TreeNode<E> parent = null;
193 TreeNode<E> current = root;
194 while (current != null) {
195 if (element.compareTo(current.element) < 0) {
196 parent = current;
197 current = current.left;
198 }
199 else if (element.compareTo(current.element) > 0) {
200 parent = current;
201 current = current.right;
202 }
203 else

204 break; // Element is in the tree pointed by current
205 }
206
207 if (current == null)
208 return false; // Element is not in the tree
209
210 // Case 1: current has no left children (See Figure 27.10)
211 if (current.left == null) {
212 // Connect the parent with the right child of the current node
213 if (parent == null) {
214 root = current.right;
215 }
216 else {
217 if (element.compareTo(parent.element) < 0)
218 parent.left = current.right;
219 else

220 parent.right = current.right;
221
222 // Balance the tree if necessary
223 balancePath(parent.element);
224 }
225 }
226 else {
227 // Case 2: The current node has a left child
228 // Locate the rightmost node in the left subtree of
229 // the current node and also its parent
230 TreeNode<E> parentOfRightMost = current;
231 TreeNode<E> rightMost = current.left;
232
233 while (rightMost.right != null) {
234 parentOfRightMost = rightMost;
235 rightMost = rightMost.right; // Keep going to the right
236 }
237
238 // Replace the element in current by the element in rightMost

public boolean delete(E element) {

update height

override delete

balance nodes

29.7 The AVLTree Class 1039

239 current.element = rightMost.element;
240
241 // Eliminate rightmost node
242 if (parentOfRightMost.right == rightMost)
243 parentOfRightMost.right = rightMost.left;
244 else

245 // Special case: parentOfRightMost is current
246 parentOfRightMost.left = rightMost.left;
247
248 // Balance the tree if necessary
249 balancePath(parentOfRightMost.element);
250 }
251
252 size—–;
253 return true; // Element inserted
254 }
255
256 /** AVLTreeNode is TreeNode plus height */
257
258
259 protected int height = 0; // New data field
260
261 public AVLTreeNode(E e) {
262 super(e);
263 }
264 }
265 }

The AVLTree class extends BST. Like the BST class, the AVLTree class has a no-arg
constructor that constructs an empty AVLTree (lines 3–4) and a constructor that creates an
initial AVLTree from an array of elements (lines 7–9).

The createNewNode() method defined in the BST class creates a TreeNode. This
method is overridden to return an AVLTreeNode (lines 12–14).

The insert method in AVLTree is overridden in lines 17–26. The method first invokes
the insert method in BST, then invokes balancePath(e) (line 22) to ensure that the tree is
balanced.

The balancePath method first gets the nodes on the path from the node that contains ele-
ment e to the root (line 46). For each node in the path, update its height (line 49), check its
balance factor (line 53), and perform appropriate rotations if necessary (lines 53–69).

Four methods for performing rotations are defined in lines 85–182. Each method is
invoked with two TreeNode arguments—A and parentOfA—to perform an appropriate
rotation at node A. How each rotation is performed is illustrated in Figures 29.2–29.5. After
the rotation, the heights of nodes A, B, and C are updated for the LL and RR rotations (lines
102, 129, 152, 179).

The delete method in AVLTree is overridden in lines 187–264. The method is the same
as the one implemented in the BST class, except that you have to rebalance the nodes after
deletion in two cases (lines 33–34).

29.15 Why is the createNewNode method defined protected?

29.16 When is the updateHeight method invoked? When is the balanceFactor method
invoked? When is the balancePath method invoked?

29.17 What are data fields in the AVLTree class?

29.18 In the insert and delete methods, once you have performed a rotation to balance
a node in the tree, is it possible that there are still unbalanced nodes?

extends BST.TreeNode<E> {
protected static class AVLTreeNode<E extends Comparable<E>>

balance nodes

inner AVLTreeNode class

node height

constructors

insert

balancePath

rotations

delete

✓Point✓Check

1040 Chapter 29 AVL Trees

29.8 Testing the AVLTree Class
This section gives an example of using the AVLTree class.

Listing 29.4 gives a test program. The program creates an AVLTree initialized with an array
of the integers 25, 20, and 5 (lines 4–5), inserts elements in lines 9–14, and deletes elements
in lines 22–28. Since AVLTree is a subclass of BST and the elements in a BST are iterable, the
program uses a for-each loop to traverse all the elements in lines 33–34.

LISTING 29.4 TestAVLTree.java
1 public class TestAVLTree {
2 public static void main(String[] args) {
3 // Create an AVL tree
4
5
6 System.out.print("After inserting 25, 20, 5:");
7 printTree(tree);
8
9
10 tree.insert(50);
11 System.out.print("\nAfter inserting 34, 50:");
12 printTree(tree);
13
14 tree.insert(30);
15 System.out.print("\nAfter inserting 30");
16 printTree(tree);
17
18 tree.insert(10);
19 System.out.print("\nAfter inserting 10");
20 printTree(tree);
21
22
23 tree.delete(30);
24 tree.delete(50);
25 System.out.print("\nAfter removing 34, 30, 50:");
26 printTree(tree);
27
28 tree.delete(5);
29 System.out.print("\nAfter removing 5:");
30 printTree(tree);
31
32 System.out.print("\nTraverse the elements in the tree: ");
33 for (int e: tree) {
34 System.out.print(e + " ");
35 }
36 }
37
38 public static void printTree(BST tree) {
39 // Traverse tree
40 System.out.print("\nInorder (sorted): ");
41 tree.inorder();
41 System.out.print("\nPostorder: ");
43 tree.postorder();
44 System.out.print("\nPreorder: ");
45 tree.preorder();
46 System.out.print("\nThe number of nodes is " + tree.getSize());

tree.delete(34);

tree.insert(34);

20, 5});
AVLTree<Integer> tree = new AVLTree<Integer>(new Integer[]{25,

Key
Point

create an AVLTree

insert 34
insert 50

insert 30

insert 10

delete 34
delete 30
delete 50

delete 5

for-each loop

29.8 Testing the AVLTree Class 1041

After inserting 25, 20, 5:
Inorder (sorted): 5 20 25
Postorder: 5 25 20
Preorder: 20 5 25
The number of nodes is 3

After inserting 34, 50:
Inorder (sorted): 5 20 25 34 50
Postorder: 5 25 50 34 20
Preorder: 20 5 34 25 50
The number of nodes is 5

After inserting 30
Inorder (sorted): 5 20 25 30 34 50
Postorder: 5 20 30 50 34 25
Preorder: 25 20 5 34 30 50
The number of nodes is 6

After inserting 10
Inorder (sorted): 5 10 20 25 30 34 50
Postorder: 5 20 10 30 50 34 25
Preorder: 25 10 5 20 34 30 50
The number of nodes is 7

After removing 34, 30, 50:
Inorder (sorted): 5 10 20 25
Postorder: 5 20 25 10
Preorder: 10 5 25 20
The number of nodes is 4

After removing 5:
Inorder (sorted): 10 20 25
Postorder: 10 25 20
Preorder: 20 10 25
The number of nodes is 3
Traverse the elements in the tree: 10 20 25

Figure 29.10 shows how the tree evolves as elements are added to the tree. After 25 and 20
are added, the tree is as shown in Figure 29.10a. 5 is inserted as a left child of 20, as shown in
Figure 29.10b. The tree is not balanced. It is left-heavy at node 25. Perform an LL rotation to
result in an AVL tree, as shown in Figure 29.10c.

After inserting 34, the tree is shown in Figure 29.10d. After inserting 50, the tree is as
shown in Figure 29.10e. The tree is not balanced. It is right-heavy at node 25. Perform an RR
rotation to result in an AVL tree, as shown in Figure 29.10f.

After inserting 30, the tree is as shown in Figure 29.10g. The tree is not balanced. Perform
an RL rotation to result in an AVL tree, as shown in Figure 29.10h.

After inserting 10, the tree is as shown in Figure 29.10i. The tree is not balanced. Perform
an LR rotation to result in an AVL tree, as shown in Figure 29.10j.

47 System.out.println();
48 }
49 }

1042 Chapter 29 AVL Trees

Figure 29.11 shows how the tree evolves as elements are deleted. After deleting 34, 30,
and 50, the tree is as shown in Figure 29.11b. The tree is not balanced. Perform an LL rota-
tion to result in an AVL tree, as shown in Figure 29.11c.

After deleting 5, the tree is as shown in Figure 29.11d. The tree is not balanced. Perform an
RL rotation to result in an AVL tree, as shown in Figure 29.11e.

29.19 Show the change of an AVL tree when inserting 1, 2, 3, 4, 10, 9, 7, 5, 8, 6 into the
tree, in this order.

29.20 For the tree built in the preceding question, show its change after 1, 2, 3, 4, 10, 9, 7,
5, 8, 6 are deleted from the tree in this order.

29.21 Can you traverse the elements in an AVL tree using a for-each loop?

Need LL rotation
at node 25

Need RR rotation
at node 25

RL rotation at
node 20

LR rotation at
node 20

25

20 20

5

25

5

20

25 5

20

25

34

5

20

34

25 50

20

25

5

34

30 50 5

10

25

34

30 5020

5

20

25

34

50

20

25

5

34

30 50

10

5

20

34

25 50

30

(a) Insert 25, 20

(e) Insert 50 (f) Balanced (g) Insert 30

(h) Balanced (i) Insert 10 (j) Balanced

(b) Insert 5 (c) Balanced (d) Insert 34

FIGURE 29.10 The tree evolves as new elements are inserted.

✓Point✓Check

29.9 AVL Tree Time Complexity Analysis 1043

29.9 AVL Tree Time Complexity Analysis
Since the height of an AVL tree is O(log n), the time complexity of the search,
insert, and delete methods in AVLTree is O(log n).

The time complexity of the search, insert, and delete methods in AVLTree depends on
the height of the tree. We can prove that the height of the tree is O(log n).

Let G(h) denote the minimum number of the nodes in an AVL tree with height h. Obviously,
G(1) is 1 and G(2) is 2. The minimum number of nodes in an AVL tree with height must
have two minimum subtrees: one with height and the other with height Thus,

Recall that a Fibonacci number at index i can be described using the recurrence relation
Therefore, the function G(h) is essentially the same as F(i). It

can be proven that

where n is the number of nodes in the tree. Hence, the height of an AVL tree is O(log n).
The search, insert, and delete methods involve only the nodes along a path in the tree.

The updateHeight and balanceFactor methods are executed in a constant time for each
node in the path. The balancePath method is executed in a constant time for a node in the
path. Thus, the time complexity for the search, insert, and delete methods is O(log n).

29.22 What is the maximum/minimum height for an AVL tree of 3 nodes, 5 nodes, and
7 nodes?

29.23 If an AVL tree has a height of 3, what maximum number of nodes can the tree have?
What minimum number of nodes can the tree have?

29.24 If an AVL tree has a height of 4, what maximum number of nodes can the tree have?
What minimum number of nodes can the tree have?

h 6 1.4405 log(n + 2) - 1.3277

F(i) = F(i - 1) + F(i - 2).

G(h) = G(h - 1) + G(h - 2) + 1

h - 2.h - 1
h � 3

5

10

25

34

30 5020

5

10

25

205

10

25

20

(a) Delete 34, 30, 50 (b) After 34, 30, 50 are deleted

(d) After 5 is deleted (e) Balanced

(c) Balanced

LL rotation
at node 25

RL rotation at 10
10

20

25

20

25

10

FIGURE 29.11 The tree evolves as elements are deleted from the tree.

Key
Point

tree height

✓Point✓Check

1044 Chapter 29 AVL Trees

KEY TERMS

AVL tree 1028
balance factor 1028
left-heavy 1028
LL rotation 1028
LR rotation 1029
perfectly balanced tree 1028

right-heavy 1028
RL rotation 1029
rotation 1028
RR rotation 1028
well-balanced tree 1028

CHAPTER SUMMARY

1. An AVL tree is a well-balanced binary tree. In an AVL tree, the difference between
the heights of two subtrees for every node is 0 or 1.

2. The process for inserting or deleting an element in an AVL tree is the same as in a
regular binary search tree. The difference is that you may have to rebalance the tree
after an insertion or deletion operation.

3. Imbalances in the tree caused by insertions and deletions are rebalanced through sub-
tree rotations at the node of the imbalance.

4. The process of rebalancing a node is called a rotation. There are four possible rota-
tions: LL rotation, LR rotation, RR rotation, and RL rotation.

5. The height of an AVL tree is O(log n). Therefore, the time complexities for the
search, insert, and delete methods are O(log n).

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

*29.1 (Display AVL tree graphically) Write an applet that displays an AVL tree along
with its balance factor for each node.

29.2 (Compare performance) Write a test program that randomly generates 500,000
numbers and inserts them into a BST, reshuffles the 500,000 numbers and
performs a search, and reshuffles the numbers again before deleting them from
the tree. Write another test program that does the same thing for an AVLTree.
Compare the execution times of these two programs.

***29.3 (AVL tree animation) Write a Java applet that animates the AVL tree insert,
delete, and search methods, as shown in Figure 29.1.

**29.4 (Parent reference for BST) Suppose that the TreeNode class defined in BST
contains a reference to the node’s parent, as shown in Programming Exercise
27.15. Implement the AVLTree class to support this change. Write a test pro-
gram that adds numbers 1, 2, . . . , 100 to the tree and displays the paths for all
leaf nodes.

**29.5 (The kth smallest element) You can find the kth smallest element in a BST in
O(n) time from an inorder iterator. For an AVL tree, you can find it in O(log n)

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 1045

time. To achieve this, add a new data field named size in AVLTreeNode to
store the number of nodes in the subtree rooted at this node. Note that the size of
a node v is one more than the sum of the sizes of its two children. Figure 29.12
shows an AVL tree and the size value for each node in the tree.

In the AVLTree class, add the following method to return the kth smallest
element in the tree.

public E find(int k)

The method returns null if k < 1 or k > the size of the tree. This
method can be implemented using the recursive method find(k, root),
which returns the kth smallest element in the tree with the specified root. Let A
and B be the left and right children of the root, respectively. Assuming that the
tree is not empty and find(k, root) can be recursively
defined as follows:

Modify the insert and delete methods in AVLTree to set the correct value
for the size property in each node. The insert and delete methods will still
be in O(log n) time. The find(k) method can be implemented in O(log n) time.
Therefore, you can find the kth smallest element in an AVL tree in O(log n)
time.

find(k, root) = E
root.element, if A is null and k is 1;

B.element, if A is null and k is 2;

find(k, A), if k 6= A.size;

root.element, if k = A.size + 1;

find(k - A.size - 1, B), if k 7 A.size + 1;

�

k … root.size,

20

5

25

34

30 50

size: 6

size: 1

size: 2

size: 1 size: 1

size: 3

FIGURE 29.12 The size data field in AVLTreeNode stores the number of nodes in the subtree
rooted at the node.

This page intentionally left blank

GRAPHS AND
APPLICATIONS

Objectives
■ To model real-world problems using graphs and explain the Seven

Bridges of Königsberg problem (§30.1).

■ To describe the graph terminologies: vertices, edges, simple graphs,
weighted/unweighted graphs, and directed/undirected graphs (§30.2).

■ To represent vertices and edges using lists, edge arrays, edge objects,
adjacency matrices, and adjacency lists (§30.3).

■ To model graphs using the Graph interface, the AbstractGraph class,
and the UnweightedGraph class (§30.4).

■ To display graphs visually (§30.5).

■ To represent the traversal of a graph using the AbstractGraph.Tree
class (§30.6).

■ To design and implement depth-first search (§30.7).

■ To solve the connected-circle problem using depth-first search (§30.8).

■ To design and implement breadth-first search (§30.9).

■ To solve the nine-tail problem using breadth-first search (§30.10).

CHAPTER

30

1048 Chapter 30 Graphs and Applications

Seattle (0)

San Francisco (1)

Los Angeles (2)

Dallas (10)

Houston (11)

Atlanta (8)

New York (7)

Boston (6)

Chicago (5)

Denver (3)

Kansas City (4)

Miami (9)

A

C

B

D

(b) Graph model (a) Seven bridges sketch

D

A

B

Island 2
Island 1
C

FIGURE 30.2 Seven bridges connected islands and land.

FIGURE 30.1 A graph can be used to model the flights between the cities.

30.1 Introduction
Many real-world problems can be solved using graph algorithms.

Graphs are useful in modeling and solving real-world problems. For example, the problem to
find the least number of flights between two cities can be modeled using a graph, where the
vertices represent cities and the edges represent the flights between two adjacent cities, as
shown in Figure 30.1. The problem of finding the minimal number of connecting flights
between two cities is reduced to finding the shortest path between two vertices in a graph.

Key
Point

problem

The study of graph problems is known as graph theory. Graph theory was founded by
Leonhard Euler in 1736, when he introduced graph terminology to solve the famous Seven
Bridges of Königsberg problem. The city of Königsberg, Prussia (now Kaliningrad, Russia),
was divided by the Pregel River. There were two islands on the river. The city and islands
were connected by seven bridges, as shown in Figure 30.2a. The question is, can one take a
walk, cross each bridge exactly once, and return to the starting point? Euler proved that it is
not possible.

To establish a proof, Euler first abstracted the Königsberg city map by eliminating all
streets, producing the sketch shown in Figure 30.2a. Next, he replaced each land mass with a

graph theory

Seven Bridges of Königsberg

30.2 Basic Graph Terminologies 1049

(a) A directed graph

Peter (0)

Cindy (3)

Wendy (4)

Jane (1)

Mark (2)

(b) A complete graph

A

B

C

E

D

(c) A subgraph of the graph in (b)

A

B

C

E

D

FIGURE 30.3 Graphs may appear in many forms.

dot, called a vertex or a node, and each bridge with a line, called an edge, as shown in Figure
30.2b. This structure with vertices and edges is called a graph.

Looking at the graph, we ask whether there is a path starting from any vertex, traversing all
edges exactly once, and returning to the starting vertex. Euler proved that for such a path to
exist, each vertex must have an even number of edges. Therefore, the Seven Bridges of
Königsberg problem has no solution.

Graph problems are often solved using algorithms. Graph algorithms have many applica-
tions in various areas, such as in computer science, mathematics, biology, engineering, eco-
nomics, genetics, and social sciences. This chapter presents the algorithms for depth-first
search and breadth-first search, and their applications. The next chapter presents the algo-
rithms for finding a minimum spanning tree and shortest paths in weighted graphs, and their
applications.

30.2 Basic Graph Terminologies
A graph consists of vertices, and edges that connect the vertices.

This chapter does not assume that you have any prior knowledge of graph theory or discrete
mathematics. We use plain and simple terms to define graphs.

What is a graph? A graph is a mathematical structure that represents relationships among
entities in the real world. For example, the graph in Figure 30.1 represents the flights among
cities, and the graph in Figure 30.2b represents the bridges among land masses.

A graph consists of a nonempty set of vertices (also known as nodes or points), and a set of
edges that connect the vertices. For convenience, we define a graph as where V
represents a set of vertices and E represents a set of edges. For example, V and E for the graph
in Figure 30.1 are as follows:

V = {"Seattle", "San Francisco", "Los Angeles",
"Denver", "Kansas City", "Chicago", "Boston", "New York",
"Atlanta", "Miami", "Dallas", "Houston"};

E = {{"Seattle", "San Francisco"},{"Seattle", "Chicago"},
{"Seattle", "Denver"}, {"San Francisco", "Denver"},
...

};

A graph may be directed or undirected. In a directed graph, each edge has a direction, which
indicates that you can move from one vertex to the other through the edge. You can model
parent/child relationships using a directed graph, where an edge from vertex A to B indicates
that A is a parent of B. Figure 30.3a shows a directed graph.

G = (V, E),

Key
Point

what is a graph?

define a graph

directed vs. undirected graphs

In an undirected graph, you can move in both directions between vertices. The graph in
Figure 30.1 is undirected.

Edges may be weighted or unweighted. For example, you can assign a weight for each
edge in the graph in Figure 30.1 to indicate the flight time between the two cities.

weighted vs. unweighted
graphs

1050 Chapter 30 Graphs and Applications

Two vertices in a graph are said to be adjacent if they are connected by the same edge.
Similarly, two edges are said to be adjacent if they are connected to the same vertex. An edge
in a graph that joins two vertices is said to be incident to both vertices. The degree of a vertex
is the number of edges incident to it.

Two vertices are called neighbors if they are adjacent. Similarly, two edges are called
neighbors if they are adjacent.

A loop is an edge that links a vertex to itself. If two vertices are connected by two or more
edges, these edges are called parallel edges. A simple graph is one that has doesn’t have any
loops or parallel edges. In a complete graph, every two pairs of vertices are connected, as
shown in Figure 30.3b.

A graph is connected if there exists a path between any two vertices in the graph. A
subgraph of a graph G is a graph whose vertex set is a subset of that of G and whose edge set
is a subset of that of G. For example, the graph in Figure 30.3c is a subgraph of the graph in
Figure 30.3b.

Assume that the graph is connected and undirected. A connected graph is a tree if it does
not have cycles. A cycle is a closed path that starts from a vertex and ends at the same vertex.
A spanning tree of a graph G is a connected subgraph of G and the subgraph is a tree that con-
tains all vertices in G.

Pedagogical Note
Before we introduce graph algorithms and applications, it is helpful to get acquainted
with graphs using the interactive tool at www.cs.armstrong.edu/liang/animation/
GraphLearningTool.html, as shown in Figure 30.4. The tool allows you to add/
remove/move vertices and draw edges using mouse gestures. You can also find depth-
first search (DFS) trees and breadth-first search (BFS) trees, and the shortest path
between two vertices.

adjacent vertices

incident edges
degree

neighbor

loop

parallel edge
simple graph

complete graph
connected graph

subgraph

tree
cycle

spanning tree

graph learning tool on
Companion Website

FIGURE 30.4 You can use the tool to create a graph with mouse gestures and show DFS/BFS trees and shortest paths.

www.cs.armstrong.edu/liang/animation/GraphLearningTool.html
www.cs.armstrong.edu/liang/animation/GraphLearningTool.html

30.3 Representing Graphs 1051

30.1 What is the famous Seven Bridges of Königsberg problem?

30.2 What is a graph? Explain the following terms: undirected graph, directed graph,
weighted graph, degree of a vertex, parallel edge, simple graph, complete graph, con-
nected graph, cycle, subgraph, tree, and spanning tree.

30.3 How many edges are in a complete graph with 5 vertices? How many edges are in a
tree of 5 vertices?

30.4 How many edges are in a complete graph with n vertices? How many edges are in a
tree of n vertices?

30.3 Representing Graphs
Representing a graph is to store its vertices and edges in a program. The data
structure for storing a graph is arrays or lists.

To write a program that processes and manipulates graphs, you have to store or represent data
for the graphs in the computer.

30.3.1 Representing Vertices
The vertices can be stored in an array or a list. For example, you can store all the city names
in the graph in Figure 30.1 using the following array:

String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
"Denver", "Kansas City", "Chicago", "Boston", "New York",
"Atlanta", "Miami", "Dallas", "Houston"};

Note
The vertices can be objects of any type. For example, you can consider cities as objects
that contain the information such as its name, population, and mayor. Thus, you may
define vertices as follows:

City city0 = new City("Seattle", 608660, "Mike McGinn");
...
City city11 = new City("Houston", 2099451, "Annise Parker");
City[] vertices = {city0, city1, ... , city11};

public class City {
private String cityName;
private int population;
private String mayor;

public City(String cityName, int population, String mayor) {
this.cityName = cityName;
this.population = population;
this.mayor = mayor;

}

public String getCityName() {
return cityName;

}

public int getPopulation() {
return population;

}

✓Point✓Check

Key
Point

vertex type

1052 Chapter 30 Graphs and Applications

public String getMayor() {
return mayor;

}

public void setMayor(String mayor) {
this.mayor = mayor;

}

public void setPopulation(int population) {
this.population = population;

}
}

The vertices can be conveniently labeled using natural numbers for a
graph for n vertices. Thus, vertices[0] represents "Seattle", vertices[1] represents
"San Francisco", and so on, as shown in Figure 30.5.

0, 1, 2, . . . , n - 1,

Note
You can reference a vertex by its name or its index, whichever is more convenient. Obvi-
ously, it is easy to access a vertex via its index in a program.

30.3.2 Representing Edges: Edge Array
The edges can be represented using a two-dimensional array. For example, you can store all
the edges in the graph in Figure 30.1 using the following array:

int[][] edges = {
{0, 1}, {0, 3}, {0, 5},
{1, 0}, {1, 2}, {1, 3},

reference vertex

Seattle

San Francisco

Los Angeles

Dallas

Houston

Atlanta

New York

Boston

Chicago

Denver

Kansas City

Miami

vertices[0]

vertices[1]

vertices[2]

vertices[3]

vertices[4]

vertices[5]

vertices[6]

vertices[7]

vertices[8]

vertices[9]

vertices[10]

vertices[11]

FIGURE 30.5 An array stores the vertex names.

30.3 Representing Graphs 1053

{2, 1}, {2, 3}, {2, 4}, {2, 10},
{3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
{4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
{5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
{6, 5}, {6, 7},
{7, 4}, {7, 5}, {7, 6}, {7, 8},
{8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
{9, 8}, {9, 11},
{10, 2}, {10, 4}, {10, 8}, {10, 11},
{11, 8}, {11, 9}, {11, 10}

};

This representation is known as the edge array. The vertices and edges in Figure 30.3a can be
represented as follows:

String[] names = {"Peter", "Jane", "Mark", "Cindy", "Wendy"};

int[][] edges = {{0, 2}, {1, 2}, {2, 4}, {3, 4}};

30.3.3 Representing Edges: Edge Objects
Another way to represent the edges is to define edges as objects and store the edges in a
java.util.ArrayList. The Edge class can be defined as follows:

public class Edge {
int u;
int v;

public Edge(int u, int v) {
this.u = u;
this.v = v;

}
}

For example, you can store all the edges in the graph in Figure 30.1 using the following
list:

java.util.ArrayList<Edge> list = new java.util.ArrayList<Edge>();
list.add(new Edge(0, 1));
list.add(new Edge(0, 3));
list.add(new Edge(0, 5));
...

Storing Edge objects in an ArrayList is useful if you don’t know the edges in advance.
While representing edges using an edge array or Edge objects in Section 30.3.2 and earlier

in this section may be intuitive for input, it’s not efficient for internal processing. The next two
sections introduce the representation of graphs using adjacency matrices and adjacency lists.
These two data structures are efficient for processing graphs.

30.3.4 Representing Edges: Adjacency Matrices
Assume that the graph has n vertices. You can use a two-dimensional matrix, say
adjacencyMatrix, to represent the edges. Each element in the array is 0 or 1.
adjacencyMatrix[i][j] is 1 if there is an edge from vertex i to vertex j; otherwise,
adjacencyMatrix[i][j] is 0. If the graph is undirected, the matrix is symmetric,
because adjacencyMatrix[i][j] is the same as adjacencyMatrix[j][i]. For

n * n

edge array

1054 Chapter 30 Graphs and Applications

example, the edges in the graph in Figure 30.1 can be represented using an adjacency
matrix as follows:

int[][] adjacencyMatrix = {
{ , 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0}, // Seattle
{1, , 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}, // San Francisco
{0, 1, , 1, 1, 1, 0, 0, 0, 0, 0, 0}, // Los Angeles
{1, 1, 1, , 1, 1, 0, 0, 0, 0, 0, 0}, // Denver
{0, 0, 1, 1, , 1, 0, 1, 1, 0, 1, 0}, // Kansas City
{1, 0, 0, 1, 1, , 1, 1, 0, 0, 0, 0}, // Chicago
{0, 0, 0, 0, 0, 1, , 1, 0, 0, 0, 0}, // Boston
{0, 0, 0, 0, 1, 1, 1, , 1, 0, 0, 0}, // New York
{0, 0, 0, 1, 1, 0, 0, 1, , 1, 1, 1}, // Atlanta
{0, 0, 0, 0, 0, 0, 0, 0, 1, , 0, 1}, // Miami
{0, 0, 1, 0, 1, 0, 0, 0, 1, 0, , 1}, // Dallas
{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, } // Houston

};

Note
Since the matrix is symmetric for an undirected graph, to save storage you can use a
ragged array.

The adjacency matrix for the directed graph in Figure 30.3a can be represented as follows:

int[][] a = {{ , 0, 1, 0, 0}, // Peter
{0, , 1, 0, 0}, // Jane
{0, 0, , 0, 1}, // Mark
{0, 0, 0, , 1}, // Cindy
{0, 0, 0, 0, } // Wendy
};

30.3.5 Representing Edges: Adjacency Lists
To represent edges using adjacency lists, define an array of lists. The array has n entries, and
each entry is a linked list. The linked list for vertex i contains all the vertices j such that there
is an edge from vertex i to vertex j. For example, to represent the edges in the graph in Figure
30.1, you can create an array of linked lists as follows:

java.util.LinkedList[] neighbors = new java.util.LinkedList[12];

neighbors[0] contains all vertices adjacent to vertex 0 (i.e., Seattle), neighbors[1] con-
tains all vertices adjacent to vertex 1 (i.e., San Francisco), and so on, as shown in Figure 30.6.

To represent the edges in the graph in Figure 30.3a, you can create an array of linked lists
as follows:

java.util.LinkedList[] neighbors = new java.util.LinkedList[5];

neighbors[0] contains all vertices pointed from vertex 0 via directed edges, neighbors[1]
contains all vertices pointed from vertex 1 via directed edges, and so on, as shown in Figure 30.7.
Wendy does not point to any vertex, so neighbors[4] is null.

Note
You can represent a graph using an adjacency matrix or adjacency lists. Which one is
better? If the graph is dense (i.e., there are a lot of edges), using an adjacency matrix is
preferred. If the graph is very sparse (i.e., very few edges), using adjacency lists is better,
because using an adjacency matrix would waste a lot of space.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

ragged array

adjacency lists

adjacency matrices vs.
adjacency lists

adjacency matrix

30.3 Representing Graphs 1055

Both adjacency matrices and adjacency lists can be used in a program to make algo-
rithms more efficient. For example, it takes O(1) constant time to check whether two
vertices are connected using an adjacency matrix, and it takes linear time O(m) to print
all edges in a graph using adjacency lists, where m is the number of edges.

Note
Adjacency matrices and adjacency lists are two common representations for graphs, but
they are not the only ways to represent graphs. For example, you can define a vertex as
an object with a method getNeighbors() that returns all its neighbors. For simplic-
ity, the text will use adjacency lists to represent graphs. Other representations will be
explored in the exercises.

For flexibility and simplicity, we will use array lists to represent arrays. Also, we will use
array lists instead of linked lists, because our algorithms only require searching for adjacent
vertices in the list. Using array lists is more efficient for our algorithms. Using array lists, the
adjacency list in Figure 30.6 can be built as follows:

List<ArrayList<Integer>> neighbors
= new ArrayList<List<Integer>>();

neighbors.add(new ArrayList<Integer>());

1

0

0

1

2

0

5

4

4

8

2

8

Seattle

San Francisco

Los Angeles

Dallas

Houston

Atlanta

New York

Boston

Chicago

Denver

Kansas City

Miami

neighbors[0]

neighbors[1]

neighbors[2]

neighbors[3]

neighbors[4]

neighbors[5]

neighbors[6]

neighbors[7]

neighbors[8]

neighbors[9]

neighbors[10]

neighbors[11]

3

2

1

3

3

3

7

5

7

11

4

9

5

3

2

4

5

4

6

9

8

10

4

10

7

6

5

8 10

7

8

10 11

11

FIGURE 30.6 Edges in the graph in Figure 30.1 are represented using linked lists.

2

2

4

4

Peter

Jane

Mark

Cindy

Wendy null

neighbors[0]

neighbors[1]

neighbors[2]

neighbors[3]

neighbors[4]

FIGURE 30.7 Edges in the graph in Figure 30.3a are represented using linked lists.

other representations

using ArrayList

1056 Chapter 30 Graphs and Applications

Key
Point

neighbors.get(0).add(1); neighbors.get(0).add(3);
neighbors.get(0).add(5);

neighbors.add(new ArrayList<Integer>());
neighbors.get(1).add(0); neighbors.get(1).add(2);
neighbors.get(1).add(3);

...

...

30.5 How do you represent vertices in a graph? How do you represent edges using an edge
array? How do you represent an edge using an edge object? How do you represent
edges using an adjacency matrix? How do you represent edges using adjacency lists?

30.6 Represent the following graph using an edge array, a list of edge objects, an adja-
cency matrix, and an adjacency list, respectively.

30.4 Modeling Graphs
The Graph interface defines the common operations for a graph.

The Java Collections Framework serves as a good example for designing complex data struc-
tures. The common features of data structures are defined in the interfaces (e.g.,
Collection, Set, List, Queue), as shown in Figure 22.1. Abstract classes (e.g.,
AbstractCollection, AbstractSet, AbstractList) partially implement the inter-
faces. Concrete classes (e.g., HashSet, LinkedHashSet, TreeSet, ArrayList,
LinkedList, PriorityQueue) provide concrete implementations. This design pattern is
useful for modeling graphs. We will define an interface named Graph that contains all the
common operations of graphs and an abstract class named AbstractGraph that partially
implements the Graph interface. Many concrete graphs can be added to the design. For exam-
ple, we will define such graphs named UnweightedGraph and WeightedGraph. The rela-
tionships of these interfaces and classes are illustrated in Figure 30.8.

✓Point✓Check

1

0

2

3

4

5

Graph AbstractGraph
WeightedGraph

Concrete ClassesAbstract ClassInterface

UnweightedGraph

FIGURE 30.8 Graphs can be modeled using interfaces, abstract classes, and concrete classes.

What are the common operations for a graph? In general, you need to get the number of
vertices in a graph, get all vertices in a graph, get the vertex object with a specified index, get
the index of the vertex with a specified name, get the neighbors for a vertex, get the degree for
a vertex, clear the graph, add a new vertex, add a new edge, perform a depth-first search, and

30.4 Modeling Graphs 1057

perform a breadth-first search. Depth-first search and breadth-first search will be introduced
in the next section. Figure 30.9 illustrates these methods in the UML diagram.

AbstractGraph does not introduce any new methods. A list of vertices and a list of adja-
cency lists for the vertices are defined in the AbstractGraph class. With these data fields, it
is sufficient to implement all the methods defined in the Graph interface.

Constructs an empty graph.

UnweightedGraph<V>

+getSize(): int

+getVertices(): List<V>

+getVertex(index: int): V

+getIndex(v: V): int

+getNeighbors(index: int): List<Integer>

+getDegree(index: int): int

+printEdges(): void

+clear(): void

+addVertex(v, V): void

+addEdge(u: int, v: int): void

+dfs(v: int): AbstractGraph<V>.Tree

+bfs(v: int): AbstractGraph<V>.Tree

Returns the number of vertices in the graph.

Returns the vertices in the graph.

Returns the vertex object for the specified vertex index.

Returns the index for the specified vertex.

Returns the neighbors of vertex with the specified index.

Returns the degree for a specified vertex index.

Print the edges.

Clears the graph.

Adds a vertex to the graph.

Adds an edge to the graph.

Obtains a depth-first search tree starting from v.

Obtains a breadth-first search tree starting from v.

«interface»
Graph<V>

#vertices: List<V>
#neighbors: List<List<Integer>>

#AbstractGraph(edges: int[][], vertices: V[])

+UnweightedGraph(edges: int[][],
 vertices: V[])

+UnweightedGraph()

AbstractGraph<V>

Vertices in the graph.
Neighbors for each vertex in the graph.

Constructs a graph with the specified edges and vertices
 stored in arrays.

Constructs a graph with the specified edges and vertices
 in arrays.

Constructs an empty unweighted graph.

#AbstractGraph(edges: List<Edge>,
 vertices: List<V>)

#AbstractGraph(edges: int[][],
 numberOfVertices: int)

Inner classes Tree is defined here

#AbstractGraph(edges: List<Edge>,
 numberOfVertices: int)

Constructs a graph with the specified edges and vertices
 stored in lists.

Constructs a graph with the specified edges in an array
 and the integer vertices 1, 2, ….

Constructs a graph with the specified edges in a list and
 the integer vertices 1, 2, ….

+UnweightedGraph(edges: int[][],
 numberOfVertices: int)

+UnweightedGraph(edges: List<Edge>,
 vertices: List<V>)
+UnweightedGraph(edges: List<Edge>,
 numberOfVertices: int)

Constructs a graph with the specified edges in a list and
 the integer vertices 1, 2, ….

Constructs a graph with the specified edges and vertices
 stored in lists.

Constructs a graph with the specified edges in an array
 and the integer vertices 1, 2, ….

The generic type V is the type for vertices.

#AbstractGraph()

FIGURE 30.9 The Graph interface defines the common operations for all types of graphs.

1058 Chapter 30 Graphs and Applications

vertices and their indices

why AbstractGraph?

vertices

edges

create a graph

number of vertices

get vertex

get index

print edges

list of Edge objects

UnweightedGraph simply extends AbstractGraph with five constructors for creating
the concrete Graph instances. UnweightedGraph inherits all the methods from
AbstractGraph, and it does not introduce any new methods.

Note
You can create a graph with any type of vertices. Each vertex is associated with an index,
which is the same as the index of the vertex in the vertices list. If you create a graph
without specifying the vertices, the vertices are the same as their indices.

Note
The AbstractGraph class implements all the methods in the Graph interface. So
why is it defined as abstract? In the future, you may need to add new methods to the
Graph interface that cannot be implemented in AbstractGraph. To make the classes
easy to maintain, it is desirable to define the AbstractGraph class as abstract.

Assume all these interfaces and classes are available. Listing 30.1 gives a test program that
creates the graph in Figure 30.1 and another graph for the one in Figure 30.3a.

LISTING 30.1 TestGraph.java
1 public class TestGraph {
2 public static void main(String[] args) {
3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
5 "Atlanta", "Miami", "Dallas", "Houston"};
6
7 // Edge array for graph in Figure 30.1
8 int[][] edges = {
9 {0, 1}, {0, 3}, {0, 5},
10 {1, 0}, {1, 2}, {1, 3},
11 {2, 1}, {2, 3}, {2, 4}, {2, 10},
12 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
13 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
14 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
15 {6, 5}, {6, 7},
16 {7, 4}, {7, 5}, {7, 6}, {7, 8},
17 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
18 {9, 8}, {9, 11},
19 {10, 2}, {10, 4}, {10, 8}, {10, 11},
20 {11, 8}, {11, 9}, {11, 10}
21 };
22
23
24
25 System.out.println("The number of vertices in graph1: "
26 +);
27 System.out.println("The vertex with index 1 is "
28 +);
29 System.out.println("The index for Miami is " +
30);
31 System.out.println("The edges for graph1:");
32
33
34 // List of Edge objects for graph in Figure 30.3a
35 String[] names = {"Peter", "Jane", "Mark", "Cindy", "Wendy"};
36 java.util.ArrayList<AbstractGraph.Edge> edgeList
37 = new java.util.ArrayList<AbstractGraph.Edge>();
38 edgeList.add(new AbstractGraph.Edge(0, 2));

graph1.printEdges();

graph1.getIndex("Miami")

graph1.getVertex(1)

graph1.getSize()

new UnweightedGraph<String>(edges, vertices);
Graph<String> graph1 =

30.4 Modeling Graphs 1059

39 edgeList.add(new AbstractGraph.Edge(1, 2));
40 edgeList.add(new AbstractGraph.Edge(2, 4));
41 edgeList.add(new AbstractGraph.Edge(3, 4));
42 // Create a graph with 5 vertices
43
44
45 System.out.println("\nThe number of vertices in graph2: "
46 + graph2.getSize());
47 System.out.println("The edges for graph2:");
48 graph2.printEdges();
49 }
50 }

(edgeList, java.util.Arrays.asList(names));
Graph<String> graph2 = new UnweightedGraph<String>

The number of vertices in graph1: 12
The vertex with index 1 is San Francisco
The index for Miami is 9
The edges for graph1:
Seattle (0): (0, 1) (0, 3) (0, 5)
San Francisco (1): (1, 0) (1, 2) (1, 3)
Los Angeles (2): (2, 1) (2, 3) (2, 4) (2, 10)
Denver (3): (3, 0) (3, 1) (3, 2) (3, 4) (3, 5)
Kansas City (4): (4, 2) (4, 3) (4, 5) (4, 7) (4, 8) (4, 10)
Chicago (5): (5, 0) (5, 3) (5, 4) (5, 6) (5, 7)
Boston (6): (6, 5) (6, 7)
New York (7): (7, 4) (7, 5) (7, 6) (7, 8)
Atlanta (8): (8, 4) (8, 7) (8, 9) (8, 10) (8, 11)
Miami (9): (9, 8) (9, 11)
Dallas (10): (10, 2) (10, 4) (10, 8) (10, 11)
Houston (11): (11, 8) (11, 9) (11, 10)

The number of vertices in graph2: 5
The edges for graph2:
Peter (0): (0, 2)
Jane (1): (1, 2)
Mark (2): (2, 4)
Cindy (3): (3, 4)
Wendy (4):

The program creates graph1 for the graph in Figure 30.1 in lines 3–24. The vertices for
graph1 are defined in lines 3–5. The edges for graph1 are defined in 8–21. The edges are
represented using a two-dimensional array. For each row i in the array, edges[i][0] and
edges[i][1] indicate that there is an edge from vertex edges[i][0] to vertex
edges[i][1]. For example, the first row, {0, 1}, represents the edge from vertex 0
(edges[0][0]) to vertex 1 (edges[0][1]). The row {0, 5} represents the edge from vertex
0 (edges[2][0]) to vertex 5 (edges[2][1]). The graph is created in line 24. Line 32
invokes the printEdges() method on graph1 to display all edges in graph1.

The program creates graph2 for the graph in Figure 30.3a in lines 35–44. The edges for
graph2 are defined in lines 38–41. graph2 is created using a list of Edge objects in line 44.
Line 48 invokes the printEdges() method on graph2 to display all edges in graph2.

Note that both graph1 and graph2 contain the vertices of strings. The vertices are associ-
ated with indices 0, 1, . . . , n-1. The index is the location of the vertex in vertices. For
example, the index of vertex Miami is 9.

Now we turn our attention to implementing the interface and classes. Listings 30.2, 30.3,
and 30.4 give the Graph interface, the AbstractGraph class, and the UnweightedGraph
class, respectively.

create a graph

print edges

1060 Chapter 30 Graphs and Applications

getSize

getVertices

getVertex

getIndex

getNeighbors

getDegree

printEdges

clear

addVertex

addEdge

dfs

bfs

no-arg constructor

constructor

LISTING 30.2 Graph.java
1 public interface Graph<V> {
2 /** Return the number of vertices in the graph */
3 public int getSize();
4
5 /** Return the vertices in the graph */
6 public java.util.List<V> getVertices();
7
8 /** Return the object for the specified vertex index */
9 public V getVertex(int index);
10
11 /** Return the index for the specified vertex object */
12 public int getIndex(V v);
13
14 /** Return the neighbors of vertex with the specified index */
15 public java.util.List<Integer> getNeighbors(int index);
16
17 /** Return the degree for a specified vertex */
18 public int getDegree(int v);
19
20 /** Print the edges */
21 public void printEdges();
22
23 /** Clear graph */
24 public void clear();
25
26 /** Add a vertex to the graph */
27 public void addVertex(V vertex);
28
29 /** Add an edge to the graph */
30 public void addEdge(int u, int v);
31
32 /** Obtain a depth-first search tree starting from v */
33 public AbstractGraph<V>.Tree dfs(int v);
34
35 /** Obtain a breadth-first search tree starting from v */
36 public AbstractGraph<V>.Tree bfs(int v);
37 }

LISTING 30.3 AbstractGraph.java
1 import java.util.*;
2
3 public abstract class AbstractGraph<V> implements Graph<V> {
4 protected List<V> vertices = new ArrayList<V>(); // Store vertices
5 protected List<List<Integer>> neighbors
6 = new ArrayList<List<Integer>>(); // Adjacency lists
7
8 /** Construct an empty graph */
9 protected AbstractGraph() {
10 }
11
12 /** Construct a graph from edges and vertices stored in arrays */
13 protected AbstractGraph(int[][] edges, V[] vertices) {
14 for (int i = 0; i < vertices.length; i++)
15 this.vertices.add(vertices[i]);
16
17 createAdjacencyLists(edges, vertices.length);
18 }

30.4 Modeling Graphs 1061

19
20 /** Construct a graph from edges and vertices stored in List */
21 protected AbstractGraph(List<Edge> edges, List<V> vertices) {
22 for (int i = 0; i < vertices.size(); i++)
23 this.vertices.add(vertices.get(i));
24
25 createAdjacencyLists(edges, vertices.size());
26 }
27
28 /** Construct a graph for integer vertices 0, 1, 2 and edge list */
29 protected AbstractGraph(List<Edge> edges, int numberOfVertices) {
30 for (int i = 0; i < numberOfVertices; i++)
31 vertices.add((V)(new Integer(i))); // vertices is {0, 1, ...}
32
33 createAdjacencyLists(edges, numberOfVertices);
34 }
35
36 /** Construct a graph from integer vertices 0, 1, and edge array */
37 protected AbstractGraph(int[][] edges, int numberOfVertices) {
38 for (int i = 0; i < numberOfVertices; i++)
39 vertices.add((V)(new Integer(i))); // vertices is {0, 1, ...}
40
41 createAdjacencyLists(edges, numberOfVertices);
42 }
43
44 /** Create adjacency lists for each vertex */
45 private void createAdjacencyLists(
46 int[][] edges, int numberOfVertices) {
47 // Create a linked list
48 for (int i = 0; i < numberOfVertices; i++) {
49 neighbors.add(new ArrayList<Integer>());
50 }
51
52 for (int i = 0; i < edges.length; i++) {
53 int u = edges[i][0];
54 int v = edges[i][1];
55 neighbors.get(u).add(v);
56 }
57 }
58
59 /** Create adjacency lists for each vertex */
60 private void createAdjacencyLists(
61 List<Edge> edges, int numberOfVertices) {
62 // Create a linked list for each vertex
63 for (int i = 0; i < numberOfVertices; i++) {
64 neighbors.add(new ArrayList<Integer>());
65 }
66
67 for (Edge edge: edges) {
68 neighbors.get(edge.u).add(edge.v);
69 }
70 }
71
72 @Override /** Return the number of vertices in the graph */
73 public int getSize() {
74 return vertices.size();
75 }
76
77 @Override /** Return the vertices in the graph */
78 public List<V> getVertices() {

constructor

constructor

constructor

getSize

getVertices

1062 Chapter 30 Graphs and Applications

79 return vertices;
80 }
81
82 @Override /** Return the object for the specified vertex */
83 public V getVertex(int index) {
84 return vertices.get(index);
85 }
86
87 @Override /** Return the index for the specified vertex object */
88 public int getIndex(V v) {
89 return vertices.indexOf(v);
90 }
91
92 @Override /** Return the neighbors of the specified vertex */
93 public List<Integer> getNeighbors(int index) {
94 return neighbors.get(index);
95 }
96
97 @Override /** Return the degree for a specified vertex */
98 public int getDegree(int v) {
99 return neighbors.get(v).size();
100 }
101
102 @Override /** Print the edges */
103 public void printEdges() {
104 for (int u = 0; u < neighbors.size(); u++) {
105 System.out.print(getVertex(u) + " (" + u + "): ");
106 for (int j = 0; j < neighbors.get(u).size(); j++) {
107 System.out.print("(" + u + ", " +
108 neighbors.get(u).get(j) + ") ");
109 }
110 System.out.println();
111 }
112 }
113
114 @Override /** Clear graph */
115 public void clear() {
116 vertices.clear();
117 neighbors.clear();
118 }
119
120 @Override /** Add a vertex to the graph */
121 public void addVertex(V vertex) {
122 vertices.add(vertex);
123 neighbors.add(new ArrayList<Integer>());
124 }
125
126 @Override /** Add an edge to the graph */
127 public void addEdge(int u, int v) {
128 neighbors.get(u).add(v);
129 neighbors.get(v).add(u);
130 }
131
132 /** Edge inner class inside the AbstractGraph class */
133 public static class Edge {
134 public int u; // Starting vertex of the edge
135 public int v; // Ending vertex of the edge
136
137 /** Construct an edge for (u, v) */
138 public Edge(int u, int v) {

getVertex

getIndex

getNeighbors

getDegree

printEdges

clear

addVertex

addEdge

Edge inner class

30.4 Modeling Graphs 1063

139 this.u = u;
140 this.v = v;
141 }
142 }
143
144 @Override /** Obtain a DFS tree starting from vertex v */
145 /** To be discussed in Section 30.7 */
146 public Tree dfs(int v) {
147 List<Integer> searchOrder = new ArrayList<Integer>();
148 int[] parent = new int[vertices.size()];
149 for (int i = 0; i < parent.length; i++)
150 parent[i] = -1; // Initialize parent[i] to -1
151
152 // Mark visited vertices
153 boolean[] isVisited = new boolean[vertices.size()];
154
155 // Recursively search
156 dfs(v, parent, searchOrder, isVisited);
157
158 // Return a search tree
159 return new Tree(v, parent, searchOrder);
160 }
161
162 /** Recursive method for DFS search */
163 private void dfs(int v, int[] parent, List<Integer> searchOrder,
164 boolean[] isVisited) {
165 // Store the visited vertex
166 searchOrder.add(v);
167 isVisited[v] = true; // Vertex v visited
168
169 for (int i : neighbors.get(v)) {
170 if (!isVisited[i]) {
171 parent[i] = v; // The parent of vertex i is v
172 dfs(i, parent, searchOrder, isVisited); // Recursive search
173 }
174 }
175 }
176
177 @Override /** Starting BFS search from vertex v */
178 /** To be discussed in Section 30.9 */
179 public Tree bfs(int v) {
180 List<Integer> searchOrder = new ArrayList<Integer>();
181 int[] parent = new int[vertices.size()];
182 for (int i = 0; i < parent.length; i++)
183 parent[i] = -1; // Initialize parent[i] to -1
184
185 java.util.LinkedList<Integer> queue =
186 new java.util.LinkedList<Integer>(); // list used as a queue
187 boolean[] isVisited = new boolean[vertices.size()];
188 queue.offer(v); // Enqueue v
189 isVisited[v] = true; // Mark it visited
190
191 while (!queue.isEmpty()) {
192 int u = queue.poll(); // Dequeue to u
193 searchOrder.add(u); // u searched
194 for (int w : neighbors.get(u)) {
195 if (!isVisited[w]) {
196 queue.offer(w); // Enqueue w
197 parent[w] = u; // The parent of w is u
198 isVisited[w] = true; // Mark it visited

dfs method

bfs method

1064 Chapter 30 Graphs and Applications

199 }
200 }
201 }
202
203 return new Tree(v, parent, searchOrder);
204 }
205
206 /** Tree inner class inside the AbstractGraph class */
207 /** To be discussed in Section 30.5 */
208 public class Tree {
209 private int root; // The root of the tree
210 private int[] parent; // Store the parent of each vertex
211 private List<Integer> searchOrder; // Store the search order
212
213 /** Construct a tree with root, parent, and searchOrder */
214 public Tree(int root, int[] parent, List<Integer> searchOrder) {
215 this.root = root;
216 this.parent = parent;
217 this.searchOrder = searchOrder;
218 }
219
220 /** Return the root of the tree */
221 public int getRoot() {
222 return root;
223 }
224
225 /** Return the parent of vertex v */
226 public int getParent(int v) {
227 return parent[v];
228 }
229
230 /** Return an array representing search order */
231 public List<Integer> getSearchOrder() {
232 return searchOrder;
233 }
234
235 /** Return number of vertices found */
236 public int getNumberOfVerticesFound() {
237 return searchOrder.size();
238 }
239
240 /** Return the path of vertices from a vertex to the root */
241 public List<V> getPath(int index) {
242 ArrayList<V> path = new ArrayList<V>();
243
244 do {
245 path.add(vertices.get(index));
246 index = parent[index];
247 }
248 while (index != -1);
249
250 return path;
251 }
252
253 /** Print a path from the root to vertex v */
254 public void printPath(int index) {
255 List<V> path = getPath(index);
256 System.out.print("A path from " + vertices.get(root) + " to " +
257 vertices.get(index) + ": ");
258 for (int i = path.size() - 1; i >= 0; i––)

Tree inner class

30.4 Modeling Graphs 1065

259 System.out.print(path.get(i) + " ");
260 }
261
262 /** Print the whole tree */
263 public void printTree() {
264 System.out.println("Root is: " + vertices.get(root));
265 System.out.print("Edges: ");
266 for (int i = 0; i < parent.length; i++) {
267 if (parent[i] != -1) {
268 // Display an edge
269 System.out.print("(" + vertices.get(parent[i]) + ", " +
270 vertices.get(i) + ") ");
271 }
272 }
273 System.out.println();
274 }
275 }
276 }

LISTING 30.4 UnweightedGraph.java
1 import java.util.*;
2
3 public class UnweightedGraph<V> extends AbstractGraph<V> {
4 /** Construct an empty graph */
5 public UnweightedGraph() {
6 }
7
8 /** Construct a graph from edges and vertices stored in arrays */
9 public UnweightedGraph(int[][] edges, V[] vertices) {
10 super(edges, vertices);
11 }
12
13 /** Construct a graph from edges and vertices stored in List */
14 public UnweightedGraph(List<Edge> edges, List<V> vertices) {
15 super(edges, vertices);
16 }
17
18 /** Construct a graph for integer vertices 0, 1, 2 and edge list */
19 public UnweightedGraph(List<Edge> edges, int numberOfVertices) {
20 super(edges, numberOfVertices);
21 }
22
23 /** Construct a graph from integer vertices 0, 1, and edge array */
24 public UnweightedGraph(int[][] edges, int numberOfVertices) {
25 super(edges, numberOfVertices);
26 }
27 }

The code in the Graph interface in Listing 30.2 and the UnweightedGraph class in
Listing 30.4 are straightforward. Let us digest the code in the AbstractGraph class in
Listing 30.3.

The AbstractGraph class defines the data field vertices (line 4) to store vertices and
neighbors (line 5) to store edges in adjacency lists. neighbors.get(i) stores all vertices adja-
cent to vertex i. Four overloaded constructors are defined in lines 9–42 to create a default graph, or
a graph from arrays or lists of edges and vertices. The createAdjacencyLists(int[][]
edges, int numberOfVertices)method creates adjacency lists from edges in an array (lines
45–57). The createAdjacencyLists(List<Edge> edges, int numberOfVertices)
method creates adjacency lists from edges in a list (lines 60–70).

no-arg constructor

constructor

constructor

constructor

constructor

1066 Chapter 30 Graphs and Applications

Key
Point

✓Point✓Check

The printEdges() method (lines 103–112) displays all vertices and edges adjacent to
each vertex.

The code in lines 146–275 gives the methods for finding a depth-first search tree and a
breadth-first search tree, which will be introduced in Sections 30.7 and 30.9, respectively.

30.7 Describe the relationships among Graph, AbstractGraph, and
UnweightedGraph.

30.8 For the code in Listing 30.1, TestGraph.java, what is graph1.getIndex("Seattle")?
What is graph1.getDegree(5)? What is graph1.getVertex(4)?

30.5 Graph Visualization
To display a graph visually, each vertex must be assigned a location.

The preceding section introduced how to model a graph using the Graph interface,
AbstractGraph class, and UnweightedGraph class. This section discusses how to display
graphs graphically. In order to display a graph, you need to know where each vertex is dis-
played and the name of each vertex. To ensure a graph can be displayed, we define an inter-
face named Displayable that has the methods for obtaining the x-and y-coordinates and
their names, and make vertices instances of Displayable, in Listing 30.5.

LISTING 30.5 Displayable.java
1
2 public int getX(); // Get x-coordinate of the vertex
3 public int getY(); // Get y-coordinate of the vertex
4 public String getName(); // Get display name of the vertex
5 }

A graph with Displayable vertices can now be displayed on a panel named GraphView,
as shown in Listing 30.6.

LISTING 30.6 GraphView.java
1
2 private Graph<? extends Displayable> graph;
3
4
5 this.graph = graph;
6 }
7
8 @Override
9 protected void paintComponent(java.awt.Graphics g) {
10 super.paintComponent(g);
11
12 // Draw vertices
13 java.util.List<? extends Displayable> vertices
14 = graph.getVertices();
15 for (int i = 0; i < graph.getSize(); i++) {
16 int x = vertices.get(i).getX();
17 int y = vertices.get(i).getY();
18 String name = vertices.get(i).getName();
19
20 // Display a vertex
21 g.drawString(name, x - 12, y - 12); // Display the name
22 }
23
24 // Draw edges for pair of vertices
25 for (int i = 0; i < graph.getSize(); i++) {

g.fillOval(x - 8, y - 8, 16, 16);

public GraphView(Graph<? extends Displayable> graph) {

public class GraphView extends javax.swing.JPanel {

public interface Displayable {Displayable interface

extends JPanel

30.5 Graph Visualization 1067

26 java.util.List<Integer> neighbors = graph.getNeighbors(i);
27 int x1 = graph.getVertex(i).getX();
28 int y1 = graph.getVertex(i).getY();
29 for (int v: neighbors) {
30 int x2 = graph.getVertex(v).getX();
31 int y2 = graph.getVertex(v).getY();
32
33 // Draw an edge for (i, v)
34 }
35 }
36 }
37 }

To display a graph on a panel, simply create an instance of GraphView by passing the
graph as an argument in the constructor (line 4). The class for the graph’s vertex must imple-
ment the Displayable interface in order to display the vertices (lines 13–22). For each ver-
tex index i, invoking graph.getNeighbors(i) returns its adjacency list (line 26). From
this list, you can find all vertices that are adjacent to i and draw a line to connect i with its
adjacent vertex (lines 27–34).

Listing 30.7 gives an example of displaying the graph in Figure 30.1, as shown in
Figure 30.10.

LISTING 30.7 DisplayUSMap.java
1 import javax.swing.*;
2
3 public class DisplayUSMap extends JApplet {
4
5 new City("San Francisco", 50, 210),
6 new City("Los Angeles", 75, 275), new City("Denver", 275, 175),
7 new City("Kansas City", 400, 245),
8 new City("Chicago", 450, 100), new City("Boston", 700, 80),
9 new City("New York", 675, 120), new City("Atlanta", 575, 295),

10 new City("Miami", 600, 400), new City("Dallas", 408, 325),
11 new City("Houston", 450, 360) };
12
13 // Edge array for graph in Figure 30.1
14
15 {0, 1}, {0, 3}, {0, 5}, {1, 0}, {1, 2}, {1, 3},
16 {2, 1}, {2, 3}, {2, 4}, {2, 10},
17 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
18 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
19 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
20 {6, 5}, {6, 7}, {7, 4}, {7, 5}, {7, 6}, {7, 8},
21 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
22 {9, 8}, {9, 11}, {10, 2}, {10, 4}, {10, 8}, {10, 11},
23 {11, 8}, {11, 9}, {11, 10}
24 };
25
26
27
28
29 public DisplayUSMap() {
30
31 }
32
33
34 private int x, y;
35 private String name;

static class City implements Displayable {

add(new GraphView(graph));

= new UnweightedGraph<City>(edges, vertices);
private Graph<City> graph

private int[][] edges = {

private City[] vertices = {new City("Seattle", 75, 50),

g.drawLine(x1, y1, x2, y2);

create a graph

create a GraphView

City class

1068 Chapter 30 Graphs and Applications

36
37 City(String name, int x, int y) {
38 this.name = name;
39 this.x = x;
40 this.y = y;
41 }
42
43 @Override
44 public int getX() {
45 return x;
46 }
47
48 @Override
49 public int getY() {
50 return y;
51 }
52
53 @Override
54 public String getName() {
55 return name;
56 }
57 }
58 }

The class City is defined to model the vertices with their coordinates and names (lines
33–57). The program creates a graph with the vertices of the City type (line 27). Since City
implements Displayable, a GraphView object created for the graph displays the graph in
the panel (line 30).

As an exercise to get acquainted with the graph classes and interfaces, add a city (e.g.,
Savannah) with appropriate edges into the graph.

30.9 For the graph1 object created in Listing 30.1, TestGraph.java, can you create a
GraphView object as follows?

GraphView view = new GraphView(graph1);

FIGURE 30.10 The graph is displayed in the panel.

main method omitted

✓Point✓Check

30.6 Graph Traversals 1069

30.6 Graph Traversals
Depth-first and breadth-first are two common ways to traverse a graph.

Graph traversal is the process of visiting each vertex in the graph exactly once. There are two
popular ways to traverse a graph: depth-first traversal (or depth-first search) and breadth-first
traversal (or breadth-first search). Both traversals result in a spanning tree, which can be
modeled using a class, as shown in Figure 30.11. Note that Tree is an inner class defined in
the AbstractGraph class. AbstractGraph<V>.Tree is different from the Tree interface
defined in Section 27.2.5. AbstractGraph.Tree is a specialized class designed for describ-
ing the parent-child relationship of the nodes, whereas the Tree interface defines common
operations such as searching, inserting, and deleting in a tree. Since there is no need to
perform these operations for a spanning tree, AbstractGraph<V>.Tree is not defined as a
subtype of Tree.

-root: int

-parent: int[]

-searchOrder: List<Integer>

+Tree(root: int, parent: int[],

 searchOrder: List<Integer>)

+printPath(index: int): void

+printTree(): void

AbstractGraph<V>.Tree

Constructs a tree with the specified root, parent, and
searchOrder.

The root of the tree.

The parents of the vertices.

The orders for traversing the vertices.

Returns the root of the tree.
Returns the order of vertices searched.
Returns the parent for the specified vertex index.
Returns the number of vertices searched.
Returns a list of vertices from the specified vertex index
 to the root.
Displays a path from the root to the specified vertex.
Displays tree with the root and all edges.

+getRoot(): int

+getSearchOrder(): List<Integer>

+getParent(index: int): int

+getNumberOfVerticesFound(): int

+getPath(index: int): List<V>

FIGURE 30.11 The Tree class describes the nodes with parent-child relationships.

The Tree class is defined as an inner class in the AbstractGraph class in lines 208–275
in Listing 30.3. The constructor creates a tree with the root, edges, and a search order.

The Tree class defines seven methods. The getRoot() method returns the root of the
tree. You can get the order of the vertices searched by invoking the getSearchOrder()
method. You can invoke getParent(v) to find the parent of vertex v in the search. Invoking
getNumberOfVerticesFound() returns the number of vertices searched. The method
getPath(index) returns a list of vertices from the specified vertex index to the root. Invoking
printPath(v) displays a path from the root to v. You can display all edges in the tree using
the printTree() method.

Sections 30.7 and 30.9 will introduce depth-first search and breadth-first search, respec-
tively. Both searches will result in an instance of the Tree class.

30.10 Does AbstractGraph<V>.Tree implement the Tree interface defined in Listing 27.3
Tree.java?

30.11 What method do you use to find the parent of a vertex in the tree?

depth-first search

breadth-first search

Key
Point

✓Point✓Check

1070 Chapter 30 Graphs and Applications

30.7 Depth-First Search (DFS)
The depth-first search of a graph starts from a vertex in the graph and visits all
vertices in the graph as far as possible before backtracking.

The depth-first search of a graph is like the depth-first search of a tree discussed in Section
27.2.4, Tree Traversal. In the case of a tree, the search starts from the root. In a graph, the
search can start from any vertex.

A depth-first search of a tree first visits the root, then recursively visits the subtrees of the
root. Similarly, the depth-first search of a graph first visits a vertex, then it recursively visits
all the vertices adjacent to that vertex. The difference is that the graph may contain cycles,
which could lead to an infinite recursion. To avoid this problem, you need to track the vertices
that have already been visited.

The search is called depth-first because it searches “deeper” in the graph as much as possi-
ble. The search starts from some vertex v. After visiting v, it next visits an unvisited neighbor
of v. If v has no unvisited neighbor, the search backtracks to the vertex from which it reached
v. We assume that the graph is connected and the search starting from any vertex can reach all
the vertices. If this is not the case, see Programming Exercise 30.4 for finding connected com-
ponents in a graph.

30.7.1 Depth-First Search Algorithm
The algorithm for the depth-first search is described in Listing 30.8.

LISTING 30.8 Depth-First Search Algorithm
1 dfs(vertex v) {
2 visit v;
3 for each neighbor w of v
4 if (w has not been visited) {
5 dfs(w);
6 }
7 }

You can use an array named isVisited to denote whether a vertex has been visited. Initially,
isVisited[i] is false for each vertex i. Once a vertex, say v, is visited, isVisited[v] is set
to true.

Consider the graph in Figure 30.12a. Suppose you start the depth-first search from vertex
0. First visit , then any of its neighbors, say 1. Now is visited, as shown in Figure 30.12b.
Vertex 1 has three neighbors—0, 2, and 4. Since 0 has already been visited, you will visit
either 2 or 4. Let us pick 2. Now is visited, as shown in Figure 30.12c. Vertex 2 has three
neighbors: 0, 1, and 3. Since 0 and 1 have already been visited, pick 3. is now visited, as
shown in Figure 30.12d. At this point, the vertices have been visited in this order:

0, 1, 2, 3

Since all the neighbors of 3 have been visited, backtrack to 2. Since all the vertices of 2
have been visited, backtrack to 1. 4 is adjacent to 1, but 4 has not been visited. Therefore, visit

, as shown in Figure 30.12e. Since all the neighbors of 4 have been visited, backtrack to 1.
Since all the neighbors of 1 have been visited, backtrack to 0. Since all the neighbors of 0 have
been visited, the search ends.

Since each edge and each vertex is visited only once, the time complexity of the dfs
method is O(|E| + |V|), where |E| denotes the number of edges and |V| the number of
vertices.

4

3
2

10

Key
Point

visit v

check a neighbor
recursive search

DFS time complexity

30.7 Depth-First Search (DFS) 1071

30.7.2 Implementation of Depth-First Search
The algorithm for DFS in Listing 30.8 uses recursion. It is natural to use recursion to imple-
ment it. Alternatively, you can use a stack (see Programming Exercise 30.3).

The dfs(int v) method is implemented in lines 146–175 in Listing 30.3. It returns an
instance of the Tree class with vertex v as the root. The method stores the vertices searched
in the list searchOrder (line 147), the parent of each vertex in the array parent (line 148),
and uses the isVisited array to indicate whether a vertex has been visited (line 153). It
invokes the helper method dfs(v, parent, searchOrder, isVisited) to perform a
depth-first search (line 156).

In the recursive helper method, the search starts from vertex v. v is added to
searchOrder in line 166 and is marked as visited (line 167). For each unvisited neighbor
of v, the method is recursively invoked to perform a depth-first search. When a vertex i is
visited, the parent of i is stored in parent[i] (line 171). The method returns when all
vertices are visited for a connected graph, or in a connected component.

Listing 30.9 gives a test program that displays a DFS for the graph in Figure 30.1 starting
from Chicago. The graphical illustration of the DFS starting from Chicago is shown in
Figure 30.13. For an interactive GUI demo of DFS, go to www.cs.armstrong.edu/liang/
animation/USMapSearch.html.

LISTING 30.9 TestDFS.java
1 public class TestDFS {
2 public static void main(String[] args) {
3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
5 "Atlanta", "Miami", "Dallas", "Houston"};
6
7 int[][] edges = {
8 {0, 1}, {0, 3}, {0, 5},

0 1

2

3 4

(a)

0 1

2

3 4

0 1

2

3 4

(b) (c)

0 1

2

3 4

0 1

2

3 4

(d) (e)

FIGURE 30.12 Depth-first search visits a node and its neighbors recursively.

U.S. Map Search

vertices

edges

www.cs.armstrong.edu/liang/animation/USMapSearch.html
www.cs.armstrong.edu/liang/animation/USMapSearch.html

1072 Chapter 30 Graphs and Applications

9 {1, 0}, {1, 2}, {1, 3},
10 {2, 1}, {2, 3}, {2, 4}, {2, 10},
11 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
12 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
13 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
14 {6, 5}, {6, 7},
15 {7, 4}, {7, 5}, {7, 6}, {7, 8},
16 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
17 {9, 8}, {9, 11},
18 {10, 2}, {10, 4}, {10, 8}, {10, 11},
19 {11, 8}, {11, 9}, {11, 10}
20 };
21
22 Graph<String> graph =
23 new UnweightedGraph<String>(edges, vertices);
24
25
26
27
28 System.out.println(dfs.getNumberOfVerticesFound() +
29 " vertices are searched in this DFS order:");
30 for (int i = 0; i < searchOrder.size(); i++)
31 System.out.print(graph.getVertex(searchOrder.get(i)) + " ");
32 System.out.println();
33
34 for (int i = 0; i < searchOrder.size(); i++)
35 if (dfs.getParent(i) != -1)
36 System.out.println("parent of " + graph.getVertex(i) +
37 " is " + graph.getVertex(dfs.getParent(i)));
38 }
39 }

java.util.List<Integer> searchOrder = dfs.getSearchOrder();

graph.dfs(graph.getIndex("Chicago"));
AbstractGraph<String>.Tree dfs =

12 vertices are searched in this DFS order:
Chicago Seattle San Francisco Los Angeles Denver
Kansas City New York Boston Atlanta Miami Houston Dallas

parent of Seattle is Chicago
parent of San Francisco is Seattle
parent of Los Angeles is San Francisco
parent of Denver is Los Angeles
parent of Kansas City is Denver
parent of Boston is New York
parent of New York is Kansas City
parent of Atlanta is New York
parent of Miami is Atlanta
parent of Dallas is Houston
parent of Houston is Miami

30.7.3 Applications of the DFS
The depth-first search can be used to solve many problems, such as the following:

■ Detecting whether a graph is connected. Search the graph starting from any vertex. If
the number of vertices searched is the same as the number of vertices in the graph,
the graph is connected. Otherwise, the graph is not connected. (See Programming
Exercise 30.1.)

create a graph

get DFS

get search order

30.7 Depth-First Search (DFS) 1073

■ Detecting whether there is a path between two vertices (see Programming Exercise 30.5).

■ Finding a path between two vertices (see Programming Exercise 30.5).

■ Finding all connected components. A connected component is a maximal connected
subgraph in which every pair of vertices are connected by a path. (See Programming
Exercise 30.4.)

■ Detecting whether there is a cycle in the graph (see Programming Exercise 30.6).

■ Finding a cycle in the graph (see Programming Exercise 30.7).

■ Finding a Hamiltonian path/cycle. A Hamiltonian path in a graph is a path that visits
each vertex in the graph exactly once. A Hamiltonian cycle visits each vertex in the
graph exactly once and returns to the starting vertex. (See Programming Exercise
30.17.)

The first six problems can be easily solved using the dfs method in Listing 30.3. To find a
Hamiltonian path/cycle, you have to explore all possible DFSs to find the one that leads to the
longest path. The Hamiltonian path/cycle has many applications, including for solving the
well-known Knight’s Tour problem, which is presented in Supplement VI.C on the Companion
Website.

FIGURE 30.13 A DFS search starts from Chicago.

1074 Chapter 30 Graphs and Applications

Key
Point

✓Point✓Check 30.12 What is depth-first search?

30.13 Draw a DFS tree for the graph in Figure 30.3b starting from node A.

30.14 Draw a DFS tree for the graph in Figure 30.1 starting from vertex Atlanta.

30.15 What is the return type from invoking dfs(v)?

30.16 The depth-first search algorithm described in Listing 30.8 uses recursion. Alterna-
tively, you can use a stack to implement it, as shown below. Point out the error in this
algorithm and give a correct algorithm.

// Wrong version
dfs(vertex v) {
push v into the stack;
mark v visited;

while (the stack is not empty) {
pop a vertex, say u, from the stack
visit u;
for each neighbor w of u
if (w has not been visited)
push w into the stack;

}
}

30.8 Case Study: The Connected Circles Problem
The connected circles problem is to determine whether all circles in a two-dimensional
plane are connected. This problem can be solved using a depth-first traversal.

The DFS algorithm has many applications. This section applies the DFS algorithm to solve
the connected circles problem.

In the connected circles problem, you determine whether all the circles in a two-dimensional
plane are connected. If all the circles are connected, they are painted as filled circles, as shown
in Figure 30.14a. Otherwise, they are not filled, as shown in Figure 30.14b.

(a) Circles are connected (b) Circles are not connected

FIGURE 30.14 You can apply DFS to determine whether the circles are connected.

We will write a program that lets the user create a circle by clicking a mouse in a blank area
that is not currently covered by a circle. As the circles are added, the circles are repainted
filled if they are connected or unfilled otherwise.

30.8 Case Study: The Connected Circles Problem 1075

We will create a graph to model the problem. Each circle is a vertex in the graph. Two cir-
cles are connected if they overlap. We apply the DFS in the graph, and if all vertices are found
in the depth-first search, the graph is connected.

The program is given in Listing 30.10.

LISTING 30.10 ConnectedCircles.java
1 import java.util.List;
2 import java.util.ArrayList;
3 import javax.swing.*;
4 import java.awt.*;
5 import java.awt.event.*;
6
7 public class ConnectedCircles extends JApplet {
8 // Circles are stored in a list
9
10
11 public ConnectedCircles() {
12 // Add to circle panel to applet
13 }
14
15 /** Panel for displaying circles */
16 class CirclePanel extends JPanel {
17 public CirclePanel() {
18 addMouseListener(new MouseAdapter() {
19 @Override
20 {
21 if (!isInsideACircle(e.getPoint())) { // Add a new circle
22
23 repaint();
24 }
25 }
26 });
27 }
28
29 /** Returns true if the point is inside an existing circle */
30
31 for (Circle circle: circles)
32 if (circle.contains(p))
33 return true;
34
35 return false;
36 }
37
38 @Override
39 protected void paintComponent(Graphics g) {
40
41 return; // Nothing to paint
42
43 super.paintComponent(g);
44
45 // Build the edges
46 List<AbstractGraph.Edge> edges
47
48 for (int i = 0; i < circles.size(); i++)
49 for (int j = i + 1; j < circles.size(); j++)
50 if (circles.get(i).overlaps(circles.get(j))) {
51 edges.add(new AbstractGraph.Edge(i, j));
52 edges.add(new AbstractGraph.Edge(j, i));
53 }

= new ArrayList<AbstractGraph.Edge>();

if (circles.size() == 0)

private boolean isInsideACircle(Point p) {

circles.add(new Circle(e.getX(), e.getY()));

public void mouseClicked(MouseEvent e)

add(new CirclePanel());

private List<Circle> circles = new ArrayList<Circle>(); circles in a list

panel for showing circles

mouse clicked

add a new circle

inside circle check

no circles

create edges

1076 Chapter 30 Graphs and Applications

54
55 // Create a graph with circles as vertices
56 Graph<Circle> graph
57
58 AbstractGraph<Circle>.Tree tree = graph.dfs(0); // a DFS tree
59
60 .getNumberOfVerticesFound();
61
62 for (Circle circle : circles) {
63 int radius = circle.radius;
64 { // All circles are connected
65 g.setColor(Color.RED);
66 g.fillOval(circle.x - radius, circle.y - radius,
67 2 * radius, 2 * radius);
68 } else
69 // circles are not all connected
70 g.drawOval(circle.x - radius, circle.y - radius,
71 2 * radius, 2 * radius);
72 }
73 }
74 }
75
76
77 int radius = 20;
78 int x, y;
79
80 Circle(int x, int y) {
81 this.x = x;
82 this.y = y;
83 }
84
85 public boolean contains(Point p) {
86 double d = distance(x, y, p.x, p.y);
87 return d <= radius;
88 }
89
90 public boolean overlaps(Circle circle) {
91 return distance(this.x, this.y, circle.x, circle.y) <= radius
92 + circle.radius;
93 }
94
95 private static double distance(int x1, int y1, int x2, int y2) {
96 return Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
97 }
98 }
99 }

The Circle class is defined in lines 76–98. It contains the data fields x, y, and radius,
which specify the circle’s center location and radius. It also defines the contains and
overlaps methods (lines 85–93) for checking whether a point is inside the circle and whether
two circles overlap.

When the user clicks the mouse outside of any existing circle, a new circle is created
centered at the mouse point and the circle is added to the list circles (line 22).

To detect whether the circles are connected, the program constructs a graph (lines 56–57).
The circles are the vertices of the graph. The edges are constructed in lines 46–53. Two circle
vertices are connected if they overlap (line 50). The DFS of the graph results in a tree (line
58). The tree’s getNumberOfVerticesFound() returns the number of vertices searched. If
it is equal to the number of circles, all circles are connected (lines 59–60).

private static class Circle {

if (isAllCirclesConnected)

boolean isAllCirclesConnected = circles.size() == tree

= new UnweightedGraph<Circle>(edges, circles);create a graph
get a search tree
connected?

connected

not connected

the Circle class

contains a point?

two circles overlap

main method omitted

30.9 Breadth-First Search (BFS) 1077

30.17 How is a graph created for the connected circles problem?

30.18 When you click the mouse inside a circle, does the program create a new circle?

30.19 How does the program know if all circles are connected?

30.9 Breadth-First Search (BFS)
The breadth-first search of a graph visits the vertices level by level. The first level
consists of the starting vertex. Each next level consists of the vertices adjacent to the
vertices in the preceding level.

The breadth-first traversal of a graph is like the breadth-first traversal of a tree discussed in
Section 27.2.4, Tree Traversal. With breadth-first traversal of a tree, the nodes are visited level
by level. First the root is visited, then all the children of the root, then the grandchildren of the
root, and so on. Similarly, the breadth-first search of a graph first visits a vertex, then all its
adjacent vertices, then all the vertices adjacent to those vertices, and so on. To ensure that
each vertex is visited only once, it skips a vertex if it has already been visited.

30.9.1 Breadth-First Search Algorithm
The algorithm for the breadth-first search starting from vertex v in a graph is described in
Listing 30.11.

LISTING 30.11 Breadth-First Search Algorithm
1
2 create an empty queue for storing vertices to be visited;
3 add v into the queue;
4 mark v visited;
5
6
7 dequeue a vertex, say u, from the queue;
8 add u into a list of traversed vertices;
9
10 if w has not been visited {
11 add w into the queue;
12 mark w visited;
13 }
14 }
15 }

Consider the graph in Figure 30.15a. Suppose you start the breadth-first search from vertex
0. First visit , then visit all its neighbors, , , and , as shown in Figure 30.15b. Vertex 1
has three neighbors: 0, 2, and 4. Since 0 and 2 have already been visited, you will now visit
just , as shown in Figure 30.15c. Vertex 2 has three neighbors, 0, 1, and 3, which have all
been visited. Vertex 3 has three neighbors, 0, 2, and 4, which have all been visited. Vertex 4
has two neighbors, 1 and 3, which have all been visited. Hence, the search ends.

Since each edge and each vertex is visited only once, the time complexity of the bfs method
is O(|E| + |V|), where |E| denotes the number of edges and |V| the number of vertices.

30.9.2 Implementation of Breadth-First Search
The bfs(int v) method is defined in the Graph interface and implemented in the
AbstractGraph class in Listing 30.3 (lines 179–204). It returns an instance of the Tree class
with vertex v as the root. The method stores the vertices searched in the list searchOrder
(line 180), the parent of each vertex in the array parent (line 181), uses a linked list for a

4

3210

for each neighbor w of u

while (the queue is not empty) {

bfs(vertex v) {

✓Point✓Check

Key
Point

create a queue
enqueue v

dequeue into u
u traversed
check a neighbor w
is w visited?
enqueue w

BFS time complexity

1078 Chapter 30 Graphs and Applications

queue (lines 185–186), and uses the isVisited array to indicate whether a vertex has been
visited (line 187). The search starts from vertex v. v is added to the queue in line 188 and is
marked as visited (line 189). The method now examines each vertex u in the queue (line 192)
and adds it to searchOrder (line 193). The method adds each unvisited neighbor w of u to the
queue (line 196), sets its parent to u (line 197), and marks it as visited (line 198).

Listing 30.12 gives a test program that displays a BFS for the graph in Figure 30.1
starting from Chicago. The graphical illustration of the BFS starting from Chicago is
shown in Figure 30.16. For an interactive GUI demo of BFS, go to www.cs.armstrong.edu/
liang/animation/USMapSearch.html.

LISTING 30.12 TestBFS.java
1 public class TestBFS {
2 public static void main(String[] args) {
3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
5 "Atlanta", "Miami", "Dallas", "Houston"};
6
7 int[][] edges = {
8 {0, 1}, {0, 3}, {0, 5},
9 {1, 0}, {1, 2}, {1, 3},
10 {2, 1}, {2, 3}, {2, 4}, {2, 10},
11 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
12 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
13 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
14 {6, 5}, {6, 7},
15 {7, 4}, {7, 5}, {7, 6}, {7, 8},
16 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
17 {9, 8}, {9, 11},
18 {10, 2}, {10, 4}, {10, 8}, {10, 11},
19 {11, 8}, {11, 9}, {11, 10}
20 };
21
22 Graph<String> graph =
23 new UnweightedGraph<String>(edges, vertices);
24
25
26
27 java.util.List<Integer> searchOrder = bfs.getSearchOrder();
28 System.out.println(bfs.getNumberOfVerticesFound() +
29 " vertices are searched in this order:");
30 for (int i = 0; i < searchOrder.size(); i++)
31 System.out.println(graph.getVertex(searchOrder.get(i)));

graph.bfs(graph.getIndex("Chicago"));
AbstractGraph<String>.Tree bfs =

0 1

2

3 4

(a)

0 1

2

3 4

0 1

2

3 4

(b) (c)

FIGURE 30.15 Breadth-first search visits a node, then its neighbors, then its neighbors’s
neighbors, and so on.

vertices

edges

create a graph

create a BFS tree

get search order

www.cs.armstrong.edu/liang/animation/USMapSearch.html
www.cs.armstrong.edu/liang/animation/USMapSearch.html

30.9 Breadth-First Search (BFS) 1079

32
33 for (int i = 0; i < searchOrder.size(); i++)
34 if (bfs.getParent(i) != -1)
35 System.out.println("parent of " + graph.getVertex(i) +
36 " is " + graph.getVertex(bfs.getParent(i)));
37 }
38 }

FIGURE 30.16 BFS search starts from Chicago.

12 vertices are searched in this order:
Chicago Seattle Denver Kansas City Boston New York
San Francisco Los Angeles Atlanta Dallas Miami Houston

parent of Seattle is Chicago
parent of San Francisco is Seattle
parent of Los Angeles is Denver
parent of Denver is Chicago
parent of Kansas City is Chicago
parent of Boston is Chicago
parent of New York is Chicago
parent of Atlanta is Kansas City
parent of Miami is Atlanta
parent of Dallas is Kansas City
parent of Houston is Atlanta

1080 Chapter 30 Graphs and Applications

30.9.3 Applications of the BFS
Many of the problems solved by the DFS can also be solved using the BFS. Specifically, the
BFS can be used to solve the following problems:

■ Detecting whether a graph is connected. A graph is connected if there is a path
between any two vertices in the graph.

■ Detecting whether there is a path between two vertices.

■ Finding the shortest path between two vertices. You can prove that the path between
the root and any node in the BFS tree is the shortest path between the root and the
node. (See Check Point Question 30.24.)

■ Finding all connected components. A connected component is a maximal connected
subgraph in which every pair of vertices are connected by a path.

■ Detecting whether there is a cycle in the graph (see Programming Exercise 30.6).

■ Finding a cycle in the graph (see Programming Exercise 30.7).

■ Testing whether a graph is bipartite. (A graph is bipartite if the vertices of the graph
can be divided into two disjoint sets such that no edges exist between vertices in the
same set.) (See Programming Exercise 30.8.)

30.20 What is the return type from invoking bfs(v)?

30.21 What is breadth-first search?

30.22 Draw a BFS tree for the graph in Figure 30.3b starting from node A.

30.23 Draw a BFS tree for the graph in Figure 30.1 starting from vertex Atlanta.

30.24 Prove that the path between the root and any node in the BFS tree is the shortest path
between the root and the node.

30.10 Case Study: The Nine Tails Problem
The nine tails problem can be reduced to the shortest path problem.

The nine tails problem is as follows. Nine coins are placed in a three-by-three matrix with
some face up and some face down. A legal move is to take any coin that is face up and
reverse it, together with the coins adjacent to it (this does not include coins that are diago-
nally adjacent). Your task is to find the minimum number of moves that lead to all coins
being face down. For example, start with the nine coins as shown in Figure 30.17a. After
you flip the second coin in the last row, the nine coins are now as shown in Figure 30.17b.
After you flip the second coin in the first row, the nine coins are all face down, as shown in
Figure 30.17c.

H

(a)

H

(b)

T

(c)

T

T

T

T

T

T

T

T

H

T

T

H

T

H

T

T

H

T

H

H

T

H

T

H

FIGURE 30.17 The problem is solved when all coins are face down.

We will write a program that prompts the user to enter an initial state of the nine coins and
displays the solution, as shown in the following sample run.

Key
Point

✓Point✓Check

30.10 Case Study: The Nine Tails Problem 1081

.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

2

0

0

0

0

0

0

0

0

1

3

0

0

1

1

1

1

1

1

1

511

1

1

1

FIGURE 30.18 There are total of 512 nodes labeled in this order: 0, 1, 2, . . . , 511.

Enter the initial nine coins Hs and Ts:

The steps to flip the coins are
HHH
TTT
HHH

HHH
THT
TTT

TTT
TTT
TTT

HHHTTTHHH

Each state of the nine coins represents a node in the graph. For example, the three states in
Figure 30.17 correspond to three nodes in the graph. For convenience, we use a matrix
to represent all nodes and use 0 for heads and 1 for tails. Since there are nine cells and each
cell is either 0 or 1, there are a total of (512) nodes, labeled 0, 1, . . . , and 511, as shown
in Figure 30.18.

29

3 * 3

We assign an edge from node v to u if there is a legal move from u to v. Figure 30.19
shows a partial graph. Note there is an edge from 511 to 47, since you can flip a cell in node
47 to become node 511.

The last node in Figure 30.18 represents the state of nine face-down coins. For conve-
nience, we call this last node the target node. Thus, the target node is labeled 511. Suppose
the initial state of the nine tails problem corresponds to the node s. The problem is reduced to
finding the shortest path from node s to the target node, which is equivalent to finding the
path from node s to the target node in a BFS tree rooted at the target node.

Now the task is to build a graph that consists of 512 nodes labeled 0, 1, 2, . . . , 511, and
edges among the nodes. Once the graph is created, obtain a BFS tree rooted at node 511.
From the BFS tree, you can find the shortest path from the root to any vertex. We will create
a class named NineTailModel, which contains the method to get the shortest path from the
target node to any other node. The class UML diagram is shown in Figure 30.20.

Visually, a node is represented in a matrix with the letters H and T. In our program,
we use a single-dimensional array of nine characters to represent a node. For example, the
node for vertex 1 in Figure 30.18 is represented as {'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H',
'T'} in the array.

The getEdges() method returns a list of Edge objects.
The getNode(index) method returns the node for the specified index. For example,

getNode(0) returns the node that contains nine Hs. getNode(511) returns the node that
contains nine Ts. The getIndex(node) method returns the index of the node.

3 * 3

1082 Chapter 30 Graphs and Applications

NineTailModel

#tree: AbstractGraph<Integer>.Tree A tree rooted at node 511.

+NineTailModel()
+getShortestPath(nodeIndex: int):
 List<Integer>

-getEdges():
 List<AbstractGraph.Edge>

+getNode(index: int): char[]

+getIndex(node: char[]): int
+getFlippedNode(node: char[],
 position: int): int
+flipACell(node: char[], row: int,
 column: int): void
+printNode(node: char[]): void

Constructs a model for the nine tails problem and obtains the tree.
Returns a path from the specified node to the root. The path
 returned consists of the node labels in a list.

Flips the node at the specified row and column.

Displays the node on the console.

Returns a list of Edge objects for the graph.

Returns a node consisting of nine characters of Hs and Ts.
Returns the index of the specified node.

Flips the node at the specified position and returns the index
 of the flipped node.

FIGURE 30.20 The NineTailModel class models the nine tails problem using a graph.

1
0 1 1

1 0

0 0

408

0

1
1 0 1

1 1

0 0

488

0

0
1 1 0

1 1

0 0

240

0

0
0 1 1

0 0

1 1

30

0

0
1 0 1

0 0

1 1

47

1

0
1 1 1

0 0

0 0

56

0

1
1 1 1

1 1

1 1

511

1

0
1 1 0

0 0

0 1

51

1

FIGURE 30.19 If node u becomes node v after cells are flipped, assign an edge from v to u.

Note that the data field tree is defined as protected so that it can be accessed from the
WeightedNineTail subclass in the next chapter.

The getFlippedNode(char[] node, int position) method flips the node at the
specified position and its adjacent positions. This method returns the index of the new node.
For example, for node 56 in Figure 30.19, flip it at position 0, and you will get node 51. If you
flip node 56 at position 1, you will get node 47.

The flipACell(char[] node, int row, int column) method flips a node at the
specified row and column. For example, if you flip node 56 at row 0 and column 0, the new
node is 408. If you flip node 56 at row 2 and column 0, the new node is 30.

Listing 30.13 shows the source code for NineTailModel.java.

30.10 Case Study: The Nine Tails Problem 1083

declare a tree

create edges

create graph

LISTING 30.13 NineTailModel.java
1 import java.util.*;
2
3 public class NineTailModel {
4 public final static int NUMBER_OF_NODES = 512;
5 protected AbstractGraph<Integer>.Tree tree; // Define a tree
6
7 /** Construct a model */
8 public NineTailModel() {
9 // Create edges
10 List<AbstractGraph.Edge> edges = getEdges();
11
12 // Create a graph
13 UnweightedGraph<Integer> graph = new UnweightedGraph<Integer>(
14 edges, NUMBER_OF_NODES);
15
16 // Obtain a BSF tree rooted at the target node
17 tree = graph.bfs(511);
18 }
19
20 /** Create all edges for the graph */
21 private List<AbstractGraph.Edge> getEdges() {
22 List<AbstractGraph.Edge> edges =
23 new ArrayList<AbstractGraph.Edge>(); // Store edges
24
25 for (int u = 0; u < NUMBER_OF_NODES; u++) {
26 for (int k = 0; k < 9; k++) {
27 char[] node = getNode(u); // Get the node for vertex u
28 if (node[k] == 'H') {
29 int v = getFlippedNode(node, k);
30 // Add edge (v, u) for a legal move from node u to node v
31 edges.add(new AbstractGraph.Edge(v, u));
32 }
33 }
34 }
35
36 return edges;
37 }
38
39 public static int getFlippedNode(char[] node, int position) {
40 int row = position / 3;
41 int column = position % 3;
42
43 flipACell(node, row, column);
44 flipACell(node, row - 1, column);
45 flipACell(node, row + 1, column);
46 flipACell(node, row, column - 1);
47 flipACell(node, row, column + 1);
48
49 return getIndex(node);
50 }
51
52 public static void flipACell(char[] node, int row, int column) {
53 if (row >= 0 && row <= 2 && column >= 0 && column <= 2) {
54 // Within the boundary
55 if (node[row * 3 + column] == 'H')
56 node[row * 3 + column] = 'T'; // Flip from H to T
57 else

58 node[row * 3 + column] = 'H'; // Flip from T to H

create tree

get edges

add an edge

flip cells

flip a cell

1084 Chapter 30 Graphs and Applications

59 }
60 }
61
62 public static int getIndex(char[] node) {
63 int result = 0;
64
65 for (int i = 0; i < 9; i++)
66 if (node[i] == 'T')
67 result = result * 2 + 1;
68 else

69 result = result * 2 + 0;
70
71 return result;
72 }
73
74 public static char[] getNode(int index) {
75 char[] result = new char[9];
76
77 for (int i = 0; i < 9; i++) {
78 int digit = index % 2;
79 if (digit == 0)
80 result[8 - i] = 'H';
81 else

82 result[8 - i] = 'T';
83 index = index / 2;
84 }
85
86 return result;
87 }
88
89 public List<Integer> getShortestPath(int nodeIndex) {
90 return tree.getPath(nodeIndex);
91 }
92
93 public static void printNode(char[] node) {
94 for (int i = 0; i < 9; i++)
95 if (i % 3 != 2)
96 System.out.print(node[i]);
97 else

98 System.out.println(node[i]);
99
100 System.out.println();
101 }
102 }

get node for an index

shortest path

display a node

For example:
index: 3
node: HHHHHHHTT

H H H
H H H
H T T

For example:
node: THHHHHHTT
index: 259

T H H
H H H
H T T

The constructor (lines 8–18) creates a graph with 512 nodes, and each edge corresponds to
the move from one node to the other (line 10). From the graph, a BFS tree rooted at the target
node 511 is obtained (line 17).

To create edges, the getEdges method (lines 21–37) checks each node u to see if it
can be flipped to another node v. If so, add (v, u) to the Edge list (line 31). The
getFlippedNode(node, position) method finds a flipped node by flipping an H cell
and its neighbors in a node (lines 43–47). The flipACell(node, row, column) method
actually flips an H cell and its neighbors in a node (lines 52–60).

The getIndex(node) method is implemented in the same way as converting a binary
number to a decimal number (lines 62–72). The getNode(index) method returns a node
consisting of the letters H and T (lines 74–87).

get index for a node

Key Terms 1085

initial node

The getShortestpath(nodeIndex) method invokes the getPath(nodeIndex) method
to get the vertices in the shortest path from the specified node to the target node (lines 89–91).

The printNode(node) method displays a node on the console (lines 93–101).
Listing 30.14 gives a program that prompts the user to enter an initial node and displays the

steps to reach the target node.

LISTING 30.14 NineTail.java
1 import java.util.Scanner;
2
3 public class NineTail {
4 public static void main(String[] args) {
5 // Prompt the user to enter nine coins' Hs and Ts
6 System.out.print("Enter the initial nine coins Hs and Ts: ");
7 Scanner input = new Scanner(System.in);
8 String s = input.nextLine();
9 char[] initialNode = s.toCharArray();
10
11
12 java.util.List<Integer> path =
13
14
15 System.out.println("The steps to flip the coins are ");
16 for (int i = 0; i < path.size(); i++)
17 NineTailModel.printNode(
18 NineTailModel.getNode(path.get(i).intValue()));
19 }
20 }

The program prompts the user to enter an initial node with nine letters with a combination
of Hs and Ts as a string in line 8, obtains an array of characters from the string (line 9), creates
a graph model to get a BFS tree (line 11), obtains the shortest path from the initial node to the
target node (lines 12–13), and displays the nodes in the path (lines 16–18).

30.25 How are the nodes created for the graph in NineTailModel?

30.26 How are the edges created for the graph in NineTailModel?

30.27 What is returned after invoking getIndex("HTHTTTHHH".toCharArray()) in
Listing 30.13? What is returned after invoking getNode(46) in Listing 30.13?

30.28 If lines 26 and 27 are swapped in Listing 30.13, NineTailModel.java, will the program
work? Why not?

KEY TERMS

model.getShortestPath(NineTailModel.getIndex(initialNode));

NineTailModel model = new NineTailModel(); create model

get shortest path

✓Point✓Check

adjacency list 1054
adjacency matrix 1054
adjacent vertices 1050
breadth-first search 1069
complete graph 1050
cycle 1050
degree 1050
depth-first search 1069
directed graph 1049
graph 1049

incident edges 1050
parallel edge 1050
Seven Bridges of Königsberg 1048
simple graph 1050
spanning tree 1050
tree 1050
undirected graph 1049
unweighted graph 1049
weighted graph 1049

1086 Chapter 30 Graphs and Applications

CHAPTER SUMMARY

1. A graph is a useful mathematical structure that represents relationships among enti-
ties in the real world. You learned how to model graphs using classes and interfaces,
how to represent vertices and edges using arrays and linked lists, and how to imple-
ment operations for graphs.

2. Graph traversal is the process of visiting each vertex in the graph exactly once. You
learned two popular ways for traversing a graph: the depth-first search (DFS) and
breadth-first search (BFS).

3. DFS and BFS can be used to solve many problems such as detecting whether a graph
is connected, detecting whether there is a cycle in the graph, and finding the shortest
path between two vertices.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 30.6–30.10
*30.1 (Test whether a graph is connected) Write a program that reads a graph from a file

and determines whether the graph is connected. The first line in the file contains a
number that indicates the number of vertices (n). The vertices are labeled as 0, 1,
. . . , n-1. Each subsequent line, with the format u v1 v2 ..., describes edges
(u, v1), (u, v2), and so on. Figure 30.21 gives the examples of two files for their
corresponding graphs.

(a) (b)

File
6
0 1 2
1 0 3
2 0 3 4
3 1 2 4 5
4 2 3 5
5 3 4

0

2

4

1

3

5

File
6
0 1 2 3
1 0 3
2 0 3
3 0 1 2
4 5
5 4

0

2 3

1

4 5

FIGURE 30.21 The vertices and edges of a graph can be stored in a file.

Your program should prompt the user to enter the name of the file, then it should
read data from the file, create an instance g of UnweightedGraph, invoke
g.printEdges() to display all edges, and invoke dfs() to obtain an instance
tree of AbstractGraph.Tree. If tree.getNumberOfVerticesFound() is
the same as the number of vertices in the graph, the graph is connected. Here is a
sample run of the program:

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 1087

Enter a file name:
The number of vertices is 6
Vertex 0: (0, 1) (0, 2)
Vertex 1: (1, 0) (1, 3)
Vertex 2: (2, 0) (2, 3) (2, 4)
Vertex 3: (3, 1) (3, 2) (3, 4) (3, 5)
Vertex 4: (4, 2) (4, 3) (4, 5)
Vertex 5: (5, 3) (5, 4)
The graph is connected

c:\exercise\GraphSample1.txt

(Hint: Use new UnweightedGraph(list, numberOfVertices) to create a
graph, where list contains a list of AbstractGraph.Edge objects. Use new
AbstractGraph.Edge(u, v) to create an edge. Read the first line to get the
number of vertices. Read each subsequent line into a string s and use
s.split("[\\s+]") to extract the vertices from the string and create edges
from the vertices.)

*30.2 (Create a file for a graph) Modify Listing 30.1, TestGraph.java, to create a file
representing graph1. The file format is described in Programming Exercise 30.1.
Create the file from the array defined in lines 8–21 in Listing 30.1. The number of
vertices for the graph is 12, which will be stored in the first line of the file. The
contents of the file should be as follows:

12
0 1 3 5
1 0 2 3
2 1 3 4 10
3 0 1 2 4 5
4 2 3 5 7 8 10
5 0 3 4 6 7
6 5 7
7 4 5 6 8
8 4 7 9 10 11
9 8 11
10 2 4 8 11
11 8 9 10

*30.3 (Implement DFS using a stack) The depth-first search algorithm described in
Listing 30.8 uses recursion. Implement it without using recursion.

*30.4 (Find connected components) Create a new class named MyGraph as a subclass of
UnweightedGraph that contains a method for finding all connected components
in a graph with the following header:

public List<List<Integer>> getConnectedComponents();

The method returns a List<List<Integer>>. Each element in the list is
another list that contains all the vertices in a connected component. For example,
for the graph in Figure 30.21b, getConnectedComponents() returns [[0, 1,
2, 3], [4, 5]].

1088 Chapter 30 Graphs and Applications

*30.5 (Find paths) Add a new method in AbstractGraph to find a path between two
vertices with the following header:

public List<Integer> getPath(int u, int v);

The method returns a List<Integer> that contains all the vertices in a path
from u to v in this order. Using the BFS approach, you can obtain the shortest
path from u to v. If there isn’t a path from u to v, the method returns null.

*30.6 (Detect cycles) Add a new method in AbstractGraph to determine whether
there is a cycle in the graph with the following header:

public boolean isCyclic();

*30.7 (Find a cycle) Add a new method in AbstractGraph to find a cycle in the graph
with the following header:

public List<Integer> getACycle(int u);

The method returns a List that contains all the vertices in a cycle starting from
u. If the graph doesn’t have any cycles, the method returns null.

**30.8 (Test bipartite) Recall that a graph is bipartite if its vertices can be divided into
two disjoint sets such that no edges exist between vertices in the same set. Add a
new method in AbstractGraph with the following header to detect whether the
graph is bipartite:

public boolean isBipartite();

**30.9 (Get bipartite sets) Add a new method in AbstractGraph with the following
header to return two bipartite sets if the graph is bipartite:

public List<List<Integer>> getBipartite();

The method returns a List that contains two sublists, each of which contains a
set of vertices. If the graph is not bipartite, the method returns null.

*30.10 (Find the shortest path) Write a program that reads a connected graph from a file.
The graph is stored in a file using the same format specified in Exercise 30.1.
Your program should prompt the user to enter the name of the file, then two
vertices, and should display the shortest path between the two vertices. For
example, for the graph in Figure 30.21a, the shortest path between 0 and 5 may
be displayed as 0 1 3 5.

Here is a sample run of the program:

Enter a file name:

Enter two vertices (integer indexes):
The number of vertices is 6
Vertex 0: (0, 1) (0, 2)
Vertex 1: (1, 0) (1, 3)
Vertex 2: (2, 0) (2, 3) (2, 4)
Vertex 3: (3, 1) (3, 2) (3, 4) (3, 5)
Vertex 4: (4, 2) (4, 3) (4, 5)
Vertex 5: (5, 3) (5, 4)
The path is 0 1 3 5

0 5

c:\exercise\GraphSample1.txt

Programming Exercises 1089

(a) (b)

FIGURE 30.22 The applet solves the nine tails problem.

**30.11 (Revise Listing 30.14, NineTail.java) The program in Listing 30.14 lets the user
enter an input for the nine tails problem from the console and displays the result
on the console. Write an applet that lets the user set an initial state of the nine
coins (see Figure 30.22a) and click the Solve button to display the solution, as
shown in Figure 30.22b. Initially, the user can click the mouse button to flip a
coin. Set a red color on the flipped cells.

**30.12 (Variation of the nine tails problem) In the nine tails problem, when you flip a
coin, the horizontal and vertical neighboring cells are also flipped. Rewrite the
program, assuming that all neighboring cells including the diagonal neighbors
are also flipped.

**30.13 (16 tails model) The nine tails problem in the text uses a matrix.
Assume that you have 16 coins placed in a matrix. Create a new model
class named TailModel16. Create an instance of the model and save the object
into a file named TailModel16.dat.

**30.14 (16 tails view) Listing 30.14, NineTail.java, presents a solution for the
nine tails problem. Revise this program for the 16 tails problem. Your pro-
gram should read the model object created from the preceding exercise.

**30.15 (Dynamic graphs) Write a program that lets the user create a graph dynamically.
The user can create a vertex by entering its name and location, as shown in
Figure 30.23. The user can also create an edge to connect two vertices. To sim-
plify the program, assume that the vertex names are the same as the vertex
indices. You have to add the vertex indices 0, 1, . . . , n, in this order. The user can
specify two vertices and let the program display their shortest path in red.

**30.16 (Induced subgraph) Given an undirected graph and an integer k, find
an induced subgraph H of G of maximum size such that all vertices of H have a

or conclude that no such induced subgraph exists. Implement the
method with the following header:

public static Graph maxInducedSubgraph(Graph edge, int k)

The method returns null if such a subgraph does not exist.

(Hint: An intuitive approach is to remove vertices whose degree is less than k. As
vertices are removed with their adjacent edges, the degrees of other vertices may
be reduced. Continue the process until no vertices can be removed, or all the
vertices are removed.)

degree 7= k,

G = (V, E)

4 * 4
4 * 4

4 * 4
3 * 34 * 4

1090 Chapter 30 Graphs and Applications

***30.17 (Hamiltonian cycle) The Hamiltonian path algorithm is implemented in Sup-
plement VI.C. Add the following getHamiltonianCycle method in the
Graph interface and implement it in the AbstractGraph class:

/** Return a Hamiltonian cycle
* Return null if the graph doesn't contain a Hamiltonian cycle */

public List<Integer> getHamiltonianCycle()

***30.18 (Knight’s Tour cycle) Rewrite KnightTourApp.java in the case study in Sup-
plement VI.C to find a knight’s tour that visits each square in a chessboard and
returns to the starting square. Reduce the Knight’s Tour cycle problem to the
problem of finding a Hamiltonian cycle.

**30.19 (Display a DFS/BFS tree in a graph) Modify GraphView in Listing 30.6 to
add a new data field tree with a set method. The edges in the tree are dis-
played in red. Write a program that displays the graph in Figure 30.1 and the
DFS/BFS tree starting from a specified city, as shown in Figures 30.13 and
30.16. If a city not in the map is entered, the program displays a dialog box to
alert the user.

*30.20 (Display a graph) Write a program that reads a graph from a file and displays
it. The first line in the file contains a number that indicates the number of
vertices (n). The vertices are labeled 0, 1, . . . , n-1. Each subsequent line,
with the format u x y v1 v2 ..., describes the position of u at (x, y) and
edges (u, v1), (u, v2), and so on. Figure 30.24a gives an example of the file for
their corresponding graph. Your program prompts the user to enter the name of
the file, reads data from the file, and displays the graph on a panel using
GraphView, as shown in Figure 30.24b.

**30.21 (Display sets of connected circles) Modify Listing 30.10,
ConnectedCircles.java, to display sets of connected circles in different colors.
That is, if two circles are connected, they are displayed using the same color;
otherwise, they are not in same color, as shown in Figure 30.25. (Hint: See
Programming Exercise 30.4.)

FIGURE 30.23 The program can add vertices and edges and display the shortest path between two specified vertices.

Programming Exercises 1091

(a) (b)

File
7
0 30 30 1 2
1 90 30 0 3 6
2 30 90 0 3 4
3 90 90 1 2 4 5
4 30 150 2 3 5
5 90 150 3 4 6
6 130 90 1 5

0

2

4

1

3 6

5

FIGURE 30.24 The program reads the information about the graph and displays it visually.

(a) (b) (c)

FIGURE 30.25 (a) Connected circles are displayed in the same color. (b) Rectangles are not filled with a color if they are
not connected. (c) Rectangles are filled with a color if they are connected.

*30.22 (Move a circle) Modify Listing 30.10, ConnectedCircles.java, to enable the
user to drag and move a circle.

**30.23 (Connected rectangles) Listing 30.10, ConnectedCircles.java, allows the user
to create circles and determine whether they are connected. Rewrite the pro-
gram for rectangles. The program lets the user create a rectangle by clicking a
mouse in a blank area that is not currently covered by a rectangle. As the rec-
tangles are added, the rectangles are repainted as filled if they are connected or
are unfilled otherwise, as shown in Figure 30.25b–c.

*30.24 (Remove a circle) Modify Listing 30.10, ConnectedCircles.java, to enable the
user to remove a circle when the mouse is clicked inside the circle.

***30.25 (Graph visualization tool) Develop an applet as shown in Figure 30.4, with the
following requirements: (1) The radius of each vertex is 20 pixels. (2) The
user clicks the left-mouse button to place a vertex centered at the mouse point,
provided that the mouse point is not inside or too close to an existing vertex.
(3) The user clicks the right-mouse button inside an existing vertex to remove
the vertex. (4) The user presses a mouse button inside a vertex, drags to
another vertex, and then releases the button to create an edge. (5) The user
drags a vertex while pressing the CTRL key to move a vertex. (6) The vertices
are numbers starting from 0. When a vertex is removed, the vertices are
renumbered. (7) You can click the DFS or BFS button to display a DFS or BFS
tree from a starting vertex. (8) You can click the Shortest Path button to display
the shortest path between the two specified vertices.

This page intentionally left blank

WEIGHTED GRAPHS
AND APPLICATIONS

Objectives
■ To represent weighted edges using adjacency matrices and priority queues

(§31.2).

■ To model weighted graphs using the WeightedGraph class that extends the
AbstractGraph class (§31.3).

■ To design and implement the algorithm for finding a minimum spanning tree
(§31.4).

■ To define the MST class that extends the Tree class (§31.4).

■ To design and implement the algorithm for finding single-source shortest
paths (§31.5).

■ To define the ShortestPathTree class that extends the Tree class (§31.5).

■ To solve the weighted nine tails problem using the shortest-path algorithm
(§31.6).

CHAPTER

31

1094 Chapter 31 Weighted Graphs and Applications

Seattle (0)

San Francisco (1)

Los Angeles (2)

Dallas (10)

Houston (11)

Atlanta (8)

New York (7)

Boston (6)

Chicago (5)

Denver (3)

807

381

1267

2097

1331

1663

496

239

1187

810

661

781

864

888

214

1435

1003

533
599

1260

983

787

1015
Kansas City (4)

Miami (9)

FIGURE 31.1 The graph models the distances among the cities.

Key
Point

31.1 Introduction
A graph is a weighted graph if each edge is assigned a weight. Weighted graphs have
many practical applications.

Figure 30.1 assumes that the graph represents the number of flights among cities. You can
apply the BFS to find the fewest number of flights between two cities. Assume that the edges
represent the driving distances among the cities as shown in Figure 31.1. How do you find the
minimal total distances for connecting all cities? How do you find the shortest path between
two cities? This chapter will address these questions. The former is known as the minimum
spanning tree (MST) problem and the latter as the shortest path problem.problem

The preceding chapter introduced the concept of graphs. You learned how to represent
edges using edge arrays, edge lists, adjacency matrices, and adjacency lists, and how to
model a graph using the Graph interface, the AbstractGraph class, and the
UnweightedGraph class. The preceding chapter also introduced two important techniques
for traversing graphs: depth-first search and breadth-first search, and applied traversal to
solve practical problems. This chapter will introduce weighted graphs. You will learn the
algorithm for finding a minimum spanning tree in Section 31.4 and the algorithm for finding
shortest paths in Section 31.5.

Pedagogical Note
Before we introduce the algorithms and applications for weighted graphs, it is helpful
to get acquainted with weighted graphs using the GUI interactive tool at www.cs
.armstrong.edu/liang/animation/WeightedGraphLearningTool.html, as shown in Figure 31.2.
The tool allows you to enter vertices, specify edges and their weights, view the
graph, and find an MST and all shortest paths from a single source, as shown in
Figure 31.2.

weighted graph learning tool
on Companion Website

www.cs.armstrong.edu/liang/animation/WeightedGraphLearningTool.html
www.cs.armstrong.edu/liang/animation/WeightedGraphLearningTool.html

31.2 Representing Weighted Graphs 1095

Key
Point

FIGURE 31.2 You can use the tool to create a weighted graph with mouse gestures and show the MST and shortest paths.

31.2 Representing Weighted Graphs
Often it is desirable to use a priority queue to store weighted edges.

There are two types of weighted graphs: vertex weighted and edge weighted. In a vertex-
weighted graph, each vertex is assigned a weight. In an edge-weighted graph, each edge is
assigned a weight. Of the two types, edge-weighted graphs have more applications. This
chapter considers edge-weighted graphs.

Weighted graphs can be represented in the same way as unweighted graphs, except that
you have to represent the weights on the edges. As with unweighted graphs, the vertices in
weighted graphs can be stored in an array. This section introduces three representations for
the edges in weighted graphs.

31.2.1 Representing Weighted Edges: Edge Array
Weighted edges can be represented using a two-dimensional array. For example, you can store
all the edges in the graph in Figure 31.3a using the array in Figure 31.3b.

Note
Weights can be of any type: Integer, Double, BigDecimal, and so on. You can
use a two-dimensional array of the Object type to represent weighted edges as
follows:

Object[][] edges = {
{new Integer(0), new Integer(1), new SomeTypeForWeight(2)},
{new Integer(0), new Integer(3), new SomeTypeForWeight(8)},
...

};

vertex-weighted graph
edge-weighted graph

1096 Chapter 31 Weighted Graphs and Applications

31.2.2 Weighted Adjacency Matrices
Assume that the graph has n vertices. You can use a two-dimensional matrix, say
weights, to represent the weights on edges. weights[i][j] represents the weight on edge
(i, j). If vertices i and j are not connected, weights[i][j] is null. For example, the
weights in the graph in Figure 31.3a can be represented using an adjacency matrix as follows:

Integer[][] adjacencyMatrix = {
{null, 2, null, 8, null},
{2, null, 7, 3, null},
{null, 7, null, 4, 5},
{8, 3, 4, null, 6},
{null, null, 5, 6, null}

};

n * n

edge weight

constructor

compare edges

(a) (b)

int[][] edges = {{0, 1, 2}, {0, 3, 8},

 {1, 0, 2}, {1, 2, 7}, {1, 3, 3},

 {2, 1, 7}, {2, 3, 4}, {2, 4, 5},

 {3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},

 {4, 2, 5}, {4, 3, 6}

};

weightvertex

42

7

8

3

6

5

0

1 2

3 4

FIGURE 31.3 Each edge is assigned a weight in an edge-weighted graph.

0 1 2 3 4

0 null 2 null 8 null
1 2 null 7 3 null
2 null 7 null 4 5
3 8 3 4 null 6
4 null null 5 6 null

31.2.3 Priority Adjacency Lists
Another way to represent the edges is to define edges as objects. The AbstractGraph.Edge
class was defined to represent an unweighted edge in Listing 30.3. For weighted edges, we
define the WeightedEdge class as shown in Listing 31.1.

LISTING 31.1 WeightedEdge.java
1 public class WeightedEdge extends AbstractGraph.Edge
2 implements Comparable<WeightedEdge> {
3 public double weight; // The weight on edge (u, v)
4
5 /** Create a weighted edge on (u, v) */
6 public WeightedEdge(int u, int v, double weight) {
7 super(u, v);
8 this.weight = weight;
9 }
10
11 @Override /** Compare two edges on weights */
12 public int compareTo(WeightedEdge edge) {
13 if (weight > edge.weight)
14 return 1;
15 else if (weight == edge.weight)
16 return 0;
17 else

18 return -1;
19 }
20 }

31.3 The WeightedGraph Class 1097

AbstractGraph.Edge is an inner class defined in the AbstractGraph class. It represents
an edge from vertex u to v. WeightedEdge extends AbstractGraph.Edge with a new
property weight.

To create a WeightedEdge object, use new WeightedEdge(i, j, w), where w is the
weight on edge (i, j). It is often useful to store a vertex’s adjacent edges in a priority queue
so that you can remove the edges in increasing order of their weights. For this reason, the
WeightedEdge class implements the Comparable interface.

For unweighted graphs, we use adjacency lists to represent edges. For weighted graphs, we
still use adjacency lists, but the lists are priority queues. For example, the adjacency lists for
the vertices in the graph in Figure 31.3a can be represented as follows:

java.util.PriorityQueue<WeightedEdge>[] queues =
new java.util.PriorityQueue<WeightedEdge>[5];

WeightedEdge(0, 1, 2)queues[0]

queues[2]

queues[3]

queues[4]

WeightedEdge(1, 0, 2) WeightedEdge(1, 3, 3) WeightedEdge(1, 2, 7)

WeightedEdge(2, 1, 7)

WeightedEdge(3, 4, 6)

WeightedEdge(2, 4, 5)WeightedEdge(2, 3, 4)

WeightedEdge(3, 1, 3)

WeightedEdge(4, 2, 5)

WeightedEdge(3, 0, 8)

WeightedEdge(4, 3, 6)

WeightedEdge(3, 2, 4)

WeightedEdge(0, 3, 8)

queues[1]

queues[i] stores all edges adjacent to vertex i.
For flexibility, we will use an array list rather than a fixed-sized array to represent queues.

31.1 For the code WeightedEdge edge = new WeightedEdge(1, 2, 3.5), what is
edge.u, edge.v, and edge.weight?

31.2 What is the printout of the following code?

List<WeightedEdge> list = new ArrayList<WeightedEdge>();
list.add(new WeightedEdge(1, 2, 3.5));
list.add(new WeightedEdge(2, 3, 4.5));
WeightedEdge e = java.util.Collections.max(list);
System.out.println(e.u);
System.out.println(e.v);
System.out.println(e.weight);

31.3 The WeightedGraph Class
The WeightedGraph class extends AbstractGraph.

The preceding chapter designed the Graph interface, the AbstractGraph class, and
the UnweightedGraph class for modeling graphs. Following this pattern, we design
WeightedGraph as a subclass of AbstractGraph, as shown in Figure 31.4.

WeightedGraph simply extends AbstractGraph with five constructors for creating con-
crete WeightedGraph instances. WeightedGraph inherits all methods from AbstractGraph,
overrides the clear and addVertex methods, implements a new addEdge method for adding
a weighted edge, and also introduces new methods for obtaining minimum spanning trees and for
finding all single-source shortest paths. Minimum spanning trees and shortest paths will be intro-
duced in Sections 31.4 and 31.5, respectively.

Listing 31.2 implements WeightedGraph. Priority adjacency lists (line 5) are used internally
to store adjacent edges for a vertex. When a WeightedGraph is constructed, its priority adja-
cency lists are created (lines 15, 21, 27, and 34). The methods getMinimumSpanningTree()
(lines 102–159) and getShortestPath() (lines 193–246) will be introduced in upcoming
sections.

✓Point✓Check

Key
Point

1098 Chapter 31 Weighted Graphs and Applications

LISTING 31.2 WeightedGraph.java
1 import java.util.*;
2
3 public class WeightedGraph<V> extends AbstractGraph<V> {
4 // Priority adjacency lists
5 private List<PriorityQueue<WeightedEdge>> queues
6 = new ArrayList<PriorityQueue<WeightedEdge>>();
7
8 /** Construct a WeightedGraph from edges and vertices in arrays */
9 public WeightedGraph() {
10 }
11
12 /** Construct a WeightedGraph from edges and vertices in arrays */
13 public WeightedGraph(int[][] edges, V[] vertices) {
14 super(edges, vertices);
15 createQueues(edges, vertices.length);
16 }
17
18 /** Construct a WeightedGraph from edges and vertices in List */
19 public WeightedGraph(int[][] edges, int numberOfVertices) {
20 super(edges, numberOfVertices);
21 createQueues(edges, numberOfVertices);
22 }
23
24 /** Construct a WeightedGraph for vertices 0, 1, 2 and edge list */
25 public WeightedGraph(List<WeightedEdge> edges, List<V> vertices) {
26 super((List)edges, vertices);

priority queue

AbstractGraph<V>

WeightedGraph<V>

-queues:
 List<java.util.PriorityQueue<WeightedEdge>>

+WeightedGraph()

+WeightedGraph(edges: int[][], vertices: V[])

+WeightedGraph(edges: List<WeightedEdge>,
 vertices: List<V>)

+WeightedGraph(edges: int[][],
 numberOfVertices: int)

+WeightedGraph(edges: List<WeightedEdge>,
 numberOfVertices: int)

+printWeightedEdges(): void

+getWeightedEdges():
 List<PriorityQueue<WeightedEdge>>

+addEdges (u: int, v: int, weight: double): void

+getMinimumSpanningTree(): MST

+getMinimumSpanningTree(index: int): MST

+getShortestPath(index: int): ShortestPathTree

queues.get(i) is a priority queue that contains all the edges
 adjacent to vertex i.

Constructs an empty graph.

Constructs a weighted graph with the specified edges and
 the number of vertices in arrays.

Constructs a weighted graph with the specified edges and
 the number of vertices.

Constructs a weighted graph with the specified edges in
 an array and the number of vertices.

Constructs a weighted graph with the specified edges in a
 list and the number of vertices.

Displays all edges and weights.

Returns all weighted edges for each vertex in a priority queue.

Add a weighted edge to the graph.

Returns a minimum spanning tree starting from vertex 0.

Returns a minimum spanning tree starting from vertex v.

Returns all single-source shortest paths.

«interface»
Graph<V>

FIGURE 31.4 WeightedGraph extends AbstractGraph.

no-arg constructor

constructor
superclass constructor
create priority queues

constructor

constructor

31.3 The WeightedGraph Class 1099

27 createQueues(edges, vertices.size());
28 }
29
30 /** Construct a WeightedGraph from vertices 0, 1, and edge array */
31 public WeightedGraph(List<WeightedEdge> edges,
32 int numberOfVertices) {
33 super((List)edges, numberOfVertices);
34 createQueues(edges, numberOfVertices);
35 }
36
37 /** Create priority adjacency lists from edge arrays */
38 private void createQueues(int[][] edges, int numberOfVertices) {
39 for (int i = 0; i < numberOfVertices; i++) {
40 queues.add(new PriorityQueue<WeightedEdge>()); // Create a queue
41 }
42
43 for (int i = 0; i < edges.length; i++) {
44 int u = edges[i][0];
45 int v = edges[i][1];
46 int weight = edges[i][2];
47 // Insert an edge into the queue
48 queues.get(u).offer(new WeightedEdge(u, v, weight));
49 }
50 }
51
52 /** Create priority adjacency lists from edge lists */
53 private void createQueues(List<WeightedEdge> edges,
54 int numberOfVertices) {
55 for (int i = 0; i < numberOfVertices; i++) {
56 queues.add(new PriorityQueue<WeightedEdge>()); // Create a queue
57 }
58
59 for (WeightedEdge edge: edges) {
60 queues.get(edge.u).offer(edge); // Insert an edge into the queue
61 }
62 }
63
64 /** Display edges with weights */
65 public void printWeightedEdges() {
66 for (int i = 0; i < queues.size(); i++) {
67 System.out.print(getVertex(i) + " (" + i + "): ");
68 for (WeightedEdge edge : queues.get(i)) {
69 System.out.print("(" + edge.u +
70 ", " + edge.v + ", " + edge.weight + ") ");
71 }
72 System.out.println();
73 }
74 }
75
76 /** Get the edges from the weighted graph */
77 public List<PriorityQueue<WeightedEdge>> getWeightedEdges() {
78 return queues;
79 }
80
81 @Override /** Clear the weighted graph */
82 public void clear() {
83 vertices.clear();
84 neighbors.clear();
85 queues.clear();
86 }

constructor

create priority queues

create queues

print edges

get edges

clear graph

1100 Chapter 31 Weighted Graphs and Applications

87
88 @Override /** Add vertices to the weighted graph */
89 public void addVertex(V vertex) {
90 super.addVertex(vertex);
91 queues.add(new PriorityQueue<WeightedEdge>());
92 }
93
94 /** Add edges to the weighted graph */
95 public void addEdge(int u, int v, double weight) {
96 super.addEdge(u, v);
97 queues.get(u).add(new WeightedEdge(u, v, weight));
98 queues.get(v).add(new WeightedEdge(v, u, weight));
99 }

100
101 /** Get a minimum spanning tree rooted at vertex 0 */
102 public MST getMinimumSpanningTree() {
103 return getMinimumSpanningTree(0);
104 }
105
106 /** Get a minimum spanning tree rooted at a specified vertex */
107 public MST getMinimumSpanningTree(int startingVertex) {
108 List<Integer> T = new ArrayList<Integer>();
109 // T initially contains the startingVertex;
110 T.add(startingVertex);
111
112 int numberOfVertices = vertices.size(); // Number of vertices
113 int[] parent = new int[numberOfVertices]; // Parent of a vertex
114 // Initially set the parent of all vertices to -1
115 for (int i = 0; i < parent.length; i++)
116 parent[i] = -1;
117 double totalWeight = 0; // Total weight of the tree thus far
118
119 // Clone the priority queue, so to keep the original queue intact
120 List<PriorityQueue<WeightedEdge>> queues = deepClone(this.queues);
121
122 // All vertices are found?
123 while (T.size() < numberOfVertices) {
124 // Search for the vertex with the smallest edge adjacent to
125 // a vertex in T
126 int v = -1;
127 double smallestWeight = Double.MAX_VALUE;
128 for (int u : T) {
129 while (!queues.get(u).isEmpty() &&
130 T.contains(queues.get(u).peek().v)) {
131 // Remove the edge from queues[u] if the adjacent
132 // vertex of u is already in T
133 queues.get(u).remove();
134 }
135
136 if (queues.get(u).isEmpty()) {
137 continue; // Consider the next vertex in T
138 }
139
140 // Current smallest weight on an edge adjacent to u
141 WeightedEdge edge = queues.get(u).peek();
142 if (edge.weight < smallestWeight) {
143 v = edge.v;
144 smallestWeight = edge.weight;
145 // If v is added to the tree, u will be its parent
146 parent[v] = u;

add vertex

add edge

minimum spanning tree
start from vertex 0

minimum spanning tree
vertices in tree

add to tree

number of vertices
parent array

initialize parent
total weight

a copy of queues

more vertices?

every u in tree

remove visited vertex

queues.get(u) is empty

smallest edge to u

update smallestWeight

31.3 The WeightedGraph Class 1101

147 }
148 } // End of for loop
149
150 if (v != -1)
151 T.add(v); // Add a new vertex to the tree
152 else

153 break; // The tree is not connected, a partial MST is found
154
155 totalWeight += smallestWeight;
156 } // End of while loop
157
158 return new MST(startingVertex, parent, T, totalWeight);
159 }
160
161 /** Clone an array of queues */
162 private List<PriorityQueue<WeightedEdge>> deepClone(
163 List<PriorityQueue<WeightedEdge>> queues) {
164 List<PriorityQueue<WeightedEdge>> copiedQueues =
165 new ArrayList<PriorityQueue<WeightedEdge>>();
166
167 for (int i = 0; i < queues.size(); i++) {
168 copiedQueues.add(new PriorityQueue<WeightedEdge>());
169 for (WeightedEdge e : queues.get(i)) {
170 copiedQueues.get(i).add(e);
171 }
172 }
173
174 return copiedQueues;
175 }
176
177 /** MST is an inner class in WeightedGraph */
178 public class MST extends Tree {
179 private double totalWeight; // Total weight of the tree's edges
180
181 public MST(int root, int[] parent, List<Integer> searchOrder,
182 double totalWeight) {
183 super(root, parent, searchOrder);
184 this.totalWeight = totalWeight;
185 }
186
187 public double getTotalWeight() {
188 return totalWeight;
189 }
190 }
191
192 /** Find single-source shortest paths */
193 public ShortestPathTree getShortestPath(int sourceVertex) {
194 // T stores the vertices of paths found so far
195 List<Integer> T = new ArrayList<Integer>();
196 // T initially contains the sourceVertex;
197 T.add(sourceVertex);
198
199 // vertices is defined in AbstractGraph
200 int numberOfVertices = vertices.size();
201
202 // parent[v] stores the previous vertex of v in the path
203 int[] parent = new int[numberOfVertices];
204 parent[sourceVertex] = -1; // The parent of source is set to -1
205
206 // cost[v] stores the cost of the path from v to the source

add to tree

update totalWeight

clone queue

clone every element

MST inner class
total weight in tree

getShortestPath

vertices found

add source

number of vertices

parent array
parent of root

1102 Chapter 31 Weighted Graphs and Applications

207 double[] cost = new double[numberOfVertices];
208 for (int i = 0; i < cost.length; i++) {
209 cost[i] = Double.MAX_VALUE; // Initial cost set to infinity
210 }
211 cost[sourceVertex] = 0; // Cost of source is 0
212
213 // Get a copy of queues
214 List<PriorityQueue<WeightedEdge>> queues = deepClone(this.queues);
215
216 // Expand T
217 while (T.size() < numberOfVertices) {
218 int v = -1; // Vertex to be determined
219 double smallestCost = Double.MAX_VALUE; // Set to infinity
220 for (int u : T) {
221 while (!queues.get(u).isEmpty() &&
222 T.contains(queues.get(u).peek().v)) {
223 queues.get(u).remove(); // Remove the vertex in queue for u
224 }
225
226 if (queues.get(u).isEmpty()) {
227 // All vertices adjacent to u are in T
228 continue;
229 }
230
231 WeightedEdge e = queues.get(u).peek();
232 if (cost[u] + e.weight < smallestCost) {
233 v = e.v;
234 smallestCost = cost[u] + e.weight;
235 // If v is added to the tree, u will be its parent
236 parent[v] = u;
237 }
238 } // End of for loop
239
240 T.add(v); // Add a new vertex to T
241 cost[v] = smallestCost;
242 } // End of while loop
243
244 // Create a ShortestPathTree
245 return new ShortestPathTree(sourceVertex, parent, T, cost);
246 }
247
248 /** ShortestPathTree is an inner class in WeightedGraph */
249 public class ShortestPathTree extends Tree {
250 private double[] cost; // cost[v] is the cost from v to source
251
252 /** Construct a path */
253 public ShortestPathTree(int source, int[] parent,
254 List<Integer> searchOrder, double[] cost) {
255 super(source, parent, searchOrder);
256 this.cost = cost;
257 }
258
259 /** Return the cost for a path from the root to vertex v */
260 public double getCost(int v) {
261 return cost[v];
262 }
263
264 /** Print paths from all vertices to the source */
265 public void printAllPaths() {
266 System.out.println("All shortest paths from " +

cost array

constructor

get cost

print all paths

source cost

a copy of queues

more vertices left?
determine one

remove visited vertex

queues.get(u) is empty

smallest edge to u

update smallestCost

v now found

add to T

create a path

cost

31.3 The WeightedGraph Class 1103

267 vertices.get(getRoot()) + " are:");
268 for (int i = 0; i < cost.length; i++) {
269 printPath(i); // Print a path from i to the source
270 System.out.println("(cost: " + cost[i] + ")"); // Path cost
271 }
272 }
273 }
274 }

When you construct a WeightedGraph using the no-arg constructor, the superclass’s no-arg
constructor is invoked. When you construct a WeightedGraph using the other four construc-
tors, the superclass’s constructor is invoked (lines 14, 20, 26, 33) to initialize the properties
vertices and neighbors in AbstractGraph. Additionally, priority queues are created for
instances of WeightedGraph. The clear and addVertex methods in AbstractGraph are
overridden in lines 82–92 to handle the weighted edges. The addEdge(u, v, weight)
method adds a new edge (u, v) with the specified weight to the graph (lines 95–99).

Listing 31.3 gives a test program that creates a graph for the one in Figure 31.1 and another
graph for the one in Figure 31.3a.

LISTING 31.3 TestWeightedGraph.java
1 public class TestWeightedGraph {
2 public static void main(String[] args) {
3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
5 "Atlanta", "Miami", "Dallas", "Houston"};
6
7 int[][] edges = {
8 {0, 1, 807}, {0, 3, 1331}, {0, 5, 2097},
9 {1, 0, 807}, {1, 2, 381}, {1, 3, 1267},

10 {2, 1, 381}, {2, 3, 1015}, {2, 4, 1663}, {2, 10, 1435},
11 {3, 0, 1331}, {3, 1, 1267}, {3, 2, 1015}, {3, 4, 599},
12 {3, 5, 1003},
13 {4, 2, 1663}, {4, 3, 599}, {4, 5, 533}, {4, 7, 1260},
14 {4, 8, 864}, {4, 10, 496},
15 {5, 0, 2097}, {5, 3, 1003}, {5, 4, 533},
16 {5, 6, 983}, {5, 7, 787},
17 {6, 5, 983}, {6, 7, 214},
18 {7, 4, 1260}, {7, 5, 787}, {7, 6, 214}, {7, 8, 888},
19 {8, 4, 864}, {8, 7, 888}, {8, 9, 661},
20 {8, 10, 781}, {8, 11, 810},
21 {9, 8, 661}, {9, 11, 1187},
22 {10, 2, 1435}, {10, 4, 496}, {10, 8, 781}, {10, 11, 239},
23 {11, 8, 810}, {11, 9, 1187}, {11, 10, 239}
24 };
25
26 WeightedGraph<String> graph1 =
27
28 System.out.println("The number of vertices in graph1: "
29 + graph1.getSize());
30 System.out.println("The vertex with index 1 is "
31 + graph1.getVertex(1));
32 System.out.println("The index for Miami is " +
33 graph1.getIndex("Miami"));
34 System.out.println("The edges for graph1:");
35 graph1.printWeightedEdges();
36
37 edges = new int[][]{
38 {0, 1, 2}, {0, 3, 8},

new WeightedGraph<String>(edges, vertices);

vertices

edges

create graph

print edges

edges

1104 Chapter 31 Weighted Graphs and Applications

39 {1, 0, 2}, {1, 2, 7}, {1, 3, 3},
40 {2, 1, 7}, {2, 3, 4}, {2, 4, 5},
41 {3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},
42 {4, 2, 5}, {4, 3, 6}
43 };
44 WeightedGraph<Integer> graph2 =
45
46 System.out.println("\nThe edges for graph2:");
47 graph2.printWeightedEdges();
48 }
49 }

new WeightedGraph<Integer>(edges, 5);

The number of vertices in graph1: 12
The vertex with index 1 is San Francisco
The index for Miami is 9
The edges for graph1:
Vertex 0: (0, 1, 807) (0, 3, 1331) (0, 5, 2097)
Vertex 1: (1, 2, 381) (1, 0, 807) (1, 3, 1267)
Vertex 2: (2, 1, 381) (2, 3, 1015) (2, 4, 1663) (2, 10, 1435)
Vertex 3: (3, 4, 599) (3, 5, 1003) (3, 1, 1267)
(3, 0, 1331) (3, 2, 1015)

Vertex 4: (4, 10, 496) (4, 8, 864) (4, 5, 533) (4, 2, 1663)
(4, 7, 1260) (4, 3, 599)

Vertex 5: (5, 4, 533) (5, 7, 787) (5, 3, 1003)
(5, 0, 2097) (5, 6, 983)

Vertex 6: (6, 7, 214) (6, 5, 983)
Vertex 7: (7, 6, 214) (7, 8, 888) (7, 5, 787) (7, 4, 1260)
Vertex 8: (8, 9, 661) (8, 10, 781) (8, 4, 864)
(8, 7, 888) (8, 11, 810)

Vertex 9: (9, 8, 661) (9, 11, 1187)
Vertex 10: (10, 11, 239) (10, 4, 496) (10, 8, 781) (10, 2, 1435)
Vertex 11: (11, 10, 239) (11, 9, 1187) (11, 8, 810)

The edges for graph2:
Vertex 0: (0, 1, 2) (0, 3, 8)
Vertex 1: (1, 0, 2) (1, 2, 7) (1, 3, 3)
Vertex 2: (2, 3, 4) (2, 1, 7) (2, 4, 5)
Vertex 3: (3, 1, 3) (3, 4, 6) (3, 2, 4) (3, 0, 8)
Vertex 4: (4, 2, 5) (4, 3, 6)

The program creates graph1 for the graph in Figure 31.1 in lines 3–27. The vertices for
graph1 are defined in lines 3–5. The edges for graph1 are defined in lines 7–24. The edges
are represented using a two-dimensional array. For each row i in the array, edges[i][0]
and edges[i][1] indicate that there is an edge from vertex edges[i][0] to vertex
edges[i][1] and the weight for the edge is edges[i][2]. For example, {0, 1, 807} (line
8) represents the edge from vertex 0 (edges[0][0]) to vertex 1 (edges[0][1]) with
weight 807 (edges[0][2]). {0, 5, 2097} (line 8) represents the edge from vertex 0
(edges[2][0]) to vertex 5 (edges[2][1]) with weight 2097 (edges[2][2]). Line 35
invokes the printWeightedEdges() method on graph1 to display all edges in graph1.

The program creates the edges for graph2 for the graph in Figure 31.3a in lines 37–45. Line
47 invokes the printWeightedEdges() method on graph2 to display all edges in graph2.

Note
The adjacent edges for each vertex are stored in a priority queue. When you remove an edge
from the queue, the one with the smallest weight is always removed. However, if you tra-
verse the edges in the queue, the edges are not necessarily in increasing order of weights.

traversing priority queue

create graph

print edges

31.4 Minimum Spanning Trees 1105

✓Point✓Check
31.3 What is the printout of the following code?

PriorityQueue<WeightedEdge> q =
new PriorityQueue<WeightedEdge>();

q.offer(new WeightedEdge(1, 2, 3.5));
q.offer(new WeightedEdge(1, 6, 6.5));
q.offer(new WeightedEdge(1, 7, 1.5));
System.out.println(q.poll().weight);
System.out.println(q.poll().weight);
System.out.println(q.poll().weight);

31.4 What is wrong in the following code? Fix it and show the printout.

List<PriorityQueue<WeightedEdge>> queues =
new ArrayList<PriorityQueue<WeightedEdge>>();

queues.get(0).offer(new WeightedEdge(0, 2, 3.5));
queues.get(0).offer(new WeightedEdge(0, 6, 6.5));
queues.get(0).offer(new WeightedEdge(0, 7, 1.5));
queues.get(1).offer(new WeightedEdge(1, 0, 3.5));
queues.get(1).offer(new WeightedEdge(1, 5, 8.5));
queues.get(1).offer(new WeightedEdge(1, 8, 19.5));
System.out.println(queues.get(0).peek()
.compareTo(queues.get(1).peek()));

31.4 Minimum Spanning Trees
A minimum spanning tree of a graph is a spanning tree with the minimum total
weights.

A graph may have many spanning trees. Suppose that the edges are weighted. A minimum
spanning tree has the minimum total weights. For example, the trees in Figures 31.5b, 31.5c,
31.5d are spanning trees for the graph in Figure 31.5a. The trees in Figures 31.3c and 31.3d
are minimum spanning trees.

Key
Point

minimum spanning tree

(d)(c)

(b)(a)

56

10

5

8

7

7

12

7

10

8

8

5

5

10

7 7
8

5

5

6

7 7 8

5

5

6
7

7 8

FIGURE 31.5 The trees in (c) and (d) are minimum spanning trees of the graph in (a).

1106 Chapter 31 Weighted Graphs and Applications

Prim’s algorithm

add initial vertex

more vertices?
find a vertex

add to tree

example

u

v

T

V – T
Vertices already in
the spanning tree

Vertices not currently in
the spanning tree

FIGURE 31.6 Find a vertex u in T that connects a vertex v in V – T with the smallest
weight.

The problem of finding a minimum spanning tree has many applications. Consider a com-
pany with branches in many cities. The company wants to lease telephone lines to connect all
the branches together. The phone company charges different amounts of money to connect
different pairs of cities. There are many ways to connect all branches together. The cheapest
way is to find a spanning tree with the minimum total rates.

31.4.1 Minimum Spanning Tree Algorithms
How do you find a minimum spanning tree? There are several well-known algorithms for
doing so. This section introduces Prim’s algorithm. Prim’s algorithm starts with a spanning
tree T that contains an arbitrary vertex. The algorithm expands the tree by repeatedly adding
a vertex with the lowest-cost edge incident to a vertex already in the tree. Prim’s algorithm is
a greedy algorithm, and it is described in Listing 31.4.

LISTING 31.4 Prim's Minimum Spanning Tree Algorithm
1 minimumSpanningTree() {
2 Let V denote the set of vertices in the graph;
3 Let T be a set for the vertices in the spanning tree;
4 Initially, add the starting vertex to T;
5
6 while (size of T < n) {
7 find u in T and v in V – T with the smallest weight
8 on the edge (u, v), as shown in Figure 31.6;
9 add v to T;
10 }
11 }

The algorithm starts by adding the starting vertex into T. It then continuously adds a vertex
(say v) from V – T into T. v is the vertex that is adjacent to the vertex in T with the smallest
weight on the edge. For example, there are five edges connecting vertices in T and V – T as
shown in Figure 31.6, and (u, v) is the one with the smallest weight. Consider the graph in
Figure 31.7. The algorithm adds the vertices to T in this order:

1. Add vertex 0 to T.

2. Add vertex 5 to T, since Edge(5, 0, 5) has the smallest weight among all edges incident
to a vertex in T, as shown in Figure 31.7a.

3. Add vertex 1 to T, since Edge(1, 0, 6) has the smallest weight among all edges incident
to a vertex in T, as shown in Figure 31.7b.

31.4 Minimum Spanning Trees 1107

4. Add vertex 6 to T, since Edge(6, 1, 7) has the smallest weight among all edges incident
to a vertex in T, as shown in Figure 31.7c.

5. Add vertex 2 to T, since Edge(2, 6, 5) has the smallest weight among all edges incident
to a vertex in T, as shown in Figure 31.7d.

6. Add vertex 4 to T, since Edge(4, 6, 7) has the smallest weight among all edges incident
to a vertex in T, as shown in Figure 31.7e.

7. Add vertex 3 to T, since Edge(3, 2, 8) has the smallest weight among all edges incident
to a vertex in T, as shown in Figure 31.7f.

(b)

5 4

5

12

77 8

6 3

2

0

56

10

8

7

10

8

1

(c)

5 4

5

12

77 8

6 3

2

0

56

10

8

7

10

8

1

5 4

5

12

77 8

6 3

2

0

56

10

8

7

10

8

1

(e)

5 4

5

12

77 8

6 3

2

0

56

10

8

7

10

8

1

(f)

5 4

5

12

77 8

6 3

2

0

56

10

8

7

10

8

1

(a)

5 4

5

12

77 8

6 3

2

0

56

10

8

7

10

8

1

(d)

FIGURE 31.7 The adjacent vertices with the smallest weight are added successively to T.

1108 Chapter 31 Weighted Graphs and Applications

Note
A minimum spanning tree is not unique. For example, both (c) and (d) in Figure 31.5 are
minimum spanning trees for the graph in Figure 31.5a. However, if the weights are dis-
tinct, the graph has a unique minimum spanning tree.

Note
Assume that the graph is connected and undirected. If a graph is not connected or
directed, the algorithm will not work. You can modify the algorithm to find a spanning
forest for any undirected graph. A spanning forest is a graph in which each connected
component is a tree.

31.4.2 Implementation of the MST Algorithm
The getMinimumSpanningTree(int v) method is defined in the WeightedGraph class. It
returns an instance of the MST class, as shown in Figure 31.4. The MST class is defined as an inner
class in the WeightedGraph class, which extends the Tree class, as shown in Figure 31.8. The
Tree class was shown in Figure 30.11. The MST class was implemented in lines 178–190 in
Listing 31.2.

unique tree?

connected and undirected

getMinimumSpanningTree()

The getMinimumSpanningTree method was implemented in lines 107–159 in Listing
31.2. The getMinimumSpanningTree(int startingVertex) method first adds
startingVertex to T (line 110). T is a list that stores the vertices added into the spanning
tree (line 108). vertices is defined as a protected data field in the AbstractGraph class,
and it is an array list that stores all vertices in the graph. vertices.size() returns the num-
ber of the vertices in the graph (line 112).

A vertex is added to T if it is adjacent to one of the vertices in T with the smallest weight
(line 151). Such a vertex is found using the following procedure:

1. For each vertex u in T, find its neighbor with the smallest weight to u. All the neighbors
of u are stored in queues.get(u). queues.get(u).peek() (line 130) returns the
adjacent edge with the smallest weight. If a neighbor is already in T, remove it (line
133). To keep the original queues intact, a copy is created in line 120. After lines
129–138, queues.get(u).peek() (line 141) returns the vertex with the smallest
weight to u.

2. Compare all these neighbors and find the one with the smallest weight (lines 141–147).

AbstractGraph.Tree

WeightedGraph.MST

-totalWeight: int

+MST(root: int, parent: int[], searchOrder:
 List<Integer> totalWeight: int)

+getTotalWeight(): int

Total weight of the tree.

Constructs an MST with the specified root, parent array,
searchOrder, and total weight for the tree.

Returns the totalWeight of the tree.

FIGURE 31.8 The MST class extends the Tree class.

31.4 Minimum Spanning Trees 1109

After a new vertex is added to T (line 151), totalWeight is updated (line 155). Once all
vertices are added to T, an instance of MST is created (line 158). Note that the method will
not work if the graph is not connected. However, you can modify it to obtain a partial
MST.

The MST class extends the Tree class (line 178). To create an instance of MST, pass root,
parent, T, and totalWeight (lines 181). The data fields root, parent, and searchOrder
are defined in the Tree class, which is an inner class defined in AbstractGraph.

For each vertex, the program constructs a priority queue for its adjacent edges. It takes
time to insert an edge into a priority queue and the same time to remove an edge

from the priority queue. Thus, the overall time complexity for the program is
where denotes the number of edges and the number of vertices.

Listing 31.5 gives a test program that displays minimum spanning trees for the graph in
Figure 31.1 and the graph in Figure 31.3a, respectively.

LISTING 31.5 TestMinimumSpanningTree.java
1 public class TestMinimumSpanningTree {
2 public static void main(String[] args) {
3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
5 "Atlanta", "Miami", "Dallas", "Houston"};
6
7 int[][] edges = {
8 {0, 1, 807}, {0, 3, 1331}, {0, 5, 2097},
9 {1, 0, 807}, {1, 2, 381}, {1, 3, 1267},

10 {2, 1, 381}, {2, 3, 1015}, {2, 4, 1663}, {2, 10, 1435},
11 {3, 0, 1331}, {3, 1, 1267}, {3, 2, 1015}, {3, 4, 599},
12 {3, 5, 1003},
13 {4, 2, 1663}, {4, 3, 599}, {4, 5, 533}, {4, 7, 1260},
14 {4, 8, 864}, {4, 10, 496},
15 {5, 0, 2097}, {5, 3, 1003}, {5, 4, 533},
16 {5, 6, 983}, {5, 7, 787},
17 {6, 5, 983}, {6, 7, 214},
18 {7, 4, 1260}, {7, 5, 787}, {7, 6, 214}, {7, 8, 888},
19 {8, 4, 864}, {8, 7, 888}, {8, 9, 661},
20 {8, 10, 781}, {8, 11, 810},
21 {9, 8, 661}, {9, 11, 1187},
22 {10, 2, 1435}, {10, 4, 496}, {10, 8, 781}, {10, 11, 239},
23 {11, 8, 810}, {11, 9, 1187}, {11, 10, 239}
24 };
25
26 WeightedGraph<String> graph1 =
27
28
29 System.out.println("Total weight is " +);
30
31
32 edges = new int[][]{
33 {0, 1, 2}, {0, 3, 8},
34 {1, 0, 2}, {1, 2, 7}, {1, 3, 3},
35 {2, 1, 7}, {2, 3, 4}, {2, 4, 5},
36 {3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},
37 {4, 2, 5}, {4, 3, 6}
38 };
39
40 WeightedGraph<Integer> graph2 =
41
42 WeightedGraph<Integer>.MST tree2 =

new WeightedGraph<Integer>(edges, 5);

tree1.printTree();
tree1.getTotalWeight()

WeightedGraph<String>.MST tree1 = graph1.getMinimumSpanningTree();
new WeightedGraph<String>(edges, vertices);

�V ��E �
O(�E � log �V �),

O(log �V �)
time complexity

create vertices

create edges

create graph1
MST for graph1
total weight
print tree

create edges

create graph2

1110 Chapter 31 Weighted Graphs and Applications

Total weight is 6513.0
Root is: Seattle
Edges: (Seattle, San Francisco) (San Francisco, Los Angeles)
(Los Angeles, Denver) (Denver, Kansas City) (Kansas City, Chicago)
(New York, Boston) (Chicago, New York) (Dallas, Atlanta)
(Atlanta, Miami) (Kansas City, Dallas) (Dallas, Houston)

Total weight is 14.0
Root is: 1
Edges: (1, 0) (3, 2) (1, 3) (2, 4)

The program creates a weighted graph for Figure 31.1 in line 27. It then invokes
getMinimumSpanningTree() (line 28) to return an MST that represents a minimum span-
ning tree for the graph. Invoking printTree() (line 30) on the MST object displays the edges
in the tree. Note that MST is a subclass of Tree. The printTree() method is defined in the
Tree class.

The graphical illustration of the minimum spanning tree is shown in Figure 31.9. The ver-
tices are added to the tree in this order: Seattle, San Francisco, Los Angeles, Denver, Kansas
City, Dallas, Houston, Chicago, New York, Boston, Atlanta, and Miami.

graphical illustration

Seattle

Los Angeles

Denver

Chicago

Houston

Boston

New York

Atlanta

Miami

661

888

1187

810
Dallas

1331

2097

1003
807

381

1015

1267

1663

1435

239

496

781

864

1260

983

787

214

533

599

San Francisco
Kansas City

2

1

3

4

5

7

8

10

11

9

6

FIGURE 31.9 The edges in the minimum spanning tree for the cities are highlighted.

43
44 System.out.println("Total weight is " +);
45
46 }
47 }

tree2.printTree();
tree2.getTotalWeight()

graph2.getMinimumSpanningTree(1);MST for graph2
total weight
print tree

31.5 Finding Shortest Paths 1111

31.5 Find a minimum spanning tree for the following graph.

31.6 Is the minimum spanning tree unique if all edges have different weights?

31.7 If you use an adjacency matrix to represent weighted edges, what will be the time
complexity for Prim’s algorithm?

31.8 What happens to the getMinimumSpanningTree() method in WeightedGraph if
the graph is not connected? Verify your answer by writing a test program that creates
an unconnected graph and invokes the getMinimumSpanningTree() method. How
do you fix the problem by obtaining a partial MST?

31.5 Finding Shortest Paths
The shortest path between two vertices is the path with the minimum total weights.

Given a graph with nonnegative weights on the edges, a well-known algorithm for finding a
shortest path between two vertices was discovered by Edsger Dijkstra, a Dutch computer sci-
entist. In order to find a shortest path from vertex u to vertex v, Dijkstra’s algorithm finds the
shortest path from u to all vertices. So Dijkstra’s algorithm is known as a single-source short-
est path algorithm. The algorithm uses cost[v] to store the cost of the shortest path from
vertex v to the source vertex s. cost[s] is 0. Initially assign infinity to cost[v] to indicate
that no path is found from v to s. Let V denote all vertices in the graph and T denote the set of
the vertices whose costs are known. Initially, the source vertex s is in T. The algorithm repeat-
edly finds a vertex u in T and a vertex v in V – T such that cost[u] + w(u, v) is the
smallest, and moves v to T. Here, w(u, v) denotes the weight on edge (u, v).

The algorithm is described in Listing 31.6.

LISTING 31.6 Dijkstra's Single-Source Shortest-Path
Algorithm
1 shortestPath(s) {
2 Let V denote the set of vertices in the graph;
3 Let T be a set that contains the vertices whose
4 paths to s are known;
5 Initially T contains source vertex s with cost[s] = 0;
6
7 while (size of T < n) {
8 find v in V – T with the smallest cost[u] + w(u, v) value
9 among all u in T;
10 add v to T and set cost[v] = cost[u] + w(u, v);
11 }
12 }

✓Point✓Check

5 4

5

2

77 8

6 3

2

0

75

10

2

7

10

8

1

Key
Point

shortest path

Dijkstra’s algorithm

single-source shortest path

add initial vertex

more vertex
find next vertex

add a vertex

1112 Chapter 31 Weighted Graphs and Applications

This algorithm is very similar to Prim’s for finding a minimum spanning tree. Both algorithms
divide the vertices into two sets: T and V - T. In the case of Prim’s algorithm, set T contains
the vertices that are already added to the tree. In the case of Dijkstra’s, set T contains the ver-
tices whose shortest paths to the source have been found. Both algorithms repeatedly find a
vertex from V – T and add it to T. In the case of Prim’s algorithm, the vertex is adjacent to
some vertex in the set with the minimum weight on the edge. In Dijkstra’s algorithm, the ver-
tex is adjacent to some vertex in the set with the minimum total cost to the source.

The algorithm starts by adding the source vertex s into T and sets cost[s] to 0 (line 5).
It then continuously adds a vertex (say v) from V – T into T. v is the vertex that is adjacent
to a vertex u in T with the smallest cost[u] + w(u, v). For example, there are five edges
connecting vertices in T and V – T, as shown in Figure 31.10; (u, v) is the one with the
smallest cost[u] + w(u, v). After v is added to T, set cost[v] to cost[u] + w(u, v)
(line 10).

T contains vertices whose
shortest path to s have been
found

V – T contains vertices whose shortest
path are not known yet

u

v

T

s

V – T

FIGURE 31.10 Find a vertex u in T that connects a vertex v in V – T with the smallest
cost[u] + w(u, v).

0 1 2 3 4 5 6

parent

–1

(b)(a)

0 5

1

4

74 5

6 4

3

2

55

10

8

9

8

8

1

0 1 2 3 4 5 6

0

cost

�� � � � �

FIGURE 31.11 The algorithm will find all shortest paths from source vertex 1.

Let us illustrate Dijkstra’s algorithm using the graph in Figure 31.11a. Suppose the source
vertex is 1. Therefore, cost[1] is 0 and the costs for all other vertices are initially as
shown in Figure 31.11b. We use the parent[i] to denote the parent of i in the path. For con-
venience, set the parent of the source node to -1.

� ,

Initially set T contains the source vertex. Vertices 2, 0, 6, and 3 are adjacent to the vertices
in T, and vertex 2 has the path of smallest cost to source vertex 1, so add 2 to T. cost[2] now
becomes 5, as shown in Figure 31.12.

31.5 Finding Shortest Paths 1113

Now T contains {1, 2}. Vertices 0, 6, and 3 are adjacent to the vertices in T, and vertex 0
has a path of smallest cost to source vertex 1, so add 0 to T. cost[0] now becomes 6, as
shown in Figure 31.13.

Now T contains {1, 2, 0}. Vertices 3, 6, and 5 are adjacent to the vertices in T, and vertex
6 has the path of smallest cost to source vertex 1, so add 6 to T. cost[6] now becomes 9, as
shown in Figure 31.14.

0 1 2 3 4 5 6

parent

–1 1

(b)(a)

0 5

1

4

74 5

6 4

3

2

55

10

8

9

8

8

1

0 1 2 3 4 5 6

0

cost

5� � � � �

FIGURE 31.12 Now vertices 1 and 2 are in set T.

0 1 2 3 4 5 6

parent

2 1–1

(b)(a)

0 5

1

4

74 5

6 4

3

2

55

10

8

9

8

8

1

0 1 2 3 4 5 6

0

cost

56 � � � �

FIGURE 31.13 Now vertices {1, 2, 0} are in set T.

0 1 2 3 4 5 6

parent

2 1–1

(b)(a)

0 5

1

4

74 5

6 4

3

2

55

10

8

9

8

8

1

0 1 2 3 4 5 6

0

cost

56 � � � 9

1

FIGURE 31.14 Now vertices {1, 2, 0, 6} are in set T.

1114 Chapter 31 Weighted Graphs and Applications

Now T contains {1, 2, 0, 6}. Vertices 3 and 5 are adjacent to the vertices in T, and both ver-
tices have a path of the same smallest cost to source vertex 1. You can choose either 3 or 5.
Let us add 3 to T. cost[3] now becomes 10, as shown in Figure 31.15.

Now T contains {1, 2, 0, 6, 3}. Vertices 4 and 5 are adjacent to the vertices in T, and ver-
tex 5 has the path of smallest cost to source vertex 1, so add 5 to T. cost[5] now becomes
10, as shown in Figure 31.16.

Now T contains {1, 2, 0, 6, 3, 5}. The smallest cost for a path to connect 4 with 1 is 15, as
shown in Figure 31.17.

As you can see, the algorithm essentially finds all the shortest paths from a source vertex,
which produces a tree rooted at the source vertex. We call this tree a single-source all-shortest-
path tree (or simply a shortest-path tree). To model this tree, define a class named
ShortestPathTree that extends the Tree class, as shown in Figure 31.18.
ShortestPathTree is defined as an inner class in WeightedGraph in lines 249–273 in
Listing 31.2.

The getShortestPath(int sourceVertex) method was implemented in lines
193–246 in Listing 31.2. The method first adds sourceVertex to T (line 197). T is a list that

0 1 2 3 4 5 6

parent

2 1–1

(b)(a)

0 5

1

4

74 5

6 4

3

2

55

10

8

9

8

8

1

0 1 2 3 4 5 6

0

cost

56 10 � � 9

11

FIGURE 31.15 Now vertices {1, 2, 0, 6, 3} are in set T.

shortest-path tree

0 1 2 3 4 5 6

parent

2 1–1

(b)(a)

0 5

1

4

74 5

6 4

3

2

55

10

8

9

8

8

1

0 1 2 3 4 5 6

0

cost

56 10 � 10 9

11 0

FIGURE 31.16 Now vertices {1, 2, 0, 6, 3, 5} are in set T.

31.5 Finding Shortest Paths 1115

stores the vertices whose paths have been found (line 195). vertices is defined as a pro-
tected data field in the AbstractGraph class, and it is an array that stores all vertices in the
graph. vertices.size() returns the number of the vertices in the graph (line 200).

Each vertex is assigned a cost. The cost of the source vertex is 0 (line 211). The cost of all
other vertices is initially assigned as infinity (line 209).

The method needs to remove the elements from the queues in order to find the one with the
smallest total cost. To keep the original queues intact, queues are cloned in line 214.

A vertex is added to T if it is adjacent to one of the vertices in T with the smallest cost (line
240). Such a vertex is found using the following procedure:

1. For each vertex u in T, find its incident edge e with the smallest weight to u. All the
incident edges to u are stored in queues.get(u). queues.get(u).peek() (line
231) returns the incident edge with the smallest weight. If e.v is already in T, remove e
from queues.get(u) (line 223). After lines 221–229, queues.get(u).peek()
returns the edge e, such that e has the smallest weight to u and e.v is not in T (line
231).

2. Compare all these edges and find the one with the smallest value on cost[u] +
e.getWeight() (line 232).

After a new vertex is added to T (line 240), the cost of this vertex is updated (line 241). Once
all vertices are added to T, an instance of ShortestPathTree is created (line 245). Note that
the method will not work if the graph is not connected. However, you can modify it to obtain
the shortest paths to all connected vertices to the source vertex.

0 1 2 3 4 5 6

parent

2 1–1

(b)(a)

0 5

1

4

74 5

6 4

3

2

55

10

8

9

8

8

1

0 1 2 3 4 5 6

0

cost

56 10 15 10 9

11 05

FIGURE 31.17 Now vertices {1, 2, 6, 0, 3, 5, 4} are in set T.

WeightedGraph.ShortestPathTree

-cost: int[]

+ShortestPathTree(source: int, parent: int[],
 searchOrder: List<Integer>, cost: int[])

+getCost(v: int): int

+printAllPaths(): void

cost[v] stores the cost for the path from the source to v.

Constructs a shortest path tree with the specified source,
parent array, searchOrder, and cost array.

Returns the cost for the path from the source to vertex v.

Displays all paths from the source.

AbstractGraph.Tree

FIGURE 31.18 WeightedGraph.ShortestPathTree extends AbstractGraph.Tree.

1116 Chapter 31 Weighted Graphs and Applications

The ShortestPathTree class extends the Tree class (line 249). To create an instance of
ShortestPathTree, pass sourceVertex, parent, T, and cost (lines 253).
sourceVertex becomes the root in the tree. The data fields root, parent, and
searchOrder are defined in the Tree class, which is an inner class defined in
AbstractGraph.

Dijkstra’s algorithm is implemented essentially in the same way as Prim’s. Therefore, the
time complexity for Dijkstra’s algorithm is where denotes the number of
edges and the number of vertices.

Dijkstra’s algorithm is a combination of a greedy algorithm and dynamic programming. It
is a greedy algorithm in the sense that it always adds a new vertex that has the shortest dis-
tance to the source. It stores the shortest distance of each known vertex to the source and uses
it later to avoid redundant computing, so Dijkstra’s algorithm also uses dynamic program-
ming.

Pedagogical Note
Go to www.cs.armstrong.edu/liang/animation/ShortestPathAnimation.html to use a GUI interac-
tive program to find the shortest path between any two cities, as shown in Figure 31.19.

�V �
�E �O(�E � log �V �),

ShortestPathTree class

Dijkstra’s algorithm time
complexity

greedy and dynamic
programming

shortest path animation on
Companion Website

vertices

FIGURE 31.19 The animation tool displays a shortest path between two cities.

Listing 31.7 gives a test program that displays the shortest paths from Chicago to all other
cities in Figure 31.1 and the shortest paths from vertex 3 to all vertices for the graph in Figure
31.3a, respectively.

LISTING 31.7 TestShortestPath.java
1 public class TestShortestPath {
2 public static void main(String[] args) {
3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",

www.cs.armstrong.edu/liang/animation/ShortestPathAnimation.html

31.5 Finding Shortest Paths 1117

4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
5 "Atlanta", "Miami", "Dallas", "Houston"};
6
7 int[][] edges = {
8 {0, 1, 807}, {0, 3, 1331}, {0, 5, 2097},
9 {1, 0, 807}, {1, 2, 381}, {1, 3, 1267},

10 {2, 1, 381}, {2, 3, 1015}, {2, 4, 1663}, {2, 10, 1435},
11 {3, 0, 1331}, {3, 1, 1267}, {3, 2, 1015}, {3, 4, 599},
12 {3, 5, 1003},
13 {4, 2, 1663}, {4, 3, 599}, {4, 5, 533}, {4, 7, 1260},
14 {4, 8, 864}, {4, 10, 496},
15 {5, 0, 2097}, {5, 3, 1003}, {5, 4, 533},
16 {5, 6, 983}, {5, 7, 787},
17 {6, 5, 983}, {6, 7, 214},
18 {7, 4, 1260}, {7, 5, 787}, {7, 6, 214}, {7, 8, 888},
19 {8, 4, 864}, {8, 7, 888}, {8, 9, 661},
20 {8, 10, 781}, {8, 11, 810},
21 {9, 8, 661}, {9, 11, 1187},
22 {10, 2, 1435}, {10, 4, 496}, {10, 8, 781}, {10, 11, 239},
23 {11, 8, 810}, {11, 9, 1187}, {11, 10, 239}
24 };
25
26 WeightedGraph<String> graph1 =
27
28 WeightedGraph<String>.ShortestPathTree tree1 =
29
30
31
32 // Display shortest paths from Houston to Chicago
33 System.out.print("Shortest path from Houston to Chicago: ");
34 java.util.List<String> path = ;
35 for (String s: path) {
36 System.out.print(s + " ");
37 }
38
39 edges = new int[][]{
40 {0, 1, 2}, {0, 3, 8},
41 {1, 0, 2}, {1, 2, 7}, {1, 3, 3},
42 {2, 1, 7}, {2, 3, 4}, {2, 4, 5},
43 {3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},
44 {4, 2, 5}, {4, 3, 6}
45 };
46 WeightedGraph<Integer> graph2 =
47
48 WeightedGraph<Integer>.ShortestPathTree tree2 =
49 graph2.getShortestPath(3);
50
51 }
52 }

tree2.printAllPaths();

new WeightedGraph<Integer>(edges, 5);

tree1.getPath(11)

tree1.printAllPaths();
graph1.getShortestPath(graph1.getIndex("Chicago"));

new WeightedGraph<String>(edges, vertices);

edges

All shortest paths from Chicago are:
A path from Chicago to Seattle: Chicago Seattle (cost: 2097)
A path from Chicago to San Francisco:
Chicago Denver San Francisco (cost: 2270)

A path from Chicago to Los Angeles:
Chicago Denver Los Angeles (cost: 2018)

A path from Chicago to Denver: Chicago Denver (cost: 1003)
A path from Chicago to Kansas City: Chicago Kansas City (cost: 533)

create graph1

shortest path

create edges

create graph2

print paths

1118 Chapter 31 Weighted Graphs and Applications

A path from Chicago to Chicago: Chicago (cost: 0)
A path from Chicago to Boston: Chicago Boston (cost: 983)
A path from Chicago to New York: Chicago New York (cost: 787)
A path from Chicago to Atlanta:
Chicago Kansas City Atlanta (cost: 1397)

A path from Chicago to Miami:
Chicago Kansas City Atlanta Miami (cost: 2058)

A path from Chicago to Dallas:
Chicago Kansas City Dallas (cost: 1029)

A path from Chicago to Houston:
Chicago Kansas City Dallas Houston (cost: 1268)

Shortest path from Chicago to Houston:
Chicago Kansas City Dallas Houston

All shortest paths from 3 are:
A path from 3 to 0: 3 1 0 (cost: 5)
A path from 3 to 1: 3 1 (cost: 3)
A path from 3 to 2: 3 2 (cost: 4)
A path from 3 to 3: 3 (cost: 0)
A path from 3 to 4: 3 4 (cost: 6)

The program creates a weighted graph for Figure 31.1 in line 27. It then invokes the
getShortestPath(graph1.getIndex("Chicago")) method to return a Path object
that contains all shortest paths from Chicago. Invoking printAllPaths() on the
ShortestPathTree object displays all the paths (line 30).

The graphical illustration of all shortest paths from Chicago is shown in Figure 31.20.
The shortest paths from Chicago to the cities are found in this order: Kansas City, New York,

Seattle

San Francisco

Los Angeles

Denver

Chicago

Kansas City

Houston

Boston

New York

Atlanta

Miami

661

888

1187

810
Dallas

1331

2097

1003
807

381

1015

1267

1663

1435

239

496

781

864

1260

983

787

214

533

599

1

2

3

4

6

7

8

9

11

10

5

FIGURE 31.20 The shortest paths from Chicago to all other cities are highlighted.

31.6 Case Study: The Weighted Nine Tails Problem 1119

Boston, Denver, Dallas, Houston, Atlanta, Los Angeles, Miami, Seattle, and
San Francisco.

31.9 Trace Dijkstra’s algorithm for finding shortest paths from Boston to all other cities in
Figure 31.1.

31.10 Is the shortest path between two vertices unique if all edges have different weights?

31.11 If you use an adjacency matrix to represent weighted edges, what would be the time
complexity for Dijkstra’s algorithm?

31.12 What happens to the getShortestPath() method in WeightedGraph if the graph
is not connected? Verify your answer by writing a test program that creates an uncon-
nected graph and invoke the getShortestPath() method.

31.6 Case Study: The Weighted Nine Tails Problem
The weighted nine tails problem can be reduced to the weighted shortest path problem.

Section 30.10 presented the nine tails problem and solved it using the BFS algorithm. This
section presents a variation of the problem and solves it using the shortest-path algorithm.

The nine tails problem is to find the minimum number of the moves that lead to all coins
facing down. Each move flips a head coin and its neighbors. The weighted nine tails problem
assigns the number of flips as a weight on each move. For example, you can move from the
coins in Figure 31.21a to those in Figure 31.21b by flipping the first coin in the first row and
its two neighbors. Thus, the weight for this move is 3.

✓Point✓Check

Key
Point

H

T T T

H H

H H H

(a)

T

H T T

T H

H H H

(b)

FIGURE 31.21 The weight for each move is the number of flips for the move.

The weighted nine tails problem can be reduced to finding the shortest path from a starting
node to the target node in an edge-weighted graph. The graph has 512 nodes. Create an edge
from node v to u if there is a move from node u to node v. Assign the number of flips to be
the weight of the edge.

Recall that in Section 30.10 we defined a class NineTailModel for modeling the nine
tails problem. We now define a new class named WeightedNineTailModel that extends
NineTailModel, as shown in Figure 31.22.

The NineTailModel class creates a Graph and obtains a Tree rooted at the target node
511. WeightedNineTailModel is the same as NineTailModel except that it creates a
WeightedGraph and obtains a ShortestPathTree rooted at the target node 511.
WeightedNineTailModel extends NineTailModel. The method getEdges() finds all
edges in the graph. The getNumberOfFlips(int u, int v) method returns the number
of flips from node u to node v. The getNumberOfFlips(int u) method returns the num-
ber of flips from node u to the target node.

Listing 31.8 implements WeightedNineTailModel.

1120 Chapter 31 Weighted Graphs and Applications

LISTING 31.8 WeightedNineTailModel.java
1 import java.util.*;
2
3
4 /** Construct a model */
5 public WeightedNineTailModel() {
6 // Create edges
7
8
9 // Create a graph
10
11
12
13 // Obtain a shortest path tree rooted at the target node
14
15 }
16
17 /** Create all edges for the graph */
18
19 // Store edges
20 List<WeightedEdge> edges = new ArrayList<WeightedEdge>();
21
22 for (int u = 0; u < NUMBER_OF_NODES; u++) {

private List<WeightedEdge> getEdges() {

tree = graph.getShortestPath(511);

edges, NUMBER_OF_NODES);
WeightedGraph<Integer> graph = new WeightedGraph<Integer>(

List<WeightedEdge> edges = getEdges();

public class WeightedNineTailModel extends NineTailModel {

WeightedNineTailModel

+WeightedNineTailModel() Constructs a model for the weighted nine tails problem
 and obtains a ShortestPathTree rooted from the target
 node.

NineTailModel

#tree: AbstractGraph<Integer>.Tree A tree rooted at node 511.

+NineTailModel() Constructs a model for the nine tails problem and obtains the
 tree.

+getShortestPath(nodeIndex: int):
 List<Integer>

Returns a path from the specified node to the root. The path
 returned consists of the node labels in a list.
Returns a list of Edge objects for the graph.

Flips the node at the specified position and returns the index
 of the flipped node.

Returns a node consisting of nine characters of H’s and T’s.

Returns the index of the specified node.

Flips the node at the specified row and column.

Displays the node to the console.

+getNumberOfFlips(u: int): int Returns the number of flips from node u to the target
 node 511.

-getNumberOfFlips(u: int, v: int): int Returns the number of different cells between the two
 nodes.

-getEdges(): List<WeightedEdge> Gets the weighted edges for the weighted nine tail
 problem.

-getEdges():
 List<AbstractGraph.Edge>
+getNode(index: int): char[]

+getIndex(node: char[]): int
+getFlippedNode(node: char[],
 position: int): int

+flipACell(node: char[], row: int,
 column: int): void
+printNode(node: char[]): void

FIGURE 31.22 The WeightedNineTailModel class extends NineTailModel.

constructor

get edges

create a graph

get a tree

get weighted edges

extends NineTailModel

31.6 Case Study: The Weighted Nine Tails Problem 1121

23 for (int k = 0; k < 9; k++) {
24 char[] node = getNode(u); // Get the node for vertex u
25 if (node[k] == 'H') {
26
27
28
29 // Add edge (v, u) for a legal move from node u to node v
30
31 }
32 }
33 }
34
35 return edges;
36 }
37
38
39 char[] node1 = getNode(u);
40 char[] node2 = getNode(v);
41
42 int count = 0; // Count the number of different cells
43 for (int i = 0; i < node1.length; i++)
44 if (node1[i] != node2[i]) count++;
45
46 return count;
47 }
48
49
50 return (int)((WeightedGraph<Integer>.ShortestPathTree)tree)
51 .getCost(u);
52 }
53 }

WeightedNineTailModel extends NineTailModel to build a WeightedGraph to model
the weighted nine tails problem (lines 10–11). For each node u, the getEdges() method
finds a flipped node v and assigns the number of flips as the weight for edge (v, u) (line 30).
The getNumberOfFlips(int u, int v) method returns the number of flips from node u
to node v (lines 38–47). The number of flips is the number of the different cells between the
two nodes (line 44).

The WeightedNineTailModel obtains a ShortestPathTree rooted at the target node
511 (line 14). Note that tree is a protected data field defined in NineTailModel and
ShortestPathTree is a subclass of Tree. The methods defined in NineTailModel use
the tree property.

The getNumberOfFlips(int u) method (lines 49–52) returns the number of flips from
node u to the target node, which is the cost of the path from node u to the target node. This
cost can be obtained by invoking the getCost(u) method defined in the
ShortestPathTree class (line 51).

Listing 31.9 gives a program that prompts the user to enter an initial node and displays the
minimum number of flips to reach the target node.

LISTING 31.9 WeightedNineTail.java
1 import java.util.Scanner;
2
3 public class WeightedNineTail {
4 public static void main(String[] args) {
5 // Prompt the user to enter the nine coins' Hs and Ts

public int getNumberOfFlips(int u) {

private static int getNumberOfFlips(int u, int v) {

edges.add(new WeightedEdge(v, u, numberOfFlips));

int numberOfFlips = getNumberOfFlips(u, v);
int v = getFlippedNode(node, k); get adjacent node

weight

add an edge

number of flips

total number of flips

6 System.out.print("Enter an initial nine coins' Hs and Ts: ");
7 Scanner input = new Scanner(System.in);
8 String s = input.nextLine();
9
10
11
12 java.util.List<Integer> path =
13
14
15 System.out.println("The steps to flip the coins are ");
16 for (int i = 0; i < path.size(); i++)
17 NineTailModel.printNode(
18 NineTailModel.getNode(path.get(i).intValue()));
19
20 System.out.println("The number of flips is " +
21
22 }
23 }

model.getNumberOfFlips(NineTailModel.getIndex(initialNode)));

model.getShortestPath(NineTailModel.getIndex(initialNode));

WeightedNineTailModel model = new WeightedNineTailModel();

char[] initialNode = s.toCharArray();

number of flips

get shortest path

Enter an initial nine coins Hs and Ts:

The steps to flip the coins are
HHH
TTT
HHH

HHH
THT
TTT

TTT
TTT
TTT

The number of flips is 8

HHHTTTHHH

The program prompts the user to enter an initial node with nine letters with a combination of
Hs and Ts as a string in line 8, obtains an array of characters from the string (line 9), creates a
model (line 11), obtains the shortest path from the initial node to the target node (lines
12–13), displays the nodes in the path (lines 16–18), and invokes getNumberOfFlips to get
the number of flips needed to reach the target node (line 21).

31.13 Why is the tree data field in NineTailModel in Section 30.13 defined protected?

31.14 How are the nodes created for the graph in WeightedNineTailModel?

31.15 How are the edges created for the graph in WeightedNineTailModel?

KEY TERMS

1122 Chapter 31 Weighted Graphs and Applications

✓Point✓Check

Dijkstra’s algorithm 1111
edge-weighted graph 1095
minimum spanning tree 1105
Prim’s algorithm 1106

shortest path 1111
single-source shortest path 1111
vertex-weighted graph 1095

initial node

create model

print node

Programming Exercises 1123

CHAPTER SUMMARY

1. You can use adjacency matrices or priority queues to represent weighted edges in
graphs.

2. A spanning tree of a graph is a subgraph that is a tree and connects all vertices in the
graph. You learned how to implement Prim’s algorithm for finding a minimum span-
ning tree.

3. You learned how to implement Dijkstra’s algorithm for finding shortest paths.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

*31.1 (Kruskal’s algorithm) The text introduced Prim’s algorithm for finding a mini-
mum spanning tree. Kruskal’s algorithm is another well-known algorithm for find-
ing a minimum spanning tree. The algorithm repeatedly finds a minimum-weight
edge and adds it to the tree if it does not cause a cycle. The process ends when all
vertices are in the tree. Design and implement an algorithm for finding an MST
using Kruskal’s algorithm.

*31.2 (Implement Prim’s algorithm using an adjacency matrix) The text implements
Prim’s algorithm using priority queues on adjacent edges. Implement the algo-
rithm using an adjacency matrix for weighted graphs.

*31.3 (Implement Dijkstra’s algorithm using an adjacency matrix) The text implements
Dijkstra’s algorithm using priority queues on adjacent edges. Implement the algo-
rithm using an adjacency matrix for weighted graphs.

*31.4 (Modify weight in the nine tails problem) In the text, we assign the number of the
flips as the weight for each move. Assuming that the weight is three times of the
number of flips, revise the program.

*31.5 (Prove or disprove) The conjecture is that both NineTailModel and
WeightedNineTailModel result in the same shortest path. Write a program to
prove or disprove it. (Hint: Let tree1 and tree2 denote the trees rooted at node
511 obtained from NineTailModel and WeightedNineTailModel, respec-
tively. If the depth of a node u is the same in tree1 and in tree2, the length of
the path from u to the target is the same.)

**31.6 (Weighted 4 4 16 tails model) The weighted nine tails problem in the text uses
a matrix. Assume that you have 16 coins placed in a matrix. Create a
new model class named WeightedTailModel16. Create an instance of the
model and save the object into a file named WeightedTailModel16.dat.

**31.7 (Weighted 4 4 16 tails view) Listing 31.9, WeightedNineTail.java, presents a
view for the nine tails problem. Revise this program for the weighted 16
tails problem. Your program should read the model object created from the pre-
ceding exercise.

**31.8 (Traveling salesperson problem) The traveling salesperson problem (TSP) is to
find the shortest round-trip route that visits each city exactly once and then returns
to the starting city. The problem is equivalent to finding the shortest Hamiltonian

4 * 4
*

4 * 43 * 3
*

www.cs.armstrong.edu/liang/intro9e/test.html

1124 Chapter 31 Weighted Graphs and Applications

cycle in Programming Exercise 30.17. Add the following method in the
WeightedGraph class:

// Return the shortest cycle
// Return null if no such cycle exists
public List<Integer> getShortestHamiltonianCycle()

*31.9 (Find a minimum spanning tree) Write a program that reads a connected graph
from a file and displays its minimum spanning tree. The first line in the file con-
tains a number that indicates the number of vertices (n). The vertices are labeled as
0, 1, ..., n-1. Each subsequent line describes the edges in the form of u1, v1,
w1 | u2, v2, w2 | Each triplet in this form describes an edge and its
weight. Figure 31.23 shows an example of the file for the corresponding graph.
Note that we assume the graph is undirected. If the graph has an edge (u, v), it also
has an edge (v, u). Only one edge is represented in the file. When you construct a
graph, both edges need to be considered.

(a) (b)

0
100

40

5

9

2

4

1

3 20

2 5

3

5

File
6
0, 1, 100 | 0, 2, 3
1, 3, 20
2, 3, 40 | 2, 4, 2
3, 4, 5 | 3, 5, 5
4, 5, 9

FIGURE 31.23 The vertices and edges of a weighted graph can be stored in a file.

Enter a file name:
The number of vertices is 6
Vertex 0: (0, 2, 3) (0, 1, 100)
Vertex 1: (1, 3, 20) (1, 0, 100)
Vertex 2: (2, 4, 2) (2, 3, 40) (2, 0, 3)
Vertex 3: (3, 4, 5) (3, 5, 5) (3, 1, 20) (3, 2, 40)
Vertex 4: (4, 2, 2) (4, 3, 5) (4, 5, 9)
Vertex 5: (5, 3, 5) (5, 4, 9)
Total weight is 35
Root is: 0
Edges: (3, 1) (0, 2) (4, 3) (2, 4) (3, 5)

c:\exercise\WeightedGraphSample.txt

(Hint: Use new WeightedGraph(list, numberOfVertices) to create
a graph, where list contains a list of WeightedEdge objects. Use new
WeightedEdge(u, v, w) to create an edge. Read the first line to get the number

Your program should prompt the user to enter the name of the file, read data from the
file, create an instance g of WeightedGraph, invoke g.printWeightedEdges()
to display all edges, invoke getMinimumSpanningTree() to obtain an instance
tree of WeightedGraph.MST, invoke tree.getTotalWeight() to display the
weight of the minimum spanning tree, and invoke tree.printTree() to display
the tree. Here is a sample run of the program:

Programming Exercises 1125

12
0, 1, 807 | 0, 3, 1331 | 0, 5, 2097
1, 2, 381 | 1, 3, 1267
2, 3, 1015 | 2, 4, 1663 | 2, 10, 1435
3, 4, 599 | 3, 5, 1003
4, 5, 533 | 4, 7, 1260 | 4, 8, 864 | 4, 10, 496
5, 6, 983 | 5, 7, 787
6, 7, 214
7, 8, 888
8, 9, 661 | 8, 10, 781 | 8, 11, 810
9, 11, 1187
10, 11, 239

*31.11 (Find shortest paths) Write a program that reads a connected graph from a file. The
graph is stored in a file using the same format specified in Programming Exercise 31.9.
Your program should prompt the user to enter the name of the file then two vertices, and
should display the shortest path between the two vertices. For example, for the graph in
Figure 31.23, the shortest path between 0 and 1 can be displayed as 0 2 4 3 1.

Here is a sample run of the program:

of vertices. Read each subsequent line into a string s and use s.split("[\\|]")
to extract the triplets. For each triplet, use triplet.split("[,]") to extract
vertices and weight.)

*31.10 (Create a file for a graph) Modify Listing 31.3, TestWeightedGraph.java, to create
a file for representing graph1. The file format is described in Programming Exer-
cise 31.9. Create the file from the array defined in lines 7–24 in Listing 31.3. The
number of vertices for the graph is 12, which will be stored in the first line of the
file. An edge (u, v) is stored if u < v. The contents of the file should be as follows:

Enter a file name:

Enter two vertices (integer indexes):

The number of vertices is 6

Vertex 0: (0, 2, 3) (0, 1, 100)

Vertex 1: (1, 3, 20) (1, 0, 100)

Vertex 2: (2, 4, 2) (2, 3, 40) (2, 0, 3)

Vertex 3: (3, 4, 5) (3, 5, 5) (3, 1, 20) (3, 2, 40)

Vertex 4: (4, 2, 2) (4, 3, 5) (4, 5, 9)

Vertex 5: (5, 3, 5) (5, 4, 9)

A path from 0 to 1: 0 2 4 3 1

0 1

WeightedGraphSample2.txt

*31.12 (Display weighted graphs) Revise GraphView in Listing 30.6 to display a
weighted graph. Write a program that displays the graph in Figure 31.1 as shown
in Figure 31.24a.

*31.13 (Display shortest paths) Revise GraphView in Listing 30.6 to display a weighted
graph and the shortest path between the two specified cities, as shown in Figure
31.19. You need to add a data field path in GraphView. If a path is not null, the
edges in the path are displayed in red. If a city not in the map is entered, the pro-
gram displays a dialog box to alert the user.

1126 Chapter 31 Weighted Graphs and Applications

*31.14 (Display a minimum spanning tree) Revise GraphView in Listing 30.6 to display
a weighted graph and a minimum spanning tree for the graph in Figure 31.1, as
shown in Figure 31.24b. The edges in the MST are shown in red.

***31.15 (Dynamic graphs) Write a program that lets the users create a weighted graph
dynamically. The user can create a vertex by entering its name and location,
as shown in Figure 31.25. The user can also create an edge to connect two
vertices. To simplify the program, assume that vertex names are the same as
vertex indices. You have to add the vertex indices 0, 1, . . . , and n, in this
order. The user can specify two vertices and let the program display their
shortest path in red.

(a) (b)

FIGURE 31.24 (a) Exercise 31.12 displays a weighted graph. (b) Exercise 31.14 displays an MST.

FIGURE 31.25 The program can add vertices and edges and display the shortest path between two specified vertices.

Programming Exercises 1127

***31.16 (Display a dynamic MST) Write a program that lets the user create a weighted
graph dynamically. The user can create a vertex by entering its name and loca-
tion, as shown in Figure 31.26. The user can also create an edge to connect two
vertices. To simplify the program, assume that vertex names are the same as
those of vertex indices. You have to add the vertex indices 0, 1, . . ., and n, in
this order. The edges in the MST are displayed in red. As new edges are added,
the MST is redisplayed.

***31.17 (Weighted graph visualization tool) Develop an applet as shown in Figure 31.2,
with the following requirements: (1) The radius of each vertex is 20 pixels.
(2) The user clicks the left mouse button to place a vertex centered at the mouse
point, provided that the mouse point is not inside or too close to an existing ver-
tex. (3) The user clicks the right mouse button inside an existing vertex to
remove the vertex. (4) The user presses a mouse button inside a vertex and
drags to another vertex and then releases the button to create an edge, and the
distance between the two vertices is also displayed. (5) The user drags a vertex
while pressing the CTRL key to move a vertex. (6) The vertices are numbers
starting from 0. When a vertex is removed, the vertices are renumbered. (7) You
can click the Show MST or Show All SP From the Source button to display an
MST or SP tree from a starting vertex. (8) You can click the Show Shortest Path
button to display the shortest path between the two specified vertices.

FIGURE 31.26 The program can add vertices and edges and display MST dynamically.

This page intentionally left blank

MULTITHREADING
AND PARALLEL
PROGRAMMING

Objectives
■ To get an overview of multithreading (§32.2).

■ To develop task classes by implementing the Runnable interface
(§32.3).

■ To create threads to run tasks using the Thread class (§32.3).

■ To control threads using the methods in the Thread class (§32.4).

■ To control animations using threads (§32.5, §32.7).

■ To run code in the event dispatch thread (§32.6).

■ To execute tasks in a thread pool (§32.8).

■ To use synchronized methods or blocks to synchronize threads to avoid
race conditions (§32.9).

■ To synchronize threads using locks (§32.10).

■ To facilitate thread communications using conditions on locks
(§§32.11–32.12).

■ To use blocking queues to synchronize access to an array queue, linked
queue, and priority queue (§32.13).

■ To restrict the number of accesses to a shared resource using semaphores
(§32.14).

■ To use the resource-ordering technique to avoid deadlocks (§32.15).

■ To describe the life cycle of a thread (§32.16).

■ To create synchronized collections using the static methods in the
Collections class (§32.17).

■ To develop parallel programs using the Fork/Join Framework (§32.18).

CHAPTER

32

1130 Chapter 32 Multithreading and Parallel Programming

Thread 1

Thread 3

Thread 2

(a)

Thread 1

Thread 3

Thread 2

(b)

FIGURE 32.1 (a) Here multiple threads are running on multiple CPUs. (b) Here multiple
threads share a single CPU.

Key
Point

Key
Point

✓Point✓Check

Key
Point

32.1 Introduction
Multithreading enables multiple tasks in a program to be executed concurrently.

One of the powerful features of Java is its built-in support for multithreading—the concurrent
running of multiple tasks within a program. In many programming languages, you have to
invoke system-dependent procedures and functions to implement multithreading. This chap-
ter introduces the concepts of threads and how to develop multithreading programs in Java.

32.2 Thread Concepts
A program may consist of many tasks that can run concurrently. A thread is the flow of
execution, from beginning to end, of a task.

A thread provides the mechanism for running a task. With Java, you can launch multiple
threads from a program concurrently. These threads can be executed simultaneously in multi-
processor systems, as shown in Figure 32.1a.

In single-processor systems, as shown in Figure 32.1b, the multiple threads share CPU
time, known as time sharing, and the operating system is responsible for scheduling and allo-
cating resources to them. This arrangement is practical, because most of the time the CPU is
idle. It does nothing, for example, while waiting for the user to enter data.

Multithreading can make your program more responsive and interactive, as well as
enhance performance. For example, a good word processor lets you print or save a file while
you are typing. In some cases, multithreaded programs run faster than single-threaded pro-
grams even on single-processor systems. Java provides exceptionally good support for creat-
ing and running threads and for locking resources to prevent conflicts.

When your program executes as an application, the Java interpreter starts a thread for the
main method. When your program executes as an applet, the Web browser starts a thread to
run the applet. You can create additional threads to run concurrent tasks in the program. In
Java, each task is an instance of the Runnable interface, also called a runnable object. A
thread is essentially an object that facilitates the execution of a task.

32.1 Why is multithreading needed? How can multiple threads run simultaneously in a
single-processor system?

32.2 What is a runnable object? What is a thread?

32.3 Creating Tasks and Threads
A task class must implement the Runnable interface. A task must be run from a
thread.

Tasks are objects. To create tasks, you have to first define a class for tasks, which imple-
ments the Runnable interface. The Runnable interface is rather simple. All it contains is

multithreading

thread
task

time sharing

task
runnable object
thread

Runnable interface

32.3 Creating Tasks and Threads 1131

// Client class
public class Client {
 ...
public void someMethod() {

 ...
// Create an instance of TaskClass

 TaskClass task = new TaskClass(...);

// Create a thread
 Thread thread = new Thread(task);

// Start a thread
 thread.start();
 ...
 }
 ...
}

// Custom task class
public class TaskClass implements Runnable {
 ...

public TaskClass(...) {
 ...
 }

// Implement the run method in Runnable
public void run() {

// Tell system how to run custom thread
 ...
 }
 ...
}

TaskClassjava.lang.Runnable

(a) (b)

FIGURE 32.2 Define a task class by implementing the Runnable interface.

the run method. You need to implement this method to tell the system how your thread is
going to run. A template for developing a task class is shown in Figure 32.2a.

run() method

Once you have defined a TaskClass, you can create a task using its constructor. For example,

TaskClass task = new TaskClass(...);

A task must be executed in a thread. The Thread class contains the constructors for creating
threads and many useful methods for controlling threads. To create a thread for a task, use

Thread thread = new Thread(task);

You can then invoke the start() method to tell the JVM that the thread is ready to run, as
follows:

thread.start();

The JVM will execute the task by invoking the task’s run() method. Figure 32.2b outlines
the major steps for creating a task, a thread, and starting the thread.

Listing 32.1 gives a program that creates three tasks and three threads to run them.

■ The first task prints the letter a 100 times.

■ The second task prints the letter b 100 times.

■ The third task prints the integers 1 through 100.

When you run this program, the three threads will share the CPU and take turns printing let-
ters and numbers on the console. Figure 32.3 shows a sample run of the program.

LISTING 32.1 TaskThreadDemo.java
1 public class TaskThreadDemo {
2 public static void main(String[] args) {
3 // Create tasks
4
5 Runnable printB = new PrintChar('b', 100);
6 Runnable print100 = new PrintNum(100);

Runnable printA = new PrintChar('a', 100);

Thread class
creating a task

creating a thread

starting a thread

create tasks

1132 Chapter 32 Multithreading and Parallel Programming

FIGURE 32.3 Tasks printA, printB, and print100 are executed simultaneously to dis-
play the letter a 100 times, the letter b 100 times, and the numbers from 1 to 100.

7
8 // Create threads
9
10 Thread thread2 = new Thread(printB);
11 Thread thread3 = new Thread(print100);
12
13 // Start threads
14
15 thread2.start();
16 thread3.start();
17 }
18 }
19
20 // The task for printing a character a specified number of times
21 {
22 private char charToPrint; // The character to print
23 private int times; // The number of times to repeat
24
25 /** Construct a task with specified character and number of
26 * times to print the character
27 */
28 public PrintChar(char c, int t) {
29 charToPrint = c;
30 times = t;
31 }
32
33 @Override /** Override the run() method to tell the system
34 * what task to perform
35 */
36 {
37 for (int i = 0; i < times; i++) {
38 System.out.print(charToPrint);
39 }
40 }
41 }
42
43 // The task class for printing numbers from 1 to n for a given n
44 {
45 private int lastNum;
46
47 /** Construct a task for printing 1, 2, ..., n */
48 public PrintNum(int n) {
49 lastNum = n;
50 }
51
52 @Override /** Tell the thread how to run */
53 {
54 for (int i = 1; i <= lastNum; i++) {

public void run()

class PrintNum implements Runnable

public void run()

class PrintChar implements Runnable

thread1.start();

Thread thread1 = new Thread(printA);create threads

start threads

task class

run

task class

run

32.3 Creating Tasks and Threads 1133

print100.start();

printA.start();

printB.start();

Replaced by print100.run();
printA.run();
printB.run();

✓Point✓Check

55 System.out.print(" " + i);
56 }
57 }
58 }

The program creates three tasks (lines 4–6). To run them concurrently, three threads are created
(lines 9–11). The start()method (lines 14–16) is invoked to start a thread that causes the run()
method in the task to be executed. When the run() method completes, the thread terminates.

Because the first two tasks, printA and printB, have similar functionality, they can be
defined in one task class PrintChar (lines 21–41). The PrintChar class implements
Runnable and overrides the run() method (lines 36–40) with the print-character action.
This class provides a framework for printing any single character a given number of times.
The runnable objects printA and printB are instances of the PrintChar class.

The PrintNum class (lines 44–58) implements Runnable and overrides the run()
method (lines 53–57) with the print-number action. This class provides a framework for print-
ing numbers from 1 to n, for any integer n. The runnable object print100 is an instance of
the class printNum class.

Note
If you don’t see the effect of these three threads running concurrently, increase the
number of characters to be printed. For example, change line 4 to

Runnable printA = new PrintChar('a',);

Important Note
The run() method in a task specifies how to perform the task. This method is auto-
matically invoked by the JVM. You should not invoke it. Invoking run() directly merely
executes this method in the same thread; no new thread is started.

32.3 How do you define a task class? How do you create a thread for a task?

32.4 What would happen if you replaced the start() method with the run() method in
lines 14–16 in Listing 32.1?

10000

32.5 What is wrong in the following two programs? Correct the errors.

effect of concurrency

run() method

public class Test implements Runnable {
public static void main(String[] args) {

new Test();
}

public Test() {

new Thread(task).start();
}

public void run() {
System.out.println("test");

}
}

Test task = new Test();

public class Test implements Runnable {
public static void main(String[] args) {

new Test();
}

public Test() {
Thread t = new Thread(this);

}

public void run() {
System.out.println("test");

}
}

t.start();
t.start();

(a) (b)

1134 Chapter 32 Multithreading and Parallel Programming

Key
Point

java.lang.Thread

«interface»
java.lang.Runnable

+Thread(task: Runnable)

+Thread()

+start(): void

+interrupt(): void

+isAlive(): boolean

+setPriority(p: int): void

+join(): void

Creates a thread for a specified task.

Creates an empty thread.

Starts the thread that causes the run() method to be invoked by the JVM.

Interrupts this thread.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to finish.

Puts a thread to sleep for a specified time in milliseconds.

Causes a thread to pause temporarily and allow other threads to execute.

Tests whether the thread is currently running.

+sleep(millis: long): void

+yield(): void

FIGURE 32.4 The Thread class contains the methods for controlling threads.

// Client class
public class Client {
 ...
public void someMethod() {

 ...
// Create a thread

 CustomThread thread1 = new CustomThread(...);

// Start a thread
 thread1.start();

// Create another thread
 CustomThread thread2 = new CustomThread(...);

// Start a thread
 thread2.start();
 }
 ...
}

// Custom thread class
public class CustomThread extends Thread {
 ...
 public CustomThread(...) {
 ...
 }

// Override the run method in Runnable
 public void run() {

// Tell system how to perform this task
 ...
 }
 ...
}

CustomThreadjava.lang.Thread

(a) (b)

...

FIGURE 32.5 Define a thread class by extending the Thread class.

32.4 The Thread Class
The Thread class contains the constructors for creating threads for tasks and the
methods for controlling threads.

Figure 32.4 shows the class diagram for the Thread class.

separating task from thread

Note
Since the Thread class implements Runnable, you could define a class that extends
Thread and implements the run method, as shown in Figure 32.5a, and then create an
object from the class and invoke its start method in a client program to start the
thread, as shown in Figure 32.5b.

32.4 The Thread Class 1135

This approach is, however, not recommended, because it mixes the task and the mecha-
nism of running the task. Separating the task from the thread is a preferred design.

Note
The Thread class also contains the stop(), suspend(), and resume() methods.
As of Java 2, these methods were deprecated (or outdated) because they are known to
be inherently unsafe. Instead of using the stop() method, you should assign null to
a Thread variable to indicate that it is stopped.

You can use the yield() method to temporarily release time for other threads. For exam-
ple, suppose you modify the code in the run() method in lines 53–57 for PrintNum in
Listing 32.1 as follows:

public void run() {
for (int i = 1; i <= lastNum; i++) {
System.out.print(" " + i);

}
}

Every time a number is printed, the thread of the print100 task is yielded to other threads.
The sleep(long millis) method puts the thread to sleep for the specified time in mil-

liseconds to allow other threads to execute. For example, suppose you modify the code in
lines 53–57 in Listing 32.1 as follows:

public void run() {

for (int i = 1; i <= lastNum; i++) {
System.out.print(" " + i);
if (i >= 50) ;

}
}

}
}

Every time a number (>= 50) is printed, the thread of the print100 task is put to sleep for
1 millisecond.

The sleep method may throw an InterruptedException, which is a checked exception.
Such an exception may occur when a sleeping thread’s interrupt() method is called. The
interrupt() method is very rarely invoked on a thread, so an InterruptedException is
unlikely to occur. But since Java forces you to catch checked exceptions, you have to put it in a
try-catch block. If a sleep method is invoked in a loop, you should wrap the loop in a try-
catch block, as shown in (a) below. If the loop is outside the try-catch block, as shown in
(b), the thread may continue to execute even though it is being interrupted.

catch (InterruptedException ex) {

Thread.sleep(1)

try {

Thread.yield();

deprecated method

yield()

sleep(long)

public void run() {

while (...) {
...

}
}

{
ex.printStackTrace();

}
}

catch (InterruptedException ex)

Thread.sleep(1000);

try {
public void run() {

try {
...
Thread.sleep(sleepTime);

}
catch (InterruptedException ex) {
ex.printStackTrace();

}

}
}

while (...) {

(a) Correct (b) Incorrect

InterruptedException

1136 Chapter 32 Multithreading and Parallel Programming

✓Point✓Check

You can use the join() method to force one thread to wait for another thread to finish. For
example, suppose you modify the code in lines 53–57 in Listing 32.1 as follows:

join()

setPriority(int)

round-robin scheduling

contention or starvation

Thread
print100

Wait for thread4
to finish

Thread
thread4

thread4 finished

public void run() {
Thread thread4 = new Thread(
new PrintChar('c', 40));

 thread4.start();
 try {
 for (int i = 1; i <= lastNum; i++) {
 System.out.print (" " + i);
 if (i == 50) thread4.join();
 }
 }
 catch (InterruptedException ex) {
 }
}

thread4.join()

A new thread4 is created, and it prints character c 40 times. The numbers from 50 to 100
are printed after thread thread4 is finished.

Java assigns every thread a priority. By default, a thread inherits the priority of the thread
that spawned it. You can increase or decrease the priority of any thread by using the
setPriority method, and you can get the thread’s priority by using the getPriority
method. Priorities are numbers ranging from 1 to 10. The Thread class has the int constants
MIN_PRIORITY, NORM_PRIORITY, and MAX_PRIORITY, representing 1, 5, and 10, respec-
tively. The priority of the main thread is Thread.NORM_PRIORITY.

The JVM always picks the currently runnable thread with the highest priority. A lower-
priority thread can run only when no higher-priority threads are running. If all runnable
threads have equal priorities, each is assigned an equal portion of the CPU time in a circular
queue. This is called round-robin scheduling. For example, suppose you insert the following
code in line 16 in Listing 32.1:

The thread for the print100 task will be finished first.

Tip
The priority numbers may be changed in a future version of Java. To minimize the impact
of any changes, use the constants in the Thread class to specify thread priorities.

Tip
A thread may never get a chance to run if there is always a higher-priority thread run-
ning or a same-priority thread that never yields. This situation is known as contention
or starvation. To avoid contention, the thread with higher priority must periodically
invoke the sleep or yield method to give a thread with a lower or the same priority
a chance to run.

32.6 Which of the following methods are instance methods in java.lang.Thread?
Which method may throw an InterruptedException? Which of them are depre-
cated in Java?

run, start, stop, suspend, resume, sleep, interrupt, yield, join

32.7 If a loop contains a method that throws an InterruptedException, why should
the loop be placed inside a try-catch block?

32.8 How do you set a priority for a thread? What is the default priority?

thread3.setPriority(Thread.MAX_PRIORITY);

32.5 Case Study: Flashing Text 1137

Key
Point

FIGURE 32.6 The text “Welcome” blinks.

32.5 Case Study: Flashing Text
You can use a thread to control an animation.

The use of a Timer object to control animations was introduced in Section 16.11, Animation
Using the Timer Class. You can also use a thread to control animation. Listing 32.2 gives an
example that displays flashing text on a label, as shown in Figure 32.6.

LISTING 32.2 FlashingText.java
1 import javax.swing.*;
2
3 public class {
4 private JLabel jlblText = new JLabel("Welcome", JLabel.CENTER);
5
6 public FlashingText() {
7 add(jlblText);
8
9 }
10
11 @Override /** Set the text on/off every 200 milliseconds */
12 {
13 try {
14 while (true) {
15 if (jlblText.getText() == null)
16 jlblText.setText("Welcome");
17 else

18 jlblText.setText(null);
19
20
21 }
22 }
23 catch (InterruptedException ex) {
24 }
25 }
26 }

FlashingText implements Runnable (line 3), so it is a task class. Line 8 wraps the task in
a thread and starts the thread. The run method dictates how to run the thread. It sets a text in
the label if the label does not have one (line 15), and sets its text as null (line 18) if the label
has a text. The text is set and unset to simulate a flashing effect.

You can use a timer or a thread to control animation. Which one is better? A timer is a
source component that fires an ActionEvent at a “fixed rate.” When an action event occurs,
the timer invokes the listener’s actionPerformed method to handle the event. The timer
and event handling run on the same thread. If it takes a long time to handle the event, the
actual delay time between the two events will be longer than the requested delay time. In this
case, you should run event handling on a separate thread. (The next section gives an example
to illustrate the problem and how to fix it by running the event handling on a separate thread.)
In general, threads are more reliable and responsive than timers. If you need a precise delay

Thread.sleep(200);

public void run()

new Thread(this).start();

FlashingText extends JApplet implements Runnable implements Runnable
create a label

add a label
start a thread

how to run

sleep

main method omitted

thread vs. timer

1138 Chapter 32 Multithreading and Parallel Programming

✓Point✓Check

Key
Point

time or a quick response, it is better to use a thread. Otherwise, using a timer is simpler and
more efficient. Timers consume less system resources because they run on the GUI event dis-
patch thread, so you don’t need to spawn new threads for timers.

32.9 What causes the text to flash?

32.10 Is an instance of FlashingText a runnable object?

32.6 GUI Event Dispatch Thread
GUI event handling code is executed on a special thread called the event dispatch
thread.

This special thread is also used to run most of Swing methods. Running GUI event handling
code and the most of Swing methods in the same thread is necessary because most Swing
methods are not thread-safe. Invoking them from multiple threads may cause conflicts.

In certain situations, you need to run the code in the event dispatch thread to avoid possible
conflicts. You can use the static methods invokeLater and invokeAndWait in the
javax.swing.SwingUtilities class to run the code in the event dispatch thread. You
must put this code in the run method of a Runnable object and specify the Runnable object
as the argument to invokeLater and invokeAndWait. The invokeLater method returns
immediately, without waiting for the event dispatch thread to execute the code. The
invokeAndWait method is just like invokeLater, except that invokeAndWait doesn’t
return until the event dispatching thread has executed the specified code.

So far, you have launched your GUI application from the main method by creating a frame
and making it visible. This works fine for most applications, but if it takes a long time to
launch a GUI application, problems may occur. To avoid possible problems in this situation,
you should launch the GUI creation from the event dispatch thread, as follows:

public static void main(String[] args) {

// The code for creating a frame and setting its properties

}

For example, Listing 32.3 gives a simple program that launches the frame from the event dis-
patch thread.

LISTING 32.3 EventDispatcherThreadDemo.java
1 import javax.swing.*;
2
3 public class EventDispatcherThreadDemo extends JApplet {
4 public EventDispatcherThreadDemo() {
5 add(new JLabel("Hi, it runs from an event dispatch thread"));
6 }
7
8 /** Main method */
9 public static void main(String[] args) {
10 SwingUtilities.invokeLater(new Runnable() {
11 public void run() {
12
13
14
15
16 // Center the frameframe.setLocationRelativeTo(null);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize(200, 200);
frame.add(new EventDispatcherThreadDemo());
JFrame frame = new JFrame("EventDispatcherThreadDemo");

});
}

public void run() {
SwingUtilities.invokeLater(new Runnable() {

event dispatch thread

invokeLater
invokeAndWait

create frame

32.7 Case Study: Clock with Audio 1139

17
18 }
19 });
20 }
21 }

32.11 What is the event dispatch thread?

32.12 How do you let a task run from the event dispatch thread?

32.7 Case Study: Clock with Audio
This case study shows the necessity of using threads for certain GUI animations.

This case study creates an applet that displays a running clock that announces the time at one-
minute intervals. For example, if the current time is 6:30:00, the applet announces, “six
o’clock thirty minutes A.M.” If the current time is 20:20:00, the applet announces, “eight
o’clock twenty minutes P.M.” The program also has a label that displays the digital time, as
shown in Figure 32.7.

frame.setVisible(true);

✓Point✓Check

FIGURE 32.7 The applet displays a clock and announces the time every minute.

To announce the time, the applet plays three audio clips. The first clip announces the hour,
the second announces the minute, and the third announces A.M. or P.M. All of the audio files
are stored in the directory audio, a subdirectory of the applet’s class directory. The 12 audio
files used to announce the hours are stored in the files hour0.au, hour1.au, and so on, to
hour11.au. The 60 audio files used to announce the minutes are stored in the files
minute0.au, minute1.au, and so on, to minute59.au. The two audio files used to announce
A.M. or P.M. are stored in the file am.au and pm.au.

You need to play three audio clips on a separate thread to avoid animation delays. To illus-
trate the problem, let us first write a program without playing the audio on a separate thread.

In Section 13.9, the StillClock class was developed to draw a still clock to show the
current time. Create an applet named ClockWithAudio (Listing 32.4) that contains an
instance of StillClock to display an analog clock, and an instance of JLabel to display the
digital time. Override the init method to load the audio files. Use a Timer object to set and
display the current time continuously at every second. When the second is zero, announce the
current time.

LISTING 32.4 ClockWithAudio.java
1 import java.applet.*;
2 import javax.swing.*;
3 import java.awt.event.*;
4 import java.awt.*;
5
6 public class {
7 protected AudioClip[] hourAudio = new AudioClip[12];

ClockWithAudio extends JApplet

audio clips

audio files

audio clips

Key
Point

1140 Chapter 32 Multithreading and Parallel Programming

8
9
10 // Create audio clips for pronouncing am and pm
11 protected AudioClip =
12 ;
13 protected AudioClip =
14 Applet.newAudioClip(this.getClass().getResource(" "));
15
16 // Create a clock
17 private StillClock clock = new StillClock();
18
19 // Create a timer
20
21
22 // Create a label to display time
23
24
25 @Override /** Initialize the applet */
26 public void init() {
27 // Create audio clips for pronouncing hours
28 for (int i = 0; i < 12; i++)
29 hourAudio[i] = Applet.newAudioClip(
30 this.getClass().getResource("));
31
32 // Create audio clips for pronouncing minutes
33 for (int i = 0; i < 60; i++)
34 minuteAudio[i] = Applet.newAudioClip(
35 this.getClass().getResource("));
36
37 // Add clock and time label to the content pane of the applet
38 add(clock, BorderLayout.CENTER);
39 add(jlblDigitTime, BorderLayout.SOUTH);
40 }
41
42 @Override /** Override the applet's start method */
43 public void start() {
44 // Resume clock
45 }
46
47 @Override /** Override the applet's stop method */
48 public void stop() {
49 // Suspend clock
50 }
51
52
53 @Override
54 public void actionPerformed(ActionEvent e) {
55
56
57 jlblDigitTime.setText(clock.getHour() + ":" + clock.getMinute()
58 + ":" + clock.getSecond());
59 if (clock.getSecond() == 0)
60
61 }
62 }
63
64 /** Announce the current time at every minute */
65 public void announceTime(int hour, int minute) {
66 // Announce hour
67 hourAudio[hour % 12].play();

announceTime(clock.getHour(), clock.getMinute());

clock.repaint();
clock.setCurrentTime();

private class TimerListener implements ActionListener {

timer.stop();

timer.start();

audio/minute" + i + ".au"

audio/hour" + i + ".au"

private JLabel jlblDigitTime = new JLabel("", JLabel.CENTER);

private Timer timer = new Timer(1000, new TimerListener());

audio/pm.au

pmAudio
Applet.newAudioClip(this.getClass().getResource("audio/am.au"))

amAudio

protected AudioClip[] minuteAudio = new AudioClip[60];

am clip

pm clip

still clock

timer

label

create audio clips

start timer

stop timer

timer listener

set new time

announce time

announce hour

32.7 Case Study: Clock with Audio 1141

68
69 try {
70 // Time delay to allow hourAudio play to finish
71 Thread.sleep(1500);
72
73 // Announce minute
74
75
76 // Time delay to allow minuteAudio play to finish
77 Thread.sleep(1500);
78 }
79 catch(InterruptedException ex) {
80 }
81
82 // Announce am or pm
83 if (hour < 12)
84
85 else

86
87 }
88 }

The hourAudio is an array of twelve audio clips that are used to announce the 12 hours of
the day (line 7); the minuteAudio is an audio clip that is used to announce the minutes in an
hour (line 8). The amAudio announces “A.M.” (line 11); the pmAudio announces “P.M.”
(line 13).

The init() method creates hour audio clips (lines 29–30) and minute audio clips (lines
34–35), and places a clock and a label in the applet (lines 38–39).

An ActionEvent is fired by the timer every second. In the listener’s actionPerformed
method (lines 54–61), the clock is repainted with the new current time, and the digital time is
displayed in the label.

In the announceTime method (lines 65–87), the sleep() method (lines 71, 77) is
purposely invoked to ensure that one clip finishes before the next clip starts, so that the clips
do not interfere with each other.

The applet’s start() and stop() methods (lines 43–50) are overridden to ensure that
the timer starts or stops when the applet is restarted or stopped.

When you run the preceding program, you will notice that the second hand does not
display at the first, second, and third seconds of the minute. This is because sleep(1500) is
invoked twice in the announceTime() method, which takes three seconds to announce the
time at the beginning of each minute. Thus, the next action event is delayed for three seconds
during the first three seconds of each minute. As a result of this delay, the time is not updated
and the clock is not repainted for these three seconds. To fix this problem, you should
announce the time on a separate thread. This can be accomplished by modifying the
announceTime method. Listing 32.5 gives the new program.

LISTING 32.5 ClockWithAudioOnSeparateThread.java
1 // Same import statements as in Listing 32.4, so omitted
2
3 public class ClockWithAudioOnSeparateThread extends JApplet {
4 // Same as in lines 7-62 in Listing 32.4, so omitted
5
6 /** Announce the current time at every minute */
7 public void announceTime(int h, int m) {
8
9 }

new Thread(new AnnounceTimeOnSeparateThread(h, m)).start();

pmAudio.play();

amAudio.play();

minuteAudio[minute].play(); announce minute

announce am

announce pm

main method omitted

abnormal problem

omitted

omitted

create a thread

1142 Chapter 32 Multithreading and Parallel Programming

✓Point✓Check

10
11 /** Inner class for announcing time */
12 {
13 private int hour, minute;
14
15 /** Get audio clips */
16 public AnnounceTimeOnSeparateThread(int hour, int minute) {
17 this.hour = hour;
18 this.minute = minute;
19 }
20
21 @Override
21 {
22 // Announce hour
23 hourAudio[hour % 12].play();
24
25 try {
26 // Time delay to allow hourAudio play to finish
27 Thread.sleep(1500);
28
29 // Announce minute
30 minuteAudio[minute].play();
31
32 // Time delay to allow minuteAudio play to finish
33 Thread.sleep(1500);
34 }
35 catch (InterruptedException ex) {
36 }
37
38 // Announce am or pm
39 if (hour < 12)
40 amAudio.play();
41 else

42 pmAudio.play();
43 }
44 }
45 }

The new class ClockWithAudioOnSeparateThread is the same as ClockWithAudio
except that the announceTime method is new. The new announceTime method creates a
thread (line 8) for the task of announcing the time. The task class is defined as an inner class
(lines 12–44). The run method (line 21) announces the time on a separate thread.

When running this program, you will discover that the audio does not interfere with
the clock animation because an instance of AnnounceTimeOnSeparateThread starts on a
separate thread to announce the current time. This thread is independent of the thread on
which the actionPerformed method runs.

32.13 When should you use a timer or a thread to control animation? What are the advan-
tages and disadvantages of using a thread and a timer?

32.8 Thread Pools
A thread pool can be used to execute tasks efficiently.

In Section 32.3, Creating Tasks and Threads, you learned how to define a task class by imple-
menting java.lang.Runnable, and how to create a thread to run a task like this:

Runnable task = new TaskClass(task);
new Thread(task).start();

public void run()

class AnnounceTimeOnSeparateThread implements Runnabletask class

run thread

main method omitted

Key
Point

32.8 Thread Pools 1143

This approach is convenient for a single task execution, but it is not efficient for a large number
of tasks, because you have to create a thread for each task. Starting a new thread for each task
could limit throughput and cause poor performance. Using a thread pool is an ideal way to
manage the number of tasks executing concurrently. Java provides the Executor interface for
executing tasks in a thread pool and the ExecutorService interface for managing and con-
trolling tasks. ExecutorService is a subinterface of Executor, as shown in Figure 32.8.

+shutdown(): void

+shutdownNow(): List<Runnable>

+isShutdown(): boolean
+isTerminated(): boolean

«interface»
java.util.concurrent.ExecutorService

+execute(Runnable object): void

«interface»
java.util.concurrent.Executor

Executes the runnable task.

Shuts down the executor, but allows the tasks in the executor
 to complete. Once shut down, it cannot accept new tasks.
Shuts down the executor immediately even though there are
 unfinished threads in the pool. Returns a list of unfinished tasks.
Returns true if the executor has been shut down.
Returns true if all tasks in the pool are terminated.

FIGURE 32.8 The Executor interface executes threads, and the ExecutorService subinterface manages threads.

To create an Executor object, use the static methods in the Executors class, as
shown in Figure 32.9. The newFixedThreadPool(int) method creates a fixed number
of threads in a pool. If a thread completes executing a task, it can be reused to execute
another task. If a thread terminates due to a failure prior to shutdown, a new thread will be
created to replace it if all the threads in the pool are not idle and there are tasks waiting for
execution. The newCachedThreadPool() method creates a new thread if all the threads
in the pool are not idle and there are tasks waiting for execution. A thread in a cached pool
will be terminated if it has not been used for 60 seconds. A cached pool is efficient for
many short tasks.

Creates a thread pool with a fixed number of threads executing
 concurrently. A thread may be reused to execute another task
 after its current task is finished.

Creates a thread pool that creates new threads as needed, but
 will reuse previously constructed threads when they are
 available.

java.util.concurrent.Executors

+newFixedThreadPool(numberOfThreads:
 int): ExecutorService

+newCachedThreadPool():
 ExecutorService

FIGURE 32.9 The Executors class provides static methods for creating Executor objects.

Listing 32.6 shows how to rewrite Listing 32.1 using a thread pool.

LISTING 32.6 ExecutorDemo.java
1 import java.util.concurrent.*;
2
3 public class ExecutorDemo {

1144 Chapter 32 Multithreading and Parallel Programming

Key
Point

✓Point✓Check

4 public static void main(String[] args) {
5 // Create a fixed thread pool with maximum three threads
6
7
8 // Submit runnable tasks to the executor
9
10 executor.execute();
11 executor.execute();
12
13 // Shut down the executor
14
15 }
16 }

Line 6 creates a thread pool executor with a total of three threads maximum. Classes
PrintChar and PrintNum were defined in Listing 32.1. Line 9 creates a task, new
PrintChar('a', 100), and adds it to the pool. Similarly, another two runnable tasks are
created and added to the same pool in lines 10–11. The executor creates three threads to
execute three tasks concurrently.

Suppose that you replace line 6 with

ExecutorService executor = Executors.newFixedThreadPool(1);

What will happen? The three runnable tasks will be executed sequentially, because there is
only one thread in the pool.

Suppose you replace line 6 with

ExecutorService executor = Executors.newCachedThreadPool();

What will happen? New threads will be created for each waiting task, so all the tasks will be
executed concurrently.

The shutdown() method in line 14 tells the executor to shut down. No new tasks can be
accepted, but any existing tasks will continue to finish.

Tip
If you need to create a thread for just one task, use the Thread class. If you need to cre-
ate threads for multiple tasks, it is better to use a thread pool.

32.14 What are the benefits of using a thread pool?

32.15 How do you create a thread pool with three fixed threads? How do you submit a task
to a thread pool? How do you know that all the tasks are finished?

32.9 Thread Synchronization
Thread synchronization is to coordinate the execution of the dependent threads.

A shared resource may become corrupted if it is accessed simultaneously by multiple threads.
The following example demonstrates the problem.

Suppose that you create and launch 100 threads, each of which adds a penny to an account.
Define a class named Account to model the account, a class named AddAPennyTask to add
a penny to the account, and a main class that creates and launches threads. The relationships
of these classes are shown in Figure 32.10. The program is given in Listing 32.7.

executor.shutdown();

new PrintNum(100)
new PrintChar('b', 100)

executor.execute(new PrintChar('a', 100));

ExecutorService executor = Executors.newFixedThreadPool(3);create executor

submit task

shut down executor

32.9 Thread Synchronization 1145

LISTING 32.7 AccountWithoutSync.java
1 import java.util.concurrent.*;
2
3 public class AccountWithoutSync {
4
5
6 public static void main(String[] args) {
7
8
9 // Create and launch 100 threads
10 for (int i = 0; i < 100; i++) {
11
12 }
13
14
15
16 // Wait until all tasks are finished
17 while () {
18 }
19
20 System.out.println("What is balance? " + account.getBalance());
21 }
22
23 // A thread for adding a penny to the account
24 private static class AddAPennyTask implements Runnable {
25 public void run() {
26 account.deposit(1);
27 }
28 }
29
30 // An inner class for account
31 private static class Account {
32 private int balance = 0;
33
34 public int getBalance() {
35 return balance;
36 }
37
38 public void deposit(int amount) {
39 int newBalance = balance + amount;
40

!executor.isTerminated()

executor.shutdown();

executor.execute(new AddAPennyTask());

ExecutorService executor = Executors.newCachedThreadPool();

private static Account account = new Account();

100 1
AddAPennyTask

+run(): void

AccountWithoutSync

-account: Account

+main(args: String[]): void

1 1
Account

+getBalance(): int
+deposit(amount: int): void

-balance: int

«interface»
java.lang.Runnable

FIGURE 32.10 AccountWithoutSync contains an instance of Account and 100 threads of AddAPennyTask.

create executor

submit task

shut down executor

wait for all tasks to terminate

1146 Chapter 32 Multithreading and Parallel Programming

FIGURE 32.11 The AccountWithoutSync program causes data inconsistency.

Step Balance Task 1 Task 2

1 0 newBalance = balance + 1;

newBalance = balance + 1;2 0
3 1 balance = newBalance;
4 1 balance = newBalance;

FIGURE 32.12 Task 1 and Task 2 both add 1 to the same balance.

41 // This delay is deliberately added to magnify the
42 // data-corruption problem and make it easy to see.
43 try {
44
45 }
46 catch (InterruptedException ex) {
47 }
48
49 balance = newBalance;
50 }
51 }
52 }

The classes AddAPennyTask and Account in lines 24–51 are inner classes. Line 4 creates an
Account with initial balance 0. Line 11 creates a task to add a penny to the account and sub-
mit the task to the executor. Line 11 is repeated 100 times in lines 10–12. The program repeat-
edly checks whether all tasks are completed in lines 17–18. The account balance is displayed
in line 20 after all tasks are completed.

The program creates 100 threads executed in a thread pool executor (lines 10–12). The
isTerminated() method (line 17) is used to test whether the thread is terminated.

The balance of the account is initially 0 (line 32). When all the threads are finished,
the balance should be 100, but the output is unpredictable. As can be seen in Figure 32.11, the
answers are wrong in the sample run. This demonstrates the data-corruption problem that
occurs when all the threads have access to the same data source simultaneously.

Thread.sleep(5);

Lines 39–49 could be replaced by one statement:

balance = balance + amount;

It is highly unlikely, although plausible, that the problem can be replicated using this single
statement. The statements in lines 39–49 are deliberately designed to magnify the data-
corruption problem and make it easy to see. If you run the program several times but still do
not see the problem, increase the sleep time in line 44. This will increase the chances for
showing the problem of data inconsistency.

What, then, caused the error in this program? A possible scenario is shown in Figure 32.12.

32.9 Thread Synchronization 1147

In Step 1, Task 1 gets the balance from the account. In Step 2, Task 2 gets the same balance
from the account. In Step 3, Task 1 writes a new balance to the account. In Step 4, Task 2
writes a new balance to the account.

The effect of this scenario is that Task 1 does nothing, because in Step 4 Task 2 overrides
Task 1’s result. Obviously, the problem is that Task 1 and Task 2 are accessing a common
resource in a way that causes a conflict. This is a common problem, known as a race condi-
tion, in multithreaded programs. A class is said to be thread-safe if an object of the class does
not cause a race condition in the presence of multiple threads. As demonstrated in the preced-
ing example, the Account class is not thread-safe.

32.9.1 The synchronized Keyword
To avoid race conditions, it is necessary to prevent more than one thread from simultaneously
entering a certain part of the program, known as the critical region. The critical region in
Listing 32.7 is the entire deposit method. You can use the keyword synchronized to syn-
chronize the method so that only one thread can access the method at a time. There are several
ways to correct the problem in Listing 32.7. One approach is to make Account thread-safe by
adding the keyword synchronized in the deposit method in line 38, as follows:

public synchronized void deposit(double amount)

A synchronized method acquires a lock before it executes. A lock is a mechanism for exclu-
sive use of a resource. In the case of an instance method, the lock is on the object for which
the method was invoked. In the case of a static method, the lock is on the class. If one thread
invokes a synchronized instance method (respectively, static method) on an object, the lock of
that object (respectively, class) is acquired first, then the method is executed, and finally the
lock is released. Another thread invoking the same method of that object (respectively, class)
is blocked until the lock is released.

With the deposit method synchronized, the preceding scenario cannot happen. If Task 1
enters the method, Task 2 is blocked until Task 1 finishes the method, as shown in Figure 32.13.

32.9.2 Synchronizing Statements
Invoking a synchronized instance method of an object acquires a lock on the object, and
invoking a synchronized static method of a class acquires a lock on the class. A synchronized
statement can be used to acquire a lock on any object, not just this object, when executing a

Acquire a lock on the object account

Execute the deposit method

Release the lock

Release the lock

Task 1

Execute the deposit method

Task 2

Wait to acquire the lock

Acquire a lock on the object account

FIGURE 32.13 Task 1 and Task 2 are synchronized.

race condition

thread-safe

critical region

1148 Chapter 32 Multithreading and Parallel Programming

✓Point✓Check

Key
Point

block of the code in a method. This block is referred to as a synchronized block. The general
form of a synchronized statement is as follows:

synchronized (expr) {
statements;

}

The expression expr must evaluate to an object reference. If the object is already locked by
another thread, the thread is blocked until the lock is released. When a lock is obtained on the
object, the statements in the synchronized block are executed, and then the lock is released.

Synchronized statements enable you to synchronize part of the code in a method instead of
the entire method. This increases concurrency. You can make Listing 32.7 thread-safe by
placing the statement in line 26 inside a synchronized block:

synchronized (account) {
account.deposit(1);

}

Note
Any synchronized instance method can be converted into a synchronized statement. For
example, the following synchronized instance method in (a) is equivalent to (b):

32.16 Give some examples of possible resource corruption when running multiple threads.
How do you synchronize conflicting threads?

32.17 Suppose you place the statement in line 26 of Listing 32.7 inside a synchronized
block to avoid race conditions, as follows:

synchronized (this) {
account.deposit(1);

}

Will it work?

32.10 Synchronization Using Locks
Locks and conditions can be explicitly used to synchronize threads.

Recall that in Listing 32.7, 100 tasks deposit a penny to the same account concurrently, which
causes conflicts. To avoid it, you used the synchronized keyword in the deposit method,
as follows:

public void deposit(double amount)

A synchronized instance method implicitly acquires a lock on the instance before it executes
the method.

Java enables you to acquire locks explicitly, which give you more control for coordinat-
ing threads. A lock is an instance of the Lock interface, which defines the methods for

synchronized

synchronized block

lock

public synchronized void xMethod() {
// method body

}

(a)

public void xMethod() {
synchronized (this) {
// method body

}
}

(b)

32.10 Synchronization Using Locks 1149

acquiring and releasing locks, as shown in Figure 32.14. A lock may also use the
newCondition() method to create any number of Condition objects, which can be used
for thread communications.

«interface»
java.util.concurrent.locks.Lock

+lock(): void
+unlock(): void
+newCondition(): Condition

Acquires the lock.
Releases the lock.
Returns a new Condition instance that is bound to this
Lock instance.

java.util.concurrent.locks.ReentrantLock

+ReentrantLock()
+ReentrantLock(fair: boolean)

Same as ReentrantLock(false).
Creates a lock with the given fairness policy. When the

fairness is true, the longest-waiting thread will get the
lock. Otherwise, there is no particular access order.

FIGURE 32.14 The ReentrantLock class implements the Lock interface to represent a lock.

ReentrantLock is a concrete implementation of Lock for creating mutually exclusive
locks. You can create a lock with the specified fairness policy. True fairness policies guarantee
that the longest-waiting thread will obtain the lock first. False fairness policies grant a lock to a
waiting thread arbitrarily. Programs using fair locks accessed by many threads may have
poorer overall performance than those using the default setting, but they have smaller variances
in times to obtain locks and prevent starvation.

Listing 32.8 revises the program in Listing 32.7 to synchronize the account modification
using explicit locks.

LISTING 32.8 AccountWithSyncUsingLock.java
1 import java.util.concurrent.*;
2
3
4 public class AccountWithSyncUsingLock {
5 private static Account account = new Account();
6
7 public static void main(String[] args) {
8 ExecutorService executor = Executors.newCachedThreadPool();
9
10 // Create and launch 100 threads
11 for (int i = 0; i < 100; i++) {
12 executor.execute(new AddAPennyTask());
13 }
14
15 executor.shutdown();
16
17 // Wait until all tasks are finished
18 while (!executor.isTerminated()) {
19 }
20
21 System.out.println("What is balance? " + account.getBalance());
22 }
23
24 // A thread for adding a penny to the account

import java.util.concurrent.locks.*;

fairness policy

package for locks

1150 Chapter 32 Multithreading and Parallel Programming

✓Point✓Check

25 public static class AddAPennyTask implements Runnable {
26 public void run() {
27 account.deposit(1);
28 }
29 }
30
31 // An inner class for Account
32 public static class Account {
33 // Create a lock
34 private int balance = 0;
35
36 public int getBalance() {
37 return balance;
38 }
39
40 public void deposit(int amount) {
41 // Acquire the lock
42
43 try {
44 int newBalance = balance + amount;
45
46 // This delay is deliberately added to magnify the
47 // data-corruption problem and make it easy to see.
48 Thread.sleep(5);
49
50 balance = newBalance;
51 }
52 catch (InterruptedException ex) {
53 }
54 finally {
55 // Release the lock
56 }
57 }
58 }
59 }

Line 33 creates a lock, line 41 acquires the lock, and line 55 releases the lock.

Tip
It is a good practice to always immediately follow a call to lock() with a try-catch
block and release the lock in the finally clause, as shown in lines 41–56, to ensure
that the lock is always released.

Listing 32.8 can be implemented using a synchronize method for deposit rather than
using a lock. In general, using synchronized methods or statements is simpler than using
explicit locks for mutual exclusion. However, using explicit locks is more intuitive and flexi-
ble to synchronize threads with conditions, as you will see in the next section.

32.18 How do you create a lock object? How do you acquire a lock and release a lock?

32.11 Cooperation among Threads
Conditions on locks can be used to coordinate thread interactions.

Thread synchronization suffices to avoid race conditions by ensuring the mutual exclusion of
multiple threads in the critical region, but sometimes you also need a way for threads to
cooperate. Conditions can be used to facilitate communications among threads. A thread can
specify what to do under a certain condition. Conditions are objects created by invoking the

lock.unlock();

lock.lock();

private static Lock lock = new ReentrantLock();create a lock

acquire the lock

release the lock

Key
Point

condition

32.11 Cooperation among Threads 1151

newCondition() method on a Lock object. Once a condition is created, you can use its
await(), signal(), and signalAll() methods for thread communications, as shown in
Figure 32.15. The await() method causes the current thread to wait until the condition is
signaled. The signal() method wakes up one waiting thread, and the signalAll()
method wakes all waiting threads.

«interface»
java.util.concurrent.Condition

+await(): void
+signal(): void
+signalAll(): Condition

Causes the current thread to wait until the condition is signaled.
Wakes up one waiting thread.
Wakes up all waiting threads.

FIGURE 32.15 The Condition interface defines the methods for performing synchronization.

Let us use an example to demonstrate thread communications. Suppose that you create and
launch two tasks: one that deposits into an account, and one that withdraws from the same
account. The withdraw task has to wait if the amount to be withdrawn is more than the current
balance. Whenever new funds are deposited into the account, the deposit task notifies the
withdraw thread to resume. If the amount is still not enough for a withdrawal, the withdraw
thread has to continue to wait for a new deposit.

To synchronize the operations, use a lock with a condition: newDeposit (i.e., new deposit
added to the account). If the balance is less than the amount to be withdrawn, the withdraw
task will wait for the newDeposit condition. When the deposit task adds money to the
account, the task signals the waiting withdraw task to try again. The interaction between the
two tasks is shown in Figure 32.16.

while (balance < withdrawAmount)
newDeposit.await();

Withdraw Task

balance -= withdrawAmount

lock.unlock();

Deposit Task

lock.lock();

newDeposit.signalAll();

balance += depositAmount

lock.unlock();

lock.lock();

FIGURE 32.16 The condition newDeposit is used for communications between the two
threads.

You create a condition from a Lock object. To use a condition, you have to first obtain a
lock. The await() method causes the thread to wait and automatically releases the lock on
the condition. Once the condition is right, the thread reacquires the lock and continues
executing.

Assume that the initial balance is 0 and the amounts to deposit and withdraw are ran-
domly generated. Listing 32.9 gives the program. A sample run of the program is shown in
Figure 32.17.

thread cooperation example

1152 Chapter 32 Multithreading and Parallel Programming

FIGURE 32.17 The withdraw task waits if there are not sufficient funds to withdraw.

LISTING 32.9 ThreadCooperation.java
1 import java.util.concurrent.*;
2 import java.util.concurrent.locks.*;
3
4 public class ThreadCooperation {
5 private static Account account = new Account();
6
7 public static void main(String[] args) {
8 // Create a thread pool with two threads
9
10 executor.execute(new DepositTask());
11 executor.execute(new WithdrawTask());
12 executor.shutdown();
13
14 System.out.println("Thread 1\t\tThread 2\t\tBalance");
15 }
16
17 {
18 @Override // Keep adding an amount to the account
19 {
20 try { // Purposely delay it to let the withdraw method proceed
21 while (true) {
22 account.deposit((int)(Math.random() * 10) + 1);
23 Thread.sleep(1000);
24 }
25 }
26 catch (InterruptedException ex) {
27 ex.printStackTrace();
28 }
29 }
30 }
31
32 {
33 @Override // Keep subtracting an amount from the account
34 {
35 while (true) {
36 account.withdraw((int)(Math.random() * 10) + 1);
37 }
38 }
39 }
40
41 // An inner class for account
42 private static class Account {
43 // Create a new lock
44
45
46 // Create a condition
47 private static Condition newDeposit = lock.newCondition();

private static Lock lock = new ReentrantLock();

public void run()

public static class WithdrawTask implements Runnable

public void run()

public static class DepositTask implements Runnable

ExecutorService executor = Executors.newFixedThreadPool(2);create two threads

create a lock

create a condition

32.11 Cooperation among Threads 1153

48
49 private int balance = 0;
50
51 public int getBalance() {
52 return balance;
53 }
54
55 public void withdraw(int amount) {
56 // Acquire the lock
57 try {
58 while (balance < amount) {
59 System.out.println("\t\t\tWait for a deposit");
60
61 }
62
63 balance -= amount;
64 System.out.println("\t\t\tWithdraw " + amount +
65 "\t\t" + getBalance());
66 }
67 catch (InterruptedException ex) {
68 ex.printStackTrace();
69 }
70 finally {
71 // Release the lock
72 }
73 }
74
75 public void deposit(int amount) {
76 // Acquire the lock
77 try {
78 balance += amount;
79 System.out.println("Deposit " + amount +
80 "\t\t\t\t\t" + getBalance());
81
82 // Signal thread waiting on the condition
83
84 }
85 finally {
86 // Release the lock
87 }
88 }
89 }
90 }

The example creates a new inner class named Account to model the account with two methods,
deposit(int) and withdraw(int), a class named DepositTask to add an amount to the
balance, a class named WithdrawTask to withdraw an amount from the balance, and a main
class that creates and launches two threads.

The program creates and submits the deposit task (line 10) and the withdraw task (line 11).
The deposit task is purposely put to sleep (line 23) to let the withdraw task run. When there
are not enough funds to withdraw, the withdraw task waits (line 59) for notification of the
balance change from the deposit task (line 83).

A lock is created in line 44. A condition named newDeposit on the lock is created in line
47. A condition is bound to a lock. Before waiting or signaling the condition, a thread must
first acquire the lock for the condition. The withdraw task acquires the lock in line 56, waits
for the newDeposit condition (line 60) when there is not a sufficient amount to withdraw,
and releases the lock in line 71. The deposit task acquires the lock in line 76, and signals all
waiting threads (line 83) for the newDeposit condition after a new deposit is made.

lock.unlock();

newDeposit.signalAll();

lock.lock();

lock.unlock();

newDeposit.await();

lock.lock(); acquire the lock

wait on the condition

release the lock

acquire the lock

signal threads

release the lock

1154 Chapter 32 Multithreading and Parallel Programming

What will happen if you replace the while loop in lines 58–61 with the following if
statement?

if (balance < amount) {
System.out.println("\t\t\tWait for a deposit");

}

The deposit task will notify the withdraw task whenever the balance changes. (balance <
amount) may still be true when the withdraw task is awakened. Using the if statement, the
withdraw task may wait forever. Using the loop statement, the withdraw task will have a
chance to recheck the condition. Thus you should always test the condition in a loop.

Caution
Once a thread invokes await() on a condition, the thread waits for a signal to resume.
If you forget to call signal() or signalAll() on the condition, the thread will wait
forever.

Caution
A condition is created from a Lock object. To invoke its method (e.g., await(),
signal(), and signalAll()), you must first own the lock. If you invoke these
methods without acquiring the lock, an IllegalMonitorStateException will be
thrown.

Locks and conditions were introduced in Java 5. Prior to Java 5, thread communications were
programmed using the object’s built-in monitors. Locks and conditions are more powerful
and flexible than the built-in monitor, so you can ignore this section. However, if you are
working with legacy Java code, you may encounter Java’s built-in monitor.

A monitor is an object with mutual exclusion and synchronization capabilities. Only one
thread at a time can execute a method in the monitor. A thread enters the monitor by acquir-
ing a lock on it and exits by releasing the lock. Any object can be a monitor. An object
becomes a monitor once a thread locks it. Locking is implemented using the synchronized
keyword on a method or a block. A thread must acquire a lock before executing a synchro-
nized method or block. A thread can wait in a monitor if the condition is not right for it to
continue executing in the monitor. You can invoke the wait() method on the monitor object
to release the lock so that some other thread can get in the monitor and perhaps change the
monitor’s state. When the condition is right, the other thread can invoke the notify() or
notifyAll() method to signal one or all waiting threads to regain the lock and resume
execution. The template for invoking these methods is shown in Figure 32.18.

newDeposit.await();

ever-waiting threads

IllegalMonitorState-
Exception

Java’s built-in monitor

monitor

synchronized (anObject) {
try {

// Wait for the condition to become true
while (!condition)

anObject.wait();

// Do something when condition is true
}
catch (InterruptedException ex) {

ex.printStackTrace();
}

}

Task 1

synchronized (anObject) {
// When condition becomes true
anObject.notify(); or anObject.notifyAll();
...

}

Task 2

resume

FIGURE 32.18 The wait(), notify(), and notifyAll() methods coordinate thread communication.

32.12 Case Study: Producer/Consumer 1155

The wait(), notify(), and notifyAll() methods must be called in a synchronized
method or a synchronized block on the receiving object of these methods. Otherwise, an
IllegalMonitorStateException will occur.

When wait() is invoked, it pauses the thread and simultaneously releases the lock on the
object. When the thread is restarted after being notified, the lock is automatically reacquired.

The wait(), notify(), and notifyAll() methods on an object are analogous to the
await(), signal(), and signalAll() methods on a condition.

32.19 How do you create a condition on a lock? What are the await(), signal(), and
signalAll() methods for?

32.20 What would happen if the while loop in line 58 of Listing 32.9 were changed to an
if statement?

while (balance < amount)
Replaced by

if (balance < amount)

32.21 Why does the following class have a syntax error?

1 import javax.swing.*;
2
3 public class Test extends JApplet implements Runnable {
4 public void init() throws InterruptedException {
5 Thread thread = new Thread(this);
6 thread.sleep(1000);
7 }
8
9 public synchronized void run() {
10 }
11 }

32.22 What is a possible cause for IllegalMonitorStateException?

32.23 Can the wait(), notify(), and notifyAll() be invoked from any object? What
is the purpose of these methods?

32.24 What is wrong in the following code?

synchronized (object1) {
try {
while (!condition) object2.wait();

}
catch (InterruptedException ex) {
}

}

32.12 Case Study: Producer/Consumer
This section gives the classic Consumer/Producer example for demonstrating thread
coordination.

Suppose you use a buffer to store integers, and that the buffer size is limited. The buffer pro-
vides the method write(int) to add an int value to the buffer and the method read() to
read and delete an int value from the buffer. To synchronize the operations, use a lock with
two conditions: notEmpty (i.e., the buffer is not empty) and notFull (i.e., the buffer is not
full). When a task adds an int to the buffer, if the buffer is full, the task will wait for the
notFull condition. When a task deletes an int from the buffer, if the buffer is empty, the

✓Point✓Check

Key
Point

1156 Chapter 32 Multithreading and Parallel Programming

while (count == CAPACITY)
notFull.await();

Task for adding an int

Add an int to the buffer

notEmpty.signal();

while (count == 0)
notEmpty.await();

Task for deleting an int

Delete an int from the buffer

notFull.signal();

FIGURE 32.19 The conditions notFull and notEmpty are used to coordinate task
interactions.

task will wait for the notEmpty condition. The interaction between the two tasks is shown in
Figure 32.19.

Listing 32.10 presents the complete program. The program contains the Buffer class
(lines 48–95) and two tasks for repeatedly adding and consuming numbers to and from the
buffer (lines 16–45). The write(int) method (line 60) adds an integer to the buffer. The
read() method (line 77) deletes and returns an integer from the buffer.

The buffer is actually a first-in, first-out queue (lines 50–51). The conditions notEmpty
and notFull on the lock are created in lines 57–58. The conditions are bound to a lock. A
lock must be acquired before a condition can be applied. If you use the wait() and
notify() methods to rewrite this example, you have to designate two objects as monitors.

LISTING 32.10 ConsumerProducer.java
1 import java.util.concurrent.*;
2 import java.util.concurrent.locks.*;
3
4 public class ConsumerProducer {
5
6
7 public static void main(String[] args) {
8 // Create a thread pool with two threads
9 ExecutorService executor = Executors.newFixedThreadPool(2);
10 executor.execute(new ProducerTask());
11 executor.execute(new ConsumerTask());
12 executor.shutdown();
13 }
14
15 // A task for adding an int to the buffer
16 {
17 public void run() {
18 try {
19 int i = 1;
20 while (true) {
21 System.out.println("Producer writes " + i);
22 buffer.write(i++); // Add a value to the buffer
23 // Put the thread to sleep
24 Thread.sleep((int)(Math.random() * 10000));
25 }
26 } catch (InterruptedException ex) {

private static class ProducerTask implements Runnable

private static Buffer buffer = new Buffer();create a buffer

create two threads

producer task

32.12 Case Study: Producer/Consumer 1157

27 ex.printStackTrace();
28 }
29 }
30 }
31
32 // A task for reading and deleting an int from the buffer
33 {
34 public void run() {
35 try {
36 while (true) {
37 System.out.println("\t\t\tConsumer reads " + buffer.read());
38 // Put the thread to sleep
39 Thread.sleep((int)(Math.random() * 10000));
40 }
41 } catch (InterruptedException ex) {
42 ex.printStackTrace();
43 }
44 }
45 }
46
47 // An inner class for buffer
48 private static class Buffer {
49 private static final int CAPACITY = 1; // buffer size
50 private java.util.LinkedList<Integer> queue =
51 new java.util.LinkedList<Integer>();
52
53 // Create a new lock
54
55
56 // Create two conditions
57
58
59
60 public void write(int value) {
61 // Acquire the lock
62 try {
63 while (queue.size() == CAPACITY) {
64 System.out.println("Wait for notFull condition");
65
66 }
67
68 queue.offer(value);
69 // Signal notEmpty condition
70 } catch (InterruptedException ex) {
71 ex.printStackTrace();
72 } finally {
73 // Release the lock
74 }
75 }
76
77 public int read() {
78 int value = 0;
79 // Acquire the lock
80 try {
81 while (queue.isEmpty()) {
82 System.out.println("\t\t\tWait for notEmpty condition");
83
84 }
85
86 value = queue.remove();

notEmpty.await();

lock.lock();

lock.unlock();

notEmpty.signal();

notFull.await();

lock.lock();

private static Condition notFull = lock.newCondition();
private static Condition notEmpty = lock.newCondition();

private static Lock lock = new ReentrantLock();

private static class ConsumerTask implements Runnable consumer task

create a lock

create a condition
create a condition

acquire the lock

wait for notFull

signal notEmpty

release the lock

acquire the lock

wait for notEmpty

1158 Chapter 32 Multithreading and Parallel Programming

✓Point✓Check

Key
Point

FIGURE 32.20 Locks and conditions are used for communications between the Producer and
Consumer threads.

87 // Signal notFull condition
88 } catch (InterruptedException ex) {
89 ex.printStackTrace();
90 } finally {
91 // Release the lock
92 return value;
93 }
94 }
95 }
96 }

A sample run of the program is shown in Figure 32.20.

lock.unlock();

notFull.signal();signal notFull

release the lock

blocking queue

32.25 Can the read and write methods in the Buffer class be executed concurrently?

32.26 When invoking the read method, what happens if the queue is empty?

32.27 When invoking the write method, what happens if the queue is full?

32.13 Blocking Queues
Java Collections Framework provides ArrayBlockingQueue,
LinkedBlockingQueue, and PriorityBlockingQueue for supporting blocking
queues.

Queues and priority queues were introduced in Section 22.9. A blocking queue causes a
thread to block when you try to add an element to a full queue or to remove an element from
an empty queue. The BlockingQueue interface extends java.util.Queue and provides
the synchronized put and take methods for adding an element to the tail of the queue and for
removing an element from the head of the queue, as shown in Figure 32.21.

Three concrete blocking queues—ArrayBlockingQueue, LinkedBlockingQueue,
and PriorityBlockingQueue—are provided in Java, as shown in Figure 32.22. All are in
the java.util.concurrent package. ArrayBlockingQueue implements a blocking
queue using an array. You have to specify a capacity or an optional fairness to construct an
ArrayBlockingQueue. LinkedBlockingQueue implements a blocking queue using a
linked list. You can create an unbounded or bounded LinkedBlockingQueue.
PriorityBlockingQueue is a priority queue. You can create an unbounded or bounded pri-
ority queue.

Note
The put method will never block an unbounded LinkedBlockingQueue or
PriorityBlockingQueue.

unbounded queue

32.13 Blocking Queues 1159

Listing 32.11 gives an example of using an ArrayBlockingQueue to simplify the
Consumer/Producer example in Listing 32.10. Line 5 creates an ArrayBlockingQueue to
store integers. The Producer thread puts an integer into the queue (line 22), and the Consumer
thread takes an integer from the queue (line 37).

LISTING 32.11 ConsumerProducerUsingBlockingQueue.java
1 import java.util.concurrent.*;
2
3 public class ConsumerProducerUsingBlockingQueue {
4
5
6
7 public static void main(String[] args) {
8 // Create a thread pool with two threads
9
10 executor.execute(new ProducerTask());
11 executor.execute(new ConsumerTask());
12 executor.shutdown();
13 }
14
15 // A task for adding an int to the buffer

ExecutorService executor = Executors.newFixedThreadPool(2);

new ArrayBlockingQueue<Integer>(2);
private static ArrayBlockingQueue<Integer> buffer =

+put(element: E): void

+take(): E

«interface»
java.util.Collection<E>

Inserts an element to the tail of the queue.
 Waits if the queue is full.

Retrieves and removes the head of this
 queue. Waits if the queue is empty.

«interface»
java.util.Queue<E>

«interface»
 java.util.concurrent.BlockingQueue<E>

FIGURE 32.21 BlockingQueue is a subinterface of Queue.

«interface»
java.util.concurrent.BlockingQueue<E>

+ArrayBlockingQueue(capacity: int)

+ArrayBlockingQueue(capacity: int,
 fair: boolean)

ArrayBlockingQueue<E>

+LinkedBlockingQueue()

+LinkedBlockingQueue(capacity: int)

LinkedBlockingQueue<E>

+PriorityBlockingQueue()

+PriorityBlockingQueue(capacity: int)

PriorityBlockingQueue<E>

FIGURE 32.22 ArrayBlockingQueue, LinkedBlockingQueue, and PriorityBlockingQueue are concrete block-
ing queues.

create a buffer

create two threads

1160 Chapter 32 Multithreading and Parallel Programming

✓Point✓Check

16 {
17 public void run() {
18 try {
19 int i = 1;
20 while (true) {
21 System.out.println("Producer writes " + i);
22 // Add any value to the buffer, say, 1
23 // Put the thread to sleep
24 Thread.sleep((int)(Math.random() * 10000));
25 }
26 } catch (InterruptedException ex) {
27 ex.printStackTrace();
28 }
29 }
30 }
31
32 // A task for reading and deleting an int from the buffer
33 {
34 public void run() {
35 try {
36 while (true) {
37 System.out.println("\t\t\tConsumer reads " +);
38 // Put the thread to sleep
39 Thread.sleep((int)(Math.random() * 10000));
40 }
41 } catch (InterruptedException ex) {
42 ex.printStackTrace();
43 }
44 }
45 }
46 }

In Listing 32.10, you used locks and conditions to synchronize the Producer and Consumer
threads. In this program, hand coding is not necessary, because synchronization is already
implemented in ArrayBlockingQueue.

32.28 What is a blocking queue? What blocking queues are supported in Java?

32.29 What method do you use to add an element to an ArrayBlockingQueue? What
happens if the queue is full?

32.30 What method do you use to retrieve an element from an ArrayBlockingQueue?
What happens if the queue is empty?

32.14 Semaphores
Semaphores can be used to restrict the number of threads that access a shared
resource.

In computer science, a semaphore is an object that controls the access to a common resource.
Before accessing the resource, a thread must acquire a permit from the semaphore. After fin-
ishing with the resource, the thread must return the permit back to the semaphore, as shown in
Figure 32.23.

To create a semaphore, you have to specify the number of permits with an optional fairness
policy, as shown in Figure 32.24. A task acquires a permit by invoking the semaphore’s
acquire() method and releases the permit by invoking the semaphore’s release()
method. Once a permit is acquired, the total number of available permits in a semaphore is
reduced by 1. Once a permit is released, the total number of available permits in a semaphore
is increased by 1.

buffer.take()

private static class ConsumerTask implements Runnable

buffer.put(i++);

private static class ProducerTask implements Runnable

put

consumer task

take

Key
Point

producer task

semaphore

32.14 Semaphores 1161

A semaphore with just one permit can be used to simulate a mutually exclusive lock.
Listing 32.12 revises the Account inner class in Listing 32.9 using a semaphore to ensure
that only one thread at a time can access the deposit method.

LISTING 32.12 New Account Inner Class
1 // An inner class for Account
2 private static class Account {
3 // Create a semaphore
4
5 private int balance = 0;
6
7 public int getBalance() {
8 return balance;
9 }
10
11 public void deposit(int amount) {
12 try {
13 // Acquire a permit
14 int newBalance = balance + amount;
15
16 // This delay is deliberately added to magnify the
17 // data-corruption problem and make it easy to see
18 Thread.sleep(5);
19
20 balance = newBalance;
21 }
22 catch (InterruptedException ex) {

semaphore.acquire();

private static Semaphore semaphore = new Semaphore(1);

Acquire a permit from a semaphore.
Wait if the permit is not available.

Release the permit to the semaphore.

A thread accessing a shared resource.

Access the resource

semaphore.acquire();

semaphore.release();

FIGURE 32.23 A limited number of threads can access a shared resource controlled by a
semaphore.

java.util.concurrent.Semaphore

+Semaphore(numberOfPermits: int)

+Semaphore(numberOfPermits: int, fair:
boolean)

+acquire(): void

+release(): void

Creates a semaphore with the specified number of permits. The
fairness policy is false.

Creates a semaphore with the specified number of permits and
the fairness policy.

Acquires a permit from this semaphore. If no permit is
available, the thread is blocked until one is available.

Releases a permit back to the semaphore.

FIGURE 32.24 The Semaphore class contains the methods for accessing a semaphore.

create a semaphore

acquire a permit

1162 Chapter 32 Multithreading and Parallel Programming

✓Point✓Check

Key
Point

synchronized (object1) {

 // do something here

synchronized (object2) {

// do something here
}

}

Thread 1

synchronized (object2) {

// do something here

synchronized (object1) {
// do something here

 }
}

Thread 2 Step

1
2
3
4
5
6

Wait for Thread 2 to
release the lock on object2

Wait for Thread 1 to
release the lock on object1

FIGURE 32.25 Thread 1 and Thread 2 are deadlocked.

23 }
24 finally {
25 // Release a permit
26 }
27 }
28 }

A semaphore with one permit is created in line 4. A thread first acquires a permit when exe-
cuting the deposit method in line 13. After the balance is updated, the thread releases the per-
mit in line 25. It is a good practice to always place the release() method in the finally
clause to ensure that the permit is finally released even in the case of exceptions.

32.31 What are the similarities and differences between a lock and a semaphore?

32.32 How do you create a semaphore that allows three concurrent threads? How do you
acquire a semaphore? How do you release a semaphore?

32.15 Avoiding Deadlocks
Deadlocks can be avoided by using a proper resource ordering.

Sometimes two or more threads need to acquire the locks on several shared objects. This
could cause a deadlock, in which each thread has the lock on one of the objects and is waiting
for the lock on the other object. Consider the scenario with two threads and two objects, as
shown in Figure 32.25. Thread 1 has acquired a lock on object1, and Thread 2 has acquired
a lock on object2. Now Thread 1 is waiting for the lock on object2, and Thread 2 for the
lock on object1. Each thread waits for the other to release the lock it needs, and until that
happens, neither can continue to run.

semaphore.release();

Deadlock is easily avoided by using a simple technique known as resource ordering. With
this technique, you assign an order to all the objects whose locks must be acquired and ensure
that each thread acquires the locks in that order. For the example in Figure 32.25, suppose that
the objects are ordered as object1 and object2. Using the resource ordering technique,
Thread 2 must acquire a lock on object1 first, then on object2. Once Thread 1 acquires a
lock on object1, Thread 2 has to wait for a lock on object1. Thus, Thread 1 will be able to
acquire a lock on object2 and no deadlock will occur.

32.33 What is a deadlock? How can you avoid deadlock?

release a permit

deadlock

resource ordering

✓Point✓Check

32.17 Synchronized Collections 1163

32.16 Thread States
A thread state indicates the status of thread.

Tasks are executed in threads. Threads can be in one of five states: New, Ready, Running,
Blocked, or Finished (see Figure 32.26).

When a thread is newly created, it enters the New state. After a thread is started by calling
its start() method, it enters the Ready state. A ready thread is runnable but may not be run-
ning yet. The operating system has to allocate CPU time to it.

When a ready thread begins executing, it enters the Running state. A running thread can
enter the Ready state if its given CPU time expires or its yield() method is called.

A thread can enter the Blocked state (i.e., become inactive) for several reasons. It may have
invoked the join(), sleep(), or wait() method. It may be waiting for an I/O operation to
finish. A blocked thread may be reactivated when the action inactivating it is reversed. For
example, if a thread has been put to sleep and the sleep time has expired, the thread is reacti-
vated and enters the Ready state.

Finally, a thread is Finished if it completes the execution of its run() method.
The isAlive() method is used to find out the state of a thread. It returns true if a thread

is in the Ready, Blocked, or Running state; it returns false if a thread is new and has not
started or if it is finished.

The interrupt() method interrupts a thread in the following way: If a thread is currently
in the Ready or Running state, its interrupted flag is set; if a thread is currently blocked, it is
awakened and enters the Ready state, and a java.lang.InterruptedException is
thrown.

32.34 What is a thread state? Describe the states for a thread.

32.17 Synchronized Collections
Java Collections Framework provides synchronized collections for lists, sets, and
maps.

The classes in the Java Collections Framework are not thread-safe; that is, their contents may
become corrupted if they are accessed and updated concurrently by multiple threads. You can
protect the data in a collection by locking the collection or by using synchronized collections.

Thread created start()
run()

Wait for target
to finish

Ready

Running

FinishedNew

Wait for time
out

Wait to be
notified

run() completed
yield(), or
time out

sleep()join() wait()
Target
finished

SignaledTime out

Blocked

FIGURE 32.26 A thread can be in one of five states: New, Ready, Running, Blocked, or Finished.

✓Point✓Check

Key
Point

Key
Point

synchronized collection

1164 Chapter 32 Multithreading and Parallel Programming

java.util.Collections

+synchronizedCollection(c: Collection): Collection

+synchronizedList(list: List): List

+synchronizedMap(m: Map): Map

+synchronizedSet(s: Set): Set

+synchronizedSortedMap(s: SortedMap): SortedMap

+synchronizedSortedSet(s: SortedSet): SortedSet

Returns a synchronized collection.

Returns a synchronized list from the specified list.

Returns a synchronized map from the specified map.

Returns a synchronized set from the specified set.

Returns a synchronized sorted map from the specified
 sorted map.
Returns a synchronized sorted set.

FIGURE 32.27 You can obtain synchronized collections using the methods in the Collections class.

The Collections class provides six static methods for wrapping a collection into a syn-
chronized version, as shown in Figure 32.27. The collections created using these methods are
called synchronization wrappers.

Invoking synchronizedCollection(Collection c) returns a new Collection
object, in which all the methods that access and update the original collection c are synchro-
nized. These methods are implemented using the synchronized keyword. For example, the
add method is implemented like this:

public boolean add(E o) {
(this) {

return c.add(o);
}

}

Synchronized collections can be safely accessed and modified by multiple threads concur-
rently.

Note
The methods in java.util.Vector, java.util.Stack, and java.util.Hashtable
are already synchronized. These are old classes introduced in JDK 1.0. Starting with JDK 1.5,
you should use java.util.ArrayList to replace Vector, java.util.LinkedList
to replace Stack, and java.util.Map to replace Hashtable. If synchronization is
needed, use a synchronization wrapper.

The synchronization wrapper classes are thread-safe, but the iterator is fail-fast. This
means that if you are using an iterator to traverse a collection while the underlying collection
is being modified by another thread, then the iterator will immediately fail by throwing
java.util.ConcurrentModificationException, which is a subclass of
RuntimeException. To avoid this error, you need to create a synchronized collection object
and acquire a lock on the object when traversing it. For example, to traverse a set, you have to
write the code like this:

Set hashSet = Collections.synchronizedSet(new HashSet());

synchronized (hashSet) { // Must synchronize it
Iterator iterator = hashSet.iterator();

while (iterator.hasNext()) {
System.out.println(iterator.next());

}
}

synchronized

synchronization wrapper

fail-fast

32.18 Parallel Programming 1165

Failure to do so may result in nondeterministic behavior, such as a
ConcurrentModificationException.

32.35 What is a synchronized collection? Is ArrayList synchronized? How do you make
it synchronized?

32.36 Explain why an iterator is fail-fast.

32.18 Parallel Programming
The Fork/Join Framework is used for parallel programming in Java.

The widespread use of multicore systems has created a revolution in software. In order to ben-
efit from multiple processors, software needs to run in parallel. JDK 7 introduces the new
Fork/Join Framework for parallel programming, which utilizes the multicore processors.

The Fork/Join Framework is illustrated in Figure 32.28 (the diagram resembles a fork,
hence its name). A problem is divided into nonoverlapping subproblems, which can be solved
independently in parallel. The solutions to all subproblems are then joined to obtain the over-
all solution for the problem. This is the parallel implementation of the divide-and-conquer
approach. In JDK 7’s Fork/Join Framework, a fork can be viewed as an independent task that
runs on a thread.

The framework defines a task using the ForkJoinTask class, as shown in Figure 32.29,
and executes a task in an instance of ForkJoinPool, as shown in Figure 32.30.

ForkJoinTask is the abstract base class for tasks. A ForkJoinTask is a thread-like
entity, but it is much lighter than a normal thread, because huge numbers of tasks and subtasks
can be executed by a small number of actual threads in a ForkJoinPool. The tasks are pri-
marily coordinated using fork() and join(). Invoking fork() on a task arranges asyn-
chronous execution, and invoking join() waits until the task is completed. The invoke()
and invokeAll(tasks) methods implicitly invoke fork() to execute the task and join()
to wait for the tasks to complete, and return the result, if any. Note that the static method
invokeAll takes a variable number of ForkJoinTask arguments using the ... syntax,
which was introduced in Section 6.9.

The Fork/Join Framework is designed to parallelize divide-and-conquer solutions, which
are naturally recursive. RecursiveAction and RecursiveTask are two subclasses of
ForkJoinTask. To define a concrete task class, your class should extend RecursiveAction
or RecursiveTask. RecursiveAction is for a task that doesn’t return a value, and
RecursiveTask is for a task that does return a value. Your task class should override the
compute() method to specify how a task is performed.

We now use a merge sort to demonstrate how to develop parallel programs using
the Fork/Join Framework. The merge sort algorithm (introduced in Section 25.3) divides the

Subproblem

Subproblem

Subproblem

Subproblem

Problem

Fork

Solution

Join

FIGURE 32.28 The nonoverlapping subproblems are solved in parallel.

✓Point✓Check

Key
Point

JDK 7 feature

ForkJoinTask
ForkJoinPool

RecursiveAction

RecursiveTask

Fork/Join Framework

1166 Chapter 32 Multithreading and Parallel Programming

«interface»
java.util.concurrent.Future<V>

+cancel(interrupt: boolean): boolean
+get(): V

+isDone(): boolean

Attempts to cancel this task.
Waits if needed for the computation to complete and
 returns the result.
Returns true if this task is completed.

java.util.concurrent.ForkJoinTask<V>

+adapt(Runnable task): ForkJoinTask<V>
+fork(): ForkJoinTask<V>
+join(): V
+invoke(): V

+invokeAll(tasks ForkJoinTask<?>…): void

Returns a ForkJoinTask from a runnable task.
Arranges asynchronous execution of the task.
Returns the result of computations when it is done.
Performs the task and awaits for its completion, and returns its
 result.
Forks the given tasks and returns when all tasks are completed.

java.util.concurrent.RecursiveAction<V>

#compute(): void Defines how task is performed.

java.util.concurrent.RecursiveTask<V>

#compute(): V Defines how task is performed. Return the
 value after the task is completed.

FIGURE 32.29 The ForkJoinTask class defines a task for asynchronous execution.

«interface»
java.util.concurrent.ExecutorService

java.util.concurrent.ForkJoinPool

+ForkJoinPool()
+ForkJoinPool(parallelism: int)
+invoke(ForkJoinTask<T>): T

Creates a ForkJoinPool with all available processors.
Creates a ForkJoinPool with the specified number of processors.
Performs the task and returns its result upon completion.

See Figure 32.8

FIGURE 32.30 The ForkJoinPool executes Fork/Join tasks.

array into two halves and applies a merge sort on each half recursively. After the two halves
are sorted, the algorithm merges them. Listing 32.13 gives a parallel implementation of the
merge sort algorithm and compares its execution time with a sequential sort.

LISTING 32.13 ParallelMergeSort.java
1 import java.util.concurrent.RecursiveAction;
2 import java.util.concurrent.ForkJoinPool;
3
4 public class ParallelMergeSort {
5 public static void main(String[] args) {

32.18 Parallel Programming 1167

6 final int SIZE = 7000000;
7 int[] list1 = new int[SIZE];
8 int[] list2 = new int[SIZE];
9
10 for (int i = 0; i < list1.length; i++)
11 list1[i] = list2[i] = (int)(Math.random() * 10000000);
12
13 long startTime = System.currentTimeMillis();
14 // Invoke parallel merge sort
15 long endTime = System.currentTimeMillis();
16 System.out.println("\nParallel time with "
17 + Runtime.getRuntime().availableProcessors() +
18 " processors is " + (endTime - startTime) + " milliseconds");
19
20 startTime = System.currentTimeMillis();
21 // MergeSort is in Listing 25.5
22 endTime = System.currentTimeMillis();
23 System.out.println("\nSequential time is " +
24 (endTime - startTime) + " milliseconds");
25 }
26
27 public static void parallelMergeSort(int[] list) {
28
29
30
31 }
32
33 {
34 private final int THRESHOLD = 500;
35 private int[] list;
36
37 {
38 this.list = list;
39 }
40
41 @Override
42 protected void compute() {
43 if (list.length < THRESHOLD)
44
45 else {
46 // Obtain the first half
47 int[] firstHalf = new int[list.length / 2];
48 System.arraycopy(list, 0, firstHalf, 0, list.length / 2);
49
50 // Obtain the second half
51 int secondHalfLength = list.length - list.length / 2;
52 int[] secondHalf = new int[secondHalfLength];
53 System.arraycopy(list, list.length / 2,
54 secondHalf, 0, secondHalfLength);
55
56 // Recursively sort the two halves
57
58
59
60 // Merge firstHalf with secondHalf into list
61
62 }
63 }
64 }
65 }

MergeSort.merge(firstHalf, secondHalf, list);

new SortTask(secondHalf));
invokeAll(new SortTask(firstHalf),

java.util.Arrays.sort(list);

SortTask(int[] list)

private static class SortTask extends RecursiveAction

pool.invoke(mainTask);
ForkJoinPool pool = new ForkJoinPool();
RecursiveAction mainTask = new SortTask(list);

MergeSort.mergeSort(list2);

parallelMergeSort(list1); invoke parallel sort

invoke sequential sort

create a ForkJoinTask
create a ForkJoinPool
execute a task

define concrete
ForkJoinTask

perform the task

sort a small list

split into two parts

solve each part

merge two parts

1168 Chapter 32 Multithreading and Parallel Programming

Parallel time with 2 processors is 2829 milliseconds
Sequential time is 4751 milliseconds

Since the sort algorithm does not return a value, we define a concrete ForkJoinTask class
by extending RecursiveAction (lines 33–64). The compute method is overridden to
implement a recursive merge sort (lines 42–63). If the list is small, it is more efficient to be
solved sequentially (line 44). For a large list, it is split into two halves (lines 47–54). The two
halves are sorted concurrently (lines 57–58) and then merged (line 61).

The program creates a main ForkJoinTask (line 28), a ForkJoinPool (line 29), and
places the main task for execution in a ForkJoinPool (line 30). The invoke method will
return after the main task is completed.

When executing the main task, the task is split into subtasks and the subtasks are invoked
using the invokeAll method (lines 57–58). The invokeAll method will return after all the
subtasks are completed. Note that each subtask is further split into smaller tasks recursively.
Huge numbers of subtasks may be created and executed in the pool. The Fork/Join Frame-
work automatically executes and coordinates all the tasks efficiently.

The MergeSort class is defined in Listing 25.5. The program invokes
MergeSort.merge to merge two sorted sublists (line 61). The program also invokes
MergeSort.mergeSort (line 21) to sort a list using merge sort sequentially. You can see
that the parallel sort is much faster than the sequential sort.

Note that the loop for initializing the list can also be parallelized. However, you should
avoid using Math.random() in the code, because it is synchronized and cannot be executed
in parallel (see Programming Exercise 32.12). The parallelMergeSort method only sorts
an array of int values, but you can modify it to become a generic method (see Programming
Exercise 32.13).

In general, a problem can be solved in parallel using the following pattern:

if (the program is small)
solve it sequentially;

else {
divide the problem into nonoverlapping subproblems;
solve the subproblems concurrently;
combine the results from subproblems to solve the whole problem;

}

Listing 32.14 develops a parallel method that finds the maximal number in a list.

LISTING 32.14 ParallelMax.java
1 import java.util.concurrent.*;
2
3 public class ParallelMax {
4 public static void main(String[] args) {
5 // Create a list
6 final int N = 9000000;
7 int[] list = new int[N];
8 for (int i = 0; i < list.length; i++)
9 list[i] = i;
10
11 long startTime = System.currentTimeMillis();
12 System.out.println("\nThe maximal number is " +);
13 long endTime = System.currentTimeMillis();
14 System.out.println("The number of processors is " +
15 Runtime.getRuntime().availableProcessors());
16 System.out.println("Time is " + (endTime - startTime)

max(list)invoke max

32.18 Parallel Programming 1169

17 + " milliseconds");
18 }
19
20 public static int max(int[] list) {
21
22
23
24 }
25
26 {
27 private final static int THRESHOLD = 1000;
28 private int[] list;
29 private int low;
30 private int high;
31
32 public MaxTask(int[] list, int low, int high) {
33 this.list = list;
34 this.low = low;
35 this.high = high;
36 }
37
38 @Override
39 {
40 if (high - low < THRESHOLD) {
41 int max = list[0];
42 for (int i = low; i < high; i++)
43 if (list[i] > max)
44 max = list[i];
45 return new Integer(max);
46 }
47 else {
48 int mid = (low + high) / 2;
49 RecursiveTask<Integer> left = new MaxTask(list, low, mid);
50 RecursiveTask<Integer> right = new MaxTask(list, mid, high);
51
52
53
54 return new Integer(Math.max(.intValue(),
55 .intValue()));
56 }
57 }
58 }
59 }

right.join()
left.join()

left.fork();
right.fork();

public Integer compute()

private static class MaxTask extends RecursiveTask<Integer>

return pool.invoke(task);
ForkJoinPool pool = new ForkJoinPool();
RecursiveTask<Integer> task = new MaxTask(list, 0, list.length);

The maximal number is 8999999
The number of processors is 2
Time is 44 milliseconds

Since the algorithm returns an integer, we define a task class for fork join by extending
RecursiveTask<Integer> (lines 26–58). The compute method is overridden to return the
max element in a list[low..high] (lines 39–57). If the list is small, it is more efficient to
be solved sequentially (lines 40–46). For a large list, it is split into two halves (lines 48–50).
The tasks left and right find the maximal element in the left half and right half, respec-
tively. Invoking fork() on the task causes the task to be executed (lines 52–53). The join()
method awaits for the task to complete and then returns the result (lines 54–55).

create a ForkJoinTask
create a ForkJoinPool
execute a task

define concrete
ForkJoinTask

perform the task

solve a small problem

split into two parts

fork right
fork left
join tasks

1170 Chapter 32 Multithreading and Parallel Programming

✓Point✓Check

condition 1150
deadlock 1162
event dispatch thread 1138
fail-fast 1164
fairness policy 1149
Fork/Join Framework 1165
lock 1148
monitor 1154

multithreading 1130
race condition 1147
semaphore 1160
synchronization wrapper 1164
synchronized block 1148
thread 1130
thread-safe 1147

32.37 How do you define a ForkJoinTask? What are the differences between
RecursiveAction and RecursiveTask?

32.38 How do you tell the system to execute a task?

32.39 What method can you use to test if a task has been completed?

32.40 How do you create a ForkJoinPool? How do you place a task into a
ForkJoinPool?

KEY TERMS

CHAPTER SUMMARY

1. Each task is an instance of the Runnable interface. A thread is an object that facilitates
the execution of a task. You can define a task class by implementing the Runnable
interface and create a thread by wrapping a task using a Thread constructor.

2. After a thread object is created, use the start() method to start a thread, and the
sleep(long) method to put a thread to sleep so that other threads get a chance to run.

3. A thread object never directly invokes the run method. The JVM invokes the run
method when it is time to execute the thread. Your class must override the run
method to tell the system what the thread will do when it runs.

4. To prevent threads from corrupting a shared resource, use synchronized methods or
blocks. A synchronized method acquires a lock before it executes. In the case of an
instance method, the lock is on the object for which the method was invoked. In the
case of a static (class) method, the lock is on the class.

5. A synchronized statement can be used to acquire a lock on any object, not just this
object, when executing a block of the code in a method. This block is referred to as a
synchronized block.

6. You can use explicit locks and conditions to facilitate communications among
threads, as well as using the built-in monitor for objects.

7. Deadlock occurs when two or more threads acquire locks on multiple objects and
each has a lock on one object and is waiting for the lock on the other object. The
resource ordering technique can be used to avoid deadlock.

8. The JDK 7’s Fork/Join Framework is designed for developing parallel programs. You
can define a task class that extends RecursiveAction or RecursiveTask and exe-
cute the tasks concurrently in ForkJoinPool, and obtains the overall solution after
all tasks are completed.

Programming Exercises 1171

FIGURE 32.31 The output from three threads is displayed in a text area.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Sections 32.1–32.5
*32.1 (Revise Listing 32.1) Rewrite Listing 32.1 to display the output in a text area, as

shown in Figure 32.31.

32.2 (Racing cars) Rewrite Programming Exercise 18.17 using a thread to control car
racing. Compare the program with Programming Exercise 18.17 by setting the
delay time to 10 in both programs. Which one runs the animation faster?

32.3 (Raise flags) Rewrite Programming Exercise 18.23 using a thread to animate a
flag being raised. Compare the program with Programming Exercise 18.23 by set-
ting the delay time to 10 in both programs. Which one runs the animation faster?

Sections 32.8–32.12
32.4 (Synchronize threads) Write a program that launches 1,000 threads. Each thread

adds 1 to a variable sum that initially is 0. You need to pass sum by reference to
each thread. In order to pass it by reference, define an Integer wrapper object to
hold sum. Run the program with and without synchronization to see its effect.

32.5 (Run fans) Rewrite Programming Exercise 18.11 using a thread to control the fan
animation.

32.6 (Bouncing balls) Rewrite Programming Exercise 18.19 using a thread to animate
bouncing ball movements.

32.7 (Control a group of clocks) Rewrite Programming Exercise 18.14 using a thread to
control the clock animation.

32.8 (Account synchronization) Rewrite Listing 32.9, ThreadCooperation.java, using
the object’s wait() and notifyAll() methods.

32.9 (Demonstrate ConcurrentModificationException) The iterator is fail-fast.
Write a program to demonstrate it by creating two threads that concurrently access
and modify a set. The first thread creates a hash set filled with numbers, and adds
a new number to the set every second. The second thread obtains an iterator for the
set and traverses the set back and forth through the iterator every second. You will
receive a ConcurrentModificationException because the underlying set
is being modified in the first thread while the set in the second thread is being
traversed.

www.cs.armstrong.edu/liang/intro9e/test.html

1172 Chapter 32 Multithreading and Parallel Programming

*32.10 (Use synchronized sets) Using synchronization, correct the problem in the preced-
ing exercise so that the second thread does not throw a
ConcurrentModificationException.

Section 32.15
*32.11 (Demonstrate deadlock) Write a program that demonstrates deadlock.

Section 32.18
*32.12 (Parallel array initializer) Implement the following method using the Fork/Join

Framework to assign random values to the list.

public static void parallelAssignValues(double[] list)

Write a test program that creates a list with 9,000,000 elements and invokes
parallelAssignValues to assign random values to the list. Also implement a
sequential algorithm and compare the execution time of the two. Note that if you
use Math.random(), your parallel code execution time will be worse than the
sequential code execution time, because Math.random() is synchronized and
cannot be executed in parallel. To fix this problem, create a Random object for
assigning random values to a small list.

32.13 (Generic parallel merge sort) Revise Listing 32.13, ParallelMergeSort.java, to
define a generic parallelMergeSort method as follows:

public static void <E extends Comparable<E>>
parallelMergeSort(E[] list)

*32.14 (Parallel quick sort) Implement the following method in parallel to sort a list using
quick sort (see Listing 25.7).

public static void parallelQuickSort(int[] list)

Write a test program that times the execution time for a list of size 9,000,000 using
this parallel method and a sequential method.

*32.15 (Parallel sum) Implement the following method using Fork/Join to find the sum of
a list.

public static double parallelSum(double[] list)

Write a test program that finds the sum in a list of 9,000,000 double values.

*32.16 (Parallel matrix addition) Programming Exercise 7.5 describes how to perform
matrix addition. Suppose you have multiple processors, so you can speed up the
matrix addition. Implement the following method in parallel.

public static double[][] parallelAddMatrix(
double[][] a, double[][] b)

Write a test program that times the execution time for adding two 2,000 2,000
matrices.

*32.17 (Parallel matrix multiplication) Programming Exercise 7.6 describes how to per-
form matrix multiplication. Suppose you have multiple processors, so you can
speed up the matrix multiplication. Implement the following method in parallel.

public static double[][] parallelMultiplyMatrix(
double[][] a, double[][] b)

*

Programming Exercises 1173

(a) Sorting in progress

(b) Sorted

FIGURE 32.32 Three sorting algorithms are illustrated in the animation.

Write a test program that times the execution time for multiplying two
2,000 2,000 matrices.

*32.18 (Parallel Eight Queens) Revise Listing 24.10, EightQueens.java, to develop a
parallel algorithm that finds all solutions for the Eight Queens problem. (Hint:
Launch eight subtasks, each of which places the queen in a different column
in the first row.)

Comprehensive
***32.19 (Sorting animation) Write an animation applet for selection sort, insertion

sort, and bubble sort, as shown in Figure 32.32. Create an array of integers 1,
2, . . . , 50. Shuffle it randomly. Create a panel to display the array in a his-
togram. You should invoke each sort method in a separate thread. Each algo-
rithm uses two nested loops. When the algorithm completes an iteration in the
outer loop, put the thread to sleep for 0.5 seconds, and redisplay the array in
the histogram. Color the last bar in the sorted subarray.

*

***32.20 (Sudoku search animation) Modify Programming Exercise 24.21 to display
the intermediate results of the search. As shown in Figure 32.33a, the number
2 is placed in the first row and last column, because 2 already appears in the
same row. This number is invalid, so the next value, 3, is placed in Figure
32.33b. This number is also invalid, because 3 already appears in the same
row; so the next value, 4, is placed in Figure 32.33c. The animation displays
all the search steps.

***32.21 (Eight Queens animation) Modify Listing 24.10, EightQueens.java, to display
the intermediate results of the search. As shown in Figure 32.34a, the current
row being searched is highlighted. When the user clicks the mouse button, a
position for the row is found and a queen is placed in the row, as shown in
Figure 32.34b.

1174 Chapter 32 Multithreading and Parallel Programming

(a) (b) (c)

FIGURE 32.33 The intermediate search steps are displayed in the animation for the Sudoku problem.

(a) (b) (c)

FIGURE 32.34 The intermediate search steps are displayed in the animation for the Eight Queens problem.

NETWORKING

Objectives
■ To explain terms: TCP, IP, domain name, domain name server, stream-

based communications, and packet-based communications (§33.2).

■ To create servers using server sockets (§33.2.1) and clients using client
sockets (§33.2.2).

■ To implement Java networking programs using stream sockets (§33.2.3).

■ To develop an example of a client/server application (§33.2.4).

■ To obtain Internet addresses using the InetAddress class (§33.3).

■ To develop servers for multiple clients (§33.4).

■ To develop applets that communicate with the server (§33.5).

■ To send and receive objects on a network (§33.6).

■ To develop an interactive tic-tac-toe game played on the Internet (§33.7).

CHAPTER

33

1176 Chapter 33 Networking

33.1 Introduction
Computer networking is to send and receive messages among computers on the Internet.

To browse the Web or send email, your computer must be connected to the Internet. The
Internet is the global network of millions of computers. Your computer can connect to the
Internet through an Internet Service Provider (ISP) using a dialup, DSL, or cable modem, or
through a local area network (LAN).

When a computer needs to communicate with another computer, it needs to know the other
computer’s address. An Internet Protocol (IP) address uniquely identifies the computer on the
Internet. An IP address consists of four dotted decimal numbers between 0 and 255, such as
130.254.204.33. Since it is not easy to remember so many numbers, they are often mapped
to meaningful names called domain names, such as liang.armstrong.edu. Special servers called
Domain Name Servers (DNS) on the Internet translate host names into IP addresses. When a
computer contacts liang.armstrong.edu, it first asks the DNS to translate this domain name into
a numeric IP address and then sends the request using the IP address.

The Internet Protocol is a low-level protocol for delivering data from one computer to
another across the Internet in packets. Two higher-level protocols used in conjunction with the
IP are the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP).
TCP enables two hosts to establish a connection and exchange streams of data. TCP guaran-
tees delivery of data and also guarantees that packets will be delivered in the same order in
which they were sent. UDP is a standard, low-overhead, connectionless, host-to-host protocol
that is used over the IP. UDP allows an application program on one computer to send a data-
gram to an application program on another computer.

Java supports both stream-based and packet-based communications. Stream-based commu-
nications use TCP for data transmission, whereas packet-based communications use UDP.
Since TCP can detect lost transmissions and resubmit them, transmissions are lossless and reli-
able. UDP, in contrast, cannot guarantee lossless transmission. Stream-based communications
are used in most areas of Java programming and are the focus of this chapter. Packet-based
communications are introduced in Supplement III.U, Networking Using Datagram Protocol.

33.2 Client/Server Computing
Java provides the ServerSocket class for creating a server socket and the Socket
class for creating a client socket. Two programs on the Internet communicate through
a server socket and a client socket using I/O streams.

Networking is tightly integrated in Java. The Java API provides the classes for creating sock-
ets to facilitate program communications over the Internet. Sockets are the endpoints of logi-
cal connections between two hosts and can be used to send and receive data. Java treats socket
communications much as it treats I/O operations; thus, programs can read from or write to
sockets as easily as they can read from or write to files.

Network programming usually involves a server and one or more clients. The client sends
requests to the server, and the server responds. The client begins by attempting to establish a
connection to the server. The server can accept or deny the connection. Once a connection is
established, the client and the server communicate through sockets.

The server must be running when a client attempts to connect to the server. The server
waits for a connection request from a client. The statements needed to create sockets on a
server and a client are shown in Figure 33.1.

33.2.1 Server Sockets
To establish a server, you need to create a server socket and attach it to a port, which is where
the server listens for connections. The port identifies the TCP service on the socket. Port num-
bers range from 0 to 65536, but port numbers 0 to 1024 are reserved for privileged services.

Key
Point

IP address

domain name
domain name server

TCP

stream-based

packet-based

Key
Point

socket

server socket

33.2 Client/Server Computing 1177

Server Host

Step 1: Create a server socket on a port, e.g.,
 8000, using the following statement:

 ServerSocket serverSocket = new
 ServerSocket(8000);

Step 2: Create a socket to connect to a client,
 using the following statement:

Socket socket =
 serverSocket.accept();

Client Host

Step 3: A client program uses the following
 statement to connect to the server:

Socket socket = new
 Socket(serverHost, 8000);

I/O Stream

Network

FIGURE 33.1 The server creates a server socket and, once a connection to a client is established, connects to the client
with a client socket.

For instance, the email server runs on port 25, and the Web server usually runs on port 80. You
can choose any port number that is not currently used by other programs. The following state-
ment creates a server socket serverSocket:

ServerSocket serverSocket = new ServerSocket(port);

Note
Attempting to create a server socket on a port already in use would cause the
java.net.BindException.

33.2.2 Client Sockets
After a server socket is created, the server can use the following statement to listen for con-
nections:

Socket socket = serverSocket.accept();

This statement waits until a client connects to the server socket. The client issues the follow-
ing statement to request a connection to a server:

Socket socket = new Socket(serverName, port);

This statement opens a socket so that the client program can communicate with the server.
serverName is the server’s Internet host name or IP address. The following statement creates
a socket on the client machine to connect to the host 130.254.204.33 at port 8000:

Socket socket = new Socket("130.254.204.33", 8000)

Alternatively, you can use the domain name to create a socket, as follows:

Socket socket = new Socket("liang.armstrong.edu", 8000);

When you create a socket with a host name, the JVM asks the DNS to translate the host name
into the IP address.

Note
A program can use the host name localhost or the IP address 127.0.0.1 to refer to
the machine on which a client is running.

BindException

connect to client

client socket
use IP address

use domain name

localhost

1178 Chapter 33 Networking

Note
The Socket constructor throws a java.net.UnknownHostException if the host
cannot be found.

33.2.3 Data Transmission through Sockets
After the server accepts the connection, communication between the server and client is con-
ducted the same as for I/O streams. The statements needed to create the streams and to
exchange data between them are shown in Figure 33.2.

UnknownHostException

To get an input stream and an output stream, use the getInputStream() and
getOutputStream() methods on a socket object. For example, the following statements
create an InputStream stream called input and an OutputStream stream called output
from a socket:

InputStream input = socket.getInputStream();
OutputStream output = socket.getOutputStream();

The InputStream and OutputStream streams are used to read or write bytes. You can use
DataInputStream, DataOutputStream, BufferedReader, and PrintWriter to wrap
on the InputStream and OutputStream to read or write data, such as int, double, or
String. The following statements, for instance, create the DataInputStream stream
input and the DataOutput stream output to read and write primitive data values:

DataInputStream input = new DataInputStream
(socket.getInputStream());

DataOutputStream output = new DataOutputStream
(socket.getOutputStream());

The server can use input.readDouble() to receive a double value from the client, and
output.writeDouble(d) to send the double value d to the client.

Tip
Recall that binary I/O is more efficient than text I/O because text I/O requires encoding
and decoding. Therefore, it is better to use binary I/O for transmitting data between a
server and a client to improve performance.

int port = 8000; int port = 8000;

Connection
Request

I/O
Streams

Server Client

DataInputStream in;
DataOutputStream out;
ServerSocket server;
Socket socket;

server = new ServerSocket(port);
socket = server.accept();

in = new DataInputStream
 (socket.getInputStream());
out = new DataOutStream
(socket.getOutputStream());

System.out.println(in.readDouble());

out.writeDouble(aNumber);

String host = "localhost"
DataInputStream in;
DataOutputStream out;
Socket socket;

socket = new Socket(host, port);

in = new DataInputStream
 (socket.getInputStream());
out = new DataOutputStream
 (socket.getOutputStream());

System.out.println(in.readDouble());

out.writeDouble(aNumber);

FIGURE 33.2 The server and client exchange data through I/O streams on top of the socket.

33.2 Client/Server Computing 1179

33.2.4 A Client/Server Example
This example presents a client program and a server program. The client sends data to a
server. The server receives the data, uses it to produce a result, and then sends the result back
to the client. The client displays the result on the console. In this example, the data sent from
the client comprise the radius of a circle, and the result produced by the server is the area of
the circle (see Figure 33.3).

The client sends the radius through a DataOutputStream on the output stream socket,
and the server receives the radius through the DataInputStream on the input stream socket,
as shown in Figure 33.4a. The server computes the area and sends it to the client through a
DataOutputStream on the output stream socket, and the client receives the area through a
DataInputStream on the input stream socket, as shown in Figure 33.4b. The server and
client programs are given in Listings 33.1 and 33.2. Figure 33.5 contains a sample run of the
server and the client.

compute area

Server Client
radius

area

FIGURE 33.3 The client sends the radius to the server; the server computes the area and
sends it to the client.

Server
radius

DataInputStream

socket.getInputStream

socket

Network

radius

DataOutputStream

socket.getOutputStream

socket

Client

(a)

Server
area

DataOutputStream

socket.getOutputStream

socket

Network

area

DataInputStream

socket.getInputStream

socket

Client

(b)

FIGURE 33.4 (a) The client sends the radius to the server. (b) The server sends the area to the client.

FIGURE 33.5 The client sends the radius to the server. The server receives it, computes the
area, and sends the area to the client.

1180 Chapter 33 Networking

LISTING 33.1 Server.java
1 import java.io.*;
2 import java.net.*;
3 import java.util.*;
4 import java.awt.*;
5 import javax.swing.*;
6
7 public class Server extends JFrame {
8 // Text area for displaying contents
9 private JTextArea jta = new JTextArea();
10
11 public static void main(String[] args) {
12 new Server();
13 }
14
15 public Server() {
16 // Place text area on the frame
17 setLayout(new BorderLayout());
18 add(new JScrollPane(jta), BorderLayout.CENTER);
19
20 setTitle("Server");
21 setSize(500, 300);
22 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23 setVisible(true); // It is necessary to show the frame here!
24
25 try {
26 // Create a server socket
27
28 jta.append("Server started at " + new Date() + '\n');
29
30 // Listen for a connection request
31
32
33 // Create data input and output streams
34
35
36
37
38
39 while (true) {
40 // Receive radius from the client
41
42
43 // Compute area
44 double area = radius * radius * Math.PI;
45
46 // Send area back to the client
47
48
49 jta.append("Radius received from client: " + radius + '\n');
50 jta.append("Area found: " + area + '\n');
51 }
52 }
53 catch(IOException ex) {
54 System.err.println(ex);
55 }
56 }
57 }

outputToClient.writeDouble(area);

double radius = inputFromClient.readDouble();

socket.getOutputStream());
DataOutputStream outputToClient = new DataOutputStream(
socket.getInputStream());

DataInputStream inputFromClient = new DataInputStream(

Socket socket = serverSocket.accept();

ServerSocket serverSocket = new ServerSocket(8000);

launch server

server socket

connect client

input from client

output to client

read radius

write area

33.2 Client/Server Computing 1181

LISTING 33.2 Client.java
1 import java.io.*;
2 import java.net.*;
3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
6
7 public class Client extends JFrame {
8 // Text field for receiving radius
9 private JTextField jtf = new JTextField();
10
11 // Text area to display contents
12 private JTextArea jta = new JTextArea();
13
14 // IO streams
15 private DataOutputStream toServer;
16 private DataInputStream fromServer;
17
18 public static void main(String[] args) {
19 new Client();
20 }
21
22 public Client() {
23 // Panel p to hold the label and text field
24 JPanel p = new JPanel();
25 p.setLayout(new BorderLayout());
26 p.add(new JLabel("Enter radius"), BorderLayout.WEST);
27 p.add(jtf, BorderLayout.CENTER);
28 jtf.setHorizontalAlignment(JTextField.RIGHT);
29
30 setLayout(new BorderLayout());
31 add(p, BorderLayout.NORTH);
32 add(new JScrollPane(jta), BorderLayout.CENTER);
33
34 jtf.addActionListener(new TextFieldListener());
35
36 setTitle("Client");
37 setSize(500, 300);
38 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
39 setVisible(true); // It is necessary to show the frame here!
40
41 try {
42 // Create a socket to connect to the server
43
44 // Socket socket = new Socket("130.254.204.33", 8000);
45 // Socket socket = new Socket("liang.armstrong.edu", 8000);
46
47 // Create an input stream to receive data from the server
48
49
50
51 // Create an output stream to send data to the server
52
53
54 }
55 catch (IOException ex) {
56 jta.append(ex.toString() + '\n');
57 }

new DataOutputStream(socket.getOutputStream());
toServer =

socket.getInputStream());
fromServer = new DataInputStream(

Socket socket = new Socket("localhost", 8000);

launch client

register listener

request connection

input from server

output to server

1182 Chapter 33 Networking

58 }
59
60 private class TextFieldListener implements ActionListener {
61 @Override
62 public void actionPerformed(ActionEvent e) {
63 try {
64 // Get the radius from the text field
65 double radius = Double.parseDouble(jtf.getText().trim());
66
67 // Send the radius to the server
68
69
70
71 // Get area from the server
72 double area = ;
73
74 // Display to the text area
75 jta.append("Radius is " + radius + "\n");
76 jta.append("Area received from the server is "
77 + area + '\n');
78 }
79 catch (IOException ex) {
80 System.err.println(ex);
81 }
82 }
83 }
84 }

You start the server program first, then start the client program. In the client program, enter a
radius in the text field and press Enter to send the radius to the server. The server computes
the area and sends it back to the client. This process is repeated until one of the two programs
terminates.

The networking classes are in the package java.net. You should import this package
when writing Java network programs.

The Server class creates a ServerSocket serverSocket and attaches it to port 8000,
using this statement (line 27 in Server.java):

ServerSocket serverSocket = new ServerSocket(8000);

The server then starts to listen for connection requests, using the following statement (line 31
in Server.java):

Socket socket = serverSocket.accept();

The server waits until a client requests a connection. After it is connected, the server reads the
radius from the client through an input stream, computes the area, and sends the result to the
client through an output stream.

The Client class uses the following statement to create a socket that will request a con-
nection to the server on the same machine (localhost) at port 8000 (line 43 in Client.java).

Socket socket = new Socket("localhost", 8000);

If you run the server and the client on different machines, replace localhost with the server
machine’s host name or IP address. In this example, the server and the client are running on
the same machine.

If the server is not running, the client program terminates with a
java.net.ConnectException. After it is connected, the client gets input and output streams—
wrapped by data input and output streams—in order to receive and send data to the server.

fromServer.readDouble()

toServer.flush();
toServer.writeDouble(radius);write radius

read radius

33.3 The InetAddress Class 1183

If you receive a java.net.BindException when you start the server, the server port is
currently in use. You need to terminate the process that is using the server port and then restart
the server.

What happens if the setVisible(true) statement in line 23 in Server.java is moved
after the try-catch block in line 56 in Server.java? The frame will not be displayed, because
the while loop in the try-catch block will not finish until the program terminates.

Note
When you create a server socket, you have to specify a port (e.g., 8000) for the socket.
When a client connects to the server (line 43 in Client.java), a socket is created on the
client. This socket has its own local port. This port number (e.g., 2047) is automatically
chosen by the JVM, as shown in Figure 33.6.

To see the local port on the client, insert the following statement in line 46 in
Client.java.

System.out.println("local port: " +);

33.1 How do you create a server socket? What port numbers can be used? What happens if
a requested port number is already in use? Can a port connect to multiple clients?

33.2 What are the differences between a server socket and a client socket?

33.3 How does a client program initiate a connection?

33.4 How does a server accept a connection?

33.5 How are data transferred between a client and a server?

33.3 The InetAddress Class
The server program can use the InetAddress class to obtain the information about
the IP address and host name for the client.

Occasionally, you would like to know who is connecting to the server. You can use the
InetAddress class to find the client’s host name and IP address. The InetAddress class
models an IP address. You can use the following statement in the server program to get an
instance of InetAddress on a socket that connects to the client.

InetAddress inetAddress = socket.getInetAddress();

Next, you can display the client’s host name and IP address, as follows:

System.out.println("Client's host name is " +
inetAddress.getHostName());

socket.getLocalPort()

client socket port

✓Point✓Check

Key
Point

Server 0

socket

Client

port number

1

.

.

.

8000
.
.
.

0
1

.

.

.
2047

.

.

.

socket

FIGURE 33.6 The JVM automatically chooses an available port to create a socket for the
client.

1184 Chapter 33 Networking

System.out.println("Client's IP Address is " +
inetAddress.getHostAddress());

You can also create an instance of InetAddress from a host name or IP address using the
static getByName method. For example, the following statement creates an InetAddress
for the host liang.armstrong.edu.

InetAddress address = InetAddress.getByName("liang.armstrong.edu");

Listing 33.3 gives a program that identifies the host name and IP address of the arguments you
pass in from the command line. Line 7 creates an InetAddress using the getByName
method. Lines 8–9 use the getHostName and getHostAddress methods to get the host’s
name and IP address. Figure 33.7 shows a sample run of the program.

LISTING 33.3 IdentifyHostNameIP.java
1 import java.net.*;
2
3 public class IdentifyHostNameIP {
4 public static void main(String[] args) {
5 for (int i = 0; i < args.length; i++) {
6 try {
7
8 System.out.print("Host name: " + + " ");
9 System.out.println("IP address: " +);
10 }
11 catch (UnknownHostException ex) {
12 System.err.println("Unknown host or IP address " + args[i]);
13 }
14 }
15 }
16 }

33.6 How do you obtain an instance of InetAddress?

33.7 What methods can you use to get the IP address and hostname from an
InetAddress?

33.4 Serving Multiple Clients
A server can serve multiple clients. The connection to each client is handled by one
thread.

Multiple clients are quite often connected to a single server at the same time. Typically, a
server runs continuously on a server computer, and clients from all over the Internet can con-
nect to it. You can use threads to handle the server’s multiple clients simultaneously—simply

address.getHostAddress()
address.getHostName()

InetAddress address = InetAddress.getByName(args[i]);get an InetAddress
get host name
get host IP

✓Point✓Check

Key
Point

FIGURE 33.7 The program identifies host names and IP addresses.

33.4 Serving Multiple Clients 1185

create a thread for each connection. Here is how the server handles the establishment of a
connection:

while (true) {
Socket socket = serverSocket.accept(); // Connect to a client
Thread thread = new ThreadClass(socket);
thread.start();

}

The server socket can have many connections. Each iteration of the while loop creates a new
connection. Whenever a connection is established, a new thread is created to handle commu-
nication between the server and the new client, and this allows multiple connections to run at
the same time.

Listing 33.4 creates a server class that serves multiple clients simultaneously. For each con-
nection, the server starts a new thread. This thread continuously receives input (the radius of a
circle) from clients and sends the results (the area of the circle) back to them (see Figure 33.8).
The client program is the same as in Listing 33.2. A sample run of the server with two clients
is shown in Figure 33.9.

LISTING 33.4 MultiThreadServer.java
1 import java.io.*;
2 import java.net.*;
3 import java.util.*;
4 import java.awt.*;
5 import javax.swing.*;

Server

Client n. . .Client 1

A server socket
on a port

A socket for a
client A socket for a

client

FIGURE 33.8 Multithreading enables a server to handle multiple independent clients.

FIGURE 33.9 The server spawns a thread in order to serve a client.

1186 Chapter 33 Networking

6
7 public class MultiThreadServer extends JFrame {
8 // Text area for displaying contents
9 private JTextArea jta = new JTextArea();
10
11 public static void main(String[] args) {
12 new MultiThreadServer();
13 }
14
15 public MultiThreadServer() {
16 // Place text area on the frame
17 setLayout(new BorderLayout());
18 add(new JScrollPane(jta), BorderLayout.CENTER);
19
20 setTitle("MultiThreadServer");
21 setSize(500, 300);
22 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23 setVisible(true); // It is necessary to show the frame here!
24
25 try {
26 // Create a server socket
27
28 jta.append("MultiThreadServer started at " + new Date() + '\n');
29
30 // Number a client
31 int clientNo = 1;
32
33 while (true) {
34 // Listen for a new connection request
35
36
37 // Display the client number
38 jta.append("Starting thread for client " + clientNo +
39 " at " + new Date() + '\n');
40
41 // Find the client's host name and IP address
42
43 jta.append("Client " + clientNo + "'s host name is "
44 + + "\n");
45 jta.append("Client " + clientNo + "'s IP Address is "
46 + + "\n");
47
48 // Create a new thread for the connection
49 HandleAClient task = new HandleAClient(socket);
50
51 // Start the new thread
52 new Thread(task).start();
53
54 // Increment clientNo
55 clientNo++;
56 }
57 }
58 catch(IOException ex) {
59 System.err.println(ex);
60 }
61 }
62
63 // Inner class
64 // Define the thread class for handling new connection
65 {class HandleAClient implements Runnable

inetAddress.getHostAddress()

inetAddress.getHostName()

InetAddress inetAddress = socket.getInetAddress();

Socket socket = serverSocket.accept();

ServerSocket serverSocket = new ServerSocket(8000);server socket

connect client

network information

create task

start thread

task class

33.5 Applet Clients 1187

66 private Socket socket; // A connected socket
67
68 /** Construct a thread */
69 public HandleAClient(Socket socket) {
70 this.socket = socket;
71 }
72
73 @Override /** Run a thread */
74 {
75 try {
76 // Create data input and output streams
77
78
79
80
81
82 // Continuously serve the client
83 while (true) {
84 // Receive radius from the client
85 double radius = ;
86
87 // Compute area
88 double area = radius * radius * Math.PI;
89
90 // Send area back to the client
91
92
93 jta.append("radius received from client: " +
94 radius + '\n');
95 jta.append("Area found: " + area + '\n');
96 }
97 }
98 catch(IOException e) {
99 System.err.println(e);
100 }
101 }
102 }
103 }

The server creates a server socket at port 8000 (line 27) and waits for a connection (line 35).
When a connection with a client is established, the server creates a new thread to handle the com-
munication (line 49). It then waits for another connection in an infinite while loop (lines 33–56).

The threads, which run independently of one another, communicate with designated
clients. Each thread creates data input and output streams that receive and send data to a
client.

33.8 How do you make a server serve multiple clients?

33.5 Applet Clients
The client can be an applet that connects to the server running on the host from which
the applet is loaded.

Because of security constraints, applets can connect only to the host from which they were
loaded. Therefore, the HTML file must be located on the machine on which the server is run-
ning. You can obtain the server’s host name by invoking getCodeBase().getHost() on an
applet, so you can write the applet without the host name fixed. The following is an example
of how to use an applet to connect to a server.

outputToClient.writeDouble(area);

inputFromClient.readDouble()

socket.getOutputStream());
DataOutputStream outputToClient = new DataOutputStream(
socket.getInputStream());

DataInputStream inputFromClient = new DataInputStream(

public void run()

I/O

✓Point✓Check

Key
Point

1188 Chapter 33 Networking

The applet shows the number of visits made to a Web page. The count should be stored in a
file on the server side. Every time the page is visited or reloaded, the applet sends a request to
the server, and the server increases the count and sends it to the applet. The applet then displays
the new count in a message, such as You are visitor number 11, as shown in Figure 33.10.
The server and client programs are given in Listings 33.5 and 33.6.

LISTING 33.5 CountServer.java
1 import java.io.*;
2 import java.net.*;
3
4 public class CountServer {
5 private RandomAccessFile raf;
6 private int count; // Count the access to the server
7
8 public static void main(String[] args) {
9 new CountServer();
10 }
11
12 public CountServer() {
13 try {
14 // Create a server socket
15
16 System.out.println("Server started ");
17
18 // Create or open the count file
19
20
21 // Get the count
22 if (raf.length() == 0)
23
24 else

25
26
27 while (true) {
28 // Listen for a new connection request
29
30
31 // Create a DataOutputStream for the socket
32
33
34
35 // Increase count and send the count to the client
36
37
38
39 // Write new count back to the file
40 raf.seek(0);

outputToClient.writeInt(count);
count++;

new DataOutputStream(socket.getOutputStream());
DataOutputStream outputToClient =

Socket socket = serverSocket.accept();

count = raf.readInt();

count = 0;

raf = new RandomAccessFile("count.dat", "rw");

ServerSocket serverSocket = new ServerSocket(8000);

launch server

server socket

random access file

new file

get count

connect client

send to client

update count

FIGURE 33.10 The applet displays the access count on a Web page.

33.5 Applet Clients 1189

41
42 }
43 }
44 catch(IOException ex) {
45 ex.printStackTrace();
46 }
47 }
48 }

The server creates a ServerSocket in line 15 and creates or opens a file using
RandomAccessFile in line 19. It reads the count from the file in lines 22–33. The server
then waits for a connection request from a client (line 29). After a connection with a client is
established, the server creates an output stream to the client (lines 32–33), increases the count
(line 36), sends the count to the client (line 37), and writes the new count back to the file. This
process continues in an infinite while loop to handle all clients.

LISTING 33.6 AppletClient.java
1 import java.io.*;
2 import java.net.*;
3 import javax.swing.*;
4
5 public class AppletClient extends JApplet {
6 // Label for displaying the visit count
7 private JLabel jlblCount = new JLabel();
8
9 // Indicate if it runs as application
10
11
12 // Host name or IP address
13 private String host = "localhost";
14
15 /** Initialize the applet */
16 public void init() {
17 add(jlblCount);
18
19 try {
20 // Create a socket to connect to the server
21 Socket socket;
22 if (isStandAlone)
23
24 else

25
26
27 // Create an input stream to receive data from the server
28
29
30
31 // Receive the count from the server and display it on label
32
33 jlblCount.setText("You are visitor number " + count);
34
35 // Close the stream
36 inputFromServer.close();
37 }
38 catch (IOException ex) {
39 ex.printStackTrace();
40 }
41 }
42

int count = inputFromServer.readInt();

new DataInputStream(socket.getInputStream());
DataInputStream inputFromServer =

socket = new Socket(getCodeBase().getHost(), 8000);

socket = new Socket(host, 8000);

private boolean isStandAlone = false;

raf.writeInt(count);

for standalone

for applet

receive count

1190 Chapter 33 Networking

43 /** Run the applet as an application */
44 public static void main(String[] args) {
45 // Create a frame
46 JFrame frame = new JFrame("Applet Client");
47
48 // Create an instance of the applet
49 AppletClient applet = new AppletClient();
50 applet.isStandAlone = true;
51
52 // Get host
53
54
55 // Add the applet instance to the frame
56 frame.add(applet, java.awt.BorderLayout.CENTER);
57
58 // Invoke init() and start()
59 applet.init();
60 applet.start();
61
62 // Display the frame
63 frame.pack();
64 frame.setVisible(true);
65 }
66 }

The client is an applet. When it runs as an applet, it uses getCodeBase().getHost() (line
25) to return the IP address for the server. When it runs as an application, it passes the URL
from the command line (line 53). If the URL is not passed from the command line, by default
localhost is used for the URL (line 13).

The client creates a socket to connect to the server (lines 21–25), creates an input stream
from the socket (lines 28–29), receives the count from the server (line 32), and displays it in
the text field (line 33).

33.6 Sending and Receiving Objects
A program can send and receive objects from another program.

In the preceding examples, you learned how to send and receive data of primitive types. You
can also send and receive objects using ObjectOutputStream and ObjectInputStream

on socket streams. To enable passing, the objects must be serializable. The following example
demonstrates how to send and receive objects.

The example consists of three classes: StudentAddress.java (Listing 33.7),
StudentClient.java (Listing 33.8), and StudentServer.java (Listing 33.9). The client program
collects student information from a client and sends it to a server, as shown in Figure 33.11.

if (args.length == 1) applet.host = args[0];

The StudentAddress class contains the student information: name, street, city, state, and
zip. The StudentAddress class implements the Serializable interface. Therefore, a
StudentAddress object can be sent and received using the object output and input streams.

Key
Point

FIGURE 33.11 The client sends the student information in an object to the server.

33.6 Sending and Receiving Objects 1191

serialized

LISTING 33.7 StudentAddress.java
1 public class StudentAddress {
2 private String name;
3 private String street;
4 private String city;
5 private String state;
6 private String zip;
7
8 public StudentAddress(String name, String street, String city,
9 String state, String zip) {
10 this.name = name;
11 this.street = street;
12 this.city = city;
13 this.state = state;
14 this.zip = zip;
15 }
16
17 public String getName() {
18 return name;
19 }
20
21 public String getStreet() {
22 return street;
23 }
24
25 public String getCity() {
26 return city;
27 }
28
29 public String getState() {
30 return state;
31 }
32
33 public String getZip() {
34 return zip;
35 }
36 }

The client sends a StudentAddress object through an ObjectOutputStream on the out-
put stream socket, and the server receives the Student object through the
ObjectInputStream on the input stream socket, as shown in Figure 33.12. The client uses

implements java.io.Serializable

Server

student object

in: ObjectInputStream

socket.getInputStream()

socket

Network

student object

out: ObjectOutputStream

in.readObject() out.writeObject(Object)

socket.getOutputStream()

socket

Client

FIGURE 33.12 The client sends a StudentAddress object to the server.

1192 Chapter 33 Networking

the writeObject method in the ObjectOutputStream class to send data about a student
to the server, and the server receives the student’s information using the readObject method
in the ObjectInputStream class. The server and client programs are given in Listings 33.8
and 33.9.

LISTING 33.8 StudentClient.java
1 import java.io.*;
2 import java.net.*;
3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
6 import javax.swing.border.*;
7
8 public class StudentClient extends JApplet {
9 private JTextField jtfName = new JTextField(32);
10 private JTextField jtfStreet = new JTextField(32);
11 private JTextField jtfCity = new JTextField(20);
12 private JTextField jtfState = new JTextField(2);
13 private JTextField jtfZip = new JTextField(5);
14
15 // Button for sending a student's address to the server
16 private JButton jbtRegister = new JButton("Register to the Server");
17
18 // Indicate if it runs as application
19
20
21 // Host name or IP address
22 String host = "localhost";
23
24 public void init() {
25 // Panel p1 for holding labels Name, Street, and City
26 JPanel p1 = new JPanel();
27 p1.setLayout(new GridLayout(3, 1));
28 p1.add(new JLabel("Name"));
29 p1.add(new JLabel("Street"));
30 p1.add(new JLabel("City"));
31
32 // Panel jpState for holding state
33 JPanel jpState = new JPanel();
34 jpState.setLayout(new BorderLayout());
35 jpState.add(new JLabel("State"), BorderLayout.WEST);
36 jpState.add(jtfState, BorderLayout.CENTER);
37
38 // Panel jpZip for holding zip
39 JPanel jpZip = new JPanel();
40 jpZip.setLayout(new BorderLayout());
41 jpZip.add(new JLabel("Zip"), BorderLayout.WEST);
42 jpZip.add(jtfZip, BorderLayout.CENTER);
43
44 // Panel p2 for holding jpState and jpZip
45 JPanel p2 = new JPanel();
46 p2.setLayout(new BorderLayout());
47 p2.add(jpState, BorderLayout.WEST);
48 p2.add(jpZip, BorderLayout.CENTER);
49
50 // Panel p3 for holding jtfCity and p2
51 JPanel p3 = new JPanel();
52 p3.setLayout(new BorderLayout());
53 p3.add(jtfCity, BorderLayout.CENTER);

private boolean isStandAlone = false;

create UI

33.6 Sending and Receiving Objects 1193

54 p3.add(p2, BorderLayout.EAST);
55
56 // Panel p4 for holding jtfName, jtfStreet, and p3
57 JPanel p4 = new JPanel();
58 p4.setLayout(new GridLayout(3, 1));
59 p4.add(jtfName);
60 p4.add(jtfStreet);
61 p4.add(p3);
62
63 // Place p1 and p4 into StudentPanel
64 JPanel studentPanel = new JPanel(new BorderLayout());
65 studentPanel.setBorder(new BevelBorder(BevelBorder.RAISED));
66 studentPanel.add(p1, BorderLayout.WEST);
67 studentPanel.add(p4, BorderLayout.CENTER);
68
69 // Add the student panel and button to the applet
70 add(studentPanel, BorderLayout.CENTER);
71 add(jbtRegister, BorderLayout.SOUTH);
72
73 // Register listener
74
75
76 // Find the IP address of the Web server
77 if (!isStandAlone)
78
79 }
80
81 /** Handle button action */
82 private class ButtonListener implements ActionListener {
83 @Override
84 public void actionPerformed(ActionEvent e) {
85 try {
86 // Establish connection with the server
87
88
89 // Create an output stream to the server
90
91
92
93 // Get text field
94 String name = jtfName.getText().trim();
95 String street = jtfStreet.getText().trim();
96 String city = jtfCity.getText().trim();
97 String state = jtfState.getText().trim();
98 String zip = jtfZip.getText().trim();
99
100 // Create a StudentAddress object and send to the server
101 StudentAddress s =
102 new StudentAddress(name, street, city, state, zip);
103
104 }
105 catch (IOException ex) {
106 System.err.println(ex);
107 }
108 }
109 }
110
111 /** Run the applet as an application */
112 public static void main(String[] args) {
113 // Create a frame

toServer.writeObject(s);

new ObjectOutputStream(socket.getOutputStream());
ObjectOutputStream toServer =

Socket socket = new Socket(host, 8000);

host = getCodeBase().getHost();

jbtRegister.addActionListener(new ButtonListener()); register listener

get server name

server socket

output stream

send to server

1194 Chapter 33 Networking

114 JFrame frame = new JFrame("Register Student Client");
115
116 // Create an instance of the applet
117 StudentClient applet = new StudentClient();
118 applet.isStandAlone = true;
119
120 // Get host
121
122
123 // Add the applet instance to the frame
124 frame.add(applet, BorderLayout.CENTER);
125
126 // Invoke init() and start()
127 applet.init();
128 applet.start();
129
130 // Display the frame
131 frame.pack();
132 frame.setVisible(true);
133 }
134 }

LISTING 33.9 StudentServer.java
1 import java.io.*;
2 import java.net.*;
3
4 public class StudentServer {
5 private ObjectOutputStream outputToFile;
6 private ObjectInputStream inputFromClient;
7
8 public static void main(String[] args) {
9 new StudentServer();
10 }
11
12 public StudentServer() {
13 try {
14 // Create a server socket
15
16 System.out.println("Server started ");
17
18 // Create an object output stream
19 outputToFile = new ObjectOutputStream(
20 new FileOutputStream("student.dat", true));
21
22 while (true) {
23 // Listen for a new connection request
24
25
26 // Create an input stream from the socket
27
28
29
30 // Read from input
31 Object object = ;
32
33 // Write to the file
34 outputToFile.writeObject(object);
35 System.out.println("A new student object is stored");
36 }

inputFromClient.readObject()

new ObjectInputStream(socket.getInputStream());
inputFromClient =

Socket socket = serverSocket.accept();

ServerSocket serverSocket = new ServerSocket(8000);

if (args.length == 1) applet.host = args[0];

server socket

output to file

connect to client

input stream

get from client

write to file

33.7 Case Study: Distributed Tic-Tac-Toe Games 1195

37 }
38 catch(ClassNotFoundException ex) {
39 ex.printStackTrace();
40 }
41 catch(IOException ex) {
42 ex.printStackTrace();
43 }
44 finally {
45 try {
46 inputFromClient.close();
47 outputToFile.close();
48 }
49 catch (Exception ex) {
50 ex.printStackTrace();
51 }
52 }
53 }
54 }

On the client side, when the user clicks the Register to the Server button, the client creates a
socket to connect to the host (line 87), creates an ObjectOutputStream on the output
stream of the socket (lines 90–91), and invokes the writeObject method to send the
StudentAddress object to the server through the object output stream (line 103).

On the server side, when a client connects to the server, the server creates an
ObjectInputStream on the input stream of the socket (lines 27–28), invokes the
readObject method to receive the StudentAddress object through the object input stream
(line 31), and writes the object to a file (line 34).

This program can run either as an applet or as an application. To run it as an application,
the host name is passed as a command-line argument.

33.9 Can an applet connect to a server that is different from the machine where the applet
is located?

33.10 How do you find the host name of an applet?

33.11 How do you send and receive an object?

33.7 Case Study: Distributed Tic-Tac-Toe Games
This section develops an applet that enables two players to play the tic-tac-toe game
on the Internet.

In Section 18.9, Case Study: Developing a Tic-Tac-Toe Game, you developed an applet for a
tic-tac-toe game that enables two players to play the game on the same machine. In this sec-
tion, you will learn how to develop a distributed tic-tac-toe game using multithreads and net-
working with socket streams. A distributed tic-tac-toe game enables users to play on different
machines from anywhere on the Internet.

You need to develop a server for multiple clients. The server creates a server socket and
accepts connections from every two players to form a session. Each session is a thread that
communicates with the two players and determines the status of the game. The server can
establish any number of sessions, as shown in Figure 33.13.

For each session, the first client connecting to the server is identified as player 1 with token
X, and the second client connecting is identified as player 2 with token O. The server notifies
the players of their respective tokens. Once two clients are connected to it, the server starts a
thread to facilitate the game between the two players by performing the steps repeatedly, as
shown in Figure 33.14.

✓Point✓Check

Key
Point

1196 Chapter 33 Networking

The server does not have to be a graphical component, but creating it as a frame in which
game information can be viewed is user-friendly. You can create a scroll pane to hold a text
area in the frame and display game information in the text area. The server creates a thread to
handle a game session when two players are connected to the server.

The client is responsible for interacting with the players. It creates a user interface with
nine cells, and displays the game title and status to the players in the labels. The client class is
very similar to the TicTacToe class presented in the case study in Section 18.9. However, the

Server

Player 2

Session n...

Player 1 Player 2Player 1

Session 1

...

FIGURE 33.13 The server can create many sessions, each of which facilitates a tic-tac-toe
game for two players.

Player 1

1. Initialize user interface.

2. Request connection to the server

and learn which token to use from the

server.

3. Get the start signal from the server.

4. Wait for the player to mark a cell,

send the cell's row and column index to

the server.

5. Receive status from the server.

6. If WIN, display the winner; if Player

2 wins, receive the last move from

Player 2. Break the loop.

7. If DRAW, display game is over;

break the loop.

8. If CONTINUE, receive Player 2's

selected row and column index and

mark the cell for Player 2.

Server

Create a server socket.

Accept connection from the first player and notify

the player who is Player 1 with token X.

Accept connection from the second player and

notify the player who is Player 2 with token O.

Start a thread for the session.

Handle a session:

1. Tell Player 1 to start.

2. Receive row and column of the selected cell from

Player 1.

3. Determine the game status (WIN, DRAW,

CONTINUE). If Player 1 wins, or draws, send the status

(PLAYER1_WON, DRAW) to both players and send

Player 1's move to Player 2. Exit.

4. If CONTINUE, notify Player 2 to take the turn, and

send Player 1's newly selected row and column index to

Player 2.

5. Receive row and column of the selected cell from

Player 2.

6. If Player 2 wins, send the status (PLAYER2_WON)

to both players, and send Player 2's move to Player 1.

Exit.

7. If CONTINUE, send the status, and send Player 2's

newly selected row and column index to Player 1.

Player 2

1. Initialize user interface.

2. Request connection to the server and

learn which token to use from the server.

3. Receive status from the server.

4. If WIN, display the winner. If Player 1

wins, receive Player 1's last move, and

break the loop.

5. If DRAW, display game is over, and

receive Player 1's last move, and break

the loop.

6. If CONTINUE, receive Player 1's

selected row and index and mark the cell

for Player 1.

7. Wait for the player to move, and send

the selected row and column to the

server.

FIGURE 33.14 The server starts a thread to facilitate communications between the two players.

33.7 Case Study: Distributed Tic-Tac-Toe Games 1197

client in this example does not determine the game status (win or draw); it simply passes the
moves to the server and receives the game status from the server.

Based on the foregoing analysis, you can create the following classes:

■ TicTacToeServer serves all the clients in Listing 33.11.

■ HandleASession facilitates the game for two players. This class is defined in
TicTacToeServer.java.

■ TicTacToeClient models a player in Listing 33.12.

■ Cell models a cell in the game. It is an inner class in TicTacToeClient.

■ TicTacToeConstants is an interface that defines the constants shared by all the
classes in the example in Listing 33.10.

The relationships of these classes are shown in Figure 33.15.

LISTING 33.10 TicTacToeConstants.java
1 {
2 public static int PLAYER1 = 1; // Indicate player 1
3 public static int PLAYER2 = 2; // Indicate player 2

public interface TicTacToeConstants

TicTacToeConstants

Runnable

TicTacToeServer

TicTacToeClient CellJApplet

JFrame

Similar to
Listing 18.10

TicTacToeServer

+PLAYER1 = 1: int
+PLAYER2 = 2: int
+PLAYER1_WON = 1: int
+PLAYER2_WON = 2: int
+DRAW = 3: int
+CONTINUE = 4: int

+main(args: String[]): void

HandleASession TicTacToeClient

-player1: Socket
-player2: Socket
-cell: char[][]
-continueToPlay: boolean

+run(): void
-isWon(): boolean
-isFull(): boolean
-sendMove(out:
 DataOutputStream, row: int,
 column: int): void

-myTurn: boolean
-myToken: char
-otherToken: char
-cell: Cell[][]
-continueToPlay: boolean
-rowSelected: int
-columnSelected: int
-fromServer: DataInputStream
-toServer: DataOutputStream
-waiting: boolean

+run(): void
-connectToServer(): void
-receiveMove(): void
-sendMove(): void
-receiveInfoFromServer(): void
-waitForPlayerAction(): void

HandleASession

«interface»
TicTacToeConstants

FIGURE 33.15 TicTacToeServer creates an instance of HandleASession for each session of two players.
TicTacToeClient creates nine cells in the UI.

1198 Chapter 33 Networking

4 public static int PLAYER1_WON = 1; // Indicate player 1 won
5 public static int PLAYER2_WON = 2; // Indicate player 2 won
6 public static int DRAW = 3; // Indicate a draw
7 public static int CONTINUE = 4; // Indicate to continue
8 }

LISTING 33.11 TicTacToeServer.java
1 import java.io.*;
2 import java.net.*;
3 import javax.swing.*;
4 import java.awt.*;
5 import java.util.Date;
6
7
8 implements TicTacToeConstants {
9 public static void main(String[] args) {
10 TicTacToeServer frame = new TicTacToeServer();
11 }
12
13 public TicTacToeServer() {
14 JTextArea jtaLog = new JTextArea();
15
16 // Create a scroll pane to hold text area
17 JScrollPane scrollPane = new JScrollPane(jtaLog);
18
19 // Add the scroll pane to the frame
20 add(scrollPane, BorderLayout.CENTER);
21
22 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23 setSize(300, 300);
24 setTitle("TicTacToeServer");
25 setVisible(true);
26
27 try {
28 // Create a server socket
29
30 jtaLog.append(new Date() +
31 ": Server started at socket 8000\n");
32
33 // Number a session
34 int sessionNo = 1;
35
36 // Ready to create a session for every two players
37 while (true) {
38 jtaLog.append(new Date() +
39 ": Wait for players to join session " + sessionNo + '\n');
40
41 // Connect to player 1
42
43
44 jtaLog.append(new Date() + ": Player 1 joined session " +
45 sessionNo + '\n');
46 jtaLog.append("Player 1's IP address" +
47 player1.getInetAddress().getHostAddress() + '\n');
48
49 // Notify that the player is Player 1
50 new DataOutputStream(
51 player1.getOutputStream()).writeInt(PLAYER1);
52

Socket player1 = serverSocket.accept();

ServerSocket serverSocket = new ServerSocket(8000);

public class TicTacToeServer extends JFrame

run server

create UI

server socket

connect to client

to player1

33.7 Case Study: Distributed Tic-Tac-Toe Games 1199

53 // Connect to player 2
54
55
56 jtaLog.append(new Date() +
57 ": Player 2 joined session " + sessionNo + '\n');
58 jtaLog.append("Player 2's IP address" +
59 player2.getInetAddress().getHostAddress() + '\n');
60
61 // Notify that the player is Player 2
62 new DataOutputStream(
63 player2.getOutputStream()).writeInt(PLAYER2);
64
65 // Display this session and increment session number
66 jtaLog.append(new Date() + ": Start a thread for session " +
67 sessionNo++ + '\n');
68
69 // Create a new thread for this session of two players
70 HandleASession task = new HandleASession(player1, player2);
71
72 // Start the new thread
73 new Thread(task).start();
74 }
75 }
76 catch(IOException ex) {
77 System.err.println(ex);
78 }
79 }
80 }
81
82 // Define the thread class for handling a new session for two players
83 {
84 private Socket player1;
85 private Socket player2;
86
87 // Create and initialize cells
88 private char[][] cell = new char[3][3];
89
90 private DataInputStream fromPlayer1;
91 private DataOutputStream toPlayer1;
92 private DataInputStream fromPlayer2;
93 private DataOutputStream toPlayer2;
94
95 // Continue to play
96 private boolean continueToPlay = true;
97
98 /** Construct a thread */
99 {
100 this.player1 = player1;
101 this.player2 = player2;
102
103 // Initialize cells
104 for (int i = 0; i < 3; i++)
105 for (int j = 0; j < 3; j++)
106 cell[i][j] = ' ';
107 }
108
109 @Override /** Implement the run() method for the thread */
110 {
111 try {
112 // Create data input and output streams

public void run()

public HandleASession(Socket player1, Socket player2)

class HandleASession implements Runnable, TicTacToeConstants

Socket player2 = serverSocket.accept();

to player2

a session for two players

1200 Chapter 33 Networking

113 DataInputStream fromPlayer1 = new DataInputStream(
114 player1.getInputStream());
115 DataOutputStream toPlayer1 = new DataOutputStream(
116 player1.getOutputStream());
117 DataInputStream fromPlayer2 = new DataInputStream(
118 player2.getInputStream());
119 DataOutputStream toPlayer2 = new DataOutputStream(
120 player2.getOutputStream());
121
122 // Write anything to notify player 1 to start
123 // This is just to let player 1 know to start
124 toPlayer1.writeInt(1);
125
126 // Continuously serve the players and determine and report
127 // the game status to the players
128 while (true) {
129 // Receive a move from player 1
130 int row = fromPlayer1.readInt();
131 int column = fromPlayer1.readInt();
132 cell[row][column] = 'X';
133
134 // Check if Player 1 wins
135 if (isWon('X')) {
136 toPlayer1.writeInt(PLAYER1_WON);
137 toPlayer2.writeInt(PLAYER1_WON);
138 sendMove(toPlayer2, row, column);
139 break; // Break the loop
140 }
141 else if (isFull()) { // Check if all cells are filled
142 toPlayer1.writeInt(DRAW);
143 toPlayer2.writeInt(DRAW);
144 sendMove(toPlayer2, row, column);
145 break;
146 }
147 else {
148 // Notify player 2 to take the turn
149 toPlayer2.writeInt(CONTINUE);
150
151 // Send player 1's selected row and column to player 2
152 sendMove(toPlayer2, row, column);
153 }
154
155 // Receive a move from Player 2
156 row = fromPlayer2.readInt();
157 column = fromPlayer2.readInt();
158 cell[row][column] = 'O';
159
160 // Check if Player 2 wins
161 if (isWon('O')) {
162 toPlayer1.writeInt(PLAYER2_WON);
163 toPlayer2.writeInt(PLAYER2_WON);
164 sendMove(toPlayer1, row, column);
165 break;
166 }
167 else {
168 // Notify player 1 to take the turn
169 toPlayer1.writeInt(CONTINUE);
170
171 // Send player 2's selected row and column to player 1

33.7 Case Study: Distributed Tic-Tac-Toe Games 1201

172 sendMove(toPlayer1, row, column);
173 }
174 }
175 }
176 catch(IOException ex) {
177 System.err.println(ex);
178 }
179 }
180
181 /** Send the move to other player */
182
183 throws IOException {
184 out.writeInt(row); // Send row index
185 out.writeInt(column); // Send column index
186 }
187
188 /** Determine if the cells are all occupied */
189 {
190 for (int i = 0; i < 3; i++)
191 for (int j = 0; j < 3; j++)
192 if (cell[i][j] == ' ')
193 return false; // At least one cell is not filled
194
195 // All cells are filled
196 return true;
197 }
198
199 /** Determine if the player with the specified token wins */
200 {
201 // Check all rows
202 for (int i = 0; i < 3; i++)
203 if ((cell[i][0] == token)
204 && (cell[i][1] == token)
205 && (cell[i][2] == token)) {
206 return true;
207 }
208
209 /** Check all columns */
210 for (int j = 0; j < 3; j++)
211 if ((cell[0][j] == token)
212 && (cell[1][j] == token)
213 && (cell[2][j] == token)) {
214 return true;
215 }
216
217 /** Check major diagonal */
218 if ((cell[0][0] == token)
219 && (cell[1][1] == token)
220 && (cell[2][2] == token)) {
221 return true;
222 }
223
224 /** Check subdiagonal */
225 if ((cell[0][2] == token)
226 && (cell[1][1] == token)
227 && (cell[2][0] == token)) {
228 return true;
229 }
230

private boolean isWon(char token)

private boolean isFull()

private void sendMove(DataOutputStream out, int row, int column)

1202 Chapter 33 Networking

231 /** All checked, but no winner */
232 return false;
233 }
234 }

LISTING 33.12 TicTacToeClient.java
1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4 import javax.swing.border.LineBorder;
5 import java.io.*;
6 import java.net.*;
7
8
9 implements Runnable, TicTacToeConstants {
10 // Indicate whether the player has the turn
11 private boolean myTurn = false;
12
13 // Indicate the token for the player
14 private char myToken = ' ';
15
16 // Indicate the token for the other player
17 private char otherToken = ' ';
18
19 // Create and initialize cells
20 private Cell[][] cell = new Cell[3][3];
21
22 // Create and initialize a title label
23 private JLabel jlblTitle = new JLabel();
24
25 // Create and initialize a status label
26 private JLabel jlblStatus = new JLabel();
27
28 // Indicate selected row and column by the current move
29 private int rowSelected;
30 private int columnSelected;
31
32 // Input and output streams from/to server
33 private DataInputStream fromServer;
34 private DataOutputStream toServer;
35
36 // Continue to play?
37 private boolean continueToPlay = true;
38
39 // Wait for the player to mark a cell
40 private boolean waiting = true;
41
42 // Indicate if it runs as application
43 private boolean isStandAlone = false;
44
45 // Host name or IP address
46 private String host = "localhost";
47
48 @Override /** Initialize UI */
49 public void init() {
50 // Panel p to hold cells
51 JPanel p = new JPanel();
52 p.setLayout(new GridLayout(3, 3, 0, 0));

public class TicTacToeClient extends JApplet

create UI

33.7 Case Study: Distributed Tic-Tac-Toe Games 1203

53 for (int i = 0; i < 3; i++)
54 for (int j = 0; j < 3; j++)
55 p.add(cell[i][j] = new Cell(i, j));
56
57 // Set properties for labels and borders for labels and panel
58 p.setBorder(new LineBorder(Color.black, 1));
59 jlblTitle.setHorizontalAlignment(JLabel.CENTER);
60 jlblTitle.setFont(new Font("SansSerif", Font.BOLD, 16));
61 jlblTitle.setBorder(new LineBorder(Color.black, 1));
62 jlblStatus.setBorder(new LineBorder(Color.black, 1));
63
64 // Place the panel and the labels for the applet
65 add(jlblTitle, BorderLayout.NORTH);
66 add(p, BorderLayout.CENTER);
67 add(jlblStatus, BorderLayout.SOUTH);
68
69 // Connect to the server
70
71 }
72
73 {
74 try {
75 // Create a socket to connect to the server
76 Socket socket;
77 if (isStandAlone)
78
79 else

80
81
82 // Create an input stream to receive data from the server
83 fromServer = new DataInputStream(socket.getInputStream());
84
85 // Create an output stream to send data to the server
86 toServer = new DataOutputStream(socket.getOutputStream());
87 }
88 catch (Exception ex) {
89 System.err.println(ex);
90 }
91
92 // Control the game on a separate thread
93 Thread thread = new Thread(this);
94 thread.start();
95 }
96
97 @Override
98 {
99 try {
100 // Get notification from the server
101 int player = fromServer.readInt();
102
103 // Am I player 1 or 2?
104 if (player == PLAYER1) {
105 myToken = 'X';
106 otherToken = 'O';
107 jlblTitle.setText("Player 1 with token 'X'");
108 jlblStatus.setText("Waiting for player 2 to join");
109
110 // Receive startup notification from the server
111 fromServer.readInt(); // Whatever read is ignored
112

public void run()

socket = new Socket(getCodeBase().getHost(), 8000);

socket = new Socket(host, 8000);

private void connectToServer()

connectToServer(); connect to server

standalone

applet

input from server

output to server

1204 Chapter 33 Networking

113 // The other player has joined
114 jlblStatus.setText("Player 2 has joined. I start first");
115
116 // It is my turn
117 myTurn = true;
118 }
119 else if (player == PLAYER2) {
120 myToken = 'O';
121 otherToken = 'X';
122 jlblTitle.setText("Player 2 with token 'O'");
123 jlblStatus.setText("Waiting for player 1 to move");
124 }
125
126 // Continue to play
127 while (continueToPlay) {
128 if (player == PLAYER1) {
129 // Wait for player 1 to move
130 // Send the move to the server
131 // Receive info from the server
132 }
133 else if (player == PLAYER2) {
134 // Receive info from the server
135 // Wait for player 2 to move
136 ; // Send player 2's move to the server
137 }
138 }
139 }
140 catch (Exception ex) {
141 }
142 }
143
144 /** Wait for the player to mark a cell */
145 {
146 while (waiting) {
147 Thread.sleep(100);
148 }
149
150 waiting = true;
151 }
152
153 /** Send this player's move to the server */
154 {
155 toServer.writeInt(rowSelected); // Send the selected row
156 toServer.writeInt(columnSelected); // Send the selected column
157 }
158
159 /** Receive info from the server */
160 {
161 // Receive game status
162 int status = fromServer.readInt();
163
164 if (status == PLAYER1_WON) {
165 // Player 1 won, stop playing
166 continueToPlay = false;
167 if (myToken == 'X') {
168 jlblStatus.setText("I won! (X)");
169 }
170 else if (myToken == 'O') {

private void receiveInfoFromServer() throws IOException

private void sendMove() throws IOException

private void waitForPlayerAction() throws InterruptedException

sendMove()
waitForPlayerAction();
receiveInfoFromServer();

receiveInfoFromServer();
sendMove();
waitForPlayerAction();

33.7 Case Study: Distributed Tic-Tac-Toe Games 1205

171 jlblStatus.setText("Player 1 (X) has won!");
172 receiveMove();
173 }
174 }
175 else if (status == PLAYER2_WON) {
176 // Player 2 won, stop playing
177 continueToPlay = false;
178 if (myToken == 'O') {
179 jlblStatus.setText("I won! (O)");
180 }
181 else if (myToken == 'X') {
182 jlblStatus.setText("Player 2 (O) has won!");
183 receiveMove();
184 }
185 }
186 else if (status == DRAW) {
187 // No winner, game is over
188 continueToPlay = false;
189 jlblStatus.setText("Game is over, no winner!");
190
191 if (myToken == 'O') {
192 receiveMove();
193 }
194 }
195 else {
196 receiveMove();
197 jlblStatus.setText("My turn");
198 myTurn = true; // It is my turn
199 }
200 }
201
202 {
203 // Get the other player's move
204 int row = fromServer.readInt();
205 int column = fromServer.readInt();
206 cell[row][column].setToken(otherToken);
207 }
208
209 // An inner class for a cell
210 public class Cell extends JPanel {
211 // Indicate the row and column of this cell in the board
212 private int row;
213 private int column;
214
215 // Token used for this cell
216 private char token = ' ';
217
218 public Cell(int row, int column) {
219 this.row = row;
220 this.column = column;
221 setBorder(new LineBorder(Color.black, 1)); // Set cell's border
222 addMouseListener(new ClickListener()); // Register listener
223 }
224
225 /** Return token */
226 public char getToken() {
227 return token;
228 }

private void receiveMove() throws IOException

model a cell

register listener

1206 Chapter 33 Networking

229
230 /** Set a new token */
231 public void setToken(char c) {
232 token = c;
233 repaint();
234 }
235
236 @Override /** Paint the cell */
237 protected void paintComponent(Graphics g) {
238 super.paintComponent(g);
239
240 if (token == 'X') {
241 g.drawLine(10, 10, getWidth() - 10, getHeight() - 10);
242 g.drawLine(getWidth() - 10, 10, 10, getHeight() - 10);
243 }
244 else if (token == 'O') {
245 g.drawOval(10, 10, getWidth() - 20, getHeight() - 20);
246 }
247 }
248
249 /** Handle mouse click on a cell */
250 private class ClickListener extends MouseAdapter {
251 @Override
252 public void mouseClicked(MouseEvent e) {
253 // If cell is not occupied and the player has the turn
254 if (token == ' ' && myTurn) {
255 setToken(myToken); // Set the player's token in the cell
256 myTurn = false;
257 rowSelected = row;
258 columnSelected = column;
259 jlblStatus.setText("Waiting for the other player to move");
260 waiting = false; // Just completed a successful move
261 }
262 }
263 }
264 }
265 }

The server can serve any number of sessions simultaneously. Each session takes care of two
players. The client can be a Java applet or a Java application. To run a client as a Java applet
from a Web browser, the server must run from a Web server. Figures 33.16 and 33.17 show
sample runs of the server and the clients.

draw X

draw O

mouse listener

main method omitted

FIGURE 33.16 TicTacToeServer accepts connection requests and creates sessions to
serve pairs of players.

Chapter Summary 1207

The TicTacToeConstants interface defines the constants shared by all the classes in the
project. Each class that uses the constants needs to implement the interface. Centrally defin-
ing constants in an interface is a common practice in Java. For example, all the constants
shared by Swing classes are defined in java.swing.SwingConstants.

Once a session is established, the server receives moves from the players in alternation.
Upon receiving a move from a player, the server determines the status of the game. If the
game is not finished, the server sends the status (CONTINUE) and the player’s move to the
other player. If the game is won or a draw, the server sends the status (PLAYER1_WON,
PLAYER2_WON, or DRAW) to both players.

The implementation of Java network programs at the socket level is tightly synchronized.
An operation to send data from one machine requires an operation to receive data from the
other machine. As shown in this example, the server and the client are tightly synchronized to
send or receive data.

33.12 Will the program work if lines 48-49 in Listing 33.12 TicTacToeClient.java

@Override /** Initialize UI */
public void init() {

is changed to

public TicTacToeClient() {

33.13 If a player does not have the turn, but clicks on an empty cell, will the code in line 254
in Listing 33.12 be executed and will the code in line 255 be executed?

CHAPTER SUMMARY

1. Java supports stream sockets and datagram sockets. Stream sockets use TCP
(Transmission Control Protocol) for data transmission, whereas datagram sockets
use UDP (User Datagram Protocol). Since TCP can detect lost transmissions and
resubmit them, transmissions are lossless and reliable. UDP, in contrast, cannot
guarantee lossless transmission.

2. To create a server, you must first obtain a server socket, using new

ServerSocket(port). After a server socket is created, the server can start to listen
for connections, using the accept() method on the server socket. The client
requests a connection to a server by using new Socket(serverName, port) to
create a client socket.

FIGURE 33.17 TicTacToeClient can run as an applet or an application.

✓Point✓Check

1208 Chapter 33 Networking

3. Stream socket communication is very much like input/output stream communication
after the connection between a server and a client is established. You can obtain an
input stream using the getInputStream() method and an output stream using the
getOutputStream() method on the socket.

4. A server must often work with multiple clients at the same time. You can use threads
to handle the server’s multiple clients simultaneously by creating a thread for each
connection.

5. Applets are good for deploying multiple clients. They can run anywhere with a single
copy of the program. However, because of security restrictions, an applet client can
connect only to the server where the applet is loaded.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

Section 33.2
*33.1 (Loan server) Write a server for a client. The client sends loan information (annual

interest rate, number of years, and loan amount) to the server (see Figure 33.18a).
The server computes monthly payment and total payment and sends them back to
the client (see Figure 33.18b). Name the client Exercise33_1Client and the server
Exercise33_1Server.

(a) (b)

FIGURE 33.18 The client in (a) sends the annual interest rate, number of years, and loan amount to the server and receives
the monthly payment and total payment from the server in (b).

33.2 (Network I/O using Scanner and PrintWriter) Rewrite the server and client
programs in Listings 33.1 and 33.2 using a Scanner for input and a PrintWriter
for output. Name the server Exercise33_2Server and the client Exercise33_2Client.

Sections 33.3–33.4
*33.3 (Loan server for multiple clients) Revise Exercise 33.1 to write a server for multiple

clients.

www.cs.armstrong.edu/liang/intro9e/test.html

Programming Exercises 1209

Section 33.5
33.4 (Web visit count) Section 33.5, Applet Clients, created an applet that shows the

number of visits made to a Web page. The count is stored in a file on the server
side. Every time the page is visited or reloaded, the applet sends a request to the
server, and the server increases the count and sends it to the applet. The count is
stored using a random-access file. When the applet is loaded, the server reads the
count from the file, increases it, and saves it back to the file. Rewrite the program
to improve its performance. Read the count from the file when the server starts,
and save the count to the file when the server stops, using the Stop button, as
shown in Figure 33.19. When the server is alive, use a variable to store the count.
Name the client Exercise33_4Client and the server Exercise33_4Server. The client
program should be the same as in Listing 33.6. Rewrite the server as a GUI appli-
cation with a Stop button that exits the server.

33.5 (Create a stock ticker in an applet) Write an applet like the one in Programming
Exercise 18.16. Assume that the applet gets the stock index from a file named
Ticker.txt stored on the Web server. Enable the applet to run as a standalone.

Section 33.6
33.6 (Display and add addresses) Develop a client/server application to view and add

addresses, as shown in Figure 33.20.

■ Define an Address class to hold the name, street, city, state, and zip in an object.
■ The user can use the buttons First, Next, Previous, and Last to view an address,

and the Add button to add a new address.
■ Limit the concurrent connections to two clients.

Name the client Exercise33_6Client and the server Exercise33_6Server.

FIGURE 33.19 The applet displays how many times this Web page has been accessed. The server stores the count.

FIGURE 33.20 You can view and add an address in this applet.

1210 Chapter 33 Networking

*33.7 (Transfer last 100 numbers in an array) Programming Exercise 24.12 retrieves
the last 100 prime numbers from a file PrimeNumbers.dat. Write a client
program that requests the server to send the last 100 prime numbers in an
array. Name the server program Exercise33_7Server and the client program
Exercise33_7Client. Assume that the numbers of the long type are stored in
PrimeNumbers.dat in binary format.

*33.8 (Transfer last 100 numbers in an ArrayList) Programming Exercise 24.12
retrieves the last 100 prime numbers from a file PrimeNumbers.dat. Write a
client program that requests the server to send the last 100 prime numbers in
an ArrayList. Name the server program Exercise33_8Server and the client
program Exercise33_8Client. Assume that the numbers of the long type are
stored in PrimeNumbers.dat in binary format.

Section 33.7
**33.9 (Chat) Write a program that enables two users to chat. Implement one user as

the server (Figure 33.21a) and the other as the client (Figure 33.21b). The
server has two text areas: one for entering text and the other (noneditable) for
displaying text received from the client. When the user presses the Enter key,
the current line is sent to the client. The client has two text areas: one (non-
editable) for receiving text from the server, and the other for entering text.
When the user presses the Enter key, the current line is sent to the server.
Name the client Exercise33_9Client and the server Exercise33_9Server.

(a) (b)

FIGURE 33.21 The server and client send text to and receive text from each other.

(a) (b) (c) (d)

FIGURE 33.22 The server starts in (a) with three clients in (b), (c), and (d).

***33.10 (Multiple client chat) Write a program that enables any number of clients to
chat. Implement one server that serves all the clients, as shown in Figure 33.22.
Name the client Exercise33_10Client and the server Exercise33_10Server.

CHAPTER

34
JAVA DATABASE
PROGRAMMING

Objectives
■ To understand the concepts of databases and database management sys-

tems (§34.2).

■ To understand the relational data model: relational data structures,
constraints, and languages (§34.2).

■ To use SQL to create and drop tables and to retrieve and modify data
(§34.3).

■ To learn how to load a driver, connect to a database, execute statements,
and process result sets using JDBC (§34.4).

■ To use prepared statements to execute precompiled SQL statements
(§34.5).

■ To use callable statements to execute stored SQL procedures and func-
tions (§34.6).

■ To explore database metadata using the DatabaseMetaData and
ResultSetMetaData interfaces (§34.7).

1212 Chapter 34 Java Database Programming

34.1 Introduction
Java provides the API for developing database applications that works with any
relational database systems.

You may have heard a lot about database systems. Database systems are everywhere. Your
social security information is stored in a database by the government. If you shop online,
your purchase information is stored in a database by the company. If you attend a university,
your academic information is stored in a database by the university. Database systems not
only store data, they also provide means of accessing, updating, manipulating, and analyzing
data. Your social security information is updated periodically, and you can register for
courses online. Database systems play an important role in society and in commerce.

This chapter introduces database systems, the SQL language, and how to develop database
applications using Java. If you already know SQL, you can skip Sections 34.2 and 34.3.

34.2 Relational Database Systems
SQL is the standard database language for defining and accessing databases.

A database system consists of a database, the software that stores and manages data in the
database, and the application programs that present data and enable the user to interact with
the database system, as shown in Figure 34.1.

A database is a repository of data that form information. When you purchase a database
system—such as MySQL, Oracle, IBM’s DB2 and Informix, Microsoft SQL Server, or
Sybase—from a software vendor, you actually purchase the software comprising a database
management system (DBMS). Database management systems are designed for use by profes-
sional programmers and are not suitable for ordinary customers. Application programs are
built on top of the DBMS for customers to access and update the database. Thus, application
programs can be viewed as the interfaces between the database system and its users. Applica-
tion programs may be standalone GUI applications or Web applications, and may access sev-
eral different database systems in the network, as shown in Figure 34.2.

Most of today’s database systems are relational database systems. They are based on the
relational data model, which has three key components: structure, integrity, and language.

Key
Point

Key
Point

database system

DBMS

database

Application Users

Application Programs

Database Management System (DBMS)

System Users

FIGURE 34.1 A database system consists of data, database management software, and
application programs.

34.2 Relational Database Systems 1213

Structure defines the representation of the data. Integrity imposes constraints on the data.
Language provides the means for accessing and manipulating data.

34.2.1 Relational Structures
The relational model is built around a simple and natural structure. A relation is actually a
table that consists of nonduplicate rows. Tables are easy to understand and easy to use. The
relational model provides a simple yet powerful way to represent data.

A row of a table represents a record, and a column of a table represents the value of a sin-
gle attribute of the record. In relational database theory, a row is called a tuple and a column
is called an attribute. Figure 34.3 shows a sample table that stores information about the
courses offered by a university. The table has eight tuples, and each tuple has five attributes.

relational model

tuple

attribute

Tables describe the relationship among data. Each row in a table represents a record of
related data. For example, “11111”, “CSCI”, “1301”, “Introduction to Java I”, and “4” are
related to form a record (the first row in Figure 34.3) in the Course table. Just as data in the
same row are related, so too data in different tables may be related through common attrib-
utes. Suppose the database has two other tables, Student and Enrollment, as shown in

Database Management System

database

Application Programs

Application Users

Database Management System

……

…

FIGURE 34.2 An application program can access multiple database systems.

Columns/Attributes

Tuples/
Rows 11111 CSCI 1301 Introduction to Java I 4

11112 CSCI 1302 Introduction to Java II 3
11113 CSCI 3720 Database Systems 3
11114 CSCI 4750 Rapid Java Application 3
11115 MATH 2750 Calculus I 5
11116 MATH 3750 Calculus II 5
11117 EDUC 1111 Reading 3
11118 ITEC 1344 Database Administration 3

courseId subjectId courseNumber title numOfCreditsCourse Table

Relation/Table Name

FIGURE 34.3 A table has a table name, column names, and rows.

1214 Chapter 34 Java Database Programming

Figures 34.4 and 34.5. The Course table and the Enrollment table are related through their
common attribute courseId, and the Enrollment table and the Student table are related
through ssn.

deptID

444111110 Jacob R Smith 9129219434 1985-04-09 99 Kingston Street 31435 BIOL
444111111 John K Stevenson 9129219434 null 100 Main Street 31411 BIOL
444111112 George K Smith 9129213454 1974-10-10 1200 Abercorn St. 31419 CS
444111113 Frank E Jones 9125919434 1970-09-09 100 Main Street 31411 BIOL
444111114 Jean K Smith 9129219434 1970-02-09 100 Main Street 31411 CHEM
444111115 Josh R Woo 7075989434 1970-02-09 555 Franklin St. 31411 CHEM
444111116 Josh R Smith 9129219434 1973-02-09 100 Main Street 31411 BIOL
444111117 Joy P Kennedy 9129229434 1974-03-19 103 Bay Street 31412 CS
444111118 Toni R Peterson 9129229434 1964-04-29 103 Bay Street 31412 MATH
444111119 Patrick R Stoneman 9129229434 1969-04-29 101 Washington St. 31435 MATH
444111120 Rick R Carter 9125919434 1986-04-09 19 West Ford St. 31411 BIOL

Student Table

ssn firstName mi lastName phone birthDate street zipCode

FIGURE 34.4 A Student table stores student information.

Enrollment Table

444111110 11111 2004-03-19 A
444111110 11112 2004-03-19 B
444111110 11113 2004-03-19 C
444111111 11111 2004-03-19 D
444111111 11112 2004-03-19 F
444111111 11113 2004-03-19 A
444111112 11114 2004-03-19 B
444111112 11115 2004-03-19 C
444111112 11116 2004-03-19 D
444111113 11111 2004-03-19 A
444111113 11113 2004-03-19 A
444111114 11115 2004-03-19 B
444111115 11115 2004-03-19 F
444111115 11116 2004-03-19 F
444111116 11111 2004-03-19 D
444111117 11111 2004-03-19 D
444111118 11111 2004-03-19 A
444111118 11112 2004-03-19 D
444111118 11113 2004-03-19 B

ssn courseId dateRegistered grade

FIGURE 34.5 An Enrollment table stores student enrollment information.

integrity constraint

34.2.2 Integrity Constraints
An integrity constraint imposes a condition that all the legal values in a table must satisfy.
Figure 34.6 shows an example of some integrity constraints in the Subject and Course

tables.
In general, there are three types of constraints: domain constraints, primary key con-

straints, and foreign key constraints. Domain constraints and primary key constraints are
known as intrarelational constraints, meaning that a constraint involves only one relation.
The foreign key constraint is interrelational, meaning that a constraint involves more than one
relation.

34.2 Relational Database Systems 1215

Domain Constraints
Domain constraints specify the permissible values for an attribute. Domains can be specified
using standard data types, such as integers, floating-point numbers, fixed-length strings, and
variant-length strings. The standard data type specifies a broad range of values. Additional
constraints can be specified to narrow the ranges. For example, you can specify that the
numOfCredits attribute (in the Course table) must be greater than 0 and less than 5. You
can also specify whether an attribute can be null, which is a special value in a database
meaning unknown or not applicable. As shown in the Student table, birthDate may be
null.

Primary Key Constraints
To understand primary keys, it is helpful to know superkeys, keys, and candidate keys. A
superkey is an attribute or a set of attributes that uniquely identifies the relation. That is, no
two tuples have the same values on a superkey. By definition, a relation consists of a set of
distinct tuples. The set of all attributes in the relation forms a superkey.

A key K is a minimal superkey, meaning that any proper subset of K is not a superkey. A
relation can have several keys. In this case, each of the keys is called a candidate key. The
primary key is one of the candidate keys designated by the database designer. The primary key
is often used to identify tuples in a relation. As shown in Figure 34.6, courseId is the pri-
mary key in the Course table.

Foreign Key Constraints
In a relational database, data are related. Tuples in a relation are related, and tuples in dif-
ferent relations are related through their common attributes. Informally speaking, the com-
mon attributes are foreign keys. The foreign key constraints define the relationships among
relations.

Formally, a set of attributes FK is a foreign key in a relation R that references relation T if
it satisfies the following two rules:

■ The attributes in FK have the same domain as the primary key in T.

■ A nonnull value on FK in R must match a primary key value in T.

domain constraint

primary key constraint
superkey

11111 CSCI 1301 Introduction to Java I 4
11112 CSCI 1302 Introduction to Java II 3
11113 CSCI 3720 Database Systems 3
...

444111110 11111 2004-03-19 A
444111110 11112 2004-03-19 B
444111110 11113 2004-03-19 C
...

Course Table

Each value in the
numOfCredits column must be
greater than 0 and less than 5

Each value in courseId in the
Enrollment table must match a value
in courseId in the Course table

Each row must have a
value for courseId, and
the value must be unique

Enrollment Table ssn courseId dateRegistered grade

courseId subjectId courseNumber title numOfCredits

FIGURE 34.6 The Enrollment table and the Course table have integrity constraints.

relational database

foreign key constraint

1216 Chapter 34 Java Database Programming

As shown in Figure 34.6, courseId is the foreign key in Enrollment that references the
primary key courseId in Course. Every courseId value must match a courseId value in
Course.

Enforcing Integrity Constraints
The database management system enforces integrity constraints and rejects operations that
would violate them. For example, if you attempted to insert the new record (‘11115’, ‘CSCI’,
‘2490’, ‘C++ Programming’, 0) into the Course table, it would fail because the credit hours
must be greater than 0; if you attempted to insert a record with the same primary key as an
existing record in the table, the DBMS would report an error and reject the operation; if you
attempted to delete a record from the Course table whose primary key value is referenced by
the records in the Enrollment table, the DBMS would reject this operation.

Note
All relational database systems support primary key constraints and foreign key
constraints, but not all database systems support domain constraints. In the Microsoft
Access database, for example, you cannot specify the constraint that numOfCredits
is greater than 0 and less than 5.

34.1 What are superkeys, candidate keys, and primary keys?

34.2 What is a foreign key?

34.3 Can a relation have more than one primary key or foreign key?

34.4 Does a foreign key need to be a primary key in the same relation?

34.5 Does a foreign key need to have the same name as its referenced primary key?

34.6 Can a foreign key value be null?

34.3 SQL
Structured Query Language (SQL) is the language for defining tables and integrity
constraints and for accessing and manipulating data.

SQL (pronounced “S-Q-L” or “sequel”) is the universal language for accessing relational
database systems. Application programs may allow users to access a database without
directly using SQL, but these applications themselves must use SQL to access the database.
This section introduces some basic SQL commands.

Note
There are many relational database management systems. They share the common SQL
language but do not all support every feature of SQL. Some systems have their own
extensions to SQL. This section introduces standard SQL supported by all systems.

SQL can be used on MySQL, Oracle, Sybase, IBM DB2, IBM Informix, Borland Inter-
Base, MS Access, or any other relational database system. This chapter uses MySQL to
demonstrate SQL and uses MySQL, Access, and Oracle to demonstrate Java database pro-
gramming. The Companion Web site contains the following supplements on how to install
and use three popular databases: MySQL, Oracle, and Access:

■ Supplement IV.B: Tutorial for MySQL

■ Supplement IV.C: Tutorial for Oracle

■ Supplement IV.D: Tutorial for Microsoft Access

✓Point✓Check

Key
Point

SQL

database language

standard SQL

MySQL Tutorial

Oracle Tutorial

Access Tutorial

auto enforcement

34.3 SQL 1217

34.3.1 Creating a User Account on MySQL
Assume that you have installed MySQL 5 with the default configuration. To match all the
examples in this book, you should create a user named scott with the password tiger. You can
perform the administrative tasks using the MySQL Workbench or using the command line.
MySQL Workbench is a GUI tool for managing MySQL databases. Here are the steps to cre-
ate a user from the command line:

1. From the DOS command prompt, type

mysql –uroot -p

You will be prompted to enter the root password, as shown in Figure 34.7.

2. At the mysql prompt, enter

use mysql;

3. To create user scott with password tiger, enter

create user 'scott'@'localhost' identified by 'tiger';

4. To grant privileges to scott, enter

grant select, insert, update, delete, create, create view, drop,

execute, references on *.* to 'scott'@'localhost';

■ If you want to enable remote access of the account from any IP address, enter

grant all privileges on *.* to 'scott'@'%'

identified by 'tiger';

■ If you want to restrict the account’s remote access to just one particular IP address,
enter

grant all privileges on *.* to 'scott'@'ipAddress'

identified by 'tiger';

5. Enter

exit;

to exit the MySQL console.

FIGURE 34.7 You can access a MySQL database server from the command window.

1218 Chapter 34 Java Database Programming

Note
On Windows, your MySQL database server starts every time your computer starts. You
can stop it by typing the command net stop mysql and restart it by typing the com-
mand net start mysql.

By default, the server contains two databases named mysql and test. The mysql database
contains the tables that store information about the server and its users. This database is
intended for the server administrator to use. For example, the administrator can use it to cre-
ate users and grant or revoke user privileges. Since you are the owner of the server installed on
your system, you have full access to the mysql database. However, you should not create user
tables in the mysql database. You can use the test database to store data or create new data-
bases. You can also create a new database using the command create database

databasename or delete an existing database using the command drop database data-
basename.

34.3.2 Creating a Database
To match the examples in the book, you should create a database named javabook. Here are
the steps to create it:

1. From the DOS command prompt, type

mysql –uscott -ptiger

to login to mysql, as shown in Figure 34.8.

2. At the mysql prompt, enter

create database javabook;

stop mysql
start mysql

run script file

FIGURE 34.8 You can create databases in MySQL.

For your convenience, the SQL statements for creating and initializing tables used in the
book are provided in Supplement IV.A. You can download the script for MySQL and save it
to script.sql. To execute the script, first switch to the javabook database using the following
command:

use javabook;

and then type

source script.sql;

as shown in Figure 34.9.

34.3 SQL 1219

Note
You can populate the javabook database using the script from Supplement IV.A.

34.3.3 Creating and Dropping Tables
Tables are the essential objects in a database. To create a table, use the create table state-
ment to specify a table name, attributes, and types, as in the following example:

create table Course (
courseId char(5),
subjectId char(4) not null,
courseNumber integer,
title varchar(50) not null,
numOfCredits integer,
primary key (courseId)

);

This statement creates the Course table with attributes courseId, subjectId,
courseNumber, title, and numOfCredits. Each attribute has a data type that specifies the
type of data stored in the attribute. char(5) specifies that courseId consists of five charac-
ters. varchar(50) specifies that title is a variant-length string with a maximum of 50
characters. integer specifies that courseNumber is an integer. The primary key is
courseId.

The tables Student and Enrollment can be created as follows:

populating database

create table

FIGURE 34.9 You can run SQL commands in a script file.

create table Student (
ssn char(9),
firstName varchar(25),
mi char(1),
lastName varchar(25),
birthDate date,
street varchar(25),
phone char(11),
zipCode char(5),
deptId char(4),
primary key (ssn)

);

create table Enrollment (
ssn char(9),
courseId char(5),
dateRegistered date,
grade char(1),
primary key (ssn, courseId),
foreign key (ssn) references

Student(ssn),
foreign key (courseId) references

Course(courseId)
);

Note
SQL keywords are not case sensitive. This book adopts the following naming conventions:
Tables are named in the same way as Java classes, and attributes are named in the same
way as Java variables. SQL keywords are named in the same way as Java keywords.

naming convention

1220 Chapter 34 Java Database Programming

If a table is no longer needed, it can be dropped permanently using the drop table com-
mand. For example, the following statement drops the Course table:

drop table Course;

If a table to be dropped is referenced by other tables, you have to drop the other tables first.
For example, if you have created the tables Course, Student, and Enrollment and want to
drop Course, you have to first drop Enrollment, because Course is referenced by
Enrollment.

Figure 34.10 shows how to enter the create table statement from the MySQL console.

If you make typing errors, you have to retype the whole command. To avoid retyping, you
can save the command in a file, and then run the command from the file. To do so, create a
text file to contain commands, named, for example, test.sql. You can create the text file using
any text editor, such as Notepad, as shown in Figure 34.11a. To comment a line, precede it
with two dashes. You can now run the script file by typing source test.sql from the SQL
command prompt, as shown in Figure 34.11b.

drop table

FIGURE 34.10 A table is created using the create table statement.

(a) (b)

FIGURE 34.11 (a) You can use Notepad to create a text file for SQL commands. (b) You can
run the SQL commands in a script file from MySQL.

34.3.4 Simple Insert, Update, and Delete
Once a table is created, you can insert data into it. You can also update and delete records.
This section introduces simple insert, update, and delete statements.

The syntax to insert a record into a table is:

insert into tableName [(column1, column2, ..., column)]
values (value1, value2, ..., valuen);

34.3 SQL 1221

For example, the following statement inserts a record into the Course table. The new record
has the courseId ‘11113’, subjectId ‘CSCI’, courseNumber ‘3720’, title ‘Database
Systems’, and creditHours 3.

insert into Course (courseId, subjectId, courseNumber, title, numOfCredits)
values ('11113', 'CSCI', '3720', 'Database Systems', 3);

The column names are optional. If they are omitted, all the column values for the record must
be entered, even though the columns have default values. String values are case sensitive and
enclosed inside single quotation marks in SQL.

The syntax to update a table is:

update tableName
set column1 = newValue1 [, column2 = newValue2, ...]
[where condition];

For example, the following statement changes the numOfCredits for the course whose
title is Database Systems to 4.

update Course
set numOfCredits = 4
where title = 'Database Systems';

The syntax to delete records from a table is:

delete [from] tableName
[where condition];

For example, the following statement deletes the Database Systems course from the Course
table:

delete Course
where title = 'Database Systems';

The following statement deletes all the records from the Course table:

delete Course;

34.3.5 Simple Queries
To retrieve information from tables, use a select statement with the following syntax:

select column-list
from table-list
[where condition];

The select clause lists the columns to be selected. The from clause refers to the tables
involved in the query. The optional where clause specifies the conditions for the selected
rows.

Query 1: Select all the students in the CS department, as shown in Figure 34.12.

select firstName, mi, lastName
from Student
where deptId = 'CS';

1222 Chapter 34 Java Database Programming

34.3.6 Comparison and Boolean Operators
SQL has six comparison operators, as shown in Table 34.1, and three Boolean operators, as
shown in Table 34.2.

FIGURE 34.12 The result of the select statement is displayed in the MySQL console.

TABLE 34.1 Comparison Operators

Operator Description

= Equal to

<> or != Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

TABLE 34.2 Boolean Operators

Operator Description

not Logical negation

and Logical conjunction

or Logical disjunction

Note
The comparison and Boolean operators in SQL have the same meanings as in Java. In
SQL the equal to operator is =, but in Java it is ==. In SQL the not equal to oper-
ator is <> or !=, but in Java it is !=. The not, and, and or operators are !, && (&), and
|| (|) in Java.

Query 2: Get the names of the students who are in the CS dept and live in the ZIP code
31411.

select firstName, mi, lastName
from Student
where deptId = 'CS' and zipCode = '31411';

Note
To select all the attributes from a table, you don’t have to list all the attribute names in
the select clause. Instead, you can just use an asterisk (*), which stands for all the attrib-
utes. For example, the following query displays all the attributes of the students who are
in the CS dept and live in ZIP code 31411:

select *
from Student
where deptId = 'CS' and zipCode = '31411';

34.3 SQL 1223

34.3.7 The like, between-and, and is null Operators
SQL has a like operator that can be used for pattern matching. The syntax to check whether
a string s has a pattern p is

s like p or s not like p

You can use the wildcard characters % (percent symbol) and _ (underline symbol) in the pattern
p. % matches zero or more characters, and _ matches any single character in s. For example,
lastName like '_mi%' matches any string whose second and third letters are m and i.
lastName not like '_mi%' excludes any string whose second and third letters are m and i.

Note
In earlier versions of MS Access, the wildcard character is *, and the character ? matches
any single character.

The between-and operator checks whether a value v is between two other values, v1 and
v2, using the following syntax:

v between v1 and v2 or v not between v1 and v2

v between v1 and v2 is equivalent to v >= v1 and v <= v2, and v not
between v1 and v2 is equivalent to v < v1 or v > v2.

The is null operator checks whether a value v is null using the following syntax:

v is null or v is not null

Query 3: Get the Social Security numbers of the students whose grades are between ‘C’ and
‘A’.

select ssn
from Enrollment
where grade between 'C' and 'A';

34.3.8 Column Alias
When a query result is displayed, SQL uses the column names as column headings. Usually
the user gives abbreviated names for the columns, and the columns cannot have spaces when
the table is created. Sometimes it is desirable to give more descriptive names in the result
heading. You can use the column aliases with the following syntax:

select columnName [as] alias

Query 4: Get the last name and ZIP code of the students in the CS department. Display the
column headings as “Last Name” for lastName and “Zip Code” for zipCode. The query result
is shown in Figure 34.13.

FIGURE 34.13 You can use a column alias in the display.

1224 Chapter 34 Java Database Programming

select lastName as "Last Name", zipCode as "Zip Code"

from Student
where deptId = 'CS';

Note
The as keyword is optional in MySQL and Oracle, but it is required in MS Access.

34.3.9 The Arithmetic Operators
You can use the arithmetic operators * (multiplication), / (division), + (addition), and – (sub-
traction) in SQL.

Query 5: Assume that a credit hour is 50 minutes of lectures, and get the total minutes for
each course with the subject CSCI. The query result is shown in Figure 34.14.

select title, 50 * numOfCredits as "Lecture Minutes Per Week"

from Course
where subjectId = 'CSCI';

34.3.10 Displaying Distinct Tuples
SQL provides the distinct keyword, which can be used to eliminate duplicate tuples in the
result. Figure 34.15a displays all the subject IDs used by the courses and Figure 34.15b dis-
plays all the distinct subject IDs used by the courses using the following statement.

select subjectId as "Subject ID"

from Course;
distinct

FIGURE 34.14 You can use arithmetic operators in SQL.

(a) (b)

FIGURE 34.15 (a) The duplicate tuples are displayed. (b) The distinct tuples are displayed.

34.3 SQL 1225

When there is more than one column in the select clause, the distinct keyword applies
to the whole tuple in the result. For example, the following statement displays all tuples with
distinct subjectId and title, as shown in Figure 34.16. Note that some tuples may have
the same subjectId, but different title. These tuples are distinct.

select subjectId, title
from Course;

distinct

34.3.11 Displaying Sorted Tuples
SQL provides the order by clause to sort the output using the following syntax:

select column-list
from table-list
[where condition]
[order by columns-to-be-sorted];

In the syntax, columns-to-be-sorted specifies a column or a list of columns to be sorted.
By default, the order is ascending. To sort in descending order, append the desc keyword. You
could also append the asc keyword after columns-to-be-sorted, but it is not necessary.
When multiple columns are specified, the rows are sorted based on the first column, then the
rows with the same values on the first column are sorted based on the second column, and so on.

Query 6: List the full names of the students in the CS department, ordered primarily on
their last names in descending order and secondarily on their first names in ascending order.
The query result is shown in Figure 34.17.

FIGURE 34.16 The keyword distinct applies to the entire tuple.

FIGURE 34.17 You can sort results using the order by clause.

1226 Chapter 34 Java Database Programming

select lastName, firstName, deptId
from Student
where deptId = 'CS'
order by lastName desc, firstName asc;

34.3.12 Joining Tables
Often you need to get information from multiple tables, as demonstrated in the next query.

Query 7: List the courses taken by student Jacob Smith. To solve this query, you need to
join tables Student and Enrollment, as shown in Figure 34.18.

You can write the query in SQL:

select distinct lastName, firstName, courseId
from Student, Enrollment
where Student.ssn = Enrollment.ssn and
lastName = 'Smith' and firstName = 'Jacob';

The tables Student and Enrollment are listed in the from clause. The query examines
every pair of rows, each made of one item from Student and another from Enrollment,
and selects the pairs that satisfy the condition in the where clause. The rows in Student have
the last name, Smith, and the first name, Jacob, and both rows from Student and
Enrollment have the same ssn values. For each pair selected, lastName and firstName

from Student and courseId from Enrollment are used to produce the result, as shown in
Figure 34.19. Student and Enrollment have the same attribute ssn. To distinguish them in
a query, use Student.ssn and Enrollment.ssn.

A tuple

Student Table

ssn lastName mi firstName …

Enrollment Table

ssn courseId …

Equal

FIGURE 34.18 Student and Enrollment are joined on ssn.

FIGURE 34.19 Query 7 demonstrates queries involving multiple tables.

34.4 JDBC 1227

For more features of SQL, see Supplement IV.H and Supplement IV.I.

34.7 Create the tables Course, Student, and Enrollment using the create table
statements in Section 34.3.3, Creating and Dropping Tables. Insert rows into the
Course, Student, and Enrollment tables using the data in Figures 34.3, 34.4, and
34.5.

34.8 List all CSCI courses with at least four credit hours.

34.9 List all students whose last names contain the letter e two times.

34.10 List all students whose birthdays are null.

34.11 List all students who take Math courses.

34.12 List the number of courses in each subject.

34.13 Assume that each credit hour is 50 minutes of lectures. Get the total minutes for the
courses that each student takes.

34.4 JDBC
JDBC is the Java API for accessing relational database.

The Java API for developing Java database applications is called JDBC. JDBC is the trade-
marked name of a Java API that supports Java programs that access relational databases.
JDBC is not an acronym, but it is often thought to stand for Java Database Connectivity.

JDBC provides Java programmers with a uniform interface for accessing and manipulating
a wide range of relational databases. Using the JDBC API, applications written in the Java
programming language can execute SQL statements, retrieve results, present data in a user-
friendly interface, and propagate changes back to the database. The JDBC API can also be
used to interact with multiple data sources in a distributed, heterogeneous environment.

The relationships between Java programs, JDBC API, JDBC drivers, and relational data-
bases are shown in Figure 34.20. The JDBC API is a set of Java interfaces and classes used to
write Java programs for accessing and manipulating relational databases. Since a JDBC driver
serves as the interface to facilitate communications between JDBC and a proprietary data-
base, JDBC drivers are database specific and are normally provided by the database vendors.
You need MySQL JDBC drivers to access the MySQL database, and Oracle JDBC drivers to

✓Point✓Check

Java Programs

JDBC API

JDBC-ODBC
Bridge Driver

Local or remote
ORACLE DB

Microsoft ODBC
Driver

Microsoft Access
Database

MySQL JDBC
Driver

Local or remote
MySQL DB

Oracle JDBC
Driver

FIGURE 34.20 Java programs access and manipulate databases through JDBC drivers.

Key
Point

1228 Chapter 34 Java Database Programming

access the Oracle database. For the Access database, use the JDBC-ODBC bridge driver
included in the JDK. ODBC is a technology developed by Microsoft for accessing databases
on the Windows platform. An ODBC driver is preinstalled on Windows. The JDBC-ODBC
bridge driver allows a Java program to access any ODBC data source.

34.4.1 Developing Database Applications Using JDBC
The JDBC API is a Java application program interface to generic SQL databases that enables
Java developers to develop DBMS-independent Java applications using a uniform interface.

The JDBC API consists of classes and interfaces for establishing connections with data-
bases, sending SQL statements to databases, processing the results of SQL statements, and
obtaining database metadata. Four key interfaces are needed to develop any database applica-
tion using Java: Driver, Connection, Statement, and ResultSet. These interfaces
define a framework for generic SQL database access. The JDBC API defines these interfaces,
and the JDBC driver vendors provide the implementation for the interfaces. Programmers use
these interfaces.

The relationship of these interfaces is shown in Figure 34.21. A JDBC application loads an
appropriate driver using the Driver interface, connects to the database using the
Connection interface, creates and executes SQL statements using the Statement interface,
and processes the result using the ResultSet interface if the statements return results. Note
that some statements, such as SQL data definition statements and SQL data modification
statements, do not return results.

Driver

Connection Connection

Statement

ResultSet

Statement

ResultSet

Statement

ResultSet

Statement

ResultSet

FIGURE 34.21 JDBC classes enable Java programs to connect to the database, send SQL
statements, and process results.

The JDBC interfaces and classes are the building blocks in the development of Java data-
base programs. A typical Java program takes the following steps to access a database.

1. Loading drivers.

An appropriate driver must be loaded using the statement shown below before connecting to
a database.

Class.forName("JDBCDriverClass");

A driver is a concrete class that implements the java.sql.Driver interface. The drivers for
Access, MySQL, and Oracle are listed in Table 34.3. If your program accesses several differ-
ent databases, all their respective drivers must be loaded.

The JDBC-ODBC driver for Access is bundled in JDK. The MySQL JDBC driver is con-
tained in mysqljdbc.jar (downloadable from www.cs.armstrong.edu/liang/intro9e/book/
lib/mysqljdbc.jar). The Oracle JDBC driver is contained in ojdbc6.jar (downloadable from
www.cs.armstrong.edu/liang/intro9e/book/lib/ojdbc6.jar). To use the MySQL and Oracle drivers,

mysqljdbc.jar

www.cs.armstrong.edu/liang/intro9e/book/lib/mysqljdbc.jar
www.cs.armstrong.edu/liang/intro9e/book/lib/mysqljdbc.jar
www.cs.armstrong.edu/liang/intro9e/book/lib/ojdbc6.jar

34.4 JDBC 1229

you have to add mysqljdbc.jar and ojdbc6.jar in the classpath using the following DOS
command on Windows:

set classpath=%classpath%;c:\book\mysqljdbc.jar;c:\book\ojdbc6.jar

If you use an IDE such as Eclipse or NetBeans, you need to add these jar files into the library
in the IDE.

Note
com.mysql.jdbc.Driver is a class in mysqljdbc.jar, and oracle.jdbc.driver
.OracleDriver is a class in ojdbc6.jar. mysqljdbc.jar and ojdbc6.jar contain many
classes to support the driver. These classes are used by JDBC, but not directly by JDBC pro-
grammers. When you use a class explicitly in the program, it is automatically loaded by the
JVM. The driver classes, however, are not used explicitly in the program, so you have to write
the code to tell the JVM to load them.

Note
Java 6 supports automatic driver discovery, so you don’t have to load the driver explicitly.
At the time of this writing, however, this feature is not supported for all database drivers.
To be safe, load the driver explicitly.

2. Establishing connections.

To connect to a database, use the static method getConnection(databaseURL) in the
DriverManager class, as follows:

Connection connection = DriverManager.getConnection(databaseURL);

where databaseURL is the unique identifier of the database on the Internet. Table 34.4 lists
the URL patterns for the Access, MySQL, and Oracle databases.

For an ODBC data source, the databaseURL is jdbc:odbc:dataSource. An ODBC
data source can be created using the ODBC Data Source Administrator on Windows. See
Supplement IV.D, Tutorial for Microsoft Access, on how to create an ODBC data source for
an Access database.

TABLE 34.3 JDBC Drivers

Database Driver Class Source

Access sun.jdbc.odbc.JdbcOdbcDriver Already in JDK

MySQL com.mysql.jdbc.Driver Companion Web site

Oracle oracle.jdbc.driver.OracleDriver Companion Web site

TABLE 34.4 JDBC URLs

Database URL Pattern

Access jdbc:odbc:dataSource

MySQL jdbc:mysql://hostname/dbname

Oracle jdbc:oracle:thin:@hostname:port#:oracleDBSID

ojdbc6.jar

why load a driver?

automatic driver discovery

connect Access DB

1230 Chapter 34 Java Database Programming

Suppose a data source named ExampleMDBDataSource has been created for an Access
database. The following statement creates a Connection object:

Connection connection = DriverManager.getConnection
("jdbc:odbc:ExampleMDBDataSource");

The databaseURL for a MySQL database specifies the host name and database name to
locate a database. For example, the following statement creates a Connection object for the
local MySQL database javabook with username scott and password tiger:

Connection connection = DriverManager.getConnection
("jdbc:mysql://localhost/javabook", "scott", "tiger");

Recall that by default MySQL contains two databases named mysql and test. Section 34.3.2,
Creating a Database, created a custom database named javabook. We will use javabook in
the examples.

The databaseURL for an Oracle database specifies the hostname, the port# where the
database listens for incoming connection requests, and the oracleDBSID database name to
locate a database. For example, the following statement creates a Connection object for the
Oracle database on liang.armstrong.edu with the username scott and password tiger:

Connection connection = DriverManager.getConnection
("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
"scott", "tiger");

3. Creating statements.

If a Connection object can be envisioned as a cable linking your program to a database, an
object of Statement can be viewed as a cart that delivers SQL statements for execution by
the database and brings the result back to the program. Once a Connection object is created,
you can create statements for executing SQL statements as follows:

Statement statement = connection.createStatement();

4. Executing statements.

SQL data definition language (DDL) and update statements can be executed using
executeUpdate(String sql), and an SQL query statement can be executed using
executeQuery(String sql). The result of the query is returned in ResultSet. For
example, the following code executes the SQL statement create table Temp (col1
char(5), col2 char(5)):

statement.executeUpdate
("create table Temp (col1 char(5), col2 char(5))");

This next code executes the SQL query select firstName, mi, lastName from Stu-
dent where lastName = 'Smith':

// Select the columns from the Student table
ResultSet resultSet = statement.executeQuery
("select firstName, mi, lastName from Student where lastName "
+ " = 'Smith'");

5. Processing ResultSet.

The ResultSet maintains a table whose current row can be retrieved. The initial row posi-
tion is null. You can use the next method to move to the next row and the various get meth-
ods to retrieve values from a current row. For example, the following code displays all the
results from the preceding SQL query.

connect MySQL DB

connect Oracle DB

34.4 JDBC 1231

// Iterate through the result and print the student names
while (resultSet.next())
System.out.println(resultSet.getString(1) + " " +
resultSet.getString(2) + " " + resultSet.getString(3));

The getString(1), getString(2), and getString(3) methods retrieve the column
values for firstName, mi, and lastName, respectively. Alternatively, you can use
getString("firstName"), getString("mi"), and getString("lastName") to
retrieve the same three column values. The first execution of the next() method sets the cur-
rent row to the first row in the result set, and subsequent invocations of the next() method
set the current row to the second row, third row, and so on, to the last row.

Listing 34.1 is a complete example that demonstrates connecting to a database, executing a
simple query, and processing the query result with JDBC. The program connects to a local
MySQL database and displays the students whose last name is Smith.

LISTING 34.1 SimpleJDBC.java
1 import java.sql.*;
2
3 public class SimpleJdbc {
4 public static void main(String[] args)
5 throws SQLException, ClassNotFoundException {
6 // Load the JDBC driver
7
8 System.out.println("Driver loaded");
9
10 // Connect to a database
11
12
13 System.out.println("Database connected");
14
15 // Create a statement
16
17
18 // Execute a statement
19
20
21
22
23 // Iterate through the result and print the student names
24 while ()
25 System.out.println(+ "\t" +
26 + "\t" +);
27
28 // Close the connection
29
30 }
31 }

The statement in line 7 loads a JDBC driver for MySQL, and the statement in lines 11–13
connects to a local MySQL database. You can change them to connect to an Access or Oracle
database. The program creates a Statement object (line 16), executes an SQL statement and
returns a ResultSet object (lines 19–21), and retrieves the query result from the
ResultSet object (lines 24–26). The last statement (line 29) closes the connection and
releases resources related to the connection.

Note
If you run this program from the DOS prompt, specify the appropriate driver in the class-
path, as shown in Figure 34.22.

connection.close();

resultSet.getString(3)resultSet.getString(2)
resultSet.getString(1)

resultSet.next()

+ " = 'Smith'");
("select firstName, mi, lastName from Student where lastName "

ResultSet resultSet = statement.executeQuery

Statement statement = connection.createStatement();

("jdbc:mysql://localhost/javabook" , "scott", "tiger");
Connection connection = DriverManager.getConnection

Class.forName("com.mysql.jdbc.Driver"); load driver

connect database

create statement

execute statement

get result

close connection

run from DOS prompt

1232 Chapter 34 Java Database Programming

The classpath directory and jar files are separated by commas. The period (.) represents
the current directory. For convenience, the driver files are placed under the lib directory.

Caution
Do not use a semicolon (;) to end the Oracle SQL command in a Java program. The
semicolon may not work with the Oracle JDBC drivers. It does work, however, with the
other drivers used in the book.

Note
The Connection interface handles transactions and specifies how they are processed.
By default, a new connection is in autocommit mode, and all its SQL statements are exe-
cuted and committed as individual transactions. The commit occurs when the state-
ment completes or the next execute occurs, whichever comes first. In the case of
statements returning a result set, the statement completes when the last row of the
result set has been retrieved or the result set has been closed. If a single statement
returns multiple results, the commit occurs when all the results have been retrieved. You
can use the setAutoCommit(false) method to disable autocommit, so that all SQL
statements are grouped into one transaction that is terminated by a call to either the
commit() or the rollback() method. The rollback() method undoes all the
changes made by the transaction.

34.4.2 Accessing a Database from a Java Applet
If you are using the JDBC-ODBC bridge driver, your program cannot run as an applet from a
Web browser because the ODBC driver contains non-Java native code. The JDBC drivers for
MySQL and Oracle are written in Java and can run from the JVM in a Web browser. This sec-
tion gives an example that demonstrates connecting to a database from a Java applet. The
applet lets the user enter the SSN and the course ID to find a student’s grade, as shown in
Figure 34.23. The code in Listing 34.2 uses the MySQL database on the localhost.

FIGURE 34.22 You must include the driver file to run Java database programs.

the semicolon issue

auto commit

FIGURE 34.23 A Java applet can access the database on the server.

34.4 JDBC 1233

LISTING 34.2 FindGrade.java
1 import javax.swing.*;
2 import java.sql.*;
3 import java.awt.*;
4 import java.awt.event.*;
5
6 public class FindGrade extends JApplet {
7 private JTextField jtfSSN = new JTextField(9);
8 private JTextField jtfCourseId = new JTextField(5);
9 private JButton jbtShowGrade = new JButton("Show Grade");
10
11 // Statement for executing queries
12 private

13
14 /** Initialize the applet */
15 public void init() {
16 // Initialize database connection and create a Statement object
17 initializeDB();
18
19 jbtShowGrade.addActionListener(new ActionListener() {
20 @Override
21 public void actionPerformed(ActionEvent e) {
22 jbtShowGrade_actionPerformed(e);
23 }
24 });
25
26 JPanel jPanel1 = new JPanel();
27 jPanel1.add(new JLabel("SSN"));
28 jPanel1.add(jtfSSN);
29 jPanel1.add(new JLabel("Course ID"));
30 jPanel1.add(jtfCourseId);
31 jPanel1.add(jbtShowGrade);
32
33 add(jPanel1, BorderLayout.NORTH);
34 }
35
36 private void initializeDB() {
37 try {
38 // Load the JDBC driver
39
40 // Class.forName("oracle.jdbc.driver.OracleDriver");
41 System.out.println("Driver loaded");
42
43 // Establish a connection
44
45
46 // ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl”,
47 // "scott", "tiger");
48 System.out.println("Database connected");
49
50 // Create a statement
51
52 }
53 catch (Exception ex) {
54 ex.printStackTrace();
55 }
56 }
57
58 private void jbtShowGrade_actionPerformed(ActionEvent e) {

stmt = connection.createStatement();

("jdbc:mysql://localhost/javabook", "scott", "tiger");
Connection connection = DriverManager.getConnection

Class.forName("com.mysql.jdbc.Driver");

Statement stmt;

button listener

load driver
Oracle driver commented

connect to MySQL database

connect to Oracle commented

create statement

1234 Chapter 34 Java Database Programming

59 String ssn = jtfSSN.getText();
60 String courseId = jtfCourseId.getText();
61 try {
62 String queryString = "select firstName, mi, " +
63 "lastName, title, grade from Student, Enrollment, Course " +
64 "where Student.ssn = '" + ssn + "' and Enrollment.courseId "
65 + "= '" + courseId +
66 "' and Enrollment.courseId = Course.courseId " +
67 " and Enrollment.ssn = Student.ssn";
68
69
70
71 if () {
72 String firstName = ;
73 String mi = ;
74 String lastName = ;
75 String title = ;
76 String grade = ;
77
78 // Display result in a dialog box
79 JOptionPane.showMessageDialog(null, firstName + " " + mi +
80 " " + lastName + "'s grade on course " + title + " is " +
81 grade);
82 } else {
83 // Display result in a dialog box
84 JOptionPane.showMessageDialog(null, "Not found");
85 }
86 }
87 catch (SQLException ex) {
88 ex.printStackTrace();
89 }
90 }
91 }

The initializeDB() method (lines 36–56) loads the MySQL driver (line 39), connects
to the MySQL database on host liang.armstrong.edu (lines 44–45) and creates a state-
ment (line 51).

You can run the applet as a standalone from the main method (note that the listing for the
main method is omitted for all the applets in the book for brevity) or test the applet using the
appletviewer utility, as shown in Figure 34.23. If this applet is deployed on the server where
the database is located, any client on the Internet can run it from a Web browser. Since the
client may not have a MySQL driver, you should specify the driver in the archive attribute in
the applet tag, as follows:

<applet
code = "FindGrade"

archive = "FindGrade.jar, lib/mysqljdbc.jar"

width = 380

height = 80

>
</applet>

Note
For information on how to create an archive file, see Supplement III.Q, Packaging and
Deploying Java Projects. The FindGrade.jar file can be created using the following command:

c:\book>jar -cf FindGrade.jar FindGrade.class
FindGrade$1.class

rset.getString(5)
rset.getString(4)

rset.getString(3)
rset.getString(2)

rset.getString(1)
rset.next()

ResultSet rset = stmt.executeQuery(queryString);execute statement

show result

main method omitted

create archive file

34.5 PreparedStatement 1235

Note
To access the database from an applet, security restrictions make it necessary for the
applet to be downloaded from the server where the database is located. Therefore, you
have to deploy the applet on the server.

Note
There is a security hole in this program. If you enter 1' or true or '1 in the SSN
field, you will get the first student’s score, because the query string now becomes

select firstName, mi, lastName, title, grade
from Student, Enrollment, Course
where Student.ssn = and

Enrollment.courseId = ' ' and
Enrollment.courseId = Course.courseId and
Enrollment.ssn = Student.ssn;

You can avoid this problem by using the PreparedStatement interface, which is
discussed in the next section.

34.14 What are the advantages of developing database applications using Java?

34.15 Describe the following JDBC interfaces: Driver, Connection, Statement, and
ResultSet.

34.16 How do you load a JDBC driver? What are the driver classes for MySQL, Access,
and Oracle?

34.17 How do you create a database connection? What are the URLs for MySQL, Access,
and Oracle?

34.18 How do you create a Statement and execute an SQL statement?

34.19 How do you retrieve values in a ResultSet?

34.20 Does JDBC automatically commit a transaction? How do you set autocommit to
false?

34.5 PreparedStatement
PreparedStatement enables you to create parameterized SQL statements.

Once a connection to a particular database is established, it can be used to send SQL
statements from your program to the database. The Statement interface is used to exe-
cute static SQL statements that don’t contain any parameters. The PreparedStatement
interface, extending Statement, is used to execute a precompiled SQL statement with or
without parameters. Since the SQL statements are precompiled, they are efficient for
repeated executions.

A PreparedStatement object is created using the preparedStatement method in the
Connection interface. For example, the following code creates a PreparedStatement for
an SQL insert statement:

Statement preparedStatement = connection.prepareStatement
("insert into Student (firstName, mi, lastName) " +
"values (?, ?, ?)");

This insert statement has three question marks as placeholders for parameters representing
values for firstName, mi, and lastName in a record of the Student table.

As a subinterface of Statement, the PreparedStatement interface inherits all the
methods defined in Statement. It also provides the methods for setting parameters in the
object of PreparedStatement. These methods are used to set the values for the parameters

'1' or true or '1'

applet security restriction

✓Point✓Check

security hole

Key
Point

1236 Chapter 34 Java Database Programming

before executing statements or procedures. In general, the set methods have the following
name and signature:

setX(int parameterIndex, X value);

where X is the type of the parameter, and parameterIndex is the index of the parameter
in the statement. The index starts from 1. For example, the method setString(int
parameterIndex, String value) sets a String value to the specified parameter.

The following statements pass the parameters "Jack", "A", and "Ryan" to the placeholders
for firstName, mi, and lastName in preparedStatement:

preparedStatement.setString(1, "Jack");
preparedStatement.setString(2, "A");
preparedStatement.setString(3, "Ryan");

After setting the parameters, you can execute the prepared statement by invoking
executeQuery() for a SELECT statement and executeUpdate() for a DDL or update
statement.

The executeQuery() and executeUpdate() methods are similar to the ones defined
in the Statement interface except that they don’t have any parameters, because the SQL
statements are already specified in the preparedStatement method when the object of
PreparedStatement is created.

Using a prepared SQL statement, Listing 34.2 can be improved as in Listing 34.3.

LISTING 34.3 FindGradeUsingPreparedStatement.java
1 import javax.swing.*;
2 import java.sql.*;
3 import java.awt.*;
4 import java.awt.event.*;
5
6 public class FindGradeUsingPreparedStatement extends JApplet {
7 private JTextField jtfSSN = new JTextField(9);
8 private JTextField jtfCourseId = new JTextField(5);
9 private JButton jbtShowGrade = new JButton("Show Grade");
10
11 // PreparedStatement for executing queries
12 private PreparedStatement preparedStatement;
13
14 /** Initialize the applet */
15 public void init() {
16 // Initialize database connection and create a Statement object
17 initializeDB();
18
19 jbtShowGrade.addActionListener(new ActionListener() {
20 @Override
21 public void actionPerformed(ActionEvent e) {
22 jbtShowGrade_actionPerformed(e);
23 }
24 });
25
26 JPanel jPanel1 = new JPanel();
27 jPanel1.add(new JLabel("SSN"));
28 jPanel1.add(jtfSSN);
29 jPanel1.add(new JLabel("Course ID"));
30 jPanel1.add(jtfCourseId);
31 jPanel1.add(jbtShowGrade);
32

34.5 PreparedStatement 1237

33 add(jPanel1, BorderLayout.NORTH);
34 }
35
36 private void initializeDB() {
37 try {
38 // Load the JDBC driver
39 Class.forName("com.mysql.jdbc.Driver");
40 // Class.forName("oracle.jdbc.driver.OracleDriver");
41 System.out.println("Driver loaded");
42
43 // Establish a connection
44 Connection connection = DriverManager.getConnection
45 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
46 // ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
47 // "scott", "tiger");
48 System.out.println("Database connected");
49
50
51
52
53
54
55 // Create a statement
56
57 }
58 catch (Exception ex) {
59 ex.printStackTrace();
60 }
61 }
62
63 private void jbtShowGrade_actionPerformed(ActionEvent e) {
64 String ssn = jtfSSN.getText();
65 String courseId = jtfCourseId.getText();
66 try {
67
68
69
70
71 if (rset.next()) {
72 String lastName = rset.getString(1);
73 String mi = rset.getString(2);
74 String firstName = rset.getString(3);
75 String title = rset.getString(4);
76 String grade = rset.getString(5);
77
78 // Display result in a dialog box
79 JOptionPane.showMessageDialog(null, firstName + " " + mi +
80 " " + lastName + "'s grade on course " + title + " is " +
81 grade);
82 }
83 else {
84 // Display result in a dialog box
85 JOptionPane.showMessageDialog(null, "Not found");
86 }
87 }
88 catch (SQLException ex) {
89 ex.printStackTrace();
90 }
91 }
92 }

ResultSet rset = preparedStatement.executeQuery();
preparedStatement.setString(2, courseId);
preparedStatement.setString(1, ssn);

preparedStatement = connection.prepareStatement(queryString);

"and Enrollment.courseId = Course.courseId";
"where Student.ssn = ? and Enrollment.courseId = ? " +
"lastName, title, grade from Student, Enrollment, Course " +

String queryString = "select firstName, mi, " +

load driver

connect database

placeholder

prepare statement

execute statement

show result

main method omitted

1238 Chapter 34 Java Database Programming

This example does exactly the same thing as Listing 34.2 except that it uses the prepared
statement to dynamically set the parameters. The code in this example is almost the same as
in the preceding example. The new code is highlighted.

A prepared query string is defined in lines 50–53 with ssn and courseId as parameters.
An SQL prepared statement is obtained in line 56. Before executing the query, the actual
values of ssn and courseId are set to the parameters in lines 67–68. Line 69 executes the
prepared statement.

34.21 Describe prepared statements. How do you create instances of
PreparedStatement? How do you execute a PreparedStatement? How do you
set parameter values in a PreparedStatement?

34.22 What are the benefits of using prepared statements?

34.6 CallableStatement
CallableStatement enables you to execute SQL stored procedures.

The CallableStatement interface is designed to execute SQL-stored procedures. The
procedures may have IN, OUT or IN OUT parameters. An IN parameter receives a value
passed to the procedure when it is called. An OUT parameter returns a value after the proce-
dure is completed, but it doesn’t contain any value when the procedure is called. An IN OUT
parameter contains a value passed to the procedure when it is called, and returns a value after
it is completed. For example, the following procedure in Oracle PL/SQL has IN parameter
p1, OUT parameter p2, and IN OUT parameter p3.

create or replace procedure sampleProcedure
(p1 in varchar, p2 out number, p3 in out integer) is

begin

/* do something */
end sampleProcedure;
/

Note
The syntax of stored procedures is vendor specific. We use both Oracle and MySQL for
demonstrations of stored procedures in this book.

A CallableStatement object can be created using the prepareCall(String call)
method in the Connection interface. For example, the following code creates a
CallableStatement cstmt on Connection connection for the procedure
sampleProcedure.

CallableStatement callableStatement = connection.prepareCall(
"{call sampleProcedure(?, ?, ?)}");

{call sampleProcedure(?, ?, ...)} is referred to as the SQL escape syntax, which
signals the driver that the code within it should be handled differently. The driver parses
the escape syntax and translates it into code that the database understands. In this example,
sampleProcedure is an Oracle procedure. The call is translated to the string begin
sampleProcedure(?, ?, ?); end and passed to an Oracle database for execution.

You can call procedures as well as functions. The syntax to create an SQL callable state-
ment for a function is:

{? = call functionName(?, ?, ...)}

✓Point✓Check

Key
Point

IN parameter

OUT parameter

IN OUT parameter

34.6 CallableStatement 1239

CallableStatement inherits PreparedStatement. Additionally, the
CallableStatement interface provides methods for registering the OUT parameters and for
getting values from the OUT parameters.

Before calling an SQL procedure, you need to use appropriate set methods to pass values
to IN and IN OUT parameters, and use registerOutParameter to register OUT and IN

OUT parameters. For example, before calling procedure sampleProcedure, the following
statements pass values to parameters p1 (IN) and p3 (IN OUT) and register parameters p2
(OUT) and p3 (IN OUT):

callableStatement.setString(1, "Dallas"); // Set Dallas to p1
callableStatement.setLong(3, 1); // Set 1 to p3
// Register OUT parameters
callableStatement.registerOutParameter(2, java.sql.Types.DOUBLE);
callableStatement.registerOutParameter(3, java.sql.Types.INTEGER);

You can use execute() or executeUpdate() to execute the procedure depending on the
type of SQL statement, then use get methods to retrieve values from the OUT parameters. For
example, the next statements retrieve the values from parameters p2 and p3.

double d = callableStatement.getDouble(2);
int i = callableStatement.getInt(3);

Let us define a MySQL function that returns the number of the records in the table that match
the specified firstName and lastName in the Student table.

/* For the callable statement example. Use MySQL version 5 */
drop function if exists studentFound;

delimiter //

create function studentFound(first varchar(20), last varchar(20))
returns int

begin

declare result int;

select count(*) into result
from Student
where Student.firstName = first and
Student.lastName = last;

return result;
end;

//

delimiter ;
/* Please note that there is a space between delimiter and ; */

If you use an Oracle database, the function can be defined as follows:

create or replace function studentFound
(first varchar2, last varchar2)
/* Do not name firstName and lastName. */
return number is

numberOfSelectedRows number := 0;
begin

select count(*) into numberOfSelectedRows
from Student

1240 Chapter 34 Java Database Programming

where Student.firstName = first and
Student.lastName = last;

return numberOfSelectedRows;
end studentFound;
/

Suppose the function studentFound is already created in the database. Listing 34.4 gives an
example that tests this function using callable statements.

LISTING 34.4 TestCallableStatement.java
1 import java.sql.*;
2
3 public class TestCallableStatement {
4 /** Creates new form TestTableEditor */
5 public static void main(String[] args) throws Exception {
6
7 Connection connection = DriverManager.getConnection(
8 "jdbc:mysql://localhost/javabook",
9 "scott", "tiger");
10 // Connection connection = DriverManager.getConnection(
11 // ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
12 // "scott", "tiger");
13
14 // Create a callable statement
15
16
17
18 java.util.Scanner input = new java.util.Scanner(System.in);
19 System.out.print("Enter student's first name: ");
20 String firstName = input.nextLine();
21 System.out.print("Enter student's last name: ");
22 String lastName = input.nextLine();
23
24
25
26
27
28
29 if (>= 1)
30 System.out.println(firstName + " " + lastName +
31 " is in the database");
32 else

33 System.out.println(firstName + " " + lastName +
34 " is not in the database");
35 }
36 }

callableStatement.getInt(1)

callableStatement.execute();
callableStatement.registerOutParameter(1, Types.INTEGER);
callableStatement.setString(3, lastName);
callableStatement.setString(2, firstName);

"{? = call studentFound(?, ?)}");
CallableStatement callableStatement = connection.prepareCall(

Class.forName("com.mysql.jdbc.Driver");load driver
connect database

create callable statement

enter fistName

enter lastName

set IN parameter
set IN parameter
register OUT parameter
execute statement

get OUT parameter

Enter student's first name:

Enter student's last name:

Jacob Smith is in the database

Smith

Jacob

Enter student's first name:

Enter student's last name:

John Smith is not in the database

Smith

John

34.7 Retrieving Metadata 1241

The program loads a MySQL driver (line 6), connects to a MySQL database (lines 7–9),
and creates a callable statement for executing the function studentFound (lines 15–16).

The function’s first parameter is the return value; its second and third parameters corre-
spond to the first and last names. Before executing the callable statement, the program sets the
first name and last name (lines 24–25) and registers the OUT parameter (line 26). The state-
ment is executed in line 27.

The function’s return value is obtained in line 29. If the value is greater than or equal to 1,
the student with the specified first and last name is found in the table.

34.23 Describe callable statements. How do you create instances of
CallableStatement? How do you execute a CallableStatement? How do you
register OUT parameters in a CallableStatement?

34.7 Retrieving Metadata
The database metadata such as database URL, username, JDBC driver name can be
obtained using the DatabaseMetaData interface and result set metadata such as table
column count and column names can be obtained using the ResultSetMetaData
interface.

JDBC provides the DatabaseMetaData interface for obtaining database-wide information,
and the ResultSetMetaData interface for obtaining information on the specific
ResultSet.

34.7.1 Database Metadata
The Connection interface establishes a connection to a database. It is within the context of a
connection that SQL statements are executed and results are returned. A connection also
provides access to database metadata information that describes the capabilities of the data-
base, supported SQL grammar, stored procedures, and so on. To obtain an instance of
DatabaseMetaData for a database, use the getMetaData method on a Connection object
like this:

DatabaseMetaData dbMetaData = connection.getMetaData();

If your program connects to a local MySQL database, the program in Listing 34.5 displays the
database information statements shown in Figure 34.24.

LISTING 34.5 TestDatabaseMetaData.java
1 import java.sql.*;
2
3 public class TestDatabaseMetaData {
4 public static void main(String[] args)
5 throws SQLException, ClassNotFoundException {
6 // Load the JDBC driver
7
8 System.out.println("Driver loaded");
9
10 // Connect to a database
11 Connection connection = DriverManager.getConnection
12 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
13 System.out.println("Database connected");
14
15
16 System.out.println("database URL: " +);
17 System.out.println("database username: " +

dbMetaData.getURL()
DatabaseMetaData dbMetaData = connection.getMetaData();

Class.forName("com.mysql.jdbc.Driver");

✓Point✓Check

Key
Point

database metadata

load driver

connect database

database metadata
get metadata

1242 Chapter 34 Java Database Programming

18);
19 System.out.println("database product name: " +
20 dbMetaData.getDatabaseProductName());
21 System.out.println("database product version: " +
22 dbMetaData.getDatabaseProductVersion());
23 System.out.println("JDBC driver name: " +
24 dbMetaData.getDriverName());
25 System.out.println("JDBC driver version: " +
26 dbMetaData.getDriverVersion());
27 System.out.println("JDBC driver major version: " +
28 dbMetaData.getDriverMajorVersion());
29 System.out.println("JDBC driver minor version: " +
30 dbMetaData.getDriverMinorVersion());
31 System.out.println("Max number of connections: " +
32 dbMetaData.getMaxConnections());
33 System.out.println("MaxTableNameLength: " +
34 dbMetaData.getMaxTableNameLength());
35 System.out.println("MaxColumnsInTable: " +
36 dbMetaData.getMaxColumnsInTable());
37
38 // Close the connection
39 connection.close();
40 }
41 }

dbMetaData.getUserName()

FIGURE 34.24 The DatabaseMetaData interface enables you to obtain database information.

load driver

34.7.2 Obtaining Database Tables
You can identify the tables in the database through database metadata using the getTables
method. Listing 34.6 displays all the user tables in the test database on a local MySQL data-
base. Figure 34.25 shows a sample output of the program.

LISTING 34.6 FindUserTables.java
1 import java.sql.*;
2
3 public class FindUserTables {
4 public static void main(String[] args)
5 throws SQLException, ClassNotFoundException {
6 // Load the JDBC driver
7 Class.forName("com.mysql.jdbc.Driver");

34.7 Retrieving Metadata 1243

8 System.out.println("Driver loaded");
9
10 // Connect to a database
11 Connection connection = DriverManager.getConnection
12 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
13 System.out.println("Database connected");
14
15
16
17
18 new String[] {"TABLE"});
19 System.out.print("User tables: ");
20 while (rsTables.next())
21 System.out.print(+ " ");
22
23 // Close the connection
24 connection.close();
25 }
26 }

rsTables.getString("TABLE_NAME")

ResultSet rsTables = dbMetaData.getTables(null, null, null,

DatabaseMetaData dbMetaData = connection.getMetaData();

Line 17 obtains table information in a result set using the getTables method. One of the
columns in the result set is TABLE_NAME. Line 21 retrieves the table name from this result
set column.

34.7.3 Result Set Metadata
The ResultSetMetaData interface describes information pertaining to the result set. A
ResultSetMetaData object can be used to find the types and properties of the columns in a
ResultSet. To obtain an instance of ResultSetMetaData, use the getMetaData method
on a result set like this:

ResultSetMetaData rsMetaData = resultSet.getMetaData();

You can use the getColumnCount() method to find the number of columns in the result and
the getColumnName(int) method to get the column names. For example, Listing 34.7 dis-
plays all the column names and contents resulting from the SQL SELECT statement select
* from Enrollment. The output is shown in Figure 34.26.

LISTING 34.7 TestResultSetMetaData.java
1 import java.sql.*;
2
3 public class TestResultSetMetaData {
4 public static void main(String[] args)
5 throws SQLException, ClassNotFoundException {
6 // Load the JDBC driver
7
8 System.out.println("Driver loaded");

Class.forName("com.mysql.jdbc.Driver");

FIGURE 34.25 You can find all the tables in the database.

connect database

database metadata

obtain tables

get table names

load driver

1244 Chapter 34 Java Database Programming

9
10 // Connect to a database
11 Connection connection = DriverManager.getConnection
12 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
13 System.out.println("Database connected");
14
15 // Create a statement
16 Statement statement = connection.createStatement();
17
18 // Execute a statement
19 ResultSet resultSet = statement.executeQuery
20 ("select * from Enrollment");
21
22
23 for (int i = 1; i <= ; i++)
24 System.out.printf("%-12s\t",);
25 System.out.println();
26
27 // Iterate through the result and print the students' names
28 while (resultSet.next()) {
29 for (int i = 1; i <= ; i++)
30 System.out.printf("%-12s\t", resultSet.getObject(i));
31 System.out.println();
32 }
33
34 // Close the connection
35 connection.close();
36 }
37 }

rsMetaData.getColumnCount()

rsMetaData.getColumnName(i)
rsMetaData.getColumnCount()

ResultSetMetaData rsMetaData = resultSet.getMetaData();

34.24 What is DatabaseMetaData for? Describe the methods in DatabaseMetaData.
How do you get an instance of DatabaseMetaData?

34.25 What is ResultSetMetaData for? Describe the methods in ResultSetMetaData.
How do you get an instance of ResultSetMetaData?

34.26 How do you find the number of columns in a result set? How do you find the column
names in a result set?

KEY TERMS

FIGURE 34.26 The ResultSetMetaData interface enables you to obtain result set
information.

connect database

create statement

create result set

result set metadata
column count
column name

✓Point✓Check

database system 1212
domain constraint 1215
foreign key constraint 1215
integrity constraint 1214

primary key constraint 1215
relational database 1215
Structured Query Language

(SQL) 1216

Programming Exercises 1245

CHAPTER SUMMARY

1. This chapter introduced the concepts of database systems, relational databases,
relational data models, data integrity, and SQL. You learned how to develop database
applications using Java.

2. The Java API for developing Java database applications is called JDBC. JDBC pro-
vides Java programmers with a uniform interface for accessing and manipulating a
wide range of relational databases.

3. The JDBC API consists of classes and interfaces for establishing connections with
databases, sending SQL statements to databases, processing the results of SQL state-
ments, and obtaining database metadata.

4. Since a JDBC driver serves as the interface to facilitate communications between
JDBC and a proprietary database, JDBC drivers are database specific. A JDBC-
ODBC bridge driver is included in JDK to support Java programs that access data-
bases through ODBC drivers. If you use a driver other than the JDBC-ODBC bridge
driver, make sure it is in the classpath before running the program.

5. Four key interfaces are needed to develop any database application using Java:
Driver, Connection, Statement, and ResultSet. These interfaces define a
framework for generic SQL database access. The JDBC driver vendors provide
implementation for them.

6. A JDBC application loads an appropriate driver using the Driver interface, connects
to the database using the Connection interface, creates and executes SQL state-
ments using the Statement interface, and processes the result using the ResultSet
interface if the statements return results.

7. The PreparedStatement interface is designed to execute dynamic SQL statements
with parameters. These SQL statements are precompiled for efficient use when
repeatedly executed.

8. Database metadata is information that describes the database itself. JDBC provides
the DatabaseMetaData interface for obtaining database-wide information and the
ResultSetMetaData interface for obtaining information on the specific
ResultSet.

TEST QUESTIONS

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

PROGRAMMING EXERCISES

*34.1 (Access and update a Staff table) Write a Java applet that views, inserts, and
updates staff information stored in a database, as shown in Figure 34.27a. The
View button displays a record with a specified ID. The Staff table is created as
follows:

create table Staff (
id char(9) not null,

www.cs.armstrong.edu/liang/intro9e/test.html

1246 Chapter 34 Java Database Programming

**34.2 (Visualize data) Write a program that displays the number of students in each
department in a pie chart and a bar chart, as shown in Figure 34.27b. The number
of students for each department can be obtained from the Student table (see
Figure 34.4) using the following SQL statement:

select deptId, count(*)
from Student
where deptId is not null

group by deptId;

*34.3 (Connection dialog) Develop a class named DBConnectionPanel that enables
the user to select or enter a JDBC driver and a URL and to enter a username and
password, as shown in Figure 34.28. When the OK button is clicked, a
Connection object for the database is stored in the connection property. You
can then use the getConnection() method to return the connection.

(a) (b)

FIGURE 34.27 (a) The applet lets you view, insert, and update staff information. (b) The PieChart and BarChart

components display the query data obtained from the data module.

FIGURE 34.28 The DBConnectionPanel component enables the user to enter database information.

lastName varchar(15),
firstName varchar(15),
mi char(1),
address varchar(20),
city varchar(20),
state char(2),
telephone char(10),
email varchar(40),
primary key (id)

);

Programming Exercises 1247

*34.4 (Find grades) Listing 34.2, FindGrade.java, presented an applet that finds a
student’s grade for a specified course. Rewrite the program to find all the grades
for a specified student, as shown in Figure 34.29.

*34.6 (Find tables and showing their contents) Write a program that fills in table names
in a combo box, as shown in Figure 34.30b. You can select a table from the combo
box to display its contents in the text area.

**34.7 (Populate Quiz table) Create a table named Quiz as follows:

create table Quiz(
questionId int,
question varchar(4000),
choicea varchar(1000),
choiceb varchar(1000),
choicec varchar(1000),
choiced varchar(1000),
answer varchar(5));

The Quiz table stores multiple-choice questions. Suppose the multiple-choice
questions are stored in a text file accessible from www.cs.armstrong.edu/liang/data/
Quiz.txt in the following format:

1. question1
a. choice a
b. choice b

FIGURE 34.29 The program displays the grades for the courses for a specified student.

*34.5 (Display table contents) Write a program that displays the content for a given
table. As shown in Figure 34.30a, you enter a table and click the Show Contents
button to display the table contents in the text area.

(a) (b)

FIGURE 34.30 (a) Enter a table name to display the table contents. (b) Select a table name from the combo box to display
its contents.

www.cs.armstrong.edu/liang/data/Quiz.txt
www.cs.armstrong.edu/liang/data/Quiz.txt

1248 Chapter 34 Java Database Programming

c. choice c
d. choice d
Answer:cd

2. question2
a. choice a
b. choice b
c. choice c
d. choice d
Answer:a

...

Write a program that reads the data from the file and populate it into the Quiz
table.

*34.8 (Populate Salary table) Create a table named Salary as follows:

create table Salary(
firstName varchar(100),
lastName varchar(100),
rank varchar(15),
salary float);

Obtain the data for salary from http://cs.armstrong.edu/liang/data/Salary.txt and popu-
late it into the Salary table in the database.

*34.9 (Copy table) Suppose the database contains a student table defined as follows:

create table Student1 (
username varchar(50) not null,
password varchar(50) not null,
fullname varchar(200) not null,
constraint pkStudent primary key (username)

);

Create a new table named Student2 as follows:

create table Student2 (
username varchar(50) not null,
password varchar(50) not null,
firstname varchar(100),
lastname varchar(100),
constraint pkStudent primary key (username)

);

A full name is in the form of firstname mi lastname or firstname

lastname. For example, John K Smith is a full name. Write a program that
copies table Student1 into Student2. Your task is to split a full name into
firstname, mi, and lastname for each record in Student1 and store a new
record into Student2.

*34.10 (Record unsubmitted exercises) The following three tables store information on
students, assigned exercises, and exercise submission in LiveLab. LiveLab is an
automatic grading system for grading programming exercises.

create table AGSStudent (
username varchar(50) not null,
password varchar(50) not null,
fullname varchar(200) not null,
instructorEmail varchar(100) not null,

http://cs.armstrong.edu/liang/data/Salary.txt

Programming Exercises 1249

constraint pkAGSStudent primary key (username)
);

create table ExerciseAssigned (
instructorEmail varchar(100),
exerciseName varchar(100),
maxscore double default 10,
constraint pkCustomExercise primary key

(instructorEmail, exerciseName)
);

create table AGSLog (
username varchar(50), /* This is the student's user name */
exerciseName varchar(100), /* This is the exercise assigned */
score double default null,
submitted bit default 0,
constraint pkLog primary key (username, exerciseName)

);

The AGSStudent table stores the student information. The ExerciseAssigned
table assigns the exercises by an instructor. The AGSLog table stores the grading
results. When a student submits an exercise, a record is stored in the AGSLog table.
However, there is no record in AGSLog if a student did not submit the exercise.

Write a program that adds a new record for each student and an assigned exercise
to the student in the AGSLog table if a student has not submitted the exercise. The
record should have the default values on score and submitted. For example, if
the tables contain the following data in AGSLog before you run this program, the
AGSLog table now contains the new records after the program runs.

AGSStudent

username password fullname instructorEmail

abc p1 John Roo t@gmail.com

cde p2 Yao Mi c@gmail.com

wbc p3 F3 t@gmail.com

ExerciseAssigned

instructorEmail exerciseName maxScore

t@gmail.com e1 10

t@gmail.com e2 10

c@gmail.com e1 4

c@gmail.com e4 20

AGSLog

username exerciseName score submitted

abc e1 9 1

wbc e2 7 1

AGSLog after the program runs

username exerciseName score submitted

abc e1 9 1

wbc e2 7 1

abc e2 0

wbc e1 0

cde e1 0

cde e4 0

This page intentionally left blank

1

***This is a bonus Web chapter

CHAPTER 35

Internationalization

Objectives
To describe Java's internationalization features (§35.1).
To construct a locale with language, country, and variant (§35.2).
To display date and time based on locale (§35.3).
To display numbers, currencies, and percentages based on locale
(§35.4).
To develop applications for international audiences using resource
bundles (§35.5).
To specify encoding schemes for text I/O (§35.6).

2

35.1 Introduction

Many Web sites maintain several versions of Web pages so that readers can
choose one written in a language they understand. Because there are so many
languages in the world, it would be highly problematic to create and maintain
enough different versions to meet the needs of all clients everywhere. Java
comes to the rescue. Java is the first language designed from the ground up to
support internationalization. In consequence, it allows your programs to be
customized for any number of countries or languages without requiring
cumbersome changes in the code.

Here are the major Java features that support internationalization:

<margin note: Unicode>
Java characters use Unicode, a 16-bit encoding scheme established by the
Unicode Consortium to support the interchange, processing, and display
of written texts in the world’s diverse languages. The use of Unicode
encoding makes it easy to write Java programs that can manipulate
strings in any international language. (To see all the Unicode
characters, visit mindprod.com/jgloss/reuters.html.)

<margin note: Locale class>
Java provides the Locale class to encapsulate information about a
specific locale. A Locale object determines how locale-sensitive
information, such as date, time, and number, is displayed, and how
locale-sensitive operations, such as sorting strings, are performed. The
classes for formatting date, time, and numbers, and for sorting strings
are grouped in the java.text package.

<margin note: ResourceBundle>
Java uses the ResourceBundle class to separate locale-specific
information, such as status messages and GUI component labels, from the
program. The information is stored outside the source code and can be
accessed and loaded dynamically at runtime from a ResourceBundle, rather
than hard-coded into the program.

In this chapter, you will learn how to format dates, numbers, currencies, and
percentages for different regions, countries, and languages. You will also
learn how to use resource bundles to define which images and strings are used
by a component, depending on the user’s locale and preferences.

35.2 The Locale Class
A Locale object represents a geographical, political, or cultural region in
which a specific language or custom is used. For example, Americans speak
English, and the Chinese speak Chinese. The conventions for formatting dates,
numbers, currencies, and percentages may differ from one country to another.
The Chinese, for instance, use year/month/day to represent the date, while
Americans use month/day/year. It is important to realize that locale is not
defined only by country. For example, Canadians speak either Canadian English
or Canadian French, depending on which region of Canada they reside in.

NOTE
<margin note: locale property in Component>

Every Swing user-interface class has a locale property
inherited from the Component class.

To create a Locale object, use one of the three constructors with a specified
language and optional country and variant, as shown in Figure 35.1.

3

java.util.Locale
+Locale(language: String)
+Locale(language: String, country: String)
+Locale(language: String, country: String,

variant: String)
+getCountry(): String
+getLanguage(): String
+getVariant(): String
+getDefault(): Locale
+getDisplayCountry(): String
+getDisplayLanguage(): String
+getDisplayName(): String

+getDisplayVariant(): String
+getAvailableLocales(): Locale[]

Constructs a locale from a language code.
Constructs a locale from language and country codes.
Constructs a locale from language, country, and variant codes.

Returns the country/region code for this locale.
Returns the language code for this locale.
Returns the variant code for this locale.
Gets the default locale on the machine.
Returns the name of the country as expressed in the current locale.
Returns the name of the language as expressed in the current locale.
Returns the name for the locale. For example, the name is Chinese

(China) for the locale Locale.CHINA.
Returns the name for the locale’s variant if it exists.
Returns the available locales in an array.

Figure 35.1
The Locale class encapsulates a locale.
<margin note: language>
The language should be a valid language code—that is, one of the lowercase
two-letter codes defined by ISO-639. For example, zh stands for Chinese, da
for Danish, en for English, de for German, and ko for Korean. Table 35.1 lists
the language codes.

<margin note: country>
The country should be a valid ISO country code—that is, one of the uppercase,
two-letter codes defined by ISO-3166. For example, CA stands for Canada, CN
for China, DK for Denmark, DE for Germany, and US for the United States. Table
35.2 lists the country codes.

Code Language
da Danish
de German
el Greek
en English
es Spanish
fi Finnish
fr French
it Italian

Code Language
ja Japanese
ko Korean
nl Dutch
no Norwegian
pt Portuguese
sv Swedish
tr Turkish
zh Chinese

Table 31.1 Common Language Codes

Code Country
AT Austria
BE Belgium
CA Canada
CH Switzerland
CN China
DE Germany
DK Denmark
ES Spain
FI Finland
FR France
GB United Kingdom
GR Greece

Code Country
IE Ireland
HK Hong Kong
IT Italy
JP Japan
KR Korea
NL Netherlands
NO Norway
PT Portugal
SE Sweden
TR Turkey
TW Taiwan
US United States

Table 31.2 Common Country Codes

<margin note: variant>
The argument variant is rarely used and is needed only for exceptional or
system-dependent situations to designate information specific to a browser or
vendor. For example, the Norwegian language has two sets of spelling rules, a

4

traditional one called bokmål and a new one called nynorsk. The locale for
traditional spelling would be created as follows:

new Locale("no", "NO", "B");

For convenience, the Locale class contains many predefined locale constants.
Locale.CANADA is for the country Canada and language English;
Locale.CANADA_FRENCH is for the country Canada and language French. Several
other common constants are:

Locale.US, Locale.UK, Locale.FRANCE, Locale.GERMANY,
Locale.ITALY, Locale.CHINA, Locale.KOREA, Locale.JAPAN, and

The Locale class also provides the following constants based on language:

Locale.CHINESE, Locale.ENGLISH, Locale.FRENCH,
Locale.GERMAN, Locale.ITALIAN, Locale.JAPANESE,
Locale.KOREAN, Locale.SIMPLIFIED_CHINESE, and
Locale.TRADITIONAL_CHINESE

TIP:
You can invoke the static method getAvailableLocales() in the
Locale class to obtain all the available locales supported in
the system. For example,

Locale[] availableLocales = Calendar.getAvailableLocales();

returns all the locales in an array.

TIP:
Your machine has a default locale. You may override it by
supplying the language and region parameters when you run the
program, as follows:

java –Duser.language=zh –Duser.region=CN MainClass

<margin note: locale sensitive>
An operation that requires a Locale to perform its task is called locale
sensitive. Displaying a number such as a date or time, for example, is a
locale-sensitive operation; the number should be formatted according to the
customs and conventions of the user's locale. The sections that follow
introduce locale-sensitive operations.

35.3 Displaying Date and Time
<margin note: Date>
<margin note: Calendar>
Applications often need to obtain date and time. Java provides a system-
independent encapsulation of date and time in the java.util.Date class; it
also provides java.util.TimeZone for dealing with time zones, and
java.util.Calendar for extracting detailed information from Date. Different
locales have different conventions for displaying date and time. Should the
year, month, or day be displayed first? Should slashes, periods, or colons be
used to separate fields of the date? What are the names of the months in the
language? The java.text.DateFormat class can be used to format date and time
in a locale-sensitive way for display to the user. The Date class was
introduced in §8.6.1, “The Date Class,” and the Calendar class and its
subclass GregorianCalendar were introduced in §15.4, “Case Study: Calendar and
GregorianCalendar.”

5

35.3.1 The TimeZone Class
<margin note: TimeZone>
TimeZone represents a time zone offset and also figures out daylight savings.
To get a TimeZone object for a specified time zone ID, use
TimeZone.getTimeZone(id). To set a time zone in a Calendar object, use the
setTimeZone method with a time zone ID. For example,
cal.setTimeZone(TimeZone.getTimeZone("CST")) sets the time zone to Central
Standard Time. To find all the available time zones supported in Java, use the
static method getAvailableIDs() in the TimeZone class. In general, the
international time zone ID is a string in the form of continent/city like
Europe/Berlin, Asia/Taipei, and America/Washington. You can also use the
static method getDefault() in the TimeZone class to obtain the default time
zone on the host machine.

35.3.2 The DateFormat Class
<margin note: DateFormat>
The DateFormat class can be used to format date and time in a number of
styles. The DateFormat class supports several standard formatting styles. To
format date and time, simply create an instance of DateFormat using one of the
three static methods getDateInstance, getTimeInstance, and getDateTimeInstance
and apply the format(Date) method on the instance, as shown in Figure 35.2.

java.text.DateFormat
+format(date: Date): String
+getDateInstance(): DateFormat
+getDateInstance(dateStyle: int): DateFormat
+getDateInstance(dateStyle: int, aLocale:

Locale): DateFormat
+getDateTimeInstance(): DateFormat

+getDateTimeInstance(dateStyle: int,
timeStyle: int): DateFormat

+getDateTimeInstance(dateStyle: int,
timeStyle: int, aLocale: Locale): DateFormat

+getInstance(): DateFormat

Formats a date into a date/time string.
Gets the date formatter with the default formatting style for the default locale.
Gets the date formatter with the given formatting style for the default locale.
Gets the date formatter with the given formatting style for the given locale.

Gets the date and time formatter with the default formatting style for the
default locale.

Gets the date and time formatter with the given date and time formatting
styles for the default locale.

Gets the date and time formatter with the given formatting styles for the given
locale.

Gets a default date and time formatter that uses the SHORT style for both the
date and the time.

Figure 35.2
The DateFormat class formats date and time.

The dateStyle and timeStyle are one of the following constants:
DateFormat.SHORT, DateFormat.MEDIUM, DateFormat.LONG, DateFormat.FULL. The
exact result depends on the locale, but generally,

SHORT is completely numeric, such as 7/24/98 (for date) and 4:49 PM (for
time).
MEDIUM is longer, such as 24-Jul-98 (for date) and 4:52:09 PM (for
time).
LONG is even longer, such as July 24, 1998 (for date) and 4:53:16 PM EST
(for time).
FULL is completely specified, such as Friday, July 24, 1998 (for date)
and 4:54:13 o'clock PM EST (for time).

The statements given below display current time with a specified time zone
(CST), formatting style (full date and full time), and locale (US).

GregorianCalendar calendar = new GregorianCalendar();

6

DateFormat formatter = DateFormat.getDateTimeInstance(
 DateFormat.FULL, DateFormat.FULL, Locale.US);
TimeZone timeZone = TimeZone.getTimeZone("CST");
formatter.setTimeZone(timeZone);
System.out.println("The local time is " +
 formatter.format(calendar.getTime()));

35.3.3 The SimpleDateFormat Class
<margin note: SimpleDateFormat>
The date and time formatting subclass, SimpleDateFormat, enables you to choose
any user-defined pattern for date and time formatting. The constructor shown
below can be used to create a SimpleDateFormat object, and the object can be
used to convert a Date object into a string with the desired format.

public SimpleDateFormat(String pattern)

The parameter pattern is a string consisting of characters with special
meanings. For example, y means year, M means month, d means day of the month,
G is for era designator, h means hour, m means minute of the hour, s means
second of the minute, and z means time zone. Therefore, the following code
will display a string like "Current time is 1997.11.12 AD at 04:10:18 PST"
because the pattern is "yyyy.MM.dd G 'at' hh:mm:ss z".

SimpleDateFormat formatter
 = new SimpleDateFormat("yyyy.MM.dd G 'at' hh:mm:ss z");
date currentTime = new Date();
String dateString = formatter.format(currentTime);
System.out.println("Current time is " + dateString);

35.3.4 The DateFormatSymbols Class
<margin note: DateFormatSymbols>
The DateFormatSymbols class encapsulates localizable date-time formatting
data, such as the names of the months and the names of the days of the week,
as shown in Figure 35.3.

java.text.DateFormatSymbols
+DateFormatSymbols()
+DateFormatSymbols(Locale locale)
+getAmPmStrings(): String[]
+getEras(): String[]
+getMonths(): String[]
+setMonths(newMonths: String[]): void
+getShortMonths(): String[]
+setShortMonths(newShortMonths: String[]):

void
+getWeekdays(): String[]
+setWeekdays(newWeekdays: String[]): void
+getShotWeekdays(): String[]
+setShortWeekdays(newWeekdays: String[]):

void

Constructs a DateFormatSymbols object for the default locale.
Constructs a DateFormatSymbols object by for the given locale.
Gets AM/PM strings. For example: "AM" and "PM".
Gets era strings. For example: "AD" and "BC".
Gets month strings. For example: "January", "February", etc.
Sets month strings for this locale.
Gets short month strings. For example: "Jan", "Feb", etc.
Sets short month strings for this locale.

Gets weekday strings. For example: "Sunday", "Monday", etc.
Sets weekday strings.
Gets short weekday strings. For example: "Sun", "Mon", etc.
Sets short weekday strings. For example: "Sun", "Mon", etc.

Figure 35.3
The DateFormatSymbols class encapsulates localizable date-time formatting
data.

For example, the following statement displays the month names and weekday
names for the default locale.

7

DateFormatSymbols symbols = new DateFormatSymbols();
String[] monthNames = symbols.getMonths();
for (int i = 0; i < monthNames.length; i++) {
 System.out.println(monthNames[i]); // Display January, ...
}

String[] weekdayNames = symbols.getWeekdays();
for (int i = 0; i < weekdayNames.length; i++) {
 System.out.println(weekdayNames[i]); // Display Sunday, Monday, ...
}

The following two examples demonstrate how to display date, time, and calendar
based on locale. The first example creates a clock and displays date and time
in locale-sensitive format. The second example displays several different
calendars with the names of the days shown in the appropriate local language.

35.3.5 Example: Displaying an International Clock
Write a program that displays a clock to show the current time based on the
specified locale and time zone. The locale and time zone are selected from the
combo boxes that contain the available locales and time zones in the system,
as shown in Figure 35.4.

Figure 35.4
The program displays a clock that shows the current time with the
specified locale and time zone.

Here are the major steps in the program:
1. Create a subclass of JPanel named WorldClock (Listing 35.1) to contain an
instance of the StillClock class (developed in Listing 13.10,
StillClock.java), and place it in the center. Create a JLabel to display the
digit time, and place it in the south. Use the GregorianCalendar class to
obtain the current time for a specific locale and time zone.
2. Create a subclass of JPanel named WorldClockControl (Listing 35.2) to
contain an instance of WorldClock and two instances of JComboBox for selecting
locales and time zones.
3. Create an applet named WorldClockApp (Listing 35.3) to contain an instance
of WorldClockControl and enable the applet to run standalone.
The relationship among these classes is shown in Figure 35.5.

8

WorldClockApp

+WorldClockApplet()
+main(args: String[]): void

javax.swing.JApplet

WorldClockControl

-clock: WorldClock
-jcbLocales: JComboBox
-jcbTimeZones: JComboBox
-availableLocales: Locale[]
-availableTimeZones: String[]

+WorldClockControl()
-setAvailableLocales(): void
-setAvailableTimeZones(): void

WorldClock

-clock: StillClock
-jlblDigitTime: JLabel
-timeZone: TimeZone
-timer: Timer

+WorldClock()
+setTimeZone(timeZone:
 TimeZone): void

javax.swing.JPanel

1 11 1

javax.swing.JPanel

 Figure 35.5
WorldClockApp contains WorldClockControl, and WorldClockControl contains
WorldClock.

Listing 35.1 WorldClock.java
<margin note line 11: create timer>
<margin note line 12: create clock>
<margin note line 26: timer listener class>

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4 import java.util.Calendar;
 5 import java.util.TimeZone;
 6 import java.util.GregorianCalendar;
 7 import java.text.*;
 8
 9 public class WorldClock extends JPanel {
 10 private TimeZone timeZone = TimeZone.getTimeZone("EST");
 11 private Timer timer = new Timer(1000, new TimerListener());
 12 private StillClock clock = new StillClock();
 13 private JLabel jlblDigitTime = new JLabel("", JLabel.CENTER);
 14
 15 public WorldClock() {
 16 setLayout(new BorderLayout());
 17 add(clock, BorderLayout.CENTER);
 18 add(jlblDigitTime, BorderLayout.SOUTH);
 19 timer.start();
 20 }
 21
 22 public void setTimeZone(TimeZone timeZone) {
 23 this.timeZone = timeZone;
 24 }
 25
 26 private class TimerListener implements ActionListener {
 27 @Override
 28 public void actionPerformed(ActionEvent e) {
29 Calendar calendar =
30 new GregorianCalendar(timeZone, getLocale());
 31 clock.setHour(calendar.get(Calendar.HOUR));
 32 clock.setMinute(calendar.get(Calendar.MINUTE));
 33 clock.setSecond(calendar.get(Calendar.SECOND));
 34
 35 // Display digit time on the label
 36 DateFormat formatter = DateFormat.getDateTimeInstance

9

 37 (DateFormat.MEDIUM, DateFormat.LONG, getLocale());
 38 formatter.setTimeZone(timeZone);
 39 jlblDigitTime.setText(formatter.format(calendar.getTime()));
 40 }
 41 }
 42 }

Listing 35.2 WorldClockControl.java
<margin note line 8: locales>
<margin note line 9: time zones>
<margin note line 12: combo boxes>
<margin note line 16: create clock>
<margin note line 31: create UI>
<margin note line 53: new locale>
<margin note line 59: new time zone>

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4 import java.util.*;
 5
 6 public class WorldClockControl extends JPanel {
 7 // Obtain all available locales and time zone ids
 8 private Locale[] availableLocales = Locale.getAvailableLocales();
 9 private String[] availableTimeZones = TimeZone.getAvailableIDs();
 10
 11 // Comboxes to display available locales and time zones
 12 private JComboBox jcbLocales = new JComboBox();
 13 private JComboBox jcbTimeZones = new JComboBox();
 14
 15 // Create a clock
 16 private WorldClock clock = new WorldClock();
 17
 18 public WorldClockControl() {
 19 // Initialize jcbLocales with all available locales
 20 setAvailableLocales();
 21
 22 // Initialize jcbTimeZones with all available time zones
 23 setAvailableTimeZones();
 24
 25 // Initialize locale and time zone
 26 clock.setLocale(
 27 availableLocales[jcbLocales.getSelectedIndex()]);
 28 clock.setTimeZone(TimeZone.getTimeZone(
 29 availableTimeZones[jcbTimeZones.getSelectedIndex()]));
 30
 31 JPanel panel1 = new JPanel();
 32 panel1.setLayout(new GridLayout(2, 1));
 33 panel1.add(new JLabel("Locale"));
 34 panel1.add(new JLabel("Time Zone"));
 35 JPanel panel2 = new JPanel();
 36
 37 panel2.setLayout(new GridLayout(2, 1));
 38 panel2.add(jcbLocales, BorderLayout.CENTER);
 39 panel2.add(jcbTimeZones, BorderLayout.CENTER);
 40
 41 JPanel panel3 = new JPanel();
 42 panel3.setLayout(new BorderLayout());

10

 43 panel3.add(panel1, BorderLayout.WEST);
 44 panel3.add(panel2, BorderLayout.CENTER);
 45
 46 setLayout(new BorderLayout());
 47 add(panel3, BorderLayout.NORTH);
 48 add(clock, BorderLayout.CENTER);
 49
 50 jcbLocales.addActionListener(new ActionListener() {
 51 @Override
 52 public void actionPerformed(ActionEvent e) {
 53 clock.setLocale(
 54 availableLocales[jcbLocales.getSelectedIndex()]);
 55 }
 56 });
 57 jcbTimeZones.addActionListener(new ActionListener() {
 58 @Override
 59 public void actionPerformed(ActionEvent e) {
 60 clock.setTimeZone(TimeZone.getTimeZone(
 61 availableTimeZones[jcbTimeZones.getSelectedIndex()]));
 62 }
 63 });
 64 }
 65
 66 private void setAvailableLocales() {
 67 for (int i = 0; i < availableLocales.length; i++) {
 68 jcbLocales.addItem(availableLocales[i].getDisplayName() + " "
 69 + availableLocales[i].toString());
 70 }
 71 }
 72
 73 private void setAvailableTimeZones() {
 74 // Sort time zones
 75 Arrays.sort(availableTimeZones);
 76 for (int i = 0; i < availableTimeZones.length; i++) {
 77 jcbTimeZones.addItem(availableTimeZones[i]);
 78 }
 79 }
 80 }

Listing 35.3 WorldClockApp.java
<margin note line 8: main method omitted>

 1 import javax.swing.*;
 2
 3 public class WorldClockApp extends JApplet {
 4 /** Construct the applet */
 5 public WorldClockApp() {
 6 add(new WorldClockControl());
 7 }
 8 }

The WorldClock class uses GregorianCalendar to obtain a Calendar object for
the specified locale and time zone (line 28). Since WorldClock extends JPanel,
and every GUI component has the locale property, the locale for the calendar
is obtained from the WorldClock using getLocale() (line 28).

11

An instance of StillClock is created (line 12) and placed in the panel (line
17). The clock time is updated every one second using the current Calendar
object in lines 28–35.

An instance of DateFormat is created (lines 34–35) and is used to format the
date in accordance with the locale (line 37).

The WorldClockControl class contains an instance of WorldClock and two combo
boxes. The combo boxes store all the available locales and time zones (lines
64–77). The newly selected locale and time zone are set in the clock (lines
50–61) and used to display a new time based on the current locale and time
zone.

35.3.6 Example: Displaying a Calendar

Write a program that displays a calendar based on the specified locale, as
shown in Figure 35.6. The user can specify a locale from a combo box that
consists of a list of all the available locales supported by the system. When
the program starts, the calendar for the current month of the year is
displayed. The user can use the Prior and Next buttons to browse the calendar.

Figure 35.6
The calendar applet displays a calendar with a specified locale.

Here are the major steps in the program:
1. Create a subclass of JPanel named CalendarPanel (Listing 35.4) to display
the calendar for the given year and month based on the specified locale and
time zone.
2. Create an applet named CalendarApp (Listing 35.5). Create a panel to hold
an instance of CalendarPanel and two buttons, Prior and Next. Place the panel
in the center of the applet. Create a combo box and place it in the south of
the applet. The relationships among these classes are shown in Figure 35.7.

12

CalendarPanel

-month: int
-year: int
-calendar: java.util.Calendar

+getMonth(): int
+setMonth(newMonth: int): void
+getYear(): int
+setYear(newYear: int): void
+setLocale(newLocale: Locale): void
+showHeader(): void
+showDayNames(): void
+showDays(): void

CalendarApp

-calendarPanel: CalendarPanel
-jboLocale: javax.swing.JComboBox
-jbtPrior: javax.swing.JButton
-jbtNext: javax.swing.JButton
-locales: java.util.Locale[]

+init(): void
+main(args: String[]): void

javax.swing.JPanel javax.swing.JApplet

1 1

Figure 35.7
CalendarApp contains CalendarPanel.

Listing 35.4 CalendarPanel.java
<margin note line 9: label for header>
<margin note line 12: labels for days>
<margin note line 14: calendar>
<margin note line 15: month>
<margin note line 16: year>
<margin note line 19: panel for days>
<margin note line 23: create labels>
<margin note line 32: place header>
<margin note line 33: place day>
<margin note line 36: get current calendar>
<margin note line 39: update calendar>
<margin note line 42: show header>
<margin note line 43: show days>
<margin note line 47: show header>
<margin note line 51: new header>
<margin note line 57: get day names>
<margin note line 69: empty jpDays panel>
<margin note line 71: display day names>
<margin note line 82: days before this month>
<margin note line 92: days in this month>
<margin note line 101: days after this month>
<margin note line 108: repaint jpDays>
<margin note line 113: update calendar>
<margin note line 125: set new month>
<margin note line 138: set new year>
<margin note line 146: set new locale>

 1 import java.awt.*;
 2 import javax.swing.*;
 3 import javax.swing.border.LineBorder;
 4 import java.util.*;
 5 import java.text.*;
 6
 7 public class CalendarPanel extends JPanel {
 8 // The header label
 9 private JLabel jlblHeader = new JLabel(" ", JLabel.CENTER);
 10
 11 // Maximun number of labels to display day names and days
 12 private JLabel[] jlblDay = new JLabel[49];

13

 13
 14 private java.util.Calendar calendar;
 15 private int month; // The specified month
 16 private int year; // The specified year
 17
 18 // Panel jpDays to hold day names and days
 19 private JPanel jpDays = new JPanel(new GridLayout(0, 7));
 20
 21 public CalendarPanel() {
 22 // Create labels for displaying days
 23 for (int i = 0; i < 49; i++) {
 24 jlblDay[i] = new JLabel();
 25 jlblDay[i].setBorder(new LineBorder(Color.black, 1));
 26 jlblDay[i].setHorizontalAlignment(JLabel.RIGHT);
 27 jlblDay[i].setVerticalAlignment(JLabel.TOP);
 28 }
 29
 30 // Place header and calendar body in the panel
 31 this.setLayout(new BorderLayout());
 32 this.add(jlblHeader, BorderLayout.NORTH);
 33 this.add(jpDays, BorderLayout.CENTER);
 34
 35 // Set current month and year
 36 calendar = new GregorianCalendar();
 37 month = calendar.get(Calendar.MONTH);
 38 year = calendar.get(Calendar.YEAR);
 39 updateCalendar();
 40
 41 // Show calendar
 42 showHeader();
 43 showDays();
 44 }
 45
 46 /** Update the header based on locale */
 47 private void showHeader() {
 48 SimpleDateFormat sdf =
 49 new SimpleDateFormat("MMMM yyyy", getLocale());
 50 String header = sdf.format(calendar.getTime());
 51 jlblHeader.setText(header);
 52 }
 53
 54 /** Update the day names based on locale */
 55 private void showDayNames() {
 56 DateFormatSymbols dfs = new DateFormatSymbols(getLocale());
 57 String dayNames[] = dfs.getWeekdays();
 58
 59 // jlblDay[0], jlblDay[1], ..., jlblDay[6] for day names
 60 for (int i = 0; i < 7; i++) {
 61 jlblDay[i].setText(dayNames[i + 1]);
 62 jlblDay[i].setHorizontalAlignment(JLabel.CENTER);
 63 jpDays.add(jlblDay[i]); // Add to jpDays
 64 }
 65 }
 66
 67 /** Display days */
 68 public void showDays() {
 69 jpDays.removeAll(); // Remove all labels from jpDays
 70

14

 71 showDayNames(); // Display day names
 72
 73 // Get the day of the first day in a month
 74 int startingDayOfMonth = calendar.get(Calendar.DAY_OF_WEEK);
 75
 76 // Fill the calendar with the days before this month
 77 Calendar cloneCalendar = (Calendar)calendar.clone();
 78 cloneCalendar.add(Calendar.DATE, -1); // Becomes preceding month
 79 int daysInPrecedingMonth = cloneCalendar.getActualMaximum(
 80 Calendar.DAY_OF_MONTH);
 81
 82 for (int i = 0; i < startingDayOfMonth - 1; i++) {
 83 jlblDay[i + 7].setForeground(Color.LIGHT_GRAY);
 84 jlblDay[i + 7].setText(daysInPrecedingMonth -
 85 startingDayOfMonth + 2 + i + "");
 86 jpDays.add(jlblDay[i + 7]); // Add to jpDays
 87 }
 88
 89 // Display days of this month
 90 int daysInCurrentMonth = calendar.getActualMaximum(
 91 Calendar.DAY_OF_MONTH);
 92 for (int i = 1; i <= daysInCurrentMonth; i++) {
 93 jlblDay[i - 2 + startingDayOfMonth + 7].
 94 setForeground(Color.black);
 95 jlblDay[i - 2 + startingDayOfMonth + 7].setText(i + "");
 96 jpDays.add(jlblDay[i - 2 + startingDayOfMonth + 7]);
 97 }
 98
 99 // Fill the calendar with the days after this month
100 int j = 1;
101 for (int i = daysInCurrentMonth - 1 + startingDayOfMonth + 7;
102 i % 7 != 0; i++) {
103 jlblDay[i].setForeground(Color.LIGHT_GRAY);
104 jlblDay[i].setText(j++ + "");
105 jpDays.add(jlblDay[i]); // Add to jpDays
106 }
107
108 jpDays.repaint(); // Repaint the labels in jpDays
109 }
110
111 /** Set the calendar to the first day of the
112 * specified month and year */
113 private void updateCalendar() {
114 calendar.set(Calendar.YEAR, year);
115 calendar.set(Calendar.MONTH, month);
116 calendar.set(Calendar.DATE, 1);
117 }
118
119 /** Return month */
120 public int getMonth() {
121 return month;
122 }
123
124 /** Set a new month */
125 public void setMonth(int newMonth) {
126 month = newMonth;
127 updateCalendar();
128 showHeader();

15

129 showDays();
130 }
131
132 /** Return year */
133 public int getYear() {
134 return year;
135 }
136
137 /** Set a new year */
138 public void setYear(int newYear) {
139 year = newYear;
140 updateCalendar();
141 showHeader();
142 showDays();
143 }
144
145 /** Set a new locale */
146 public void changeLocale(Locale newLocale) {
147 setLocale(newLocale);
148 showHeader();
149 showDays();
150 }
151 }

CalendarPanel is created to control and display the calendar. It displays the
month and year in the header, and the day names and days in the calendar body.
The header and day names are locale sensitive.

<margin note: showHeader>
The showHeader method (lines 47–52) displays the calendar title in a form like
"MMMM yyyy". The SimpleDateFormat class used in the showHeader method is a
subclass of DateFormat. SimpleDateFormat allows you to customize the date
format to display the date in various nonstandard styles.

<margin note: showDayNames>
The showDayNames method (lines 55–65) displays the day names in the calendar.
The DateFormatSymbols class used in the showDayNames method is a class for
encapsulating localizable date-time formatting data, such as the names of the
months, the names of the days of the week, and the time-zone data. The
getWeekdays method is used to get an array of day names.

<margin note: showDays>
The showDays method (lines 68–109) displays the days for the specified month
of the year. As you can see in Figure 35.6, the labels before the current
month are filled with the last few days of the preceding month, and the labels
after the current month are filled with the first few days of the next month.
To fill the calendar with the days before the current month, a clone of
calendar, named cloneCalendar, is created to obtain the days for the preceding
month (line 77). cloneCalendar is a copy of calendar with separate memory
space. Thus you can change the properties of cloneCalendar without corrupting
the calendar object. The clone() method is defined in the Object class, which
was introduced in §15.7, “The Cloneable Interface.” You can clone any object
as long as its defining class implements the Cloneable interface. The Calendar
class implements Cloneable.

The cloneCalendar.getActualMaximum(Calendar.DAY_OF_MONTH) method (lines 90–91)
returns the number of days in the month for the specified calendar.

Listing 35.5 CalendarApp.java

16

<margin note line 9: calendar panel>
<margin note line 12: combo box>
<margin note line 15: locales>
<margin note line 23: create UI>
<margin note line 50: set a new locale>
<margin note line 60: previous month>
<margin note line 69: next month>
<margin note line 75: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 import javax.swing.border.*;
 5 import java.util.*;
 6
 7 public class CalendarApp extends JApplet {
 8 // Create a CalendarPanel for showing calendars
 9 private CalendarPanel calendarPanel = new CalendarPanel();
 10
 11 // Combo box for selecting available locales
 12 private JComboBox jcboLocale = new JComboBox();
 13
 14 // Declare locales to store available locales
 15 private Locale locales[] = Calendar.getAvailableLocales();
 16
 17 // Buttons Prior and Next for displaying prior and next month
 18 private JButton jbtPrior = new JButton("Prior");
 19 private JButton jbtNext = new JButton("Next");
 20
 21 /** Initialize the applet */
 22 public void init() {
 23 // Panel jpLocale to hold the combo box for selecting locales
 24 JPanel jpLocale = new JPanel(new FlowLayout());
 25 jpLocale.setBorder(new TitledBorder("Choose a locale"));
 26 jpLocale.add(jcboLocale);
 27
 28 // Initialize the combo box to add locale names
 29 for (int i = 0; i < locales.length; i++)
 30 jcboLocale.addItem(locales[i].getDisplayName());
 31
 32 // Panel jpButtons to hold buttons
 33 JPanel jpButtons = new JPanel(new FlowLayout());
 34 jpButtons.add(jbtPrior);
 35 jpButtons.add(jbtNext);
 36
 37 // Panel jpCalendar to hold calendarPanel and buttons
 38 JPanel jpCalendar = new JPanel(new BorderLayout());
 39 jpCalendar.add(calendarPanel, BorderLayout.CENTER);
 40 jpCalendar.add(jpButtons, BorderLayout.SOUTH);
 41
 42 // Place jpCalendar and jpLocale to the applet
 43 add(jpCalendar, BorderLayout.CENTER);
 44 add(jpLocale, BorderLayout.SOUTH);
 45
 46 // Register listeners
 47 jcboLocale.addActionListener(new ActionListener() {
 48 @Override
 49 public void actionPerformed(ActionEvent e) {

17

 50 if (e.getSource() == jcboLocale)
 51 calendarPanel.changeLocale(
 52 locales[jcboLocale.getSelectedIndex()]);
 53 }
 54 });
 55
 56 jbtPrior.addActionListener(new ActionListener() {
 57 @Override
 58 public void actionPerformed(ActionEvent e) {
 59 int currentMonth = calendarPanel.getMonth();
 60 if (currentMonth == 0) // The previous month is 11 for Dec
 61 calendarPanel.setYear(calendarPanel.getYear() - 1);
 62 calendarPanel.setMonth((currentMonth - 1) % 12);
 63 }});
 64
 65 jbtNext.addActionListener(new ActionListener() {
 66 @Override
 67 public void actionPerformed(ActionEvent e) {
 68 int currentMonth = calendarPanel.getMonth();
 69 if (currentMonth == 11) // The next month is 0 for Jan
 70 calendarPanel.setYear(calendarPanel.getYear() + 1);
 71
 72 calendarPanel.setMonth((currentMonth + 1) % 12);
 73 }});
 74
 75 calendarPanel.changeLocale(
 76 locales[jcboLocale.getSelectedIndex()]);
 77 }
 78 }

CalendarApp creates the user interface and handles the button actions and
combo box item selections for locales. The Calendar.getAvailableLocales()
method (line 15) is used to find all the available locales that have
calendars. Its getDisplayName() method returns the name of each locale and
adds the name to the combo box (line 30). When the user selects a locale name
in the combo box, a new locale is passed to calendarPanel, and a new calendar
is displayed based on the new locale (lines 72–73).

35.4 Formatting Numbers
Formatting numbers is highly locale dependent. For example, number 5000.555 is
displayed as 5,000.555 in the United States, but as 5 000,555 in France and as
5.000,555 in Germany.

Numbers are formatted using the java.text.NumberFormat class, an abstract base
class that provides the methods for formatting and parsing numbers, as shown
in Figure 35.8.

18

java.text.NumberFormat
+getInstance(): NumberFormat
+getInstance(locale: Locale): NumberFormat
+getIntegerInstance(): NumberFormat
+getIntegerInstance(locale: Locale):

NumberFormat
+getCurrencyInstance(): NumberFormat
+getNumberInstance(): NumberFormat
+getNumberInstance(locale: Locale):

NumberFormat
+getPercentInstance(): NumberFormat
+getPercentInstance(locale: Locale):

NumberFormat
+format (number: double): String
+format (number: long): String
+getMaximumFractionDigits(): int
+setMaximumFractionDigits(newValue: int):

void
+getMinimumFractionDigits(): int
+setMinimumFractionDigits(newValue: int):

void
+getMaximumIntegerDigits(): int

+setMaximumIntegerDigits(newValue: int):
void

+getMinimumIntegerDigits(): int

+setMinimumIntegerDigits(newValue: int):
void

+isGroupingUsed(): boolean

+setGroupingUsed(newValue: boolean): void
+parse(source: String): Number
+getAvailableLocales(): Locale[]

Returns a default number format for the default locale.
Returns a default number format for the specified locale.
Returns an integer number format for the default locale.
Returns an integer number format for the specified locale.

Returns a currency format for the current default locale.
Same as getInstance().
Same as getInstance(locale).

Returns a percentage format for the default locale.
Returns a percentage format for the specified locale.

Formats a floating-point number.
Formats an integer.
Returns the maximum number of allowed fraction digits.
Sets the maximum number of allowed fraction digits.

Returns the minimum number of allowed fraction digits.
Sets the minimum number of allowed fraction digits.

Returns the maximum number of allowed integer digits in a
fraction number.

Sets the maximum number of allowed integer digits in a
fraction number.

Returns the minimum number of allowed integer digits in a
fraction number.

Sets the minimum number of allowed integer digits in a
fraction number.

Returns true if grouping is used in this format. For example, in
the English locale, with grouping on, the number 1234567 is
formatted as "1,234,567".

Sets whether or not grouping will be used in this format.
Parses string into a number.
Gets the set of locales for which NumberFormats are installed.

Figure 35.8
The NumberFormat class provides the methods for formatting and parsing
numbers.

With NumberFormat, you can format and parse numbers for any locale. Your code
will be completely independent of locale conventions for decimal points,
thousands-separators, currency format, and percentage formats.

35.4.1 Plain Number Format
You can get an instance of NumberFormat for the current locale using
NumberFormat.getInstance() or NumberFormat.getNumberInstance and for the
specified locale using NumberFormat.getInstance(Locale) or
NumberFormat.getNumberInstance(Locale). You can then invoke format(number) on
the NumberFormat instance to return a formatted number as a string.

For example, to display number 5000.555 in France, use the following code:

NumberFormat numberFormat = NumberFormat.getInstance(Locale.FRANCE);
System.out.println(numberFormat.format(5000.555));

19

You can control the display of numbers with such methods as
setMaximumFractionDigits and setMinimumFractionDigits. For example, 5000.555
will be displayed as 5000.6 if you use
numberFormat.setMaximumFractionDigits(1).

35.4.2 Currency Format
To format a number as a currency value, use NumberFormat.getCurrencyInstance()
to get the currency number format for the current locale or
NumberFormat.getCurrencyInstance(Locale) to get the currency number for the
specified locale.

For example, to display number 5000.555 as currency in the United States, use
the following code:

NumberFormat currencyFormat =
 NumberFormat.getCurrencyInstance(Locale.US);
System.out.println(currencyFormat.format(5000.555));

5000.555 is formatted into $5,000,56. If the locale is set to France, the
number will be formatted into 5 000,56 €.

35.4.3 Percent Format
To format a number in a percent, use NumberFormat.getPercentInstance() or
NumberFormat.getPercentInstance(Locale) to get the percent number format for
the current locale or the specified locale.

For example, to display number 0.555367 as a percent in the United States, use
the following code:

NumberFormat percentFormat =
 NumberFormat.getPercentInstance(Locale.US);
System.out.println(percentFormat.format(0.555367));

0.555367 is formatted into 56%. By default, the format truncates the fraction
part in a percent number. If you want to keep three digits after the decimal
point, use percentFormat.setMinimumFractionDigits(3). So 0.555367 would be
displayed as 55.537%.

35.4.4 Parsing Numbers

You can format a number into a string using the format(numericalValue) method.
You can also use the parse(String) method to convert a formatted plain number,
currency value, or percent number with the conventions of a certain locale
into an instance of java.lang.Number. The parse method throws a
java.text.ParseException if parsing fails. For example, U.S. $5,000.56 can be
parsed into a number using the following statements:

NumberFormat currencyFormat =
 NumberFormat.getCurrencyInstance(Locale.US);
try {
 Number number = currencyFormat.parse("$5,000.56");
 System.out.println(number.doubleValue());
}
catch (java.text.ParseException ex) {
 System.out.println("Parse failed");
}

35.4.5 The DecimalFormat Class

20

If you want even more control over the format or parsing, cast the
NumberFormat you get from the factory methods to a java.text.DecimalFormat,
which is a subclass of NumberFormat. You can then use the applyPattern(String
pattern) method of the DecimalFormat class to specify the patterns for
displaying the number.

A pattern can specify the minimum number of digits before the decimal point
and the maximum number of digits after the decimal point. The characters '0'
and '#' are used to specify a required digit and an optional digit,
respectively. The optional digit is not displayed if it is zero. For example,
the pattern "00.0##" indicates minimum two digits before the decimal point and
maximum three digits after the decimal point. If there are more actual digits
before the decimal point, all of them are displayed. If there are more than
three digits after the decimal point, the number of digits is rounded.
Applying the pattern "00.0##", number 111.2226 is formatted to 111.223, number
1111.2226 to 1111.223, number 1.22 to 01.22, and number 1 to 01.0. Here is the
code:

NumberFormat numberFormat = NumberFormat.getInstance(Locale.US);
DecimalFormat decimalFormat = (DecimalFormat)numberFormat;
decimalFormat.applyPattern("00.0##");
System.out.println(decimalFormat.format(111.2226));
System.out.println(decimalFormat.format(1111.2226));
System.out.println(decimalFormat.format(1.22));
System.out.println(decimalFormat.format(1));

The character '%' can be put at the end of a pattern to indicate that a number
is formatted as a percentage. This causes the number to be multiplied by 100
and appends a percent sign %.

35.4.5 Example: Formatting Numbers

Create a loan calculator for computing loans. The calculator allows the user
to choose locales, and displays numbers in accordance with locale-sensitive
format. As shown in Figure 35.9, the user enters interest rate, number of
years, and loan amount, then clicks the Compute button to display the interest
rate in percentage format, the number of years in normal number format, and
the loan amount, total payment, and monthly payment in currency format.
Listing 35.6 gives the solution to the problem.

Figure 35.9
The locale determines the format of the numbers displayed in the loan
calculator.

Listing 35.6 NumberFormatDemo.java
<margin note line 10: UI components>

21

<margin note line 42: create UI>
<margin note line 99: register listener>
<margin note line 101: new locale>
<margin note line 102: compute loan>
<margin note line 106: register listener>
<margin note line 114: compute loan>
<margin note line 145: main method omitted>
 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 import javax.swing.border.*;
 5 import java.util.*;
 6 import java.text.NumberFormat;
 7
 8 public class NumberFormatDemo extends JApplet {
 9 // Combo box for selecting available locales
 10 private JComboBox jcboLocale = new JComboBox();
 11
 12 // Text fields for interest rate, year, and loan amount
 13 private JTextField jtfInterestRate = new JTextField("6.75");
 14 private JTextField jtfNumberOfYears = new JTextField("15");
 15 private JTextField jtfLoanAmount = new JTextField("107000");
 16 private JTextField jtfFormattedInterestRate = new JTextField(10);
 17 private JTextField jtfFormattedNumberOfYears = new JTextField(10);
 18 private JTextField jtfFormattedLoanAmount = new JTextField(10);
 19
 20 // Text fields for monthly payment and total payment
 21 private JTextField jtfTotalPayment = new JTextField();
 22 private JTextField jtfMonthlyPayment = new JTextField();
 23
 24 // Compute button
 25 private JButton jbtCompute = new JButton("Compute");
 26
 27 // Current locale
 28 private Locale locale = Locale.getDefault();
 29
 30 // Declare locales to store available locales
 31 private Locale locales[] = Calendar.getAvailableLocales();
 32
 33 /** Initialize the combo box */
 34 public void initializeComboBox() {
 35 // Add locale names to the combo box
 36 for (int i = 0; i < locales.length; i++)
 37 jcboLocale.addItem(locales[i].getDisplayName());
 38 }
 39
 40 /** Initialize the applet */
 41 public void init() {
 42 // Panel p1 to hold the combo box for selecting locales
 43 JPanel p1 = new JPanel();
 44 p1.setLayout(new FlowLayout());
 45 p1.add(jcboLocale);
 46 initializeComboBox();
 47 p1.setBorder(new TitledBorder("Choose a Locale"));
 48
 49 // Panel p2 to hold the input
 50 JPanel p2 = new JPanel();

22

 51 p2.setLayout(new GridLayout(3, 3));
 52 p2.add(new JLabel("Interest Rate"));
 53 p2.add(jtfInterestRate);
 54 p2.add(jtfFormattedInterestRate);
 55 p2.add(new JLabel("Number of Years"));
 56 p2.add(jtfNumberOfYears);
 57 p2.add(jtfFormattedNumberOfYears);
 58 p2.add(new JLabel("Loan Amount"));
 59 p2.add(jtfLoanAmount);
 60 p2.add(jtfFormattedLoanAmount);
 61 p2.setBorder(new TitledBorder("Enter Annual Interest Rate, " +
 62 "Number of Years, and Loan Amount"));
 63
 64 // Panel p3 to hold the result
 65 JPanel p3 = new JPanel();
 66 p3.setLayout(new GridLayout(2, 2));
 67 p3.setBorder(new TitledBorder("Payment"));
 68 p3.add(new JLabel("Monthly Payment"));
 69 p3.add(jtfMonthlyPayment);
 70 p3.add(new JLabel("Total Payment"));
 71 p3.add(jtfTotalPayment);
 72
 73 // Set text field alignment
 74 jtfFormattedInterestRate.setHorizontalAlignment(JTextField.RIGHT);
 75 jtfFormattedNumberOfYears.setHorizontalAlignment(JTextField.RIGHT);
 76 jtfFormattedLoanAmount.setHorizontalAlignment(JTextField.RIGHT);
 77 jtfTotalPayment.setHorizontalAlignment(JTextField.RIGHT);
 78 jtfMonthlyPayment.setHorizontalAlignment(JTextField.RIGHT);
 79
 80 // Set editable false
 81 jtfFormattedInterestRate.setEditable(false);
 82 jtfFormattedNumberOfYears.setEditable(false);
 83 jtfFormattedLoanAmount.setEditable(false);
 84 jtfTotalPayment.setEditable(false);
 85 jtfMonthlyPayment.setEditable(false);
 86
 87 // Panel p4 to hold result payments and a button
 88 JPanel p4 = new JPanel();
 89 p4.setLayout(new BorderLayout());
 90 p4.add(p3, BorderLayout.CENTER);
 91 p4.add(jbtCompute, BorderLayout.SOUTH);
 92
 93 // Place panels to the applet
 94 add(p1, BorderLayout.NORTH);
 95 add(p2, BorderLayout.CENTER);
 96 add(p4, BorderLayout.SOUTH);
 97
 98 // Register listeners
 99 jcboLocale.addActionListener(new ActionListener() {
100 @Override
101 public void actionPerformed(ActionEvent e) {
102 locale = locales[jcboLocale.getSelectedIndex()];
103 computeLoan();
104 }
105 });
106
107 jbtCompute.addActionListener(new ActionListener() {
108 @Override

23

109 public void actionPerformed(ActionEvent e) {
110 computeLoan();
111 }
112 });
113 }
114
115 /** Compute payments and display results locale-sensitive format */
116 private void computeLoan() {
117 // Retrieve input from user
118 double loan = new Double(jtfLoanAmount.getText()).doubleValue();
119 double interestRate =
120 new Double(jtfInterestRate.getText()).doubleValue() / 1200;
121 int numberOfYears =
122 new Integer(jtfNumberOfYears.getText()).intValue();
123
124 // Calculate payments
125 double monthlyPayment = loan * interestRate/
126 (1 - (Math.pow(1 / (1 + interestRate), numberOfYears * 12)));
127 double totalPayment = monthlyPayment * numberOfYears * 12;
128
129 // Get formatters
130 NumberFormat percentFormatter =
131 NumberFormat.getPercentInstance(locale);
132 NumberFormat currencyForm =
133 NumberFormat.getCurrencyInstance(locale);
134 NumberFormat numberForm = NumberFormat.getNumberInstance(locale);
135 percentFormatter.setMinimumFractionDigits(2);
136
137 // Display formatted input
138 jtfFormattedInterestRate.setText(
139 percentFormatter.format(interestRate * 12));
140 jtfFormattedNumberOfYears.setText
141 (numberForm.format(numberOfYears));
142 jtfFormattedLoanAmount.setText(currencyForm.format(loan));
143
144 // Display results in currency format
145 jtfMonthlyPayment.setText(currencyForm.format(monthlyPayment));
146 jtfTotalPayment.setText(currencyForm.format(totalPayment));
147 }
148 }

The computeLoan method (lines 114–145) gets the input on interest rate, number
of years, and loan amount from the user, computes monthly payment and total
payment, and displays annual interest rate in percentage format, number of
years in normal number format, and loan amount, monthly payment, and total
payment in locale-sensitive format.

The statement percentFormatter.setMinimumFractionDigits(2) (line 133) sets the
minimum number of fractional parts to 2. Without this statement, 0.075 would
be displayed as 7% rather than 7.5%.

35.5 Resource Bundles
The NumberFormatDemo in the preceding example displays the numbers,
currencies, and percentages in local customs, but displays all the message
strings, titles, and button labels in English. In this section, you will learn
how to use resource bundles to localize message strings, titles, button
labels, and so on.

24

<margin note: resource bundle>
A resource bundle is a Java class file or text file that provides locale-
specific information. This information can be accessed by Java programs
dynamically. When a locale-specific resource is needed—a message string, for
example—your program can load it from the resource bundle appropriate for the
desired locale. In this way, you can write program code that is largely
independent of the user's locale, isolating most, if not all, of the locale-
specific information in resource bundles.

With resource bundles, you can write programs that separate the locale-
sensitive part of your code from the locale-independent part. The programs can
easily handle multiple locales, and can easily be modified later to support
even more locales.

The resources are placed inside the classes that extend the ResourceBundle
class or a subclass of ResourceBundle. Resource bundles contain key/value
pairs. Each key uniquely identifies a locale-specific object in the bundle.
You can use the key to retrieve the object. ListResourceBundle is a convenient
subclass of ResourceBundle that is often used to simplify the creation of
resource bundles. Here is an example of a resource bundle that contains four
keys using ListResourceBundle:

// MyResource.java: resource file
public class MyResource extends java.util.ListResourceBundle {
static final Object[][] contents = {

 {"nationalFlag", "us.gif"},
 {"nationalAnthem", "us.au"},
 {"nationalColor", Color.red},
 {"annualGrowthRate", new Double(7.8)}
 };

public Object[][] getContents() {
return contents;

 }
}

Keys are case-sensitive strings. In this example, the keys are nationalFlag,
nationalAnthem, nationalColor, and annualGrowthRate. The values can be any
type of Object.

If all the resources are strings, they can be placed in a convenient text file
with the extension .properties. A typical property file would look like this:

#Wed Jul 01 07:23:24 EST 1998
nationalFlag=us.gif
nationalAnthem=us.au

To retrieve values from a ResourceBundle in a program, you first need to
create an instance of ResourceBundle using one of the following two static
methods:

public static final ResourceBundle getBundle(String baseName)
throws MissingResourceException

public static final ResourceBundle getBundle
 (String baseName, Locale locale) throws MissingResourceException

25

The first method returns a ResourceBundle for the default locale, and the
second method returns a ResourceBundle for the specified locale. baseName is
the base name for a set of classes, each of which describes the information
for a given locale. These classes are named in Table 35.3.

Table 35.3:
Resource Bundle Naming Conventions
1. BaseName_language_country_variant.class
2. BaseName_language_country.class
3. BaseName_language.class
4. BaseName.class
5. BaseName_language_country_variant.properties
6. BaseName_language_country.properties
7. BaseName_language.properties
8. BaseName.properties

For example, MyResource_en_BR.class stores resources specific to the United
Kingdom, MyResource_en_US.class stores resources specific to the United
States, and MyResource_en.class stores resources specific to all the English-
speaking countries.

The getBundle method attempts to load the class that matches the specified
locale by language, country, and variant by searching the file names in the
order shown in Table 35.3. The files searched in this order form a resource
chain. If no file is found in the resource chain, the getBundle method raises
a MissingResourceException, a subclass of RuntimeException.
Once a resource bundle object is created, you can use the getObject method to
retrieve the value according to the key. For example,

ResourceBundle res = ResourceBundle.getBundle("MyResource");
String flagFile = (String)res.getObject("nationalFlag");
String anthemFile = (String)res.getObject("nationalAnthem");
Color color = (Color)res.getObject("nationalColor");
double growthRate = (Double)res.getObject("annualGrowthRate");

TIP
If the resource value is a string, the convenient getString
method can be used to replace the getObject method. The
getString method simply casts the value returned by getObject
to a string.

What happens if a resource object you are looking for is not defined in the
resource bundle? Java employs an intelligent look-up scheme that searches the
object in the parent file along the resource chain. This search is repeated
until the object is found or all the parent files in the resource chain have
been searched. A MissingResourceException is raised if the search is
unsuccessful.

Let us modify the NumberFormatDemo program in the preceding example so that it
displays messages, title, and button labels in multiple languages, as shown in
Figure 35.10.

26

Figure 35.10
The program displays the strings in multiple languages.

You need to provide a resource bundle for each language. Suppose the program
supports three languages: English (default), Chinese, and French. The resource
bundle for the English language, named MyResource.properties, is given as
follows:

#MyResource.properties for English language
Number_Of_Years=Years
Total_Payment=French Total\ Payment
Enter_Interest_Rate=Enter\ Interest\ Rate,\ Years,\ and\ Loan\ Amount
Payment=Payment
Compute=Compute
Annual_Interest_Rate=Interest\ Rate
Number_Formatting=Number\ Formatting\ Demo
Loan_Amount=Loan\ Amount
Choose_a_Locale=Choose\ a\ Locale
Monthly_Payment=Monthly\ Payment

The resource bundle for the Chinese language, named MyResource_zh.properties,
is given as follows:

#MyResource_zh.properties for Chinese language
Choose_a_Locale = \u9078\u64c7\u570b\u5bb6
Enter_Interest_Rate =
 \u8f38\u5165\u5229\u7387,\u5e74\u9650,\u8cb8\u6b3e\u7e3d\u984d
Annual_Interest_Rate = \u5229\u7387
Number_Of_Years = \u5e74\u9650
Loan_Amount = \u8cb8\u6b3e\u984d\u5ea6
Payment = \u4ed8\u606f
Monthly_Payment = \u6708\u4ed8
Total_Payment = \u7e3d\u984d
Compute = \u8a08\u7b97\u8cb8\u6b3e\u5229\u606f

The resource bundle for the French language, named MyResource_fr.properties,
is given as follows:

#MyResource_fr.properties for French language
Number_Of_Years=annees
Annual_Interest_Rate=le taux d'interet
Loan_Amount=Le montant du pret
Enter_Interest_Rate=inscrire le taux d'interet, les annees, et le montant du
pret
Payment=paiement
Compute=Calculer l'hypotheque

27

Number_Formatting=demonstration du formatting des chiffres
Choose_a_Locale=Choisir la localite
Monthly_Payment=versement mensuel
Total_Payment=reglement total

The resource-bundle file should be placed in the class directory (e.g.,
c:\book for the examples in this book). The program is given in Listing 35.7.

Listing 35.7 ResourceBundleDemo.java
<margin note line 11: get resource>
<margin note line 61: create UI>
<margin note line 120: register listener>
<margin note line 123: update resource>
<margin note line 128: register listener>
<margin note line 169: new resource>
<margin note line 192: res in applet>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 import javax.swing.border.*;
 5 import java.util.*;
 6 import java.text.NumberFormat;
 7
 8 public class ResourceBundleDemo extends JApplet {
 9 // Combo box for selecting available locales
 10 private JComboBox jcboLocale = new JComboBox();
 11 private ResourceBundle res = ResourceBundle.getBundle("MyResource");
 12
 13 // Create labels
 14 private JLabel jlblInterestRate =
 15 new JLabel(res.getString("Annual_Interest_Rate"));
 16 private JLabel jlblNumberOfYears =
 17 new JLabel(res.getString("Number_Of_Years"));
 18 private JLabel jlblLoanAmount =
 19 new JLabel(res.getString("Loan_Amount"));
 20 private JLabel jlblMonthlyPayment =
 21 new JLabel(res.getString("Monthly_Payment"));
 22 private JLabel jlblTotalPayment =
 23 new JLabel(res.getString("Total_Payment"));
 24
 25 // Create titled borders
 26 private TitledBorder comboBoxTitle =
 27 new TitledBorder(res.getString("Choose_a_Locale"));
 28 private TitledBorder inputTitle = new TitledBorder
 29 (res.getString("Enter_Interest_Rate"));
 30 private TitledBorder paymentTitle =
 31 new TitledBorder(res.getString("Payment"));
 32
 33 // Text fields for interest rate, year, loan amount,
 34 private JTextField jtfInterestRate = new JTextField("6.75");
 35 private JTextField jtfNumberOfYears = new JTextField("15");
 36 private JTextField jtfLoanAmount = new JTextField("107000");
 37 private JTextField jtfFormattedInterestRate = new JTextField(10);
 38 private JTextField jtfFormattedNumberOfYears = new JTextField(10);
 39 private JTextField jtfFormattedLoanAmount = new JTextField(10);
 40

28

 41 // Text fields for monthly payment and total payment
 42 private JTextField jtfTotalPayment = new JTextField();
 43 private JTextField jtfMonthlyPayment = new JTextField();
 44
 45 // Compute button
 46 private JButton jbtCompute = new JButton(res.getString("Compute"));
 47
 48 // Current locale
 49 private Locale locale = Locale.getDefault();
 50
 51 // Declare locales to store available locales
 52 private Locale locales[] = Calendar.getAvailableLocales();
 53
 54 /** Initialize the combo box */
 55 public void initializeComboBox() {
 56 // Add locale names to the combo box
 57 for (int i = 0; i < locales.length; i++)
 58 jcboLocale.addItem(locales[i].getDisplayName());
 59 }
 60
 61 /** Initialize the applet */
 62 public void init() {
 63 // Panel p1 to hold the combo box for selecting locales
 64 JPanel p1 = new JPanel();
 65 p1.setLayout(new FlowLayout());
 66 p1.add(jcboLocale);
 67 initializeComboBox();
 68 p1.setBorder(comboBoxTitle);
 69
 70 // Panel p2 to hold the input for annual interest rate,
 71 // number of years and loan amount
 72 JPanel p2 = new JPanel();
 73 p2.setLayout(new GridLayout(3, 3));
 74 p2.add(jlblInterestRate);
 75 p2.add(jtfInterestRate);
 76 p2.add(jtfFormattedInterestRate);
 77 p2.add(jlblNumberOfYears);
 78 p2.add(jtfNumberOfYears);
 79 p2.add(jtfFormattedNumberOfYears);
 80 p2.add(jlblLoanAmount);
 81 p2.add(jtfLoanAmount);
 82 p2.add(jtfFormattedLoanAmount);
 83 p2.setBorder(inputTitle);
 84
 85 // Panel p3 to hold the payment
 86 JPanel p3 = new JPanel();
 87 p3.setLayout(new GridLayout(2, 2));
 88 p3.setBorder(paymentTitle);
 89 p3.add(jlblMonthlyPayment);
 90 p3.add(jtfMonthlyPayment);
 91 p3.add(jlblTotalPayment);
 92 p3.add(jtfTotalPayment);
 93
 94 // Set text field alignment
 95 jtfFormattedInterestRate.setHorizontalAlignment
 96 (JTextField.RIGHT);
 97 jtfFormattedNumberOfYears.setHorizontalAlignment
 98 (JTextField.RIGHT);

29

 99 jtfFormattedLoanAmount.setHorizontalAlignment(JTextField.RIGHT);
100 jtfTotalPayment.setHorizontalAlignment(JTextField.RIGHT);
101 jtfMonthlyPayment.setHorizontalAlignment(JTextField.RIGHT);
102
103 // Set editable false
104 jtfFormattedInterestRate.setEditable(false);
105 jtfFormattedNumberOfYears.setEditable(false);
106 jtfFormattedLoanAmount.setEditable(false);
107 jtfTotalPayment.setEditable(false);
108 jtfMonthlyPayment.setEditable(false);
109
110 // Panel p4 to hold result payments and a button
111 JPanel p4 = new JPanel();
112 p4.setLayout(new BorderLayout());
113 p4.add(p3, BorderLayout.CENTER);
114 p4.add(jbtCompute, BorderLayout.SOUTH);
115
116 // Place panels to the applet
117 add(p1, BorderLayout.NORTH);
118 add(p2, BorderLayout.CENTER);
119 add(p4, BorderLayout.SOUTH);
120
121 // Register listeners
122 jcboLocale.addActionListener(new ActionListener() {
123 @Override
124 public void actionPerformed(ActionEvent e) {
125 locale = locales[jcboLocale.getSelectedIndex()];
126 updateStrings();
127 computeLoan();
128 }
129 });
130
131 jbtCompute.addActionListener(new ActionListener() {
132 @Override
133 public void actionPerformed(ActionEvent e) {
134 computeLoan();
135 }
136 });
137 }
138
139 /** Compute payments and display results locale-sensitive format */
140 private void computeLoan() {
141 // Retrieve input from user
142 double loan = new Double(jtfLoanAmount.getText()).doubleValue();
143 double interestRate =
144 new Double(jtfInterestRate.getText()).doubleValue() / 1200;
145 int numberOfYears =
146 new Integer(jtfNumberOfYears.getText()).intValue();
147
148 // Calculate payments
149 double monthlyPayment = loan * interestRate/
150 (1 - (Math.pow(1 / (1 + interestRate), numberOfYears * 12)));
151 double totalPayment = monthlyPayment * numberOfYears * 12;
152
153 // Get formatters
154 NumberFormat percentFormatter =
155 NumberFormat.getPercentInstance(locale);
156 NumberFormat currencyForm =

30

157 NumberFormat.getCurrencyInstance(locale);
158 NumberFormat numberForm = NumberFormat.getNumberInstance(locale);
159 percentFormatter.setMinimumFractionDigits(2);
160
161 // Display formatted input
162 jtfFormattedInterestRate.setText(
163 percentFormatter.format(interestRate * 12));
164 jtfFormattedNumberOfYears.setText
165 (numberForm.format(numberOfYears));
166 jtfFormattedLoanAmount.setText(currencyForm.format(loan));
167
168 // Display results in currency format
169 jtfMonthlyPayment.setText(currencyForm.format(monthlyPayment));
170 jtfTotalPayment.setText(currencyForm.format(totalPayment));
171 }
172
173 /** Update resource strings */
174 private void updateStrings() {
175 res = ResourceBundle.getBundle("MyResource", locale);
176 jlblInterestRate.setText(res.getString("Annual_Interest_Rate"));
177 jlblNumberOfYears.setText(res.getString("Number_Of_Years"));
178 jlblLoanAmount.setText(res.getString("Loan_Amount"));
179 jlblTotalPayment.setText(res.getString("Total_Payment"));
180 jlblMonthlyPayment.setText(res.getString("Monthly_Payment"));
181 jbtCompute.setText(res.getString("Compute"));
182 comboBoxTitle.setTitle(res.getString("Choose_a_Locale"));
183 inputTitle.setTitle(res.getString("Enter_Interest_Rate"));
184 paymentTitle.setTitle(res.getString("Payment"));
185
186 // Make sure the new labels are displayed
187 repaint();
188 }
189
190 /** Main method */
191 public static void main(String[] args) {
192 // Create an instance of the applet
193 ResourceBundleDemo applet = new ResourceBundleDemo();
194
195 // Create a frame with a resource string
196 JFrame frame = new JFrame(
197 applet.res.getString("Number_Formatting"));
198
199 // Add the applet instance to the frame
200 frame.add(applet, BorderLayout.CENTER);
201
202 // Invoke init() and start()
203 applet.init();
204 applet.start();
205
206 // Display the frame
207 frame.setSize(400, 300);
208 frame.setLocationRelativeTo(null);
209 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
210 frame.setVisible(true);
211 }
212 }

31

Property resource bundles are implemented as text files with a .properties
extension, and are placed in the same location as the class files for the
application or applet. ListResourceBundles are provided as Java class files.
Because they are implemented using Java source code, new and modified
ListResourceBundles need to be recompiled for deployment. With
PropertyResourceBundles, there is no need for recompilation when translations
are modified or added to the application. Nevertheless, ListResourceBundles
provide considerably better performance than PropertyResourceBundles.
If the resource bundle is not found or a resource object is not found in the
resource bundle, a MissingResourceException is raised. Since
MissingResourceException is a subclass of RuntimeException, you do not need to
catch the exception explicitly in the code.

This example is the same as Listing 35.6, NumberFormatDemo.java, except that
the program contains the code for handling resource strings. The updateString
method (lines 172–186) is responsible for displaying the locale-sensitive
strings. This method is invoked when a new locale is selected in the combo
box. Since the variable res of the ResourceBundle class is an instance
variable in ResourceBundleDemo, it cannot be directly used in the main method,
because the main method is static. To fix the problem, create applet as an
instance of ResourceBundleDemo, and you will then be able to reference res
using applet.res.

35.6 Character Encoding

Java programs use Unicode. When you read a character using text I/O, the
Unicode code of the character is returned. The encoding of the character in
the file may be different from the Unicode encoding. Java automatically
converts it to the Unicode. When you write a character using text I/O, Java
automatically converts the Unicode of the character to the encoding specified
for the file. This is pictured in Figure 35.11.

Program

The Unicode of
the character is
returned

A character is converted
into Unicode

The Unicode of
the character is
sent out

A character stored in
a specified encoding

A character is converted into the
code for the specified encoding

Figure 35.11
The encoding of the file may be different from the encoding used in the
program.
You can specify an encoding scheme using a constructor of Scanner/PrintWriter
for text I/O, as follows:

public Scanner(File file, String encodingName)
public PrintWriter(File file, String encodingName)

For a list of encoding schemes supported in Java, see
http://download.oracle.com/javase/1.5.0/docs/guide/intl/encoding.doc.html and
mindprod.com/jgloss/encoding.html. For example, you may use the encoding name
GB18030 for simplified Chinese characters, Big5 for traditional Chinese

32

characters, Cp939 for Japanese characters, Cp933 for Korean characters, and
Cp838 for Thai characters.

The following code in Listing 35.8 creates a file using the GB18030 encoding
(line 8). You have to read the text using the same encoding (line 12). The
output is shown in Figure 35.12a.

Listing 35.8 EncodingDemo.java
<margin note line 8: specify encoding>
<margin note line 12: specify encoding>

 1 import java.util.*;
 2 import java.io.*;
 3 import javax.swing.*;
 4
 5 public class EncodingDemo {
 6 public static void main(String[] args)
 7 throws IOException, FileNotFoundException {
 8 PrintWriter output = new PrintWriter("temp.txt", "GB18030");
 9 output.print("\u6B22\u8FCE Welcome \u03b1\u03b2\u03b3");
 10 output.close();
 11
 12 Scanner input = new Scanner(new File("temp.txt"), "GB18030");
 13 JOptionPane.showMessageDialog(null, input.nextLine());
 14 }
 15 }

 (a) Using GB18030 encoding (b) Using default encoding

Figure 35.12
You can specify an encoding scheme for a text file.

If you don’t specify an encoding in lines 8 and 12, the system’s default
encoding scheme is used. The US default encoding is ASCII. ASCII code uses 8
bits. Java uses the 16-bit Unicode. If a Unicode is not an ASCII code, the
character '?' is written to the file. Thus, when you write \u6B22 to an ASCII
file, the ? character is written to the file. When you read it back, you will
see the ? character, as shown in Figure 35.12b.
To find out the default encoding on your system, use

<margin note line 8: get default encoding>
System.out.println(System.getProperty("file.encoding"));

The default encoding name is Cp1252 on Windows, which is a variation of ASCII.

Key Terms

locale 7
resource bundle
file encoding scheme

33

Chapter Summary
1. Java is the first language designed from the ground up to support

internationalization. In consequence, it allows your programs to be
customized for any number of countries or languages without requiring
cumbersome changes in the code.

2. Java characters use Unicode in the program. The use of Unicode encoding
makes it easy to write Java programs that can manipulate strings in any
international language.

3. Java provides the Locale class to encapsulate information about a
specific locale. A Locale object determines how locale-sensitive
information, such as date, time, and number, is displayed, and how
locale-sensitive operations, such as sorting strings, are performed. The
classes for formatting date, time, and numbers, and for sorting strings
are grouped in the java.text package.

4. Different locales have different conventions for displaying date and
time. The java.text.DateFormat class and its subclasses can be used to
format date and time in a locale-sensitive way for display to the user.

5. To format a number for the default or a specified locale, use one of the
factory class methods in the NumberFormat class to get a formatter. Use
getInstance or getNumberInstance to get the normal number format. Use
getCurrencyInstance to get the currency number format. Use
getPercentInstance to get a format for displaying percentages.

6. Java uses the ResourceBundle class to separate locale-specific
information, such as status messages and GUI component labels, from the
program. The information is stored outside the source code and can be
accessed and loaded dynamically at runtime from a ResourceBundle, rather
than hard-coded into the program.

7. You can specify an encoding for a text file when constructing a
PrintWriter or a Scanner.

Test Questions
Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions
Sections 35.1-35.2
35.1
How does Java support international characters in languages like Chinese and
Arabic?
35.2
How do you construct a Locale object? How do you get all the available locales
from a Calendar object?
35.3
How do you set a locale for the French-speaking region of Canada in a Swing
JButton? How do you set a locale for the Netherlands in a Swing JLabel?

Section 35.3
35.4
How do you set the time zone "PST" for a Calendar object?
35.5
How do you display current date and time in German?
35.6
How do you use the SimpleDateFormat class to display date and time using the
pattern "yyyy.MM.dd hh:mm:ss"?

34

35.7
In line 73 of WorldClockControl.java, Arrays.sort(availableTimeZones) is used
to sort the available time zones. What happens if you attempt to sort the
available locales using Arrays.sort(availableLocales)?

Section 35.4
35.8
Write the code to format number 12345.678 in the United Kingdom locale. Keep
two digits after the decimal point.
35.9
Write the code to format number 12345.678 in U.S. currency.
35.10
Write the code to format number 0.345678 as percentage with at least three
digits after the decimal point.
35.11
Write the code to parse 3,456.78 into a number.
35.12
Write the code that uses the DecimalFormat class to format number 12345.678
using the pattern "0.0000#".

Section 35.5
35.13
How does the getBundle method locate a resource bundle?
35.14
How does the getObject method locate a resource?

Section 35.6
35.15
How do you specify an encoding scheme for a text file?
35.16
What would happen if you wrote a Unicode character to an ASCII text file?
35.17
How do you find the default encoding name on your system?

Programming Exercises
Sections 35.1-35.2
35.1*
(Unicode viewer) Develop an applet that displays Unicode characters, as shown
in Figure 35.13. The user specifies a Unicode in the text field and presses
the Enter key to display a sequence of Unicode characters starting with the
specified Unicode. The Unicode characters are displayed in a scrollable text
area of 20 lines. Each line contains 16 characters preceded by the Unicode
that is the code for the first character on the line.

Figure 35.13
The applet displays the Unicode characters.

35.2**

35

(Display date and time) Write a program that displays the current date and
time as shown in Figure 35.14. The program enables the user to select a
locale, time zone, date style, and time style from the combo boxes.

Figure 35.14
The program displays the current date and time.

Section 35.3
35.3
(Place the calendar and clock in a panel) Write an applet that displays the
current date in a calendar and current time in a clock, as shown in Figure
35.15. Enable the applet to run standalone.

Figure 35.15
The calendar and clock display the current date and time.

35.4
(Find the available locales and time zone IDs) Write two programs to display
the available locales and time zone IDs using buttons, as shown in Figure
35.16.

Figure 35.16
The program displays available locales and time zones using buttons.

Section 35.4
35.5*
(Compute loan amortization schedule) Rewrite Exercise 4.22 using an applet, as
shown in Figure 35.17. The applet allows the user to set the loan amount, loan
period, and interest rate, and displays the corresponding interest, principal,
and balance in the currency format.

36

Figure 35.17
The program displays the loan payment schedule.

35.6
(Convert dollars to other currencies) Write a program that converts U.S.
dollars to Canadian dollars, German marks, and British pounds, as shown in
Figure 35.18. The user enters the U.S. dollar amount and the conversion rate,
and clicks the Convert button to display the converted amount.

Figure 35.18
The program converts U.S. dollars to Canadian dollars, German marks, and
British pounds.

35.7
(Compute loan payments) Rewrite Listing 2.8, ComputeLoan.java, to display the
monthly payment and total payment in currency.

35.8
(Use the DecimalFormat class) Rewrite Exercise 5.8 to display at most two
digits after the decimal point for the temperature using the DecimalFormat
class.

Section 35.5
35.9*
(Use resource bundle) Modify the example for displaying a calendar in §35.3.6,
“Example: Displaying a Calendar,” to localize the labels "Choose a locale" and
"Calendar Demo" in French, German, Chinese, or a language of your choice.

35.10**
(Flag and anthem) Rewrite Listing 18.13, ImageAudioAnimation.java, to use the
resource bundle to retrieve image and audio files.
(Hint: When a new country is selected, set an appropriate locale for it. Have
your program look for the flag and audio file from the resource file for the
locale.)

Section 35.6
35.11**

37

(Specify file encodings) Write a program named Exercise35_11Writer that writes
1307 16 Chinese Unicode characters starting from \u0E00 to a file named
Exercise35_11.gb using the GBK encoding scheme. Output 16 characters per line
and separate the characters with spaces. Write a program named
Exercise35_11Reader that reads all the characters from a file using a
specified encoding. Figure 35.19 displays the file using the GBK encoding
scheme.

Figure 35.19
The program displays the file using the specified encoding scheme.

1

***This is a bonus Web chapter

CHAPTER 36
JavaBeans

Objectives
To describe what a JavaBeans component is (§36.2).
To explain the similarities and differences between beans and
regular objects (§36.2).
To develop JavaBeans components that follow the naming patterns
(§36.3).
To review the Java event delegation model (§36.4).
To create custom event classes and listener interfaces (§36.5).
To develop source components using event sets from the Java API or
custom event sets (§36.6).

2

36.1 Introduction
Every Java user interface class is a JavaBeans component. Understanding
JavaBeans will help you to learn GUI components. In Chapter 16, “Event-
Driven Programming,” you learned how to handle events fired from source
components such as JButton, JTextField, JRadioButton, and JComboBox. In
this chapter, you will learn how to create custom events and develop
your own source components that can fire events. By developing your own
events and source components, you will gain a better understanding of
the Java event model and GUI components.

36.2 JavaBeans
<margin note: JavaBeans>
JavaBeans is a software component architecture that extends the power
of the Java language by enabling well-formed objects to be manipulated
visually at design time in a pure Java builder tool, such as NetBeans
and Eclipse. Such well-formed objects are referred to as JavaBeans or
simply beans. The classes that define the beans, referred to as
JavaBeans components or bean components, conform to the JavaBeans
component model with the following requirements:

A bean must be a public class.

A bean must have a public no-arg constructor, though it can have
other constructors if needed. For example, a bean named MyBean
must either have a constructor with the signature

public MyBean();

or have no constructor if its superclass has a no-arg constructor.

<margin note: Serializable>
A bean must implement the java.io.Serializable interface to
ensure a persistent state.

<margin note: accessor>
<margin note: mutator>

A bean usually has properties with correctly constructed public
accessor (get) methods and mutator (set) methods that enable the
properties to be seen and updated visually by a builder tool.

<margin note: event registration>
A bean may have events with correctly constructed public
registration and deregistration methods that enable it to add and
remove listeners. If the bean plays a role as the source of
events, it must provide registration methods for registering
listeners. For example, you can register a listener for
ActionEvent using the addActionListener method of a JButton bean.

The first three requirements must be observed, and therefore are
referred to as minimum JavaBeans component requirements. The last two
requirements depend on implementations. It is possible to write a bean
component without get/set methods and event registration/deregistration
methods.

A JavaBeans component is a special kind of Java class. The relationship
between JavaBeans components and Java classes is illustrated in Figure
36.1.

3

Data members
Methods
Constructors public class

public no-arg constructor
serializable
may have accessor/mutator methods
may have registration/deregistration methods

class

JavaBeans Component Minimum
requirement

Optional
requirement

Figure 36.1
A JavaBeans component is a serializable public class with a public no-
arg constructor.

Every GUI class is a JavaBeans component, because
 (1) it is a public class,
 (2) it has a public no-arg constructor, and
 (3) It is an extension of java.awt.Component, which implements
java.io.Serializable.

36.3 Bean Properties
Properties are discrete, named attributes of a Java bean that can
affect its appearance or behavior. They are often data fields of a
bean. For example, the JButton component has a property named text that
represents the text to be displayed on the button. Private data fields
are often used to hide specific implementations from the user and
prevent the user from accidentally corrupting the properties. Accessor
and mutator methods are provided instead to let the user read and write
the properties.

36.3.1 Property-Naming Patterns
The bean property-naming pattern is a convention of the JavaBeans
component model that simplifies the bean developer's task of presenting
properties. A property can be a primitive data type or an object type.
The property type dictates the signature of the accessor and mutator
methods.

In general, the accessor method is named get<PropertyName>(), which
takes no parameters and returns a primitive type value or an object of
a type identical to the property type. For example,

<margin note: accessor method>
public String getMessage()
public int getXCoordinate()
public int getYCoordinate()

For a property of boolean type, the accessor method should be named
is<PropertyName>(), which returns a boolean value. For example,

<margin note: boolean accessor method>
public boolean isCentered()

The mutator method should be named set<PropertyName>(dataType p), which
takes a single parameter identical to the property type and returns
void. For example,

<margin note: mutator method>

4

public void setMessage(String s)
public void setXCoordinate(int x)
public void setYCoordinate(int y)
public void setCentered(boolean centered)

NOTE
You may have multiple get and set methods, but there must
be one get or set method with a signature conforming to
the naming patterns.

36.3.2 Properties and Data Fields
Properties describe the state of the bean. Naturally, data fields are
used to store properties. However, a bean property is not necessarily a
data field. For example, in the MessagePanel class in Listing 15.7,
MessagePanel.java, you may create a new property named messageLength
that represents the number of characters in message. The get method for
the property may be defined as follows:

public int getMessageLength() {
return message.length();

}

NOTE
<margin note: read-only property>
<margin note: write-only property>

A property may be read-only with a get method but no set
method, or write-only with a set method but no get
method.

36.4 Java Event Model Review
A bean may communicate with other beans. The Java event delegation
model provides the foundation for beans to send, receive, and handle
events. Let us review the Java event model that was introduced in
Chapter 16, “Event-Driven Programming.” The Java event model consists
of the following three types of elements, as shown in Figure 16.3:

The event object
The source object
The event listener object

<margin note: event>
<margin note: source object>
<margin note: listener>
An event is a signal to the program that something has happened. It can
be triggered by external user actions, such as mouse movements, mouse
button clicks, and keystrokes, or by the operating system, such as a
timer. An event object contains the information that describes the
event. A source object is where the event originates. When an event
occurs on a source object, an event object is created. An object
interested in the event handles the event. Such an object is called a
listener. Not all objects can handle events. To become a listener, an
object must be registered as a listener by the source object. The
source object maintains a list of listeners and notifies all the
registered listeners by invoking the event-handling method implemented
on the listener object. The handlers are defined in event listener
interface. Each event class has a corresponding event listener
interface. The Java event model is referred to as a delegation-based
model, because the source object delegates the event to the listeners
for processing.

5

36.4.1 Event Classes and Event Listener Interfaces
An event object is created using an event class, such as ActionEvent,
MouseEvent, and ItemEvent, as shown in Figure 16.2. All the event
classes extend java.util.EventObject. The event class contains whatever
data values and methods are pertinent to the particular event type. For
example, the KeyEvent class describes the data values related to a key
event and contains the methods, such as getKeyChar(), for retrieving
the key associated with the event.

<margin note: handler>
Every event class is associated with an event listener interface that
defines one or more methods referred to as handlers. An event listener
interface is a subinterface of java.util.EventListener. The handlers
are implemented by the listener components. The source component
invokes the listeners' handlers when an event is detected.

<margin note: event set>
Since an event class and its listener interface are coexistent, they
are often referred to as an event set or event pair. The event listener
interface must be named as XListener for the XEvent. For example, the
listener interface for ActionEvent is ActionListener. The parameter
list of a handler always consists of an argument of the event class
type. Table 16.2 lists some commonly used events and their listener
interfaces. Figure 36.2 shows the pair of ActionEvent and
ActionListener.

java.awt.event.ActionEvent
+ActionEvent(source: Object, id: int, command: String)
+getActionCommand(): String
+getModifier(): int
+getWhen(): long

«interface»
java.util.EventListener

java.util.EventObject

«interface»
java.awt.event.ActionListener

+actionPerformed(e: ActionEvent): void

Figure 36.2
ActionEvent and ActionListener are examples of an event pair.

36.4.2 Source Components
The component on which an event is generated is referred to as an event
source. Every Java GUI component is an event source for one or more
events. For example, JButton is an event source for ActionEvent. A
JButton object fires a java.awt.event.ActionEvent when it is clicked.
JComboBox is an event source for ActionEvent and ItemEvent. A JComboBox
object fires a java.awt.event.ActionEvent and a
java.awt.event.ItemEvent when a new item is selected in the combo box.

The source component contains the code that detects an external or
internal action that triggers the event. Upon detecting the action, the
source should fire an event to the listeners by invoking the event
handler defined by the listeners. The source component must also
contain methods for registering and deregistering listeners, as shown
in Figure 36.3.

6

Fire and process event by invoking the event
handler from each listener in the vector

Source Component

Register listener method
Deregister listener method

A vector (stores the listener objects)

Detect events

Figure 36.3
The source component detects events and processes them by invoking the
event listeners' handlers.

36.4.3 Listener Components
A listener component for an event must implement the event listener
interface. The object of the listener component cannot receive event
notifications from a source component unless the object is registered
as a listener of the source.

A listener component may implement any number of listener interfaces to
listen to several types of events. A source component may register many
listeners. A source component may register itself as a listener.

Listing 36.1 gives an example that creates a source object (line 8) and
a listener object (line 14), and registers the listener with the source
object (line 17). Figure 36.4 highlights the relationship between the
source and the listener. The listener is registered with the source by
invoking the addActionListener method. Once the button is clicked, an
ActionEvent is generated by the source. The source object then notifies
the listener by invoking the listener’s actionPerformed method.

Listing 36.1 TestSourceListener.java
<margin note line 8: source object>
<margin note line 14: listener object>
<margin note line 17: registration>
<margin note line 22: listener class>

 1 import javax.swing.*;
 2 import java.awt.event.*;
 3
 4 public class TestSourceListener {
 5 public static void main(String[] args) {
 6 JFrame frame = new JFrame("TestSourceListener");
 7 // Create a source object
 8 JButton jbt = new JButton("OK");
 9 frame.add(jbt);
 10 frame.setSize(200, 200);
 11 frame.setVisible(true);
 12
 13 // Create a listener
 14 MyListener listener = new MyListener();
 15
 16 // Register a listener
 17 jbt.addActionListener(listener);
 18 }
 19 }
 20

7

 21 /** MyListener class */
 22 class MyListener implements ActionListener {
 23 @Override
 24 public void actionPerformed(ActionEvent e) {
 25 System.out.println("I will process it!");
 26 }
 27 }

Process event
actionPerformed(ActionEvent e)

Source Component Listener Component

addActionListener(ActionListener l)
removeActionListener(ActionListener l)

JButton jbt = new JButton(); // Create a source object

MyListener listener = new MyListener (); // Create a listener object

jbt.addActionListener(listener); // Register listener to the source

Test Class

Listener vector MyListener class implements
ActionListener

JButton
Invoke listener’s
actionPerformed
methodGenerate an

event

Figure 36.4
The listener is registered with the source, and the source invokes the
listener's handler to process the event.

36.5 Creating Custom Source Components

You have used source components such as JButton. This section
demonstrates how to create a custom source component.

<margin note: registration method>
A source component must have the appropriate registration and
deregistration methods for adding and removing listeners. Events can be
unicasted (only one listener object is notified of the event) or
multicasted (each object in a list of listeners is notified of the
event). The naming pattern for adding a unicast listener is

<margin note: unicast>
public void add<Event>Listener(<Event>Listener l)
throws TooManyListenersException;

The naming pattern for adding a multicast listener is the same, except
that it does not throw the TooManyListenersException.

<margin note: multicast>
public void add<Event>Listener(<Event>Listener l)

<margin note: deregistration method>
The naming pattern for removing a listener (either unicast or
multicast) is:

8

public void remove<Event>Listener(<Event>Listener l)

A source component contains the code that creates an event object and
passes it to invoke the handler of the listeners. You may use a
standard Java event class like ActionEvent to create event objects or
may define your own event classes if necessary.

The Course class in Section 10.8, “Case Study: Designing the Course
Class,” models the courses. Suppose a Course object fires an
ActionEvent when the number of students for the course exceeds a
certain enrollment cap. The new class named CourseWithActionEvent is
shown in Figure 36.5.

CourseWithActionEvent

-courseName: String
-stud ents: ArrayList<String>
-enrollmentCap: int

+CourseWithActionEvent()
+CourseWithActionEvent(courseName: String)
+getCourseName(): St ring
+addStudent(student : St rin g): void
+getStudents(): ArrayList<String>
+getNu mberOfStudents(): int
+getEnrollmentCap(): int
+setEnrollmen tCap(enrollmentCap: int): void
+addActionListener(e: ActionEvent): void
+removeActionListener(e: ActionEvent): void
-processEvent(e: ActionEvent): void

The name of the course.
The s tudents wh o take the course.
The maximum enrollment (default: 10).

Creates a defaul t course.
Creates a course with the sp ecified name.
Returns the course name.
Adds a new student to the cou rse list .
Returns the students for th e cou rse as an array.
Returns the number of students for the cou rse.
Returns the enrollment cap.
Sets a new enrol lment cap.
Adds a n ew ActionEvent listener.
Deletes an ActionEvent listener.
Processes an Action Event.

Figure 36.5
The new CourseWithActionEvent class can fire an ActionEvent.

The source component is responsible for registering listeners, creating
events, and notifying listeners by invoking the methods defined in the
listeners' interfaces. The CourseWithActionEvent component is capable
of registering multiple listeners, generating ActionEvent objects when
the enrollment exceeds the cap, and notifying the listeners by invoking
the listeners' actionPerformed method. Listing 36.2 implements the new
class.

Listing 36.2 CourseWithActionEvent.java
<margin note line 6: store students>
<margin note line 7: enrollmentCap>
<margin note line 8: store listeners>
<margin note line 10: no-arg constructor>
<margin note line 13: constructor>
<margin note line 17: return courseName>
<margin note line 23: create event>
<margin note line 46: register listener>
<margin note line 58: remove listener>
<margin note line 67: process event>

Show Code Without Line Numbers

 1 import java.util.*;
 2 import java.awt.event.*;
 3

9

 4 public class CourseWithActionEvent {
 5 private String courseName = "default name";
 6 private ArrayList<String> students = new ArrayList<String>();
 7 private int enrollmentCap = 10;
 8 private ArrayList<ActionListener> actionListenerList;
 9
 10 public CourseWithActionEvent() {
 11 }
 12
 13 public CourseWithActionEvent(String courseName) {
 14 this.courseName = courseName;
 15 }
 16
 17 public String getCourseName() {
 18 return courseName;
 19 }
 20
 21 public void addStudent(String student) {
 22 if (students.size() >= enrollmentCap) // Fire ActionEvent
 23 processEvent(new ActionEvent(this,
 24 ActionEvent.ACTION_PERFORMED, null));
 25 else
 26 students.add(student);
 27 }
 28
 29 public ArrayList<String> getStudents() {
 30 return students;
 31 }
 32
 33 public int getNumberOfStudents() {
 34 return students.size();
 35 }
 36
 37 public int getEnrollmentCap() {
 38 return enrollmentCap;
 39 }
 40
 41 public void setEnrollmentCap(int enrollmentCap) {
 42 this.enrollmentCap = enrollmentCap;
 43 }
 44
 45 /** Register an action event listener */
 46 public synchronized void addActionListener
 47 (ActionListener listener) {
 48 if (actionListenerList == null) {
 49 actionListenerList = new ArrayList<ActionListener>(2);
 50 }
 51
 52 if (!actionListenerList.contains(listener)) {
 53 actionListenerList.add(listener);
 54 }
 55 }
 56
 57 /** Remove an action event listener */
 58 public synchronized void removeActionListener
 59 (ActionListener listener) {
 60 if (actionListenerList !=
 61 null && actionListenerList.contains(listener)) {
 62 actionListenerList.remove(listener);

10

 63 }
 64 }
 65
 66 /** Fire ActionEvent */
 67 private void processEvent(ActionEvent e) {
 68 ArrayList<ActionListener> list;
 69
 70 synchronized (this) {
 71 if (actionListenerList == null) return;
 72 list = (ArrayList<ActionListener>)actionListenerList.clone();
 73 }
 74
 75 for (int i = 0; i < list.size(); i++) {
 76 ActionListener listener = (ActionListener)list.get(i);
 77 listener.actionPerformed(e);
 78 }
 79 }
 80 }

Since the source component is designed for multiple listeners, a
java.util.ArrayList instance actionListenerList is used to hold all the
listeners for the source component (line 8). The data type of the
elements in the array list is ActionListener. To add a listener,
listener, to actionListenerList, use

actionListenerList.add(listener); (line 53)

To remove a listener, listener, from actionListenerList, use

actionListenerList.remove(listener); (line 62)

The if statement (lines 52–53) ensures that the addActionListener
method does not add the listener twice if it is already in the list.
The removeActionListener method removes a listener if it is in the
list. actionListenerList is an instance of ArrayList, which functions
as a flexible array that can grow or shrink dynamically. Initially,
actionListenerList is of size 2, but the capacity can be changed
dynamically. If more than two listeners are added to
actionListenerList, the list size will be automatically increased.

NOTE
<margin note: storing listeners>

Instead of using ArrayList, you can also use
javax.swing.event.EventListenerList to store listeners.
Using EventListenerList is preferred, since it provides
the support for synchronization and is efficient in the
case of no listeners.

The addActionListener and removeActionListener methods are synchronized
to prevent data corruption on actionListenerList when attempting to
register multiple listeners concurrently (lines 46, 58).

The addStudent method (lines 21-27) checks whether the number of
students is more than the enrollment cap. If so, it creates an
ActionEvent and invokes the processEvent method to process the event
(lines 23–24). If not, add a new student to the course (line 26).

The UML diagram for ActionEvent is shown in Figure 36.2. To create an
ActionEvent, use the constructor

11

ActionEvent(Object source, int id, String command)

where source specifies the source component, id identifies the event,
and command specifies a command associated with the event. Use
ActionEvent.ACTION_PERFORMED for the id. If you don’t want to associate
a command with the event, use null.

The processEvent method (lines 67–79) is invoked when an ActionEvent is
generated. This notifies the listeners in actionListenerList by calling
each listener's actionPerformed method to process the event. It is
possible that a new listener may be added or an existing listener may
be removed when processEvent is running. To avoid corruption on
actionListenerList, a clone list of actionListenerList is created for
use to notify listeners. To avoid corruption when creating the clone,
invoke it in a synchronized block, as in lines 70–73:

synchronized (this) {
if (actionListenerList == null) return;

 list = (ArrayList)actionListenerList.clone();
}

Listing 36.3 gives a test program that creates a course using the new
class (line 5), sets the enrollment cap to 2 (line 8), registers a
listener (line 9), and adds three students to the course (lines 11-13).
When line 13 is executed, the addStudent method adds student Tim to the
course and fires an ActionEvent because the course exceeds the
enrollment cap. The course object invokes the listener’s
actionPerformed method to process the event and displays a message
Enrollment cap exceeded.

Listing 36.3 TestCourseWithActionEvent.java
<margin note line 5: create course>
<margin note line 8: set enrollmentCap>
<margin note line 9: create listener>
<margin note line 10: register listener>
<margin note line 11: add students>

 1 import java.awt.event.*;
 2
 3 public class TestCourseWithActionEvent {
 4 CourseWithActionEvent course =
 5 new CourseWithActionEvent("Java Programming");
 6
 7 public TestCourseWithActionEvent() {
 8 course.setEnrollmentCap(2);
 9 ActionListener listener = new Listener();
 10 course.addActionListener(listener);
 11 course.addStudent("John");
 12 course.addStudent("Jim");
 13 course.addStudent("Tim");
 14 }
 15
 16 public static void main(String[] args) {
 17 new TestCourseWithActionEvent();
 18 }
 19
 20 private class Listener implements ActionListener {
 21 @Override

12

 22 public void actionPerformed(ActionEvent e) {
 23 System.out.println("Enrollment cap exceeded");
 24 }
 25 }
 26 }

The flow of event processing from the source to the listener is shown
in Figure 36.6.

Process event
actionPerformed(ActionEvent e)

Source Component Listener Component

addActionListener(ActionListener l)
removeActionListener(ActionListener l)

CourseWithActionEvent course = new CourseWithActionEvent (); // Create a source object

Listener listener = new Listener(); // Create a listener object

course.addActionListener(listener); // Register listener to the source

TestCourseWithActionEvent

Listener vector Listener class implements
ActionListener

CourseWithActionEvent
Invoke listener’s
actionPerformed
methodGenerate an

event

Figure 36.6
The listener is registered with the source course, and the source
invokes the listener's handler actionPerformed to process the event.

36.6 Creating Custom Event Sets
The Java API provides many event sets. You have used the event set
ActionEvent/ActionListener in the preceding section. A course object
fires an ActionEvent when the enrollment cap is exceeded. It is
convenient to use the existing event sets in the Java API, but they are
not always adequate. Sometimes you need to define custom event classes
in order to obtain information not available in the existing API event
classes. For example, suppose you want to know the enrollment cap and
the number of students in the course; an ActionEvent object does not
provide such information. You have to define your own event class and
event listener interface.

A custom event class must extend java.util.EventObject or a subclass of
java.util.EventObject. Additionally, it may provide constructors to
create events, data members, and methods to describe events.

A custom event listener interface must extend java.util.EventListener
or a subinterface of java.util.EventListener and define the signature
of the handlers for the event. By convention, the listener interface
should be named XListener for the corresponding event class named
XEvent. For example, ActionListener is the listener interface for
ActionEvent.

13

Let us define EnrollmentEvent as the event class for describing the
enrollment event and its corresponding listener interface
EnrollmentListener for defining an enrollmentExceeded handler, as shown
in Figure 36.7. The getStudentToEnroll() method returns the student who
attempts to enroll the course.

EnrollmentEvent
-studentToEnroll: String
-enrollmentCap: int

+EnrollmentEvent(source: Object,
student: String, numberOfStudents: int,
enrollmentCap: int)

+getEnrollmentCap(): int
+getStudentToEnroll (): String

«interface»
java.util.EventListener

java.util.EventObject

«interface»
EnrollmentListener

+enrollmentExceeded(e: EnrollmentEvent): void

Figure 36.7
EnrollmentEvent and EnrollmentListener comprise an event set for
enrollment event.

The source code for the enrollment event set is given in Listings 36.4
and 36.5.

Listing 36.4 EnrollmentEvent.java
<margin note line 1: extends EventObject>
<margin note line 6: constructor>
<margin note line 8: invoke superclass constructor>

 1 public class EnrollmentEvent extends java.util.EventObject {
 2 private String studentToEnroll;
 3 private int enrollmentCap;
 4
 5 /** Construct a EnrollmentEvent */
 6 public EnrollmentEvent(Object source, String studentToEnroll,
 7 int enrollmentCap) {
 8 super(source);
 9 this.studentToEnroll = studentToEnroll;
 10 this.enrollmentCap = enrollmentCap;
 11 }
 12
 13 public String getStudentToEnroll() {
 14 return studentToEnroll;
 15 }
 16
 17 public long getEnrollmentCap() {
 18 return enrollmentCap;
 19 }
 20 }

Listing 36.5 EnrollmentListener.java
<margin note line 1: extends EventListener>
<margin note line 3: handler>

1 public interface EnrollmentListener extends java.util.EventListener {
2 /** Handle an EnrollemntEvent, to be implemented by a listener */
3 public void enrollmentExceeded(EnrollmentEvent e);

14

4 }

An event class is an extension of EventObject. To construct an event,
the constructor of EventObject must be invoked by passing a source
object as the argument. In the constructor for EnrollmentEvent,
super(source) (line 8) invokes the superclass’s constructor with the
source object as the argument. EnrollmentEvent contains the information
pertaining to the event, such as number of students and enrollment cap.

EnrollmentListener simply extends EventListener and defines the
enrollmentExceeded method for handling enrollment events.

NOTE
<margin note: specifying a source for an event>

An event class does not have a no-arg constructor,
because you must always specify a source for the event
when creating an event.

Let us revise CourseWithActionEvent in Listing 36.2 to use
EnrollmentEvent/EnrollmentListener instead of
ActionEvent/ActionListener. The new class named
CouseWithEnrollmentEvent in Listing 36.6 is very similar to
CourseWithActionEvent in Listing 36.2.

Listing 36.6 CourseWithEnrollmentEvent.java
<margin note line 5: store students>
<margin note line 6: enrollmentCap>
<margin note line 8: store listeners>
<margin note line 10: no-arg constructor>
<margin note line 13: constructor>
<margin note line 22: create event>
<margin note line 45: register listener>
<margin note line 57: remove listener>
<margin note line 66: process event>

 1 import java.util.*;
 2
 3 public class CourseWithEnrollmentEvent {
 4 private String courseName = "default name";
 5 private ArrayList<String> students = new ArrayList<String>();
 6 private int enrollmentCap = 10;
 7 private ArrayList<EnrollmentListener> enrollmentListenerList;
 8
 9 public CourseWithEnrollmentEvent() {
10 }
11
12 public CourseWithEnrollmentEvent(String courseName) {
13 this.courseName = courseName;
14 }
15
16 public String getCourseName() {
17 return courseName;
18 }
19
20 public void addStudent(String student) {
21 if (students.size() == enrollmentCap) // Fire EnrollmentEvent
22 processEvent(new EnrollmentEvent(this,
23 student, enrollmentCap));
24 else
25 students.add(student);

15

26 }
27
28 public ArrayList<String> getStudents() {
29 return students;
30 }
31
32 public int getNumberOfStudents() {
33 return students.size();
34 }
35
36 public int getEnrollmentCap() {
37 return enrollmentCap;
38 }
39
40 public void setEnrollmentCap(int enrollmentCap) {
41 this.enrollmentCap = enrollmentCap;
42 }
43
44 /** Register an action event listener */
45 public synchronized void addEnrollmentListener
46 (EnrollmentListener listener) {
47 if (enrollmentListenerList == null) {
48 enrollmentListenerList = new ArrayList<EnrollmentListener>(2);
49 }
50
51 if (!enrollmentListenerList.contains(listener)) {
52 enrollmentListenerList.add(listener);
53 }
54 }
55
56 /** Remove an action event listener */
57 public synchronized void removeEnrollmentListener
58 (EnrollmentListener listener) {
59 if (enrollmentListenerList !=
60 null && enrollmentListenerList.contains(listener)) {
61 enrollmentListenerList.remove(listener);
62 }
63 }
64
65 /** Fire EnrollmentEvent */
66 private void processEvent(EnrollmentEvent e) {
67 ArrayList<EnrollmentListener> list;
68
69 synchronized (this) {
70 if (enrollmentListenerList == null) return;
71 list = (ArrayList<EnrollmentListener>)
72 enrollmentListenerList.clone();
73 }
74
75 for (int i = 0; i < list.size(); i++) {
76 EnrollmentListener listener = (EnrollmentListener)list.get(i);
77 listener.enrollmentExceeded(e);
78 }
79 }
80 }

Line 8 creates a java.util.ArrayList instance enrollmentListenerList
for holding all the listeners for the source component. The data type
of the elements in the array list is EnrollmentListener. The

16

registration and deregistration methods for EnrollmentListener are
defined in lines 45, 57.

The addStudent method checks whether the number of students is more
than the enrollment cap. If so, it creates an EnrollmentEvent and
invokes the processEvent method to process the event (lines 22–23). If
not, add a new student to the course (line 25).

To create an EnrollmentEvent, use the constructor

EnrollmentEvent(Object source, String studentToEnroll,
 int enrollmentCap)

where source specifies the source component.

The processEvent method (lines 66–78) is invoked when an
EnrollmentEvent is generated. This notifies the listeners in
enrollmentListenerList by calling each listener's enrollmentExceeded
method to process the event.

Let us revise the test program in Listing 36.3 to use
EnrollmentEvent/EnrollmentListener instead of
ActionEvent/ActionListener. The new program, given in Listing 36.7,
creates a course using CourseWithEnrollmentEvent (line 3), sets the
enrollment cap to 2 (line 6), creates an enrollment listener (line 7),
registers it (line 8), and adds three students to the course (lines 9–
11). When line 11 is executed, the addStudent method adds student Tim
to the course and fires an EnrollmentEvent because the course exceeds
the enrollment cap. The course object invokes the listener’s
enrollmentExceeded method to process the event and displays the number
of students in the course and the enrollment cap.

Listing 36.7 TestCourseWithEnrollmentEvent.java
<margin note line 3: create course>
<margin note line 6: set enrollmentCap>
<margin note line 7: create listener>
<margin note line 8: register listener>
<margin note line 9: add students>

 1 public class TestCourseWithEnrollmentEvent {
 2 CourseWithEnrollmentEvent course =
 3 new CourseWithEnrollmentEvent("Java Programming");
 4
 5 public TestCourseWithEnrollmentEvent() {
 6 course.setEnrollmentCap(2);
 7 EnrollmentListener listener = new NewListener();
 8 course.addEnrollmentListener(listener);
 9 course.addStudent("John Smith");
 10 course.addStudent("Jim Peterson");
 11 course.addStudent("Tim Johnson");
 12 }
 13
 14 public static void main(String[] args) {
 15 new TestCourseWithEnrollmentEvent();
 16 }
 17
 18 private class NewListener implements EnrollmentListener {
 19 public void enrollmentExceeded(EnrollmentEvent e) {
 20 System.out.println(e.getStudentToEnroll() + " attempted to "
 21 + "enroll. The enrollment cap is " + e.getEnrollmentCap());

17

 22 }
 23 }
 24 }

<Output>
Tim Johnson attempted to enroll
The enrollment cap is 2

<End Output>

The flow of event processing from the source to the listener is shown
in Figure 36.8.

Process event
enrollmentExceeded(EnrollmentEvent e)

Source Component Listener Component

addEnrollmentListener(EnrollmentListener l)
removeEnrollmentListener(EnrollmentListener l)

CourseWithEnrollmentEvent course = new CourseWithEnrollmentEvent (); // Create a source object

EnrollmentListener listener = new NewListener(); // Create a listener object

course.addEnrollmentListener(listener); // Register listener to the source

TestCourseWithEnrollmentEvent

Listener vector Listener class implements
EnrollmentListener

CourseWithEnrollentEvent

Invoke listener’s
enrollmentExceeded
methodGenerate an

event

Figure 36.8
The listener is registered with the source course, and the source
invokes the listener's handler enrollmentExceeded to process the event.

TIP
<margin note: ActionEvent>

Using the ActionEvent/ActionListener event set is
sufficient in most cases. Normally, the information about
the event can be obtained from the source. For example,
the number of students in the course and the enrollment
can all be obtained from a course object. The source can
be obtained by invoking e.getSource() for any event e.

NOTE
<margin note: inheriting features>

The EnrollmentEvent component is created from scratch. If
you build a new component that extends a component
capable of generating events, the new component inherits
the ability to generate the same type of events. For
example, since JButton is a subclass of
java.awt.Component that can fire MouseEvent, JButton can
also detect and generate mouse events. You don't need to

18

write the code to generate these events and register
listeners for them, since the code is already given in
the superclass. However, you still need to write the code
to make your component capable of firing events not
supported in the superclass.

Key Terms

event set
JavaBeans component
JavaBeans events
JavaBeans properties

Chapter Summary
1. JavaBeans is a software component architecture that extends the

power of the Java language for building reusable software
components. JavaBeans properties describe the state of the bean.
Naturally, data fields are used to store properties. However, a
bean property is not necessarily a data field.

2. A source component must have the appropriate registration and
deregistration methods for adding and removing listeners. Events
can be unicasted (only one listener object is notified of the
event) or multicasted (each object in a list of listeners is
notified of the event).

3. An event object is created using an event class, such as
ActionEvent, MouseEvent, and ItemEvent. All event classes extend
java.util.EventObject. Every event class is associated with an
event listener interface that defines one or more methods
referred to as handlers. An event listener interface is a
subinterface of java.util.EventListener. Since an event class and
its listener interface are coexistent, they are often referred to
as an event set or event pair.

Test Questions

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions
Sections 36.1-36.4
36.1
What is a JavaBeans component? Is every GUI class a JavaBeans
component? Is every GUI user interface component a JavaBeans component?
Is it true that a JavaBeans component must be a GUI user interface
component?
36.2
Describe the naming conventions for accessor and mutator methods in a
JavaBeans component.
36.3
Describe the naming conventions for JavaBeans registration and
deregistration methods.
36.4
What is an event pair? How do you define an event class? How do you
define an event listener interface?

Programming Exercises
Sections 36.1-36.6
36.1*

19

(Enable MessagePanel to fire ActionEvent) The MessagePanel class in
Listing 15.7 is a subclass of JPanel; it can fire a MouseEvent,
KeyEvent, and ComponentEvent, but not an ActionEvent. Modify the
MessagePanel class so that it can fire an ActionEvent when an instance
of the MessagePanel class is clicked. Name the new class
MessagePanelWithActionEvent. Test it with a Java applet that displays
the current time in a message panel whenever the message panel is
clicked, as shown in Figure 36.9.

Figure 36.9
The current time is displayed whenever you click on the message panel.

36.2*
(Create custom event sets and source components) Develop a project

that meets the following requirements:
Create a source component named MemoryWatch for monitoring
memory. The component generates a MemoryEvent when the free
memory space exceeds a specified highLimit or is below a
specified lowLimit. The highLimit and lowLimit are customizable
properties in MemoryWatch.
Create an event set named MemoryEvent and MemoryListener. The
MemoryEvent simply extends java.util.EventObject and contains two
methods, freeMemory and totalMemory, which return the free memory
and total memory of the system. The MemoryListener interface
contains two handlers, sufficientMemory and insufficientMemory.
The sufficientMemory method is invoked when the free memory space
exceeds the specified high limit, and insufficientMemory is
invoked when the free memory space is less than the specified low
limit. The free memory and total memory in the system can be
obtained using

Runtime runtime = Runtime.getRuntime();
runtime.freeMemory();
runtime.totalMemory();

Develop a listener component that displays free memory, total
memory, and whether the memory is sufficient or insufficient when
a MemoryEvent occurs. Make the listener an applet with a main
method to run standalone.

36.3**
(The Hurricane source component) Create a class named Hurricane with

properties name and category and its accessor methods. The
Hurricane component generates an ActionEvent whenever its
category property is changed. Write a listener that displays
the hurricane category. If the category is 2 or greater, a
message “Hurricane Warning!!!” is displayed, as shown in Figure
36.10.

Figure 36.10

20

Whenever the hurricane category is changed, an appropriate message is
displayed in the message panel.

36.4**
(The Clock source component) Create a JavaBeans component for

displaying an analog clock. This bean allows the user to
customize a clock through the properties, as shown in Figure
36.11. Write a test program that displays four clocks, as shown
in Figure 36.12.

Clock

-dateStyle : int
-digitalDateTimeColor: Color
-header: String
-headColor: Color
-hourHandColor: Color
-minuteHandColor: Color
-running: boolea n
-secondHandColor: Color

-showingDigita lDateTime: boolean
-showingHeader: boolean
-timeStyle: int
-timeZoneID: String
-timeZoneOffset: int
-tz : Ti meZone
-usingTimeZoneID: boolea n

+Clock()
+Clock(time ZoneID: String)
+start() : void
+stop(): void

Date style for the digital date and time string.
Color of the digita l date and time string.

Clock header string.
Color of the clock header string.
Color of the hour hand.
Color of the minute hand.
True if the c lock is running.
Color of the se cond hand.
True if the digital date a nd time str ing is displayed.
True if the c lock header is displayed.
Time style for the digital date and time string.
A string for t he time zone ID.
Time zone offse t.
An insta nce of the Time Zone class.
True if time zone id is used.

Const ructs a clock with the de fault time z one.
Const ructs a clock with the specified time zone.
Starts the clock.
Stops t he clock.

JavaBeans propert ies with get a nd set
met hods omitted in the UML diagram.

Figure 36.11
The Clock component displays an analog clock.

Figure 36.12
The program displays six clocks using the Clock component.

36.5*
(Create ClockWithAlarm from Clock) Create an alarm clock, named

ClockWithAlarm, which extends the Clock component built in the
preceding exercise, as shown in Figure 36.13. This component
contains two new properties, alarmDate and alarmTime. alarmDate
is a string consisting of year, month, and day, separated by
commas. For example, 1998,5,13 represents the year 1998, month
5, and day 13. alarmTime is a string consisting of hour,
minute, and second, separated by commas. For example, 10,45,2
represents 10 o’clock, 45 minutes, and 2 seconds. When the
clock time matches the alarm time, ClockWithAlarm fires an
ActionEvent. Write a test program that displays the alert

21

message “You have an appointment now” on a dialog box at a
specified time (e.g., date: 2004,1,1 and time: 10,30,0).

ClockWithAlarm

-alarmDate: String
-alarmTime: String

Alarm date.
Alarm time.

Clock

JavaBeans properties with get and set
methods omitted in the UML diagram.

Figure 36.13
The ClockWithAlarm component extends Clock with alarm functions.

36.6***
(The Tick source component) Create a custom source component
that is capable of generating tick events at variant time
intervals, as shown in Figure 36.14. The Tick component is
similar to javax.swing.Timer. The Timer class generates a timer
at fixed time intervals. This Tick component can generate tick
events at variant as well as at fixed time intervals.

Tick
-tickCount: int
-tickInterval: int
-maxInterval: int
-minInterval: int
-step: long
-e: TickEvent
-tickListenerList: ArrayList
-timer: javax.swing.Timer

+Tick()
+Tick(tickInterval: int, maxInterval: int,

minInterval: int, step: int)
+resume(): void
+suspend(): void
+addTickListener(l: TickListener): void
+removeTickListener(l: TickListener): void
-processEvent(e: TickEvent): void

JavaBeans property for tickCount (default 0).
JavaBeans property for tickInterval (default 100).
JavaBeans property for maxInterval (default 5000).
JavaBeans property for minInterval (default 1).
JavaBeans property for step (default 0).
Tick event created from the Tick object.
Stores the TickEvent listeners.
Timer for controlling the tick.

Creates a Tick object with default properties.
Creates a Tick object with the specified properties.

Resumes the tick.
Suspends the tick.
Adds a new listener to this object.
Removes a listener from this object.
Processes the event.

JavaBeans properties with get and set
methods omitted in the UML diagram

Figure 36.14
Tick is a component that generates TickEvent.

The component contains the properties tickCount, tickInterval,
maxInterval, minInterval, and step. The component adjusts the
tickInterval by adding step to it after a tick event occurs. If
step is 0, tickInterval is unchanged. If step > 0, tickInterval
is increased. If step < 0, tickInterval is decreased. If
tickInterval > maxInterval or tickInterval < minInterval, the
component will no longer generate tick events.

The Tick component is capable of registering multiple
listeners, generating TickEvent objects at variant time
intervals, and notifying the listeners by invoking the
listeners' handleTick method. The UML diagram for TickEvent and
TickListener is shown in Figure 36.15.

22

TickEvent
-tickCount: long
-tickInterval: long

+TickEvent(source: Object)
+getTickCount(): long
+getTickInterval(): long
+setTickCount(tickCount: long): void
+setTickInterval(tickInterval: long): void

java.util.EventListenerjava.util.EventObject

TickListener
+handleTick(TickEvent e): void

Figure 36.15
TickEvent and TickListener comprise an event set for a tick event.

Create an applet named DisplayMovingMessage, and create a panel
named MovingMessage to display the message. Place an instance
of the panel in the applet. To enable the message to move
rightward, redraw the message with a new incremental x-
coordinate. Use a Tick object to generate a tick event and
invoke the repaint method to redraw the message when a tick
event occurs. To move the message at a decreasing pace, use a
positive step (e.g., 10) when constructing a Tick object.

1

***This is a bonus Web chapter

CHAPTER 37

Containers, Layout Managers, and Borders

Objectives

To explore the internal structures of the Swing container (§37.2).

To explain how a layout manager works in Java (§37.3).

To use CardLayout and BoxLayout (§§37.3.1-37.3.2).

To use the absolute layout manager to place components in the fixed
position (§37.3.3).

To create custom layout managers (§37.4).

To use JScrollPane to create scroll panes (§37.5).

To use JTabbedPane to create tabbed panes (§37.6).

To use JSplitPane to create split panes (§37.7).

To use various borders for Swing components (§37.8).

2

37.1 Introduction

<margin note: container>
<margin note: layout manager>

Chapter 12, “GUI Basics,” introduced the concept of containers and the
role of layout managers. You learned how to add components into a
container and how to use FlowLayout, BorderLayout, and GridLayout to
arrange components in a container. A container is an object that holds
and groups components. A layout manager is a special object used to
place components in a container. Containers and layout managers play a
crucial role in creating user interfaces. This chapter presents a
conceptual overview of containers, reviews the layout managers in
Java, and introduces several new containers and layout managers. You
will also learn how to create custom layout managers and use various
borders.

37.2 Swing Container Structures

User interface components like JButton cannot be displayed without
being placed in a container. A container is a component that holds
other components. You do not display a user interface component; you
place it in a container, and the container displays the components it
contains.

The base class for all containers is java.awt.Container, which is a
subclass of java.awt.Component. The Container class has the following
essential functions:

It adds and removes components using various add and remove
methods.

It maintains a layout property for specifying a layout manager
that is used to lay out components in the container. Every
container has a default layout manager.

It provides registration methods for the
java.awt.event.ContainerEvent.

In AWT programming, the java.awt.Frame class is used as a top-level
container for Java applications, the java.awt.Applet class is used for
all Java applets, and java.awt.Dialog is used for dialog windows.
These classes do not work properly with Swing lightweight components.
Special versions of Frame, Applet, and Dialog named JFrame, JApplet,
and JDialog have been developed to accommodate Swing components.
JFrame is a subclass of Frame, JApplet is a subclass of Applet, and
JDialog is a subclass of Dialog. JFrame and JApplet inherit all the
functions of their heavyweight counterparts, but they have a more
complex internal structure with several layered panes, as shown in
Figure 37.1.

3

Figure 37.1

Swing top-level containers use layers of panes to group lightweight
components and make them work properly.

javax.swing.JRootPane is a lightweight container used behind the
scenes by Swing's top-level containers, such as JFrame, JApplet, and
JDialog. javax.swing.JLayeredPane is a container that manages the
optional menu bar and the content pane. The content pane is an
instance of Container. By default, it is a JPanel with BorderLayout.
This is the container where the user interface components are added.
To obtain the content pane in a JFrame or in a JApplet, use the
getContentPane() method. If you wish to set an instance of Container
to be a new content pane, use the setContentPane method. The glass
pane floats on top of everything. javax.swing.JGlassPane is a hidden
pane by default. If you make the glass pane visible, then it's like a
sheet of glass over all the other parts of the root pane. It's
completely transparent, unless you implement the glass pane's paint
method so that it paints something, and it intercepts input events for
the root pane. In general, JRootPane, JLayeredPane, and JGlassPane are
not used directly.

Now let us review the three most frequently used Swing containers:
JFrame, JApplet, and JPanel.

37.2.1 JFrame

JFrame, a Swing version of Frame, is a top-level container for Java
graphics applications. Like Frame, JFrame is displayed as a standalone
window with a title bar and a border. The following properties are
often useful in JFrame:

contentPane is the content pane of the frame.

iconImage is the image that represents the frame. This image
replaces the default Java image on the frame's title bar and is
also displayed when the frame is minimized. This property type is
Image. You can get an image using the ImageIcon class, as
follows:

Image image = (new ImageIcon(filename)).getImage();

jMenuBar is the optional menu bar for the frame.

4

resizable is a boolean value indicating whether the frame is
resizable. The default value is true.

title specifies the title of the frame.

37.2.2 JApplet

JApplet is a Swing version of Applet. Since it is a subclass of
Applet, it has all the functions required by the Web browser. Here are
the four essential methods defined in Applet:

// Called by the browser when the Web page containing
// this applet is initially loaded
public void init()

// Called by the browser after the init() method and
// every time the Web page is visited.
public void start()

// Called by the browser when the page containing this
// applet becomes inactive.
public void stop()

// Called by the browser when the Web browser exits.
public void destroy()

Additionally, JApplet has the contentPane and jMenuBar properties,
among others. As with JFrame, you do not place components directly
into JApplet; instead you place them into the content pane of the
applet. The Applet class cannot have a menu bar, but the JApplet class
allows you to set a menu bar using the setJMenuBar method.

NOTE: When an applet is loaded, the Web browser creates an
instance of the applet by invoking the applet’s no-arg
constructor. So the constructor is invoked before the init
method.

37.2.3 JPanel

Panels act as subcontainers for grouping user interface components.
javax.swing.JPanel is different from JFrame and JApplet. First, JPanel
is not a top-level container; it must be placed inside another
container, and it can be placed inside another JPanel. Second, since
JPanel is a subclass of JComponent, it is a lightweight component, but
JFrame and JApplet are heavyweight components.

As a subclass of JComponent, JPanel can take advantage of JComponent,
such as double buffering and borders. You should draw figures on
JPanel rather than JFrame or JApplet, because JPanel supports double
buffering, which is the technique for eliminating flickers.

37.3 Layout Managers

Every container has a layout manager that is responsible for arranging
its components. The container's setLayout method can be used to set a
layout manager. Certain types of containers have default layout
managers. For instance, the content pane of JFrame or JApplet uses
BorderLayout, and JPanel uses FlowLayout.

5

The layout manager places the components in accordance with its own
rules and property settings, and with the constraints associated with
each component. Every layout manager has its own specific set of
rules. For example, the FlowLayout manager places components in rows
from left to right and starts a new row when the previous row is
filled. The BorderLayout manager places components in the north,
south, east, west, or center of the container. The GridLayout manager
places components in a grid of cells in rows and columns from left to
right in order.

Some layout managers have properties that can affect the sizing and
location of the components in the container. For example, BorderLayout
has properties called hgap (horizontal gap) and vgap (vertical gap)
that determine the distance between components horizontally and
vertically. FlowLayout has properties that can be used to specify the
alignment (left, center, right) of the components and properties for
specifying the horizontal or vertical gap between the components.
GridLayout has properties that can be used to specify the horizontal
or vertical gap between columns and rows and properties for specifying
the number of rows and columns. These properties can be retrieved and
set using their accessor and mutator methods

The size of a component in a container is determined by many factors,
such as:

The type of layout manager used by the container.

The layout constraints associated with each component.

The size of the container.

Certain properties common to all components (such as
preferredSize, minimumSize, maximumSize, alignmentX, and
alignmentY).

The preferredSize property indicates the ideal size at which the
component looks best. Depending on the rules of the particular layout
manager, this property may or may not be considered. For example, the
preferred size of a component is used in a container with a FlowLayout
manager, but ignored if it is placed in a container with a GridLayout
manager.

The minimumSize property specifies the minimum size at which the
component is useful. For most GUI components, minimumSize is the same
as preferredSize. Layout managers generally respect minimumSize more
than preferredSize.

The maximumSize property specifies the maximum size needed by a
component, so that the layout manager won't wastefully give space to a
component that does not need it. For instance, BorderLayout limits the
center component's size to its maximum size, and gives the space to
edge components.

The alignmentX (alignmentY) property specifies how the component would
like to be aligned relative to other components along the x-axis (y-
axis). This value should be a number between 0 and 1, where 0
represents alignment along the origin, 1 is aligned the farthest away

6

from the origin, 0.5 is centered, and so on. These two properties are
used in the BoxLayout and OverlayLayout.

Java provides a variety of layout managers. You have learned how to
use BorderLayout, FlowLayout, and GridLayout. The sections that follow
introduce CardLayout, Null layout, and BoxLayout. GridBagLayout,
OverlayLayout, and SpringLayout are presented in Supplement III.S.

TIP: If you set a new layout manager in a container, invoke
the container’s validate() method to force the container to
again lay out the components. If you change the properties of
a layout manager in a JFrame or JApplet, invoke the doLayout()
method to force the container to again lay out the components
using the new layout properties. If you change the properties
of a layout manager in a JPanel, invoke either doLayout() or
revalidate() method to force it to again lay out the
components using the new layout properties, but it is better
to use revalidate(). Note that validate() is a public method
defined in java.awt.Container, revalidate() is a public method
defined in javax.swing.JComponent, and doLayout() is a public
method defined in java.awt.Container.

37.3.1 CardLayout

CardLayout places components in the container as cards. Only one card
is visible at a time, and the container acts as a stack of cards. The
ordering of cards is determined by the container's own internal
ordering of its component objects. You can specify the size of the
horizontal and vertical gaps surrounding a stack of components in a
CardLayout manager, as shown in Figure 37.2.

Components in the
container of
CardLayout

hGap

vGap

Component 1

Component 2
Component 3

Component 4

Figure 37.2

The CardLayout places components in the container as a stack of cards.

CardLayout defines a set of methods that allow an application to flip
through the cards sequentially or to display a specified card
directly, as shown in Figure 37.3.

7

java.awt.CardLayout
-hgap: int
-vgap: int

+CardLayout ()
+CardLayout (hgap: int, vgap: int)
+first(parent: Con tainer): void
+last(parent: Container): void
+n ext(parent: Container): void

+p revious(parent: Container): void

+show(parent: Container, name: St ring): void

«interface»
java.awt.LayoutManager

Horizontal gap.
Vertical gap.

Creates a defau lt CardLayout manager with no gaps.
Creates a defau lt CardLayout manager with the specified gaps.
Flips to the first card in the container.
Flips to the last card in th e con tainer.
Flips to the next card in the specified container. If the curren tly visib le

card is the last one, this method flips to the first card in the layou t.
Flips to the previous card in the specified container. If the currently visible

card is the fi rst one, this meth od flips to the last card in the layout.
Flips to the component that was added to this layout with the specified

name.

JavaBea ns proper ties with get and set
methods omitted in the UML diagram.

Figure 37.3

CardLayout contains the methods to flip the card.

To add a component into a container, use the add(Component c, String
name) method defined in the LayoutManager interface. The String
parameter, name, gives an explicit identity to the component in the
container.

Listing 37.1 gives a program that creates two panels in a frame. The
first panel uses CardLayout to hold six labels for displaying images.
The second panel uses FlowLayout to group four buttons named First,
Next, Previous, and Last, and a combo box labeled Image, as shown in
Figure 37.4.

These buttons control which image will be shown in the CardLayout
panel. When the user clicks the button named First, for example, the
first image in the CardLayout panel appears. The combo box enables the
user to directly select an image.

Figure 37.4

The program shows images in a panel of CardLayout.

Listing 37.1 ShowCardLayout.java

<margin note line 6: card layout>
<margin note line 13: create UI>
<margin note line 41: register listener>
<margin note line 45: first component>

8

<margin note line 47: register listener>
<margin note line 52: next component>
<margin note line 55: register listener>
<margin note line 59: previous component>
<margin note line 62: register listener>
<margin note line 66: last component>
<margin note line 69: register listener>
<margin note line 77: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4
 5 public class ShowCardLayout extends JApplet {
 6 private CardLayout cardLayout = new CardLayout(20, 10);
 7 private JPanel cardPanel = new JPanel(cardLayout);
 8 private JButton jbtFirst, jbtNext, jbtPrevious, jbtLast;
 9 private JComboBox jcboImage;
 10 private final int NUM_OF_FLAGS = 6;
 11
 12 public ShowCardLayout() {
 13 cardPanel.setBorder(
 14 new javax.swing.border.LineBorder(Color.red));
 15
 16 // Add 9 labels for displaying images into cardPanel
 17 for (int i = 1; i <= NUM_OF_FLAGS; i++) {
 18 JLabel label =
 19 new JLabel(new ImageIcon("image/flag" + i + ".gif"));
 20 cardPanel.add(label, String.valueOf(i));
 21 }
 22
 23 // Panel p to hold buttons and a combo box
 24 JPanel p = new JPanel();
 25 p.add(jbtFirst = new JButton("First"));
 26 p.add(jbtNext = new JButton("Next"));
 27 p.add(jbtPrevious= new JButton("Previous"));
 28 p.add(jbtLast = new JButton("Last"));
 29 p.add(new JLabel("Image"));
 30 p.add(jcboImage = new JComboBox());
 31
 32 // Initialize combo box items
 33 for (int i = 1; i <= NUM_OF_FLAGS; i++)
 34 jcboImage.addItem(String.valueOf(i));
 35
 36 // Place panels in the frame
 37 add(cardPanel, BorderLayout.CENTER);
 38 add(p, BorderLayout.SOUTH);
 39
 40 // Register listeners with the source objects
 41 jbtFirst.addActionListener(new ActionListener() {
 42 @Override
 43 public void actionPerformed(ActionEvent e) {
 44 // Show the first component in cardPanel
 45 cardLayout.first(cardPanel);
 46 }
 47 });
 48 jbtNext.addActionListener(new ActionListener() {
 49 @Override
 50 public void actionPerformed(ActionEvent e) {

9

 51 // Show the first component in cardPanel
 52 cardLayout.next(cardPanel);
 53 }
 54 });
 55 jbtPrevious.addActionListener(new ActionListener() {
 56 @Override
 57 public void actionPerformed(ActionEvent e) {
 58 // Show the first component in cardPanel
 59 cardLayout.previous(cardPanel);
 60 }
 61 });
 62 jbtLast.addActionListener(new ActionListener() {
 63 @Override
 64 public void actionPerformed(ActionEvent e) {
 65 // Show the first component in cardPanel
 66 cardLayout.last(cardPanel);
 67 }
 68 });
 69 jcboImage.addItemListener(new ItemListener() {
 70 @Override
 71 public void itemStateChanged(ItemEvent e) {
 72 // Show the component at specified index
 73 cardLayout.show(cardPanel, (String)e.getItem());
 74 }
 75 });
 76 }
 77 }

An instance of CardLayout is created in line 6, and a panel of
CardLayout is created in line 7. You have already used such statements
as setLayout(new FlowLayout()) to create an anonymous layout object
and set the layout for a container, instead of creating a separate
instance of the layout manager, as in this program. The cardLayout
object, however, is useful later in the program to show components in
cardPanel. You have to use cardLayout.first(cardPanel) (line 45), for
example, to view the first component in cardPanel.

The statement in lines 18–20 adds the image label with the identity
String.valueOf(i). Later, when the user selects an image with number
i, the identity String.valueOf(i) is used in the cardLayout.show()
method (line 73) to view the image with the specified identity.

37.3.2 BoxLayout

javax.swing.BoxLayout is a Swing layout manager that arranges
components in a row or a column. To create a BoxLayout, use the
following constructor:

public BoxlayLayout(Container target, int axis)

This constructor is different from other layout constructors. It
creates a layout manager that is dedicated to the given target
container. The axis parameter is BoxLayout.X_AXIS or BoxLayout.Y_AXIS,
which specifies whether the components are laid out horizontally or
vertically. For example, the following code creates a horizontal
BoxLayout for panel p1:

JPanel p1 = new JPanel();

10

BoxLayout boxLayout = new BoxLayout(p1, BoxLayout.X_AXIS);
p1.setLayout(boxLayout);

You still need to invoke the setLayout method on p1 to set the layout
manager.

You can use BoxLayout in any container, but it is simpler to use the
Box class, which is a container of BoxLayout. To create a Box
container, use one of the following two static methods:

Box box1 = Box.createHorizontalBox();
Box box2 = Box.createVerticalBox();

The former creates a box that contains components horizontally, the
latter a box that contains components vertically.
You can add components to a box in the same way that you add them to
the containers of FlowLayout or GridLayout using the add method, as
follows:

box1.add(new JButton("A Button"));

You can remove components from a box in the same way that you drop
components to a container. The components are laid left to right in a
horizontal box, and top to bottom in a vertical box.
BoxLayout is similar to GridLayout but has many unique features.
First, BoxLayout respects a component's preferred size, maximum size,
and minimum size. If the total preferred size of all the components in
the box is less than the box size, then the components are expanded up
to their maximum size. If the total preferred size of all the
components in the box is greater than the box size, then the
components are shrunk down to their minimum size. If the components do
not fit at their minimum width, some of them will not be shown. In the
GridLayout, the container is divided into cells of equal size, and the
components are fit in regardless of their preferred maximum or minimum
size.

Second, unlike other layout managers, BoxLayout considers the
component's alignmentX or alignmentY property. The alignmentX property
is used to place the component in a vertical box layout, and the
alignmentY property is used to place it in a horizontal box layout.
Third, BoxLayout does not have gaps between the components, but you
can use fillers to separate components. A filler is an invisible
component. There are three kinds of fillers: struts, rigid areas, and
glues.

<side remark: strut>
A strut simply adds some space between components. The static method
createHorizontalStrut(int) in the Box class is used to create a
horizontal strut, and the static method createVerticalStrut(int) to
create a vertical strut. For example, the code shown below adds a
vertical strut of 8 pixels between two buttons in a vertical box.

box2.add(new JButton("Button 1"));
box2.add(Box.createVerticalStrut(8));
box2.add(new JButton("Button 2"));

<side remark: rigid area>
A rigid area is a two-dimensional space that can be created using the
static method createRigidArea(dimension) in the Box class. For

11

example, the next code adds a rigid area 10 pixels wide and 20 pixels
high into a box.

box2.add(Box.createRigidArea(new Dimension(10, 20));

<side remark: glue>
A glue separates components as much as possible. For example, by
adding a glue between two components in a horizontal box, you place
one component at the left end and the other at the right end. A glue
can be created using the Box.createGlue() method.

Listing 37.2 shows an example that creates a horizontal box and a
vertical box. The horizontal box holds two buttons with print and save
icons. The vertical box holds four buttons for selecting flags. When a
button in the vertical box is clicked, a corresponding flag icon is
displayed in the label centered in the applet, as shown in Figure
37.5.

Figure 37.5
The components are placed in the containers of BoxLayout.

Listing 37.2 ShowBoxLayout.java

<margin note line 6: UI components>
<margin note line 7: BoxLayout container>
<margin note line 8: BoxLayout container>
<margin note line 14: create icons>
<margin note line 28: buttons>
<margin note line 34: create UI>
<margin note line 35: add to box>
<margin note line 79: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4
 5 public class ShowBoxLayout extends JApplet {
 6 // Create two box containers
 7 private Box box1 = Box.createHorizontalBox();
 8 private Box box2 = Box.createVerticalBox();
 9
 10 // Create a label to display flags
 11 private JLabel jlblFlag = new JLabel();
 12
 13 // Create image icons for flags
 14 private ImageIcon imageIconUS =
 15 new ImageIcon(getClass().getResource("/image/us.gif"));
 16 private ImageIcon imageIconCanada =
 17 new ImageIcon(getClass().getResource("/image/ca.gif"));
 18 private ImageIcon imageIconNorway =
 19 new ImageIcon(getClass().getResource("/image/norway.gif"));

12

 20 private ImageIcon imageIconGermany =
 21 new ImageIcon(getClass().getResource("/image/germany.gif"));
 22 private ImageIcon imageIconPrint =
 23 new ImageIcon(getClass().getResource("/image/print.gif"));
 24 private ImageIcon imageIconSave =
 25 new ImageIcon(getClass().getResource("/image/save.gif"));
 26
 27 // Create buttons to select images
 28 private JButton jbtUS = new JButton("US");
 29 private JButton jbtCanada = new JButton("Canada");
 30 private JButton jbtNorway = new JButton("Norway");
 31 private JButton jbtGermany = new JButton("Germany");
 32
 33 public ShowBoxLayout() {
 34 box1.add(new JButton(imageIconPrint));
 35 box1.add(Box.createHorizontalStrut(20));
 36 box1.add(new JButton(imageIconSave));
 37
 38 box2.add(jbtUS);
 39 box2.add(Box.createVerticalStrut(8));
 40 box2.add(jbtCanada);
 41 box2.add(Box.createGlue());
 42 box2.add(jbtNorway);
 43 box2.add(Box.createRigidArea(new Dimension(10, 8)));
 44 box2.add(jbtGermany);
 45
 46 box1.setBorder(new javax.swing.border.LineBorder(Color.red));
 47 box2.setBorder(new javax.swing.border.LineBorder(Color.black));
 48
 49 add(box1, BorderLayout.NORTH);
 50 add(box2, BorderLayout.EAST);
 51 add(jlblFlag, BorderLayout.CENTER);
 52
 53 // Register listeners
 54 jbtUS.addActionListener(new ActionListener() {
 55 @Override
 56 public void actionPerformed(ActionEvent e) {
 57 jlblFlag.setIcon(imageIconUS);
 58 }
 59 });
 60 jbtCanada.addActionListener(new ActionListener() {
 61 @Override
 62 public void actionPerformed(ActionEvent e) {
 63 jlblFlag.setIcon(imageIconCanada);
 64 }
 65 });
 66 jbtNorway.addActionListener(new ActionListener() {
 67 @Override
 68 public void actionPerformed(ActionEvent e) {
 69 jlblFlag.setIcon(imageIconNorway);
 70 }
 71 });
 72 jbtGermany.addActionListener(new ActionListener() {
 73 @Override
 74 public void actionPerformed(ActionEvent e) {
 75 jlblFlag.setIcon(imageIconGermany);
 76 }
 77 });
 78 }

13

 79 }

Two containers of the Box class are created in lines 7-8 using the
convenient static methods createHorizontalBox() and
createVerticalBox(). The box containers always use the BoxLayout
manager. You cannot reset the layout manager for the box containers.

The image icons are created from image files (lines 14-25) through
resource URL, introduced in Section 18.10, “Locating Resource Using
the URL Class.”

Two buttons with print and save icons are added into the horizontal
box (line 34-36). A horizontal strut with size 20 is added between
these two buttons (line 35).

Four buttons with texts US, Canada, Norway, and Germany are added into
the vertical box (lines 38-44). A horizontal strut with size 8 is
added to separate the US button and the Canada button (line 39). A
rigid area is inserted between the Norway button and the Germany
button (line 43). A glue is inserted to separate the Canada button and
the Norway button as far as possible in the vertical box.

The strut, rigid area, and glue are instances of Component, so they
can be added to the box container. In theory, you can add them to a
container other than the box container. But they may be ignored and
have no effect in other containers.

37.3.3 Using Null Layout Manager

If you have used a Windows-based visual form design tool like Visual
Basic, you know that it is easier to create user interfaces with
Visual Basic than in Java. This is mainly because in Visual Basic the
components are placed in absolute positions and sizes, whereas in Java
they are placed in containers using a variety of layout managers.
Absolute positions and sizes are fine if the application is developed
and deployed on the same platform, but what looks fine on a
development system may not look right on a deployment system. To solve
this problem, Java provides a set of layout managers that place
components in containers in a way that is independent of fonts, screen
resolutions, and platform differences.

For convenience, Java also supports an absolute layout, called null
layout manager, which enables you to place components at fixed
locations. In this case, the component must be placed using the
component's instance method setBounds() (defined in
java.awt.Component), as follows:

public void setBounds(int x, int y, int width, int height);
This sets the location and size for the component, as in the next
example:

JButton jbt = new JButton("Help");
jbt.setBounds(10, 10, 40, 20);

The upper-left corner of the Help button is placed at (10, 10); the
button width is 40, and the height is 20.
Here are the steps of adding a button to a container with a null
layout manager:

14

 1. Use this statement to specify a null layout manager:

<margin note: set null layout>
container.setLayout(null);

 2. Add the component to the container:

JButton jbt = new JButton("Help");
 container.add(jbt);

 3. Specify the location where the component is to be placed, using the
setBounds method:

<margin note: setBounds>
jbt.setBounds(10, 10, 40, 20);

Listing 37.3 gives a program that places three buttons, as shown in
Figure 37.6a.

 (a) (b)
Figure 37.6

(a) The components are placed in the frame using a null layout
manager. (b) With a null layout manager, the size and positions of the
components are fixed.

Listing 37.3 ShowNoLayout.java

<margin note line 5: UI components>
<margin note line 11: create UI>
<margin note line 28: main method omitted>

 1 import java.awt.*;
 2 import javax.swing.*;
 3
 4 public class ShowNoLayout extends JApplet {
 5 private JButton jbtRed = new JButton("Red");
 6 private JButton jbtBlue = new JButton("Blue");
 7 private JButton jbtGreen = new JButton("Green");
 8
 9 public ShowNoLayout() {
 10 // Set foreground color for the buttons
 11 jbtRed.setForeground(Color.RED);
 12 jbtBlue.setForeground(Color.BLUE);
 13 jbtGreen.setForeground(Color.GREEN);
 14
 15 // Specify no layout manager
 16 setLayout(null);
 17
 18 // Add components to container
 19 add(jbtRed);

15

 20 add(jbtBlue);
 21 add(jbtGreen);
 22
 23 // Put components in the right place
 24 jbtRed.setBounds(150, 50, 100, 50);
 25 jbtBlue.setBounds(100, 100, 100, 50);
 26 jbtGreen.setBounds(200, 100, 100, 50);
 27 }
 28 }

If you run this program on Windows with 1024 768 resolution, the
layout size is just right. When the program is run on Windows with a
higher resolution, the components appear very small and clump
together. When it is run on Windows with a lower resolution, they
cannot be shown in their entirety.

If you resize the window, you will see that the location and the size
of the components are not changed, as shown in Figure 37.6b.

TIP

Do not use the null-layout-manager to develop platform-
independent applications.

37.4 Creating Custom Layout Managers

In addition to the layout managers provided in Java, you can create
your own. To do so, you need to understand how a layout manager lays
out components. A container's setLayout method specifies a layout
manager for the container. The layout manager is responsible for
laying out the components and displaying them in a desired location
with an appropriate size. Every layout manager must directly or
indirectly implement the LayoutManager interface. For instance,
FlowLayout directly implements LayoutManager, and BorderLayout
implements LayoutManager2, a subclass of LayoutManager. The
LayoutManager interface provides the following methods for laying out
components in a container:

public void addLayoutComponent(String name, Component comp)

Adds the specified component with the specified name to the container.

public void layoutContainer(Container parent)

Lays out the components in the specified container. In this method,
you should provide concrete instructions that specify where the
components are to be placed.

public Dimension minimumLayoutSize(Container parent)

Calculates the minimum size dimensions for the specified panel, given
the components in the specified parent container.

public Dimension preferredLayoutSize(Container parent)

Calculates the preferred size dimensions for the specified panel,
given the components in the specified parent container.

16

public void removeLayoutComponent(Component comp)

 Removes the specified component from the layout.

These methods in LayoutManager are invoked by the methods in the
java.awt.Container class through the layout manager in the container.
Container contains a property named layout (an instance of
LayoutManager) and the methods for adding and removing components from
the container. There are five overloading add methods defined in
Container for adding components with various options. The remove
method removes a component from the container. The add method invokes
addImpl, which then invokes the addLayoutComponent method defined in
the LayoutManager interface. The layoutContainer method in the
LayoutManager interface is indirectly invoked by the validate() method
through several calls. The remove method invokes removeLayoutComponent
in LayoutManager. The validate method is invoked to refresh the
container after the components it contains have been added to or
modified. The relationship of Container and LayoutManager is shown in
Figure 37.7.

java.awt.Container

add

FlowLayout BorderLayout

 java.awt.LayoutManager

addLayoutComponent

remove

validate

removeLayoutComponent

layoutContainer

…

Figure 37.7

The add, remove, and validate methods in Container invoke the methods
defined in the LayoutManager interface.

Let us define a custom layout manager named DiagonalLayout that places
the components in a diagonal. To test DiagonalLayout, the example
creates an applet with radio buttons named “FlowLayout,” “GridLayout,”
and “DiagonalLayout,” as shown in Figure 37.8. You can dynamically
select one of these three layouts in the panel.

17

Figure 37.8

The DiagonalLayout manager places the components in a diagonal in the
container.

DiagonalLayout is similar to FlowLayout. DiagonalLayout arranges
components along a diagonal using each component's natural
preferredSize. It contains three constraints, gap, lastFill, and
majorDiagonal, as shown in Figure 37.9. The source code for
DiagonalLayout is given in Listing 37.4.

DiagonalLayout

-gap: int
-lastFi ll: boolean

-majorDiagonal: boolean

+DiagonalLayou t()

The gap between the components.
A Boolean value indicating whether the last component in the

container is stretched to fill the rest of the space.

A Boolean value indicating whether the components are
placed along the major diagonal or the subdiagonal.

Creates a DiagonalLayout.

«interface»
java.awt.LayoutManager

Ja vaBeans properties w ith get and set
methods omitted in the UML diagram.

Figure 37.9

The DiagonalLayout manager has three properties with the supporting
accessor and mutator methods.

Listing 37.4 DiagonalLayout.java

<margin note line 6: properties>
<margin note line 34: layout container>

 1 import java.awt.*;
 2
 3 public class DiagonalLayout implements LayoutManager,
 4 java.io.Serializable {
 5 /** Vertical gap between the components */
 6 private int gap = 10;
 7
 8 /** True if components are placed along the major diagonal */
 9 private boolean majorDiagonal = true;
 10
 11 /*True if the last component is stretched to fill the space */
 12 private boolean lastFill = false;
 13
 14 /** Constructor */
 15 public DiagonalLayout() {
 16 }
 17
 18 public void addLayoutComponent(String name, Component comp) {
 19 // No need to implement it for DiaganolLayout
 20 }
 21
 22 public void removeLayoutComponent(Component comp) {
 23 // No need to implement it for DiaganolLayout
 24 }

18

 25
 26 public Dimension preferredLayoutSize(Container parent) {
 27 return minimumLayoutSize(parent);
 28 }
 29
 30 public Dimension minimumLayoutSize(Container parent) {
 31 return new Dimension(0, 0);
 32 }
 33
 34 public void layoutContainer(Container parent) {
 35 int numberOfComponents = parent.getComponentCount();
 36
 37 Insets insets = parent.getInsets();
 38 int w = parent.getSize().width - insets.left - insets.right;
 39 int h = parent.getSize().height - insets.bottom - insets.top;
 40
 41 if (majorDiagonal) {
 42 int x = 10, y = 10;
 43
 44 for (int j = 0; j < numberOfComponents; j++) {
 45 Component c = parent.getComponent(j);
 46 Dimension d = c.getPreferredSize();
 47
 48 if (c.isVisible())
 49 if (lastFill && (j == numberOfComponents - 1))
 50 c.setBounds(x, y, w - x, h - y);
 51 else
 52 c.setBounds(x, y, d.width, d.height);
 53 x += d.height + gap;
 54 y += d.height + gap;
 55 }
 56 }
 57 else { // It is subdiagonal
 58 int x = w - 10, y = 10;
 59
 60 for (int j = 0; j < numberOfComponents; j++) {
 61 Component c = parent.getComponent(j);
 62 Dimension d = c.getPreferredSize();
 63
 64 if (c.isVisible())
 65 if (lastFill & (j == numberOfComponents - 1))
 66 c.setBounds(0, y, x, h - y);
 67 else
 68 c.setBounds(x - d.width, y, d.width, d.height);
 69
 70 x -= (d.height + gap);
 71 y += d.height + gap;
 72 }
 73 }
 74 }
 75
 76 public int getGap() {
 77 return gap;
 78 }
 79
 80 public void setGap(int gap) {
 81 this.gap = gap;
 82 }
 83

19

 84 public void setMajorDiagonal(boolean newMajorDiagonal) {
 85 majorDiagonal = newMajorDiagonal;
 86 }
 87
 88 public boolean isMajorDiagonal() {
 89 return majorDiagonal;
 90 }
 91
 92 public void setLastFill(boolean newLastFill) {
 93 lastFill = newLastFill;
 94 }
 95
 96 public boolean isLastFill() {
 97 return lastFill;
 98 }
 99 }

The DiagonalLayout class implements the LayoutManager and Serializable
interfaces (lines 3-4). The reason to implement Serializable is to
make it a JavaBeans component.

The Insets class describes the size of the borders of a container. It
contains the variables left, right, bottom, and top, which correspond
to the measurements for the left border, right border, top border, and
bottom border (lines 37-39).

The Dimension class used in DiagonalLayout encapsulates the width and
height of a component in a single object. The class is associated with
certain properties of components. Several methods defined by the
Component class and the LayoutManager interface return a Dimension
object.

Listing 37.5 gives a test program that uses DiagonalLayout.

Listing 37.5 ShowDiagonalLayout.java

<margin note line 9: diagonal layout>
<margin note line 27: create UI>
<margin note line 48: register listener>
<margin note line 55: register listener>
<margin note line 62: register listener>
<margin note line 70: main method omitted>

 1 import javax.swing.*;
 2 import javax.swing.border.*;
 3 import java.awt.*;
 4 import java.awt.event.*;
 5
 6 public class ShowDiagonalLayout extends JApplet {
 7 private FlowLayout flowLayout = new FlowLayout();
 8 private GridLayout gridLayout = new GridLayout(2, 2);
 9 private DiagonalLayout diagonalLayout = new DiagonalLayout();
 10
 11 private JButton jbt1 = new JButton("Button 1");
 12 private JButton jbt2 = new JButton("Button 2");
 13 private JButton jbt3 = new JButton("Button 3");
 14 private JButton jbt4 = new JButton("Button 4");
 15
 16 private JRadioButton jrbFlowLayout =

20

 17 new JRadioButton("FlowLayout");
 18 private JRadioButton jrbGridLayout =
 19 new JRadioButton("GridLayout");
 20 private JRadioButton jrbDiagonalLayout =
 21 new JRadioButton("DiagonalLayout", true);
 22
 23 private JPanel jPanel2 = new JPanel();
 24
 25 public ShowDiagonalLayout() {
 26 // Set default layout in jPanel2
 27 jPanel2.setLayout(diagonalLayout);
 28 jPanel2.add(jbt1);
 29 jPanel2.add(jbt2);
 30 jPanel2.add(jbt3);
 31 jPanel2.add(jbt4);
 32 jPanel2.setBorder(new LineBorder(Color.black));
 33
 34 JPanel jPanel1 = new JPanel();
 35 jPanel1.setBorder(new TitledBorder("Select a Layout Manager"));
 36 jPanel1.add(jrbFlowLayout);
 37 jPanel1.add(jrbGridLayout);
 38 jPanel1.add(jrbDiagonalLayout);
 39
 40 ButtonGroup buttonGroup1 = new ButtonGroup();
 41 buttonGroup1.add(jrbFlowLayout);
 42 buttonGroup1.add(jrbGridLayout);
 43 buttonGroup1.add(jrbDiagonalLayout);
 44
 45 add(jPanel1, BorderLayout.SOUTH);
 46 add(jPanel2, BorderLayout.CENTER);
 47
 48 jrbFlowLayout.addActionListener(new ActionListener() {
 49 @Override
 50 public void actionPerformed(ActionEvent e) {
 51 jPanel2.setLayout(flowLayout);
 52 jPanel2.validate();
 53 }
 54 });
 55 jrbGridLayout.addActionListener(new ActionListener() {
 56 @Override
 57 public void actionPerformed(ActionEvent e) {
 58 jPanel2.setLayout(gridLayout);
 59 jPanel2.validate();
 60 }
 61 });
 62 jrbDiagonalLayout.addActionListener(new ActionListener() {
 63 @Override
 64 public void actionPerformed(ActionEvent e) {
 65 jPanel2.setLayout(diagonalLayout);
 66 jPanel2.validate();
 67 }
 68 });
 69 }
 70 }

The TestDiagonalLayout class enables you to dynamically set the layout
in jPanel2. When you select a new layout, the layout manager is set in
jPanel2, and the revalidate() method is invoked (lines 52, 59, 66),

21

which in turn invokes the layoutContainer method in the LayoutManager
interface to display the components in the container.

37.5 JScrollPane

Often you need to use a scroll bar to scroll the contents of an object
that does not fit completely into the viewing area. JScrollBar and
JSlider can be used for this purpose, but you have to manually write
the code to implement scrolling with them. JScrollPane is a component
that supports automatic scrolling without coding. It was used to
scroll the text area in Listing 17.3, TextAreaDemo.java, and to scroll
a list in Listing 17.5, ListDemo.java. In fact, it can be used to
scroll any subclass of JComponent.

A JScrollPane can be viewed as a specialized container with a view
port for displaying the contained component. In addition to horizontal
and vertical scroll bars, a JScrollPane can have a column header, a
row header, and corners, as shown in Figure 37.10.

Figure 37.10

A JScrollPane has a view port, optional horizontal and vertical bars,
optional column and row headers, and optional corners.

<margin note: view port>
The view port is an instance of JViewport through which a scrollable
component is displayed. When you add a component to a scroll pane, you
are actually placing it in the scroll pane's view port. Figure 37.11
shows the frequently used properties, constructors, and methods in
JScrollPane.

22

javax.swing.JScrollPane

#columnHeader: JViewport
#rowHeader: JViewport
#horizontalScrollBarPolicy: int

#verticalScrollBarPolicy: int

#viewport: Jviewport
#horizontalScrollBar: JScrollBar
#verticalScrollBar: JscrollBar
-viewportBorder: Border

+JScrollPane()

+JScrollPane(view: Component)

+JScrollPane(view: Component, vsbPolicy:
int, hsbPolicy: int)

+JScrollPane(vsbPolicy: int, hsbPolicy: int)

+setCorner(key: String, corner:
Component): void

+setViewportView(view: Component): void

The column header (default: null).
The row header (default: null).
The display policy for the horizontal scroll bar (default:

JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED).
The display policy for the horizontal scroll bar (default:

JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED).
The scroll pane's view port.
The scroll pane's horizontal scroll bar.
The scroll pane's vertical scroll bar.
The border around the view port.

Creates an empty JScrollPane where both horizontal and vertical
scroll bars appear when needed.

Creates a JScrollPane that displays the contents of the specified
component, where both horizontal and vertical scroll bars
appear whenever the component's contents are larger than the
view.

Creates a JScrollPane that displays the contents of the specified
component with the specified horizontal and vertical scroll bar
policies.

Creates an empty JScrollPane with the specified horizontal and
vertical scroll bar policies.

Adds a component in one of the scroll pane’s corners.

Adds a view component to the view port.

javax.swing.JComponent

JavaBeans properties with get and set
methods omitted in the UML diagram.

Figure 37.11

JScrollPane provides methods for displaying and manipulating the
components in a scroll pane.

The constructor always creates a view port regardless of whether the
viewing component is specified. Normally, you have the component and
you want to place it in a scroll pane. A convenient way to create a
scroll pane for a component is to use the JScrollPane(component)
constructor.

The vsbPolicy parameter can be one of the following three values:

JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED

JScrollPane.VERTICAL_SCROLLBAR_NEVER

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS

The hsbPolicy parameter can be one of the following three values:

JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED

JScrollPane.HORIZONTAL_SCROLLBAR_NEVER

JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS

23

To set a corner component, you can use the setCorner(String key,
Component corner) method. The legal values for the key are:

JScrollPane.LOWER_LEFT_CORNER

JScrollPane.LOWER_RIGHT_CORNER

JScrollPane.UPPER_LEFT_CORNER

JScrollPane.UPPER_RIGHT_CORNER

Listing 37.6 shows an example that displays a map in a label and
places the label in a scroll pane so that a large map can be scrolled.
The program lets you choose a map from a combo box and display it in
the scroll pane, as shown in Figure 37.12.

Figure 37.12

The scroll pane can be used to scroll contents automatically.

Listing 37.6 ScrollMap.java

<margin note line 8: labels>
<margin note line 17: create UI>
<margin note line 28: scroll pane>
<margin note line 46: register listener>
<margin note line 88: main method omitted >

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 import javax.swing.border.*;
 5
 6 public class ScrollMap extends JApplet {
 7 // Create images in labels
 8 private JLabel lblIndianaMap = new JLabel(
 9 new ImageIcon(getClass().getResource("image/indianaMap.gif")));
 10 private JLabel lblOhioMap = new JLabel(
 11 new ImageIcon(getClass().getResource("/image/ohioMap.gif")));
 12
 13 // Create a scroll pane to scroll map in the labels
 14 private JScrollPane jspMap = new JScrollPane(lblIndianaMap);
 15
 16 public ScrollMap() {
 17 // Create a combo box for selecting maps

24

 18 JComboBox jcboMap = new JComboBox(new String[]{"Indiana",
 19 "Ohio"});
 20
 21 // Panel p to hold combo box
 22 JPanel p = new JPanel();
 23 p.setLayout(new BorderLayout());
 24 p.add(jcboMap);
 25 p.setBorder(new TitledBorder("Select a map to display"));
 26
 27 // Set row header, column header and corner header
 28 jspMap.setColumnHeaderView(new JLabel(new ImageIcon(getClass().
 29 getResource("/image/horizontalRuler.gif"))));
 30 jspMap.setRowHeaderView(new JLabel(new ImageIcon(getClass().
 31 getResource("/image/verticalRuler.gif"))));
 32 jspMap.setCorner(JScrollPane.UPPER_LEFT_CORNER,
 33 new CornerPanel(JScrollPane.UPPER_LEFT_CORNER));
 34 jspMap.setCorner(ScrollPaneConstants.UPPER_RIGHT_CORNER,
 35 new CornerPanel(JScrollPane.UPPER_RIGHT_CORNER));
 36 jspMap.setCorner(JScrollPane.LOWER_RIGHT_CORNER,
 37 new CornerPanel(JScrollPane.LOWER_RIGHT_CORNER));
 38 jspMap.setCorner(JScrollPane.LOWER_LEFT_CORNER,
 39 new CornerPanel(JScrollPane.LOWER_LEFT_CORNER));
 40
 41 // Add the scroll pane and combo box panel to the frame
 42 add(jspMap, BorderLayout.CENTER);
 43 add(p, BorderLayout.NORTH);
 44
 45 // Register listener
 46 jcboMap.addItemListener(new ItemListener() {
 47 /** Show the selected map */
 48 public void itemStateChanged(ItemEvent e) {
 49 String selectedItem = (String)e.getItem();
 50 if (selectedItem.equals("Indiana")) {
 51 // Set a new view in the view port
 52 jspMap.setViewportView(lblIndianaMap);
 53 }
 54 else if (selectedItem.equals("Ohio")) {
 55 // Set a new view in the view port
 56 jspMap.setViewportView(lblOhioMap);
 57 }
 58
 59 // Revalidate the scroll pane
 60 jspMap.revalidate();
 61 }
 62 });
 63 }
 64
 65 // A panel displaying a line used for scroll pane corner
 66 class CornerPanel extends JPanel {
 67 // Line location
 68 private String location;
 69
 70 public CornerPanel(String location) {
 71 this.location = location;
 72 }
 73
 74 @Override /** Draw a line depending on the location */
 75 protected void paintComponent(Graphics g) {
 76 super.paintComponents(g);

25

 77
 78 if (location == "UPPER_LEFT_CORNER")
 79 g.drawLine(0, getHeight(), getWidth(), 0);
 80 else if (location == "UPPER_RIGHT_CORNER")
 81 g.drawLine(0, 0, getWidth(), getHeight());
 82 else if (location == "LOWER_RIGHT_CORNER")
 83 g.drawLine(0, getHeight(), getWidth(), 0);
 84 else if (location == "LOWER_LEFT_CORNER")
 85 g.drawLine(0, 0, getWidth(), getHeight());
 86 }
 87 }
 88 }

The program creates a scroll pane to view image maps. The images are
created from image files and displayed in labels (lines 8-11). To
view an image, the label that contains the image is placed in the
scroll pane's view port (line 14).

The scroll pane has a main view, a header view, a column view, and
four corner views. Each view is a subclass of Component. Since
ImageIcon is not a subclass of Component, it cannot be directly used
as a view in the scroll pane. Instead the program places an
ImageIcon to a label and uses the label as a view.

The CornerPanel (lines 66-87) is a subclass of JPanel that is used
to display a line. How the line is drawn depends on the location of
the corner. The location is a string passed in as a parameter in the
CornerPanel's constructor.

Whenever a new map is selected, the label for displaying the map
image is set to the scroll pane's view port. The revalidate() method
(line 60) must be invoked to cause the new image to be displayed.
The revalidate() method causes a container to lay out its
subcomponents again after the components it contains have been added
to or modified.

37.6 JTabbedPane

JTabbedPane is a useful Swing container that provides a set of
mutually exclusive tabs for accessing multiple components, as shown in
Figure 37.13.

Figure 37.13

JTabbedPane displays components through the tabs.

Usually you place the panels inside a JTabbedPane and associate a tab
with each panel. JTabbedPane is easy to use, because the selection of
the panel is handled automatically by clicking the corresponding tab.
You can switch between a group of panels by clicking on a tab with a

26

given title and/or icon. Figure 37.14 shows the frequently used
properties, constructors, and methods in JTabbedPane.

javax.swing.JTabbedPane

#tabPlacement: int

#selectedComponent: Component
#selectedIndex: int

+JTabbedPane()
+JTabbedPane(tabPlacement: int)
+getIconAt(index: int): Icon
+setIconAt(index: int, icon: Icon): void
+getTabCount(): int
+getTitleAt(int index) : String
+setTitleAt(index: int, title: String): void
+getToolTipTextAt(index: int): String
+setToolTipTextAt(index: int, toolTipText:

String): void
+indexOfComponent(component:

Component): void
+indexOfTab(icon: Icon): int
+indexOfTab(title: String): int

The tab placement for this tabbed pane. Possible values are:
JTabbedPane.TOP, JTabbedPane.BOTTOM, JTabbedPane.LEFT,
and JTabbedPane.RIGHT (default: JTabbedPane.TOP).

The currently selected component for this tabbed pane.
The currently selected index for this tabbed pane.

Constructs a JTabbedPane with default tab placement.
Constructs a JTabbedPane with the specified tab placement.
Returns the icon at the specified tab index.
Sets the icon at the specified tab index.
Returns the number of tabs in this tabbed pane.
Returns the tab title at the specified tab index.
Sets the tab title at the specified tab index.
Returns the tool tip text at the specified tab index.
Sets the tool tip text at the specified tab index.

Returns the index of the tab for the specified component.

Returns the index of the tab for the specified icon.
Returns the index of the tab for the specified title.

javax.swing.JComponent

JavaBeans properties with get and set
methods omitted in the UML diagram.

Figure 37.14

JTabbedPane provides methods for displaying and manipulating the
components in the tabbed pane.

Listing 37.7 gives an example that uses a tabbed pane with four tabs
to display four types of figures: line, rectangle, rounded rectangle,
and oval. You can select a figure to display by clicking the
corresponding tab, as shown in Figure 37.13. The FigurePanel class for
displaying a figure was presented in Listing 15.3, FigurePanel.java.
You can use the type property to specify a figure type.

Listing 37.7 DisplayFigure.java

<margin note line 5: tabbed pane>
<margin note line 12: set type>
<margin note line 18: add tabs>
<margin note line 23: set tool tips>
<margin note line 28: main method omitted>

 1 import java.awt.*;
 2 import javax.swing.*;
 3
 4 public class DisplayFigure extends JApplet {
 5 private JTabbedPane jtpFigures = new JTabbedPane();
 6 private FigurePanel squarePanel = new FigurePanel();
 7 private FigurePanel rectanglePanel = new FigurePanel();
 8 private FigurePanel circlePanel = new FigurePanel();
 9 private FigurePanel ovalPanel = new FigurePanel();
 10

27

 11 public DisplayFigure() {
 12 squarePanel.setType(FigurePanel.LINE);
 13 rectanglePanel.setType(FigurePanel.RECTANGLE);
 14 circlePanel.setType(FigurePanel.ROUND_RECTANGLE);
 15 ovalPanel.setType(FigurePanel.OVAL);
 16
 17 add(jtpFigures, BorderLayout.CENTER);
 18 jtpFigures.add(squarePanel, "Line");
 19 jtpFigures.add(rectanglePanel, "Rectangle");
 20 jtpFigures.add(circlePanel, "Round Rectangle");
 21 jtpFigures.add(ovalPanel, "Oval");
 22
 23 jtpFigures.setToolTipTextAt(0, "Square");
 24 jtpFigures.setToolTipTextAt(1, "Rectangle");
 25 jtpFigures.setToolTipTextAt(2, "Circle");
 26 jtpFigures.setToolTipTextAt(3, "Oval");
 27 }
28 }

The program creates a tabbed pane to hold four panels, each of which
displays a figure. A panel is associated with a tab. The tabs are
titled Line, Rectangle, Rounded Rectangle, and Oval.

By default, the tabs are placed at the top of the tabbed pane. You can
select a different placement using the tabPlacement property.

37.7 JSplitPane

JSplitPane is a convenient Swing container that contains two
components with a separate bar known as a divider, as shown in Figure
37.15.

 (a) Vertical divider (b) Horizontal divider

Figure 37.15

JSplitPane divides a container into two parts.

The bar can divide the container horizontally or vertically and can be
dragged to change the amount of space occupied by each component.
Figure 37.16 shows the frequently used properties, constructors, and
methods in JSplitPane
.

28

javax.swing.JSpl itPane

#continuousLayout: boolean

#dividerSize: int
#lastDividerLocation: int
#leftComponent: Component
#on eTouchExpandable: boolean

#orientation: int

#rightComponent: Compon ent

+JSplitPane()

+JSplitPane(newOrientation: int)

+JSplitPane(newOrientation: int,
newContinuousLayout: boolean)

+ JSplitPane(newOrientation: int,
newContinuousLayou t: boolean,
newLeftComponent: Component,
newRightComponent: Component)

+JSplitPane(newOrientation: int,
newLeftComponent: Component,
newRightComponent: Component)

A Boolean value indicating wheth er or not the views are
continuously redisp layed whi le resizing.

Size of the d ivider.
Previous location of the divider.
The left or top component .
A Boolean property with the default value fal se. If the property is

t rue, the divider has an expanding and cont ract ing look, so that it
can expand and contract wi th one touch.

Specifies whether the container is divid ed horizontally or vertically.
The possible values are JSplitPane.HORIZONTAL_SPLIT
and JSplitPane.VERTICAL_SPLIT. The default value is
JSplitPane.HORIZONTAL_SPLIT, which divides the
container into a left part and a right part .
The right or bottom component .

Creates a JSpl itPane configured to arrange the child components
side by side horizontally with no continuous layout.

Creates a JSpl itPane configured with th e specified orientation and
no continuous layout.

Creates a JSpl itPane with the specified orientation and continuous
layout.

Creates a JSpl itPane with the specified orientation and continuous
layout, and the left (top) and right (bottom) components.

Creates a JSpl itPane with the specified orientation, and the left (top)
and right (bottom) components. No continuous layout.

javax.swing.JComponent

JavaBeans properties with get a nd set
me thods omitted in the UML diagram.

Figure 37.16

JSplitPane provides methods to specify the properties of a split pane
and for manipulating the components in a split pane.

Listing 37.8 gives an example that uses radio buttons to let the user
select a FlowLayout, GridLayout, or BoxLayout manager dynamically for
a panel. The panel contains four buttons, as shown in Figure 37.17.
The description of the currently selected layout manager is displayed
in a text area. The radio buttons, buttons, and text area are placed
in two split panes.

Figure 37.17

You can adjust the component size in the split panes.

Listing 37.8 ShowLayout.java

<margin note line 7: descriptions>

29

<margin note line 13: radio buttons>
<margin note line 24: layout managers>
<margin note line 54: split pane>
<margin note line 57: split pane>
<margin note line 76: register listener>
<margin note line 81: validate>
<margin note line 84: register listener>
<margin note line 89: validate>
<margin note line 93: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4
 5 public class ShowLayout extends JApplet {
 6 // Get the url for HTML files
 7 private String flowLayoutDesc = "FlowLayout arranges components " +
 8 "according to their preferredSize in " +
 9 "a left-to-right flow, much like lines of text in a paragraph.";
 10 private String gridLayoutDesc = "GridLayout arranges ...";
 11 private String boxLayoutDesc = "BoxLayout arranges ...";
 12
 13 private JRadioButton jrbFlowLayout =
 14 new JRadioButton("FlowLayout");
 15 private JRadioButton jrbGridLayout =
 16 new JRadioButton("GridLayout", true);
 17 private JRadioButton jrbBoxLayout =
 18 new JRadioButton("BoxLayout");
 19
 20 private JPanel jpComponents = new JPanel();
 21 private JTextArea jtfDescription = new JTextArea();
 22
 23 // Create layout managers
 24 private FlowLayout flowLayout = new FlowLayout();
 25 private GridLayout gridLayout = new GridLayout(2, 2, 3, 3);
 26 private BoxLayout boxLayout =
 27 new BoxLayout(jpComponents, BoxLayout.X_AXIS);
 28
 29 public ShowLayout() {
 30 // Create a box to hold radio buttons
 31 Box jpChooseLayout = Box.createVerticalBox();
 32 jpChooseLayout.add(jrbFlowLayout);
 33 jpChooseLayout.add(jrbGridLayout);
 34 jpChooseLayout.add(jrbBoxLayout);
 35
 36 // Group radio buttons
 37 ButtonGroup btg = new ButtonGroup();
 38 btg.add(jrbFlowLayout);
 39 btg.add(jrbGridLayout);
 40 btg.add(jrbBoxLayout);
 41
 42 // Wrap lines and words
 43 jtfDescription.setLineWrap(true);
 44 jtfDescription.setWrapStyleWord(true);
 45
 46 // Add fours buttons to jpComponents
 47 jpComponents.add(new JButton("Button 1"));
 48 jpComponents.add(new JButton("Button 2"));
 49 jpComponents.add(new JButton("Button 3"));

30

 50 jpComponents.add(new JButton("Button 4"));
 51
 52 // Create two split panes to hold jpChooseLayout, jpComponents,
 53 // and jtfDescription
 54 JSplitPane jSplitPane2 = new JSplitPane(
 55 JSplitPane.VERTICAL_SPLIT, jpComponents,
 56 new JScrollPane(jtfDescription));
 57 JSplitPane jSplitPane1 = new JSplitPane(
 58 JSplitPane.HORIZONTAL_SPLIT, jpChooseLayout, jSplitPane2);
 59
 60 // Set FlowLayout as default
 61 jpComponents.setLayout(flowLayout);
 62 jpComponents.revalidate();
 63 jtfDescription.setText(flowLayoutDesc);
 64
 65 add(jSplitPane1, BorderLayout.CENTER);
 66
 67 // Register listeners
 68 jrbFlowLayout.addActionListener(new ActionListener() {
 69 @Override
 70 public void actionPerformed(ActionEvent e) {
 71 jpComponents.setLayout(flowLayout);
 72 jtfDescription.setText(flowLayoutDesc);
 73 jpComponents.revalidate();
 74 }
 75 });
 76 jrbGridLayout.addActionListener(new ActionListener() {
 77 @Override
 78 public void actionPerformed(ActionEvent e) {
 79 jpComponents.setLayout(gridLayout);
 80 jtfDescription.setText(gridLayoutDesc);
 81 jpComponents.revalidate();
 82 }
 83 });
 84 jrbBoxLayout.addActionListener(new ActionListener() {
 85 @Override
 86 public void actionPerformed(ActionEvent e) {
 87 jpComponents.setLayout(boxLayout);
 88 jtfDescription.setText(boxLayoutDesc);
 89 jpComponents.revalidate();
 90 }
 91 });
 92 }
 93 }

Split panes can be embedded. Adding a split pane to an existing split
pane results in three split panes. The program creates two split panes
(lines 54-58) to hold a panel for radio buttons, a panel for buttons,
and a scroll pane.

The radio buttons are used to select layout managers. A selected
layout manager is used in the panel for laying out the buttons (lines
66-88). The scroll pane contains a JTextArea for displaying the text
that describes the selected layout manager (line 56).

37.8 Swing Borders
Swing provides a variety of borders that you can use to decorate
components. You learned how to create titled borders and line borders

31

in §12.9, “Common Features of Swing GUI Components.” This section
introduces borders in more detail.

A Swing border is defined in the Border interface. Every instance of
JComponent can set a border through the border property defined in
JComponent. If a border is present, it replaces the inset. The
AbstractBorder class implements an empty border with no size. This
provides a convenient base class from which other border classes can
easily be defined. There are eight concrete border classes,
BevelBorder, SoftBevelBorder, CompoundBorder, EmptyBorder,
EtchedBorder, LineBorder, MatteBorder, and TitledBorder, as shown in
Figure 37.18.

Border AbstractBorder

BevelBorder

CompoundBorder

EmptyBorder

EtchedBorder

LineBorder

MatteBorder

TitledBorder

SoftBevelBorder

Figure 37.18

The Border interface defines Swing borders.

[BL]BevelBorder is a 3D-look border that can be lowered or raised.
BevelBorder has the following constructors, which create a BevelBorder
with the specified bevelType (BevelBorder.LOWERED or BevelBorder.RAISED)
and colors:

BevelBorder(int bevelType)
BevelBorder(int bevelType, Color highlight, Color shadow)
BevelBorder(int bevelType, Color highlightOuterColor,
 Color highlightInnerColor,
 Color shadowOuterColor, Color shadowInnerColor)

[BL]SoftBevelBorder is a raised or lowered bevel with softened corners.
SoftBevelBorder has the following constructors:

SoftBevelBorder(int bevelType)
SoftBevelBorder(int bevelType, Color highlight, Color shadow)
SoftBevelBorder(int bevelType, Color highlightOuterColor,
 Color highlightInnerColor, Color shadowOuterColor,
 Color shadowInnerColor)

[BL]EmptyBorder is a border with border space but no drawings.
EmptyBorder has the following constructors:

EmptyBorder(Insets borderInsets)
EmptyBorder(int top, int left, int bottom, int right)

32

[BL]EtchedBorder is an etched border that can be etched-in or etched-out.
EtchedBorder has the property etchType with the value LOWERED or
RAISED. EtchedBorder has the following constructors:

EtchedBorder() // Default constructor with a lowered border
EtchedBorder(Color highlight, Color shadow)
EtchedBorder(int etchType)
EtchedBorder(int etchType, Color highlight, Color shadow)

[BL]LineBorder draws a line of arbitrary thickness and a single color
around the border. LineBorder has the following constructors:

LineBorder(Color color) // Thickness 1
LineBorder(Color color, int thickness)
LineBorder(Color color, int thickness, boolean roundedCorners)

[BL]MatteBorder is a mattelike border padded with the icon images.
MatteBorder has the following constructors:

MatteBorder(Icon tileIcon)
MatteBorder(Insets borderInsets, Color matteColor)
MatteBorder(Insets borderInsets, Icon tileIcon)
MatteBorder(int top, int left, int bottom,

int right, Color matteColor)
MatteBorder(int top, int left, int bottom, int right, Icon tileIcon)

[BL]CompoundBorder is used to compose two Border objects into a single
border by nesting an inside Border object within the insets of an
outside Border object using the following constructor:

CompoundBorder(Border outsideBorder, Border insideBorder)

[BL]TitledBorder is a border with a string title in a specified position.
TitledBorder can be composed with other borders. TitledBorder has the
following constructors:

TitledBorder(String title)
TitledBorder(Border border) // Empty title on another border
TitledBorder(Border border, String title)
TitledBorder(Border border, String title,

int titleJustification, int titlePosition)
TitledBorder(Border border, String title,

int titleJustification, int titlePosition,
 Font titleFont)
TitledBorder(Border border, String title,

int titleJustification, int titlePosition,
 Font titleFont, Color titleColor)

For convenience, Java also provides the javax.swing.BorderFactory
class, which contains the static methods for creating borders shown in
Figure 37.19.

33

javax.swing.BorderFactory
+createBevelBorder(type: int): Border
+createBevelBorder(type: int, highlight: Color, shadow: Color): Border
+createBevelBorder(type: int, highlightOuter: Color, highlightInner: Color, shadowOuter:

Color, shadowInner: Color): Border
+createCompoundBorder(): CompoundBorder
+createCompoundBorder(outsideBorder: Border, insideBorder: Border):

CompoundBorder
+createEmptyBorder(): Border
+createEmptyBorder(top: int, left: int, bottom: int, right: int): Border
+createEtchedBorder(): Border
+createEtchedBorder(highlight: Color, shadow: Color): Border
+createEtchedBorder(type: int): Border
+createEtchedBorder(type: int, highlight: Color, shadow: Color): Border
+createLineBorder(color: Color): Border
+createLineBorder(color: Color, thickness: int): Border
+createLoweredBevelBorder(): Border
+createMatteBorder(top: int, left: int, bottom: int, right: int, color: Color): MatteBorder
+createMatteBorder(top: int, left: int, bottom: int, right: int, tileIcon: Icon): MatteBorder
+createRaisedBevelBorder(): Border
+createTitledBorder(border: Border): TitledBorder
+createTitledBorder(border: Border, title: String): TitledBorder
+createTitledBorder(border: Border, title: String, titleJustification: int, titlePosition: int):

TitledBorder
+createTitledBorder(border: Border, title: String, titleJustification: int, titlePosition: int,

titleFont: Font): TitledBorder
+createTitledBorder(border: Border, title: String, titleJustification: int, titlePosition: int,

titleFont: Font, titleColor: Color): TitledBorder
+createTitledBorder(title: String): TitledBorder

Figure 37.19

BorderFactory contains the static methods for creating various types of
borders.

For example, to create an etched border, use the following statement:

Border border = BorderFactory.createEtchedBorder();

NOTE
All the border classes and interfaces are grouped in the
package javax.swing.border except javax.swing.BorderFactory.

NOTE
Borders and icons can be shared. Thus you can create a border
or icon and use it to set the border or icon property for any
GUI component. For example, the following statements set a
border b for two panels p1 and p2:

p1.setBorder(b);
p2.setBorder(b);

***End of NOTE

34

Listing 37.9 gives an example that creates and displays various types
of borders. You can select a border with or without a title. For a
border without a title, you can choose a border style from Lowered
Bevel, Raised Bevel, Etched, Line, Matte, or Empty. For a border with
a title, you can specify the title position and justification. You can
also embed another border into a titled border. Figure 37.20 displays
a sample run of the program.

 (a) (b)

Figure 37.20

The program demonstrates various types of borders.

Here are the major steps in the program:

1. Create the user interface.
a. Create a JLabel object and place

it in the center of the frame.

b. Create a panel named jpPositon to
group the radio buttons for selecting the border title
position. Set the border of this panel in the titled
border with the title “Position”.

c. Create a panel named
jpJustification to group the radio buttons for selecting
the border title justification. Set the border of this
panel in the titled border with the title
“Justification”.

d. Create a panel named
jpTitleOptions to hold the jpPosition panel and the
jpJustification panel.

e. Create a panel named jpTitle to
hold a check box named “Titled” and the jpTitleOptions
panel.

f. Create a panel named jpBorderStyle
to group the radio buttons for selecting border styles.

a. Create a panel named jpAllChoices to hold the panels
jpTitle and jpBorderStyle. Place jpAllChoices in the
south of the frame.

2. Process the event.

35

Create and register listeners to implement the actionPerformed handler to
set the border for the label according to the events from the check box,
and from all the radio buttons.

Listing 37.9 BorderDemo.java

<margin note line 30: create UI>
<margin note line 142: empty border>
<margin note line 145: bevel border>
<margin note line 149: bevel border>
<margin note line 153: etched border>
<margin note line 157: line border>
<margin note line 161: matte border>
<margin note line 167: empty border>
<margin note line 197: border on border>
<margin note line 207: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.ActionListener;
 3 import java.awt.event.ActionEvent;
 4 import javax.swing.*;
 5 import javax.swing.border.*;
 6
 7 public class BorderDemo extends JApplet {
 8 // Declare a label for displaying message
 9 private JLabel jLabel1 = new JLabel("Display the border type",
 10 JLabel.CENTER);
 11
 12 // A check box for selecting a border with or without a title
 13 private JCheckBox jchkTitled;
 14
 15 // Radio buttons for border styles
 16 private JRadioButton jrbLoweredBevel, jrbRaisedBevel,
 17 jrbEtched, jrbLine, jrbMatte, jrbEmpty;
 18
 19 // Radio buttons for titled border options
 20 private JRadioButton jrbAboveBottom, jrbBottom,
 21 jrbBelowBottom, jrbAboveTop, jrbTop, jrbBelowTop,
 22 jrbLeft, jrbCenter, jrbRight;
 23
 24 // TitledBorder for the label
 25 private TitledBorder jLabel1Border;
 26
 27 /** Constructor */
 28 public BorderDemo() {
 29 // Create a JLabel instance and set colors
 30 jLabel1.setBackground(Color.yellow);
 31 jLabel1.setBorder(jLabel1Border);
 32
 33 // Place title position radio buttons
 34 JPanel jpPosition = new JPanel();
 35 jpPosition.setLayout(new GridLayout(3, 2));
 36 jpPosition.add(
 37 jrbAboveBottom = new JRadioButton("ABOVE_BOTTOM"));
 38 jpPosition.add(jrbAboveTop = new JRadioButton("ABOVE_TOP"));
 39 jpPosition.add(jrbBottom = new JRadioButton("BOTTOM"));
 40 jpPosition.add(jrbTop = new JRadioButton("TOP"));
 41 jpPosition.add(
 42 jrbBelowBottom = new JRadioButton("BELOW_BOTTOM"));

36

 43 jpPosition.add(jrbBelowTop = new JRadioButton("BELOW_TOP"));
 44 jpPosition.setBorder(new TitledBorder("Position"));
 45
 46 // Place title justification radio buttons
 47 JPanel jpJustification = new JPanel();
 48 jpJustification.setLayout(new GridLayout(3,1));
 49 jpJustification.add(jrbLeft = new JRadioButton("LEFT"));
 50 jpJustification.add(jrbCenter = new JRadioButton("CENTER"));
 51 jpJustification.add(jrbRight = new JRadioButton("RIGHT"));
 52 jpJustification.setBorder(new TitledBorder("Justification"));
 53
 54 // Create panel jpTitleOptions to hold jpPosition and
 55 // jpJustification
 56 JPanel jpTitleOptions = new JPanel();
 57 jpTitleOptions.setLayout(new BorderLayout());
 58 jpTitleOptions.add(jpPosition, BorderLayout.CENTER);
 59 jpTitleOptions.add(jpJustification, BorderLayout.EAST);
 60
 61 // Create Panel jpTitle to hold a check box and title position
 62 // radio buttons, and title justification radio buttons
 63 JPanel jpTitle = new JPanel();
 64 jpTitle.setBorder(new TitledBorder("Border Title"));
 65 jpTitle.setLayout(new BorderLayout());
 66 jpTitle.add(jchkTitled = new JCheckBox("Titled"),
 67 BorderLayout.NORTH);
 68 jpTitle.add(jpTitleOptions, BorderLayout.CENTER);
 69
 70 // Group radio buttons for title position
 71 ButtonGroup btgTitlePosition = new ButtonGroup();
 72 btgTitlePosition.add(jrbAboveBottom);
 73 btgTitlePosition.add(jrbBottom);
 74 btgTitlePosition.add(jrbBelowBottom);
 75 btgTitlePosition.add(jrbAboveTop);
 76 btgTitlePosition.add(jrbTop);
 77 btgTitlePosition.add(jrbBelowTop);
 78
 79 // Group radio buttons for title justification
 80 ButtonGroup btgTitleJustification = new ButtonGroup();
 81 btgTitleJustification.add(jrbLeft);
 82 btgTitleJustification.add(jrbCenter);
 83 btgTitleJustification.add(jrbRight);
 84
 85 // Create Panel jpBorderStyle to hold border style radio buttons
 86 JPanel jpBorderStyle = new JPanel();
 87 jpBorderStyle.setBorder(new TitledBorder("Border Style"));
 88 jpBorderStyle.setLayout(new GridLayout(6, 1));
 89 jpBorderStyle.add(jrbLoweredBevel =
 90 new JRadioButton("Lowered Bevel"));
 91 jpBorderStyle.add(jrbRaisedBevel =
 92 new JRadioButton("Raised Bevel"));
 93 jpBorderStyle.add(jrbEtched = new JRadioButton("Etched"));
 94 jpBorderStyle.add(jrbLine = new JRadioButton("Line"));
 95 jpBorderStyle.add(jrbMatte = new JRadioButton("Matte"));
 96 jpBorderStyle.add(jrbEmpty = new JRadioButton("Empty"));
 97
 98 // Group radio buttons for border styles
 99 ButtonGroup btgBorderStyle = new ButtonGroup();
100 btgBorderStyle.add(jrbLoweredBevel);
101 btgBorderStyle.add(jrbRaisedBevel);

37

102 btgBorderStyle.add(jrbEtched);
103 btgBorderStyle.add(jrbLine);
104 btgBorderStyle.add(jrbMatte);
105 btgBorderStyle.add(jrbEmpty);
106
107 // Create Panel jpAllChoices to place jpTitle and jpBorderStyle
108 JPanel jpAllChoices = new JPanel();
109 jpAllChoices.setLayout(new BorderLayout());
110 jpAllChoices.add(jpTitle, BorderLayout.CENTER);
111 jpAllChoices.add(jpBorderStyle, BorderLayout.EAST);
112
113 // Place panels in the frame
114 setLayout(new BorderLayout());
115 add(jLabel1, BorderLayout.CENTER);
116 add(jpAllChoices, BorderLayout.SOUTH);
117
118 // Register listeners
119 ActionListener listener = new EventListener();
120 jchkTitled.addActionListener(listener);
121 jrbAboveBottom.addActionListener(listener);
122 jrbBottom.addActionListener(listener);
123 jrbBelowBottom.addActionListener(listener);
124 jrbAboveTop.addActionListener(listener);
125 jrbTop.addActionListener(listener);
126 jrbBelowTop.addActionListener(listener);
127 jrbLeft.addActionListener(listener);
128 jrbCenter.addActionListener(listener);
129 jrbRight.addActionListener(listener);
130 jrbLoweredBevel.addActionListener(listener);
131 jrbRaisedBevel.addActionListener(listener);
132 jrbLine.addActionListener(listener);
133 jrbEtched.addActionListener(listener);
134 jrbMatte.addActionListener(listener);
135 jrbEmpty.addActionListener(listener);
136 }
137
138 private class EventListener implements ActionListener {
139 @Override /** Handle ActionEvents on check box and radio buttons */
140 public void actionPerformed(ActionEvent e) {
141 // Get border style
142 Border border = new EmptyBorder(2, 2, 2, 2);
143
144 if (jrbLoweredBevel.isSelected()) {
145 border = new BevelBorder(BevelBorder.LOWERED);
146 jLabel1.setText("Lowered Bevel Style");
147 }
148 else if (jrbRaisedBevel.isSelected()) {
149 border = new BevelBorder(BevelBorder.RAISED);
150 jLabel1.setText("Raised Bevel Style");
151 }
152 else if (jrbEtched.isSelected()) {
153 border = new EtchedBorder();
154 jLabel1.setText("Etched Style");
155 }
156 else if (jrbLine.isSelected()) {
157 border = new LineBorder(Color.black, 5);
158 jLabel1.setText("Line Style");
159 }
160 else if (jrbMatte.isSelected()) {

38

161 border = new MatteBorder(15, 15, 15, 15,
162 new ImageIcon(getClass().getResource
163 ("/image/caIcon.gif")));
164 jLabel1.setText("Matte Style");
165 }
166 else if (jrbEmpty.isSelected()) {
167 border = new EmptyBorder(2, 2, 2, 2);
168 jLabel1.setText("Empty Style");
169 }
170
171 if (jchkTitled.isSelected()) {
172 // Get the title position and justification
173 int titlePosition = TitledBorder.DEFAULT_POSITION;
174 int titleJustification = TitledBorder.DEFAULT_JUSTIFICATION;
175
176 if (jrbAboveBottom.isSelected())
177 titlePosition = TitledBorder.ABOVE_BOTTOM;
178 else if (jrbBottom.isSelected())
179 titlePosition = TitledBorder.BOTTOM;
180 else if (jrbBelowBottom.isSelected())
181 titlePosition = TitledBorder.BELOW_BOTTOM;
182 else if (jrbAboveTop.isSelected())
183 titlePosition = TitledBorder.ABOVE_TOP;
184 else if (jrbTop.isSelected())
185 titlePosition = TitledBorder.TOP;
186 else if (jrbBelowTop.isSelected())
187 titlePosition = TitledBorder.BELOW_TOP;
188
189 if (jrbLeft.isSelected())
190 titleJustification = TitledBorder.LEFT;
191 else if (jrbCenter.isSelected())
192 titleJustification = TitledBorder.CENTER;
193 else if (jrbRight.isSelected())
194 titleJustification = TitledBorder.RIGHT;
195
196 jLabel1Border = new TitledBorder("A Title");
197 jLabel1Border.setBorder(border);
198 jLabel1Border.setTitlePosition(titlePosition);
199 jLabel1Border.setTitleJustification(titleJustification);
200 jLabel1.setBorder(jLabel1Border);
201 }
202 else {
203 jLabel1.setBorder(border);
204 }
205 }
206 }
207 }

This example uses many panels to group UI components to achieve the
desired look. Figure 37.20 illustrates the relationship of the panels.
The Border Title panel groups all the options for setting title
properties. The position options are grouped in the Position panel.
The justification options are grouped in the Justification panel. The
Border Style panel groups the radio buttons for choosing Lowered
Bevel, Raised Bevel, Etched, Line, Matte, and Empty borders.

The label displays the selected border with or without a title,
depending on the selection of the title check box. The label also
displays a text indicating which type of border is being used,

39

depending on the selection of the radio button in the Border Style
panel.

The TitledBorder can be mixed with other borders. To do so, simply
create an instance of TitledBorder, and use the setBorder method to
embed a new border in TitledBorder.

The MatteBorder can be used to display icons on the border, as shown
in Figure 37.20b.

Chapter Summary

1. javax.swing.JRootPane is a lightweight container used behind the
scenes by Swing's top-level containers, such as JFrame, JApplet,
and JDialog. javax.swing.JLayeredPane is a container that
manages the optional menu bar and the content pane. The content
pane is an instance of Container. By default, it is a JPanel
with BorderLayout. This is the container where the user
interface components are added. To obtain the content pane in a
JFrame or in a JApplet, use the getContentPane() method. You can
set any instance of Container to be a new content pane using the
setContentPane method.

2. Every container has a layout manager that is responsible for
arranging its components. The container's setLayout method can
be used to set a layout manager. Certain types of containers
have default layout managers.

3. The layout manager places the components in accordance with its
own rules and property settings, and with the constraints
associated with each component. Every layout manager has its own
specific set of rules. Some layout managers have properties that
can affect the sizing and location of the components in the
container.

4. Java also supports absolute layout, which enables you to place
components at fixed locations. In this case, the component must
be placed using the component's instance method setBounds()
(defined in java.awt.Component). Absolute positions and sizes
are fine if the application is developed and deployed on the
same platform, but what looks fine on a development system may
not look right on a deployment system on a different platform.
To solve this problem, Java provides a set of layout managers
that place components in containers in a way that is independent
of fonts, screen resolutions, and operating systems.

5. In addition to the layout managers provided in Java, you can
create custom layout managers by implementing the LayoutManager
interface.

6. Java provides specialized containers Box, JScrollPane,
JTabbedPane, and JSplitPane with fixed layout managers.

7. A Swing border is defined in the Border interface. Every
instance of JComponent can set a border through the border
property defined in JComponent. If a border is present, it
replaces the inset. There are eight concrete border classes:
BevelBorder, SoftBevelBorder, CompoundBorder, EmptyBorder,
EtchedBorder, LineBorder, MatteBorder, and TitledBorder. You can
use the constructors of these classes or the static methods in
javax.swing.BorderFactory to create borders.

Test Questions

40

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions

Section 37.2
37.1 Since JButton is a subclass of Container, can you add a button inside a
button?

37.2 How do you set an image icon in a JFrame’s title bar? Can you set an
image icon in a JApplet’s title bar?

37.3 Which of the following are the properties in JFrame, JApplet, and
JPanel?

contentPane, iconImage, jMenuBar, resizable, title

Section 37.3
37.4 How does the layout in Java differ from those in Visual Basic?

37.5 Discuss the factors that determine the size of the components in a
container.

37.6 Discuss the properties preferredSize, minimumSize, and maximumSize.

37.7 Discuss the properties alignmentX and alignmentY.

37.8 What is a CardLayout manager? How do you create a CardLayout manager?

37.9 Can you use absolute positioning in Java? How do you use absolute
positioning? Why should you avoid using it?

37.10 What is BoxLayout? How do you use BoxLayout? How do you use fillers to
separate the components?

Sections 37.4-37.7
37.11 How do you create a custom layout manager?

37.12 What is JScrollPane? How do you use JScrollPane?

37.13 What is JTabbedPane? How do you use JTabbedPane?

37.14 What is JSplitPane? How do you use JSplitPane?

37.15 Can you specify a layout manager in Box, JScrollPane, JTabbedPane, and
JSplitPane?

Section 37.8 Swing Borders
37.16 How do you create a titled border, a line border, a bevel border, and
an etched border?

37.17 Can you set a border for every Swing GUI component? Can a border
object be shared by different GUI components?

37.18 What package contains Border, BevelBorder, CompoundBorder,
EmptyBorder, EtchedBorder, LineBorder, MatteBorder, TitledBorder, and
BorderFactory?

41

Programming Exercises

Section 37.3
37.1* (Demonstrate FlowLayout properties) Create a program that enables the

user to set the properties of a FlowLayout manager dynamically, as
shown in Figure 37.21. The FlowLayout manager is used to place 15
components in a panel. You can set the alignment, hgap, and vgap
properties of the FlowLayout dynamically.

Figure 37.21

The program enables you to set the properties of a FlowLayout manager
dynamically.

37.2* (Demonstrate GridLayout properties) Create a program that enables the
user to set the properties of a GridLayout manager dynamically, as
shown in Figure 37.22a. The GridLayout manager is used to place 15
components in a panel. You can set the rows, columns, hgap, and vgap
properties of the GridLayout dynamically.

 (a) (b)

Figure 37.22

(a) The program enables you to set the properties of a GridLayout manager
dynamically. (b) The program enables you to set the properties of a
BorderLayout manager dynamically.

37.3* (Demonstrate BorderLayout properties) Create a program that enables
the user to set the properties of a BorderLayout manager
dynamically, as shown in Figure 37.22b. The BorderLayout manager is
used to place five components in a panel. You can set the hgap and
vgap properties of the BorderLayout dynamically.

42

37.4* (Use CardLayout) Write an applet that does arithmetic on integers and
rationals. The program uses two panels in a CardLayout manager, one
for integer arithmetic and the other for rational arithmetic. The
program provides a combo box with two items Integer and Rational.
When the user chooses the Integer item, the integer panel is
activated. When the user chooses the Rational item, the rational
panel is activated (see Figure 37.23).

Figure 37.23

CardLayout is used to select panels that perform integer operations and
rational number operations.

37.5* (Use null layout) Use absolute layout to lay out a calculator, as shown
in Figure 18.18a.

Sections 37.4-37.8
37.6* (Use tabbed panes) Modify Listing 37.7, DisplayFigure.java, to add a

panel of radio buttons for specifying the tab placement of the
tabbed pane, as shown in Figure 37.24.

Figure 37.24

The radio buttons let you choose the tab placement of the tabbed pane.

37.7* (Use tabbed pane) Rewrite Exercise 37.4 using tabbed panes instead of
CardLayout (see Figure 37.25).

Figure 37.25

A tabbed pane is used to select panels that perform integer operations and
rational number operations.

37.8* (Use JSplitPane) Create a program that displays four figures in split
panes, as shown in Figure 37.26. Use the FigurePanel class defined
in Listing 15.3, FigurePanel.java.

43

Figure 37.26

Four figures are displayed in split panes.

37.9* (Demonstrate JSplitPane properties) Create a program that enables the
user to set the properties of a split pane dynamically, as shown in
Figure 37.27.

Figure 37.27

The program enables you to set the properties of a split pane dynamically.

37.10* (Demonstrate DiagonalLayout properties) Rewrite Listing 37.5
ShowDiagonalLayout.java to add a panel that show the properties of a
DiagonalLayout. The panel disappears when the DiagonalLayout radio
button is unchecked, and reappears when the DiagonalLayout radio
button is checked, as shown in Figure 37.28.

Figure 37.28

The program enables you to set the properties of the DiagonalLayout
dynamically.

1

***This is a bonus Web chapter

CHAPTER 38

Menus, Toolbars, and Dialogs

Objectives
To create menus using components JMenuBar, JMenu, JMenuItem,
JCheckBoxMenuItem, and JRadioButtonMenuItem (§38.2).
To create popup menus using components JPopupMenu, JMenuItem,
JCheckBoxMenuItem, and JRadioButtonMenuItem (§38.3).
To use JToolBar to create toolbars (§38.4).
To use Action objects to generalize the code for processing
actions (§38.5).
To create standard dialogs using the JOptionPane class (§38.6).
To extend the JDialog class to create custom dialogs (§38.7).
To select colors using JColorChooser (§38.8).
To use JFileChooser to display Open and Save File dialogs (§38.9).

2

38.1 Introduction
Java provides a comprehensive solution for building graphical
user interfaces. This chapter introduces menus, popup menus,
toolbars, and dialogs. You will also learn how to use Action
objects to generalize the code for processing actions.

38.2 Menus

<margin note: menu>

Menus make selection easier and are widely used in window
applications. Java provides five classes that implement menus:
JMenuBar, JMenu, JMenuItem, JCheckBoxMenuItem, and
JRadioButtonMenuItem.

<margin note: menu item>

JMenuBar is a top-level menu component used to hold the menus. A
menu consists of menu items that the user can select (or toggle
on or off). A menu item can be an instance of JMenuItem,
JCheckBoxMenuItem, or JRadioButtonMenuItem. Menu items can be
associated with icons, keyboard mnemonics, and keyboard
accelerators. Menu items can be separated using separators.

38.2.1 Creating Menus
The sequence of implementing menus in Java is as follows:

 1. Create a menu bar and associate it with a frame or an applet by
using the setJMenuBar method. For example, the following code
creates a frame and a menu bar, and sets the menu bar in the
frame:

JFrame frame = new JFrame();
frame.setSize(300, 200);
frame.setVisible(true);
JMenuBar jmb = new JMenuBar();
frame.setJMenuBar(jmb); // Attach a menu bar to a frame

2. Create menus and associate them with the menu bar.
 You can use the following constructor to create a menu:

public JMenu(String label)

 Here is an example of creating menus:

JMenu fileMenu = new JMenu("File");
JMenu helpMenu = new JMenu("Help");

 This creates two menus labeled File and Help, as shown in
Figure 38.1(a). The menus will not be seen until they are added
to an instance of JMenuBar, as follows:
jmb.add(fileMenu);
jmb.add(helpMenu);

3

 (a) (b) (c)
Figure 38.1
(a) The menu bar appears below the title bar on the frame. (b) Clicking
a menu on the menu bar reveals the items under the menu. (c) Clicking a
menu item reveals the submenu items under the menu item.

3. Create menu items and add them to the menus.

fileMenu.add(new JMenuItem("New"));
fileMenu.add(new JMenuItem("Open"));
fileMenu.addSeparator();
fileMenu.add(new JMenuItem("Print"));
fileMenu.addSeparator();
fileMenu.add(new JMenuItem("Exit"));

 This code adds the menu items New, Open, a separator bar,
Print, another separator bar, and Exit, in this order, to the
File menu, as shown in Figure 38.1(b). The addSeparator()
method adds a separator bar in the menu.

 3.1. Creating submenu items.
 You can also embed menus inside menus so that the

embedded menus become submenus. Here is an example:

JMenu softwareHelpSubMenu = new JMenu("Software");
JMenu hardwareHelpSubMenu = new JMenu("Hardware");
helpMenu.add(softwareHelpSubMenu);
helpMenu.add(hardwareHelpSubMenu);
softwareHelpSubMenu.add(new JMenuItem("Unix"));
softwareHelpSubMenu.add(new JMenuItem("NT"));
softwareHelpSubMenu.add(new JMenuItem("Win95"));

This code adds two submenus, softwareHelpSubMenu and
hardwareHelpSubMenu, in helpMenu. The menu items
Unix, NT, and Win95 are added to softwareHelpSubMenu
(see Figure 38.1(c)).

 3.2. Creating check-box menu items.
 You can also add a JCheckBoxMenuItem to a JMenu.

JCheckBoxMenuItem is a subclass of JMenuItem that
adds a Boolean state to the JMenuItem, and displays
a check when its state is true. You can click a menu
item to turn it on or off. For example, the
following statement adds the check-box menu item
Check it (see Figure 38.2(a)).

helpMenu.add(new JCheckBoxMenuItem("Check it"));

4

(a) (b) (c)
Figure 38.2
(a) A check box menu item lets you check or uncheck a menu item just
like a check box. (b) You can use JRadioButtonMenuItem to choose among
mutually exclusive menu choices. (c) You can set image icons, keyboard
mnemonics, and keyboard accelerators in menus.

3.3. Creating radio-button menu items.
 You can also add radio buttons to a menu, using the

JRadioButtonMenuItem class. This is often useful
when you have a group of mutually exclusive choices
in the menu. For example, the following statements
add a submenu named Color and a set of radio buttons
for choosing a color (see Figure 38.2(b)):

JMenu colorHelpSubMenu = new JMenu("Color");
helpMenu.add(colorHelpSubMenu);

JRadioButtonMenuItem jrbmiBlue, jrbmiYellow, jrbmiRed;
colorHelpSubMenu.add(jrbmiBlue =

new JRadioButtonMenuItem("Blue"));
colorHelpSubMenu.add(jrbmiYellow =

new JRadioButtonMenuItem("Yellow"));
colorHelpSubMenu.add(jrbmiRed =

new JRadioButtonMenuItem("Red"));

ButtonGroup btg = new ButtonGroup();
btg.add(jrbmiBlue);
btg.add(jrbmiYellow);
btg.add(jrbmiRed);

 4. The menu items generate ActionEvent. Your listener
class must implement the ActionListener and the
actionPerformed handler to respond to the menu
selection.

38.2.2 Image Icons, Keyboard Mnemonics, and Keyboard Accelerators
The menu components JMenu, JMenuItem, JCheckBoxMenuItem, and
JRadioButtonMenuItem have the icon and mnemonic properties. For
example, using the following code, you can set icons for the New
and Open menu items, and set keyboard mnemonics for File, Help,
New, and Open:

JMenuItem jmiNew, jmiOpen;
fileMenu.add(jmiNew = new JMenuItem("New"));
fileMenu.add(jmiOpen = new JMenuItem("Open"));
jmiNew.setIcon(new ImageIcon("image/new.gif"));
jmiOpen.setIcon(new ImageIcon("image/open.gif"));
helpMenu.setMnemonic('H');
fileMenu.setMnemonic('F');
jmiNew.setMnemonic('N');
jmiOpen.setMnemonic('O');

5

The new icons and mnemonics are shown in Figure 38.2(c). You can
also use JMenuItem constructors like the ones that follow to
construct and set an icon or mnemonic in one statement.

public JMenuItem(String label, Icon icon);
public JMenuItem(String label, int mnemonic);

By default, the text is at the right of the icon. Use
setHorizontalTextPosition(SwingConstants.LEFT) to set the text to
the left of the icon.

<margin note: accelerator>

To select a menu, press the ALT key and the mnemonic key. For
example, press ALT+F to select the File menu, and then press
ALT+O to select the Open menu item. Keyboard mnemonics are
useful, but they only let you select menu items from the
currently open menu. Key accelerators, however, let you select a
menu item directly by pressing the CTRL and accelerator keys. For
example, by using the following code, you can attach the
accelerator key CTRL+O to the Open menu item:

jmiOpen.setAccelerator(KeyStroke.getKeyStroke
 (KeyEvent.VK_O, ActionEvent.CTRL_MASK));

The setAccelerator method takes a KeyStroke object. The static
method getKeyStroke in the KeyStroke class creates an instance of
the keystroke. VK_O is a constant representing the O key, and
CTRL_MASK is a constant indicating that the CTRL key is
associated with the keystroke.

NOTE: As shown in Figure 17.1, AbstractButton is the
superclass for JButton and JMenuItem, and JMenuItem is a
superclass for JCheckBoxMenuItem, JMenu, and
JRadioButtonMenuItem. The menu components are very
similar to buttons.

38.2.3 Example: Using Menus

This section gives an example that creates a user interface to
perform arithmetic. The interface contains labels and text fields
for Number 1, Number 2, and Result. The Result text field
displays the result of the arithmetic operation between Number 1
and Number 2. Figure 38.3 contains a sample run of the program.

Figure 38.3
Arithmetic operations can be performed by clicking buttons or by
choosing menu items from the Operation menu.

Here are the major steps in the program (Listing 38.1):

6

1. Create a menu bar and set it in the applet. Create the menus
Operation and Exit, and add them to the menu bar. Add the menu
items Add, Subtract, Multiply, and Divide under the Operation
menu, and add the menu item Close under the Exit menu.
2. Create a panel to hold labels and text fields, and place the
panel in the center of the applet.
3. Create a panel to hold the four buttons labeled Add, Subtract,
Multiply, and Divide. Place the panel in the south of the applet.
4. Implement the actionPerformed handler to process the events from
the menu items and the buttons.

Listing 38.1 MenuDemo.java

<margin note line 17: menu bar>
<margin note line 20: set menu bar>
<margin note line 28: exit menus>
<margin note line 33: add menu items>
<margin note line 40: accelerator>
<margin note line 61: buttons>
<margin note line 72: register listener>
<margin note line 78: register listener>
<margin note line 84: register listener>
<margin note line 90: register listener>
<margin note line 96: register listener>
<margin note line 102: register listener>
<margin note line 108: register listener>
<margin note line 114: register listener>
<margin note line 120: register listener>
<margin note line 129: calculator>
<margin note line 149: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4
 5 public class MenuDemo extends JApplet {
 6 // Text fields for Number 1, Number 2, and Result
 7 private JTextField jtfNum1, jtfNum2, jtfResult;
 8
 9 // Buttons "Add", "Subtract", "Multiply" and "Divide"
 10 private JButton jbtAdd, jbtSub, jbtMul, jbtDiv;
 11
 12 // Menu items "Add", "Subtract", "Multiply","Divide" and "Close"
 13 private JMenuItem jmiAdd, jmiSub, jmiMul, jmiDiv, jmiClose;
 14
 15 public MenuDemo() {
 16 // Create menu bar
 17 JMenuBar jmb = new JMenuBar();
 18
 19 // Set menu bar to the applet
 20 setJMenuBar(jmb);
 21
 22 // Add menu "Operation" to menu bar
 23 JMenu operationMenu = new JMenu("Operation");
 24 operationMenu.setMnemonic('O');
 25 jmb.add(operationMenu);
 26
 27 // Add menu "Exit" to menu bar
 28 JMenu exitMenu = new JMenu("Exit");
 29 exitMenu.setMnemonic('E');
 30 jmb.add(exitMenu);
 31

7

 32 // Add menu items with mnemonics to menu "Operation"
 33 operationMenu.add(jmiAdd= new JMenuItem("Add", 'A'));
 34 operationMenu.add(jmiSub = new JMenuItem("Subtract", 'S'));
 35 operationMenu.add(jmiMul = new JMenuItem("Multiply", 'M'));
 36 operationMenu.add(jmiDiv = new JMenuItem("Divide", 'D'));
 37 exitMenu.add(jmiClose = new JMenuItem("Close", 'C'));
 38
 39 // Set keyboard accelerators
 40 jmiAdd.setAccelerator(
 41 KeyStroke.getKeyStroke(KeyEvent.VK_A, ActionEvent.CTRL_MASK));
 42 jmiSub.setAccelerator(
 43 KeyStroke.getKeyStroke(KeyEvent.VK_S, ActionEvent.CTRL_MASK));
 44 jmiMul.setAccelerator(
 45 KeyStroke.getKeyStroke(KeyEvent.VK_M, ActionEvent.CTRL_MASK));
 46 jmiDiv.setAccelerator(
 47 KeyStroke.getKeyStroke(KeyEvent.VK_D, ActionEvent.CTRL_MASK));
 48
 49 // Panel p1 to hold text fields and labels
 50 JPanel p1 = new JPanel(new FlowLayout());
 51 p1.add(new JLabel("Number 1"));
 52 p1.add(jtfNum1 = new JTextField(3));
 53 p1.add(new JLabel("Number 2"));
 54 p1.add(jtfNum2 = new JTextField(3));
 55 p1.add(new JLabel("Result"));
 56 p1.add(jtfResult = new JTextField(4));
 57 jtfResult.setEditable(false);
 58
 59 // Panel p2 to hold buttons
 60 JPanel p2 = new JPanel(new FlowLayout());
 61 p2.add(jbtAdd = new JButton("Add"));
 62 p2.add(jbtSub = new JButton("Subtract"));
 63 p2.add(jbtMul = new JButton("Multiply"));
 64 p2.add(jbtDiv = new JButton("Divide"));
 65
 66 // Add panels to the frame
 67 setLayout(new BorderLayout());
 68 add(p1, BorderLayout.CENTER);
 69 add(p2, BorderLayout.SOUTH);
 70
 71 // Register listeners
 72 jbtAdd.addActionListener(new ActionListener() {
 73 @Override
 74 public void actionPerformed(ActionEvent e) {
 75 calculate('+');
 76 }
 77 });
 78 jbtSub.addActionListener(new ActionListener() {
 79 @Override
 80 public void actionPerformed(ActionEvent e) {
 81 calculate('-');
 82 }
 83 });
 84 jbtMul.addActionListener(new ActionListener() {
 85 @Override
 86 public void actionPerformed(ActionEvent e) {
 87 calculate('*');
 88 }
 89 });
 90 jbtDiv.addActionListener(new ActionListener() {
 91 @Override
 92 public void actionPerformed(ActionEvent e) {
 93 calculate('/');
 94 }
 95 });
 96 jmiAdd.addActionListener(new ActionListener() {
 97 @Override

8

 98 public void actionPerformed(ActionEvent e) {
 99 calculate('+');
100 }
101 });
102 jmiSub.addActionListener(new ActionListener() {
103 @Override
104 public void actionPerformed(ActionEvent e) {
105 calculate('-');
106 }
107 });
108 jmiMul.addActionListener(new ActionListener() {
109 @Override
110 public void actionPerformed(ActionEvent e) {
111 calculate('*');
112 }
113 });
114 jmiDiv.addActionListener(new ActionListener() {
115 @Override
116 public void actionPerformed(ActionEvent e) {
117 calculate('/');
118 }
119 });
120 jmiClose.addActionListener(new ActionListener() {
121 @Override
122 public void actionPerformed(ActionEvent e) {
123 System.exit(1);
124 }
125 });
126 }
127
128 /** Calculate and show the result in jtfResult */
129 private void calculate(char operator) {
130 // Obtain Number 1 and Number 2
131 int num1 = (Integer.parseInt(jtfNum1.getText().trim()));
132 int num2 = (Integer.parseInt(jtfNum2.getText().trim()));
133 int result = 0;
134
135 // Perform selected operation
136 switch (operator) {
137 case '+': result = num1 + num2;
138 break;
139 case '-': result = num1 - num2;
140 break;
141 case '*': result = num1 * num2;
142 break;
143 case '/': result = num1 / num2;
144 }
145
146 // Set result in jtfResult
147 jtfResult.setText(String.valueOf(result));
148 }
149 }

The program creates a menu bar, jmb, which holds two menus:
operationMenu and exitMenu (lines 17-30). The operationMenu
contains four menu items for doing arithmetic: Add, Subtract,
Multiply, and Divide. The exitMenu contains the menu item Close
for exiting the program. The menu items in the Operation menu are
created with keyboard mnemonics and accelerators.

The user enters two numbers in the number fields. When an
operation is chosen from the menu, its result, involving two
numbers, is displayed in the Result field. The user can also
click the buttons to perform the same operation.

9

The private method calculate(char operator) (lines 129–148)
retrieves operands from the text fields in Number 1 and Number 2,
applies the binary operator on the operands, and sets the result
in the Result text field.

NOTE:

<margin note: placing menus>

The menu bar is usually attached to the window using the
setJMenuBar method. However, like any other component, it
can be placed in a container. For instance, you can place
a menu bar in the south of the container with
BorderLayout.

38.3 Popup Menus

<margin note: popup menu>

A popup menu, also known as a context menu, is like a regular
menu, but does not have a menu bar and can float anywhere on the
screen. Creating a popup menu is similar to creating a regular
menu. First, you create an instance of JPopupMenu, then you can
add JMenuItem, JCheckBoxMenuItem, JRadioButtonMenuItem, and
separators to the popup menu. For example, the following code
creates a JPopupMenu and adds JMenuItems into it:

JPopupMenu jPopupMenu = new JPopupMenu();
jPopupMenu.add(new JMenuItem("New"));
jPopupMenu.add(new JMenuItem("Open"));

A regular menu is always attached to a menu bar using the
setJMenuBar method, but a popup menu is associated with a parent
component and is displayed using the show method in the
JPopupMenu class. You specify the parent component and the
location of the popup menu, using the coordinate system of the
parent like this:

jPopupMenu.show(component, x, y);

<margin note: popup trigger>

Customarily, you display a popup menu by pointing to a GUI
component and clicking a certain mouse button, the so-called
popup trigger. Popup triggers are system dependent. In Windows,
the popup menu is displayed when the right mouse button is
released. In Motif, the popup menu is displayed when the third
mouse button is pressed and held down.

Listing 38.2 gives an example that creates a text area in a
scroll pane. When the mouse points to the text area, clicking a
mouse button displays a popup menu, as shown in Figure 38.4.

10

Figure 38.4
A popup menu is displayed when the popup trigger is issued on the
text area.

Here are the major steps in the program (Listing 38.2):
1. Create a popup menu using JPopupMenu. Create menu items for

New, Open, Print, and Exit using JMenuItem. For the menu items
with both labels and icons, it is convenient to use the
JMenuItem(label, icon) constructor.

2. Add the menu items into the popup menu.
3. Create a scroll pane and add a text area into it. Place the

scroll pane in the center of the applet.
4. Implement the actionPerformed handler to process the events

from the menu items.
5. Implement the mousePressed and mouseReleased methods to process

the events for handling popup triggers.

Listing 38.2 PopupMenuDemo.java

<margin note line 6: popup menu>
<margin note line 17: add menu items>
<margin note line 27: register listener>
<margin note line 33: register listener>
<margin note line 39: register listener>
<margin note line 45: register listener>
<margin note line 54: show popup menu>
<margin note line 59: show popup menu>
<margin note line 69: main method omitted>

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 public class PopupMenuDemo extends JApplet {
 6 private JPopupMenu jPopupMenu1 = new JPopupMenu();
 7 private JMenuItem jmiNew = new JMenuItem("New",
 8 new ImageIcon(getClass().getResource("image/new.gif")));
 9 private JMenuItem jmiOpen = new JMenuItem("Open",
 10 new ImageIcon(getClass().getResource("image/open.gif")));
 11 private JMenuItem jmiPrint = new JMenuItem("Print",
 12 new ImageIcon(getClass().getResource("image/print.gif")));
 13 private JMenuItem jmiExit = new JMenuItem("Exit");
 14 private JTextArea jTextArea1 = new JTextArea();
 15
 16 public PopupMenuDemo() {
 17 jPopupMenu1.add(jmiNew);
 18 jPopupMenu1.add(jmiOpen);
 19 jPopupMenu1.addSeparator();
 20 jPopupMenu1.add(jmiPrint);
 21 jPopupMenu1.addSeparator();
 22 jPopupMenu1.add(jmiExit);
 23 jPopupMenu1.add(jmiExit);
 24

11

 25 add(new JScrollPane(jTextArea1), BorderLayout.CENTER);
 26
 27 jmiNew.addActionListener(new ActionListener() {
 28 @Override
 29 public void actionPerformed(ActionEvent e) {
 30 System.out.println("Process New");
 31 }
 32 });
 33 jmiOpen.addActionListener(new ActionListener() {
 34 @Override
 35 public void actionPerformed(ActionEvent e) {
 36 System.out.println("Process Open");
 37 }
 38 });
 39 jmiPrint.addActionListener(new ActionListener() {
 40 @Override
 41 public void actionPerformed(ActionEvent e) {
 42 System.out.println("Process Print");
 43 }
 44 });
 45 jmiExit.addActionListener(new ActionListener() {
 46 @Override
 47 public void actionPerformed(ActionEvent e) {
 48 System.exit(1);
 49 }
 50 });
 51 jTextArea1.addMouseListener(new MouseAdapter() {
 52 @Override
 53 public void mousePressed(MouseEvent e) { // For Motif
 54 showPopup(e);
 55 }
 56
 57 @Override
 58 public void mouseReleased(MouseEvent e) { // For Windows
 59 showPopup(e);
 60 }
 61 });
 62 }
 63
 64 /** Display popup menu when triggered */
 65 private void showPopup(java.awt.event.MouseEvent evt) {
 66 if (evt.isPopupTrigger())
 67 jPopupMenu1.show(evt.getComponent(), evt.getX(), evt.getY());
 68 }
 69 }

The process of creating popup menus is similar to the process for
creating regular menus. To create a popup menu, create a
JPopupMenu as the basis (line 6) and add JMenuItems to it (lines
17-23).

To show a popup menu, use the show method by specifying the
parent component and the location for the popup menu (line 61).
The show method is invoked when the popup menu is triggered by a
particular mouse click on the text area. Popup triggers are
system dependent. The listener implements the mouseReleased
handler for displaying the popup menu in Windows (lines 52-54)
and the mousePressed handler for displaying the popup menu in
Motif (lines 48-50).

12

TIP

<margin note: simplify popup menu>

Java provides a new setComponentPopupMenu(JPopupMenu)
method in the JComponent class, which can be used to add
a popup menu on a component. This method automatically
handles mouse listener registration and popup display.
Using this method, you may delete the showPopup method in
lines 59-62 and replace the code in lines 47-55 with the
following statement:

jTextArea1.setComponentPopupMenu(jPopupMenu1);

***End of TIP

38.4 JToolBar

<margin note: toolbar>

In user interfaces, a toolbar is often used to hold commands that
also appear in the menus. Frequently used commands are placed in
a toolbar for quick access. Clicking a command in the toolbar is
faster than choosing it from the menu.

Swing provides the JToolBar class as the container to hold
toolbar components. JToolBar uses BoxLayout to manage components
by default. You can set a different layout manager if desired.
The components usually appear as icons. Since icons are not
components, they cannot be placed into a toolbar directly.
Instead you place buttons into the toolbar and set the icons on
the buttons. An instance of JToolBar is like a regular container.
Often it is placed in the north, west, or east of a container of
BorderLayout.

The following properties in the JToolBar class are often useful:
orientation specifies whether the items in the toolbar
appear horizontally or vertically. The possible values are
JToolBar.HORIZONTAL and JToolBar.VERTICAL. The default
value is JToolBar.HORIZONTAL.
floatable is a boolean value that specifies whether the
toolbar can be floated. By default, a toolbar is floatable.

Listing 38.3 gives an example that creates a JToolBar to hold
three buttons with the icons representing the commands New, Open,
and Print, as shown in Figure 38.5.

13

Figure 38.5
The toolbar contains the icons representing the commands New,
Open, and Print.

Listing 38.3 ToolBarDemo.java

<margin note line 6: buttons>
<margin note line 13: toolbar>
<margin note line 27: add toolbar>
<margin note line 29: main method omitted>

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 public class ToolBarDemo extends JApplet {
 5 private JButton jbtNew = new JButton(
 6 new ImageIcon(getClass().getResource("/image/new.gif")));
 7 private JButton jbtOpen = new JButton(
 8 new ImageIcon(getClass().getResource("/image/open.gif")));
 9 private JButton jbPrint = new JButton(
 10 new ImageIcon(getClass().getResource("/image/print.gif")));
 11
 12 public ToolBarDemo() {
 13 JToolBar jToolBar1 = new JToolBar("My Tool Bar");
 14 jToolBar1.setFloatable(true);
 15 jToolBar1.add(jbtNew);
 16 jToolBar1.add(jbtOpen);
 17 jToolBar1.add(jbPrint);
 18
 19 jbtNew.setToolTipText("New");
 20 jbtOpen.setToolTipText("Open");
 21 jbPrint.setToolTipText("Print");
 22
 23 jbtNew.setBorderPainted(false);
 24 jbtOpen.setBorderPainted(false);
 25 jbPrint.setBorderPainted(false);
 26
 27 add(jToolBar1, BorderLayout.NORTH);
 28 }
 29 }

A JToolBar is created in line 13. The toolbar is a container with
BoxLayout by default. Using the orientation property, you can
specify whether components in the toolbar are organized
horizontally or vertically. By default, it is horizontal.

By default, the toolbar is floatable, and a floatable controller
is displayed in front of its components. You can drag the
floatable controller to move the toolbar to different locations
of the window or can show the toolbar in a separate window, as
shown in Figure 38.6.

Figure 38.6

14

The toolbar buttons are floatable.

You can also set a title for the floatable toolbar, as shown in
Figure 38.7(a). To do so, create a toolbar using the
JToolBar(String title) constructor. If you set floatable false,
the floatable controller is not displayed, as shown in Figure
38.7(b). If you set a border (e.g., a line border), as shown in
Figure 38.7(c), the line border is displayed and the floatable
controller is not displayed.

 (a) (b) (c)
Figure 38.7
The toolbar buttons can be customized in many forms.

TIP: For the floatable feature to work
properly, do the following: (1) place a toolbar
to one side of the container of BorderLayout
and add no components to the other sides; (2)
don’t set border on a toolbar. Setting a border
would make it non-floatable.

38.5 Processing Actions Using the Action Interface
Often menus and toolbars contain some common actions. For
example, you can save a file by choosing File, Save, or by
clicking the save button in the toolbar. Swing provides the
Action interface, which can be used to create action objects for
processing actions. Using Action objects, common action
processing can be centralized and separated from the other
application code.

The Action interface is a subinterface of ActionListener, as
shown in Figure 38.8. Additionally, it defines several methods
for checking whether the action is enabled, for enabling and
disabling the action, and for retrieving and setting the
associated action value using a key. The key can be any string,
but four keys have predefined meanings:

Key Description
Action.NAME A name for the action
Action.SMALL_ICON A small icon for the action
Action.SHORT_DESCRIPTION A tool tip for the action
Action.LONG_DESCRIPTION A description for online help

15

«interface»
javax.swing.Action

+getValue(key: String): Object
+isEnabled(): boolean
+putValue(key: String, value: Object): void
+setEnabled(b: boolean): void

Gets one of this object's properties using the associated key.
Returns true if action is enabled.
Associates a key/value pair with the action.

Enables or disables the action.

«interface»
java.awt.event.ActionListener

javax.swing.AbstractAction

+AbstractAction()

+AbstractAction(name: String)

+AbstractAction(name: String, icon: Icon)

+getKeys(): Object[]

Defines an Action object with a default description string and
default icon.

Defines an Action object with the specified description string
and a default icon.

Defines an Action object with the specified description string
and the specified icon.

Returns an array of objects which are keys for which values
have been set for this AbstractAction, or null if no keys
have values set.

Figure 38.8
The Action interface provides a useful extension to the
ActionListener interface in cases where the same functionality
may be accessed by several controls. The AbstractAction class
provides a default implementation for Action.

AbstractAction is a default implementation of the Action
interface, as shown in Figure 38.8. It implements all the methods
in the Action interface except the actionPerformed method.
Additionally, it defines the getKeys() method.

Since AbstractAction is an abstract class, you cannot create an
instance using its constructor. However, you can create a
concrete subclass of AbstractAction and implement the
actionPerformed method. This subclass can be conveniently defined
as an anonymous inner class. For example, the following code
creates an Action object for terminating a program.

Action exitAction = new AbstractAction("Exit") {
public void actionPerformed(ActionEvent e) {

 System.exit(1);
 }
};

Certain containers, such as JMenu and JToolBar, know how to add
an Action object. When an Action object is added to such a
container, the container automatically creates an appropriate
component for the Action object and registers a listener with the
Action object. Here is an example of adding an Action object to a
menu and a toolbar:

jMenu.add(exitAction);
jToolBar.add(exitAction);

Several Swing components, such as JButton, JRadioButton, and
JCheckBox, contain constructors to create instances from Action
objects. For example, you can create a JButton from an Action
object, as follows:

16

JButton jbt = new JButton(exitAction);

Action objects can also be associated with mnemonic and
accelerator keys. To associate actions with a mnemonic key (e.g.,
ALT+E), use the following statement:

exitAction.putValue(Action.MNEMONIC_KEY, new Integer(KeyEvent.VK_E));

To associate actions with an accelerator key (e.g., CTRL+E), use
the following statement:

KeyStroke exitKey =
 KeyStroke.getKeyStroke(KeyEvent.VK_E, KeyEvent.CTRL_MASK);
exitAction.putValue(Action.ACCELERATOR_KEY, exitKey);

Listing 38.4 gives an example that creates three menu items,
Left, Center, and Right, three toolbar buttons, Left, Center, and
Right, and three regular buttons, Left, Center, and Right, in a
panel, as shown in Figure 38.9. The panel that holds the buttons
uses the FlowLayout. The actions of the left, center, and right
buttons set the alignment of the FlowLayout to left, right, and
center, respectively. The actions of the menu items, the toolbar
buttons, and the buttons in the panel can be processed through
common action handlers using the Action interface.

Figure 38.9
Left, Center, and Right appear in the menu, in the toolbar, and
in regular buttons.

Listing 38.4 ActionInterfaceDemo.java

<margin note line 11: image icon>
<margin note line 19: create action>
<margin note line 33: menu>
<margin note line 44: toolbar>
<margin note line 52: button>
<margin note line 64: custom action>
<margin note line 67: constructor>
<margin note line 72: constructor>
<margin note line 82: handler>
<margin note line 93: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4
 5 public class ActionInterfaceDemo extends JApplet {
 6 private JPanel buttonPanel = new JPanel();
 7 private FlowLayout flowLayout = new FlowLayout();
 8
 9 public ActionInterfaceDemo() {
 10 // Create image icons
 11 ImageIcon leftImageIcon = new ImageIcon(getClass().getResource(

17

 12 "/image/leftAlignment.png"));
 13 ImageIcon centerImageIcon = new ImageIcon(getClass().getResource(
 14 "/image/centerAlignment.png"));
 15 ImageIcon rightImageIcon = new ImageIcon(getClass().getResource(
 16 "/image/rightAlignment.png"));
 17
 18 // Create actions
 19 Action leftAction = new MyAction("Left", leftImageIcon,
 20 "Left alignment for the buttons in the panel",
 21 new Integer(KeyEvent.VK_L),
 22 KeyStroke.getKeyStroke(KeyEvent.VK_L, ActionEvent.CTRL_MASK));
 23 Action centerAction = new MyAction("Center", centerImageIcon,
 24 "Center alignment for the buttons in the panel",
 25 new Integer(KeyEvent.VK_C),
 26 KeyStroke.getKeyStroke(KeyEvent.VK_C, ActionEvent.CTRL_MASK));
 27 Action rightAction = new MyAction("Right", rightImageIcon,
 28 "Right alignment for the buttons in the panel",
 29 new Integer(KeyEvent.VK_R),
 30 KeyStroke.getKeyStroke(KeyEvent.VK_R, ActionEvent.CTRL_MASK));
 31
 32 // Create menus
 33 JMenuBar jMenuBar1 = new JMenuBar();
 34 JMenu jmenuAlignment = new JMenu("Alignment");
 35 setJMenuBar(jMenuBar1);
 36 jMenuBar1.add(jmenuAlignment);
 37
 38 // Add actions to the menu
 39 jmenuAlignment.add(leftAction);
 40 jmenuAlignment.add(centerAction);
 41 jmenuAlignment.add(rightAction);
 42
 43 // Add actions to the toolbar
 44 JToolBar jToolBar1 = new JToolBar(JToolBar.VERTICAL);
 45 jToolBar1.setBorder(BorderFactory.createLineBorder(Color.red));
 46 jToolBar1.add(leftAction);
 47 jToolBar1.add(centerAction);
 48 jToolBar1.add(rightAction);
 49
 50 // Add buttons to the button panel
 51 buttonPanel.setLayout(flowLayout);
 52 JButton jbtLeft = new JButton(leftAction);
 53 JButton jbtCenter = new JButton(centerAction);
 54 JButton jbtRight = new JButton(rightAction);
 55 buttonPanel.add(jbtLeft);
 56 buttonPanel.add(jbtCenter);
 57 buttonPanel.add(jbtRight);
 58
 59 // Add tool bar to the east and panel to the center
 60 add(jToolBar1, BorderLayout.EAST);
 61 add(buttonPanel, BorderLayout.CENTER);
 62 }
 63
 64 private class MyAction extends AbstractAction {
 65 String name;
 66
 67 MyAction(String name, Icon icon) {
 68 super(name, icon);
 69 this.name = name;
 70 }
 71
 72 MyAction(String name, Icon icon, String desc, Integer mnemonic,
 73 KeyStroke accelerator) {
 74 super(name, icon);
 75 putValue(Action.SHORT_DESCRIPTION, desc);
 76 putValue(Action.MNEMONIC_KEY, mnemonic);
 77 putValue(Action.ACCELERATOR_KEY, accelerator);

18

 78 this.name = name;
 79 }
 80
 81 @Override
 82 public void actionPerformed(ActionEvent e) {
 83 if (name.equals("Left"))
 84 flowLayout.setAlignment(FlowLayout.LEFT);
 85 else if (name.equals("Center"))
 86 flowLayout.setAlignment(FlowLayout.CENTER);
 87 else if (name.equals("Right"))
 88 flowLayout.setAlignment(FlowLayout.RIGHT);
 89
 90 buttonPanel.revalidate();
 91 }
 92 }
 93 }

The inner class MyAction extends AbstractAction with a
constructor to construct an action with a name and an icon (lines
67-70) and another constructor to construct an action with a
name, icon, description, mnemonic, and accelerator (lines 72-79).
The constructors invoke the putValue method to associate the
name, icon, decription, mnemonic, and accelerator. It implements
the actionPerformed method to set a new alignment in the panel of
the FlowLayout (line 82-91). The revalidate() method validates
the new alignment (line 90).

Three actions, leftAction, centerAction, and rightAction, were
created from the MyAction class (lines 19-30). Each action has a
name, icon, decription, mnemonic, and accelerator. The actions
are for the menu items and the buttons in the toolbar and in the
panel. The menu and toolbar know how to add these objects
automatically (lines 39-41, 46-48). Three regular buttons are
created with the properties taken from the actions (lines 51-54).

38.6 JOptionPane Dialogs
You have used JOptionPane to create input and output dialog
boxes. This section provides a comprehensive introduction to
JOptionPane and other dialog boxes. A dialog box is normally used
as a temporary window to receive additional information from the
user or to provide notification that some event has occurred.
Java provides the JOptionPane class, which can be used to create
standard dialogs. You can also build custom dialogs by extending
the JDialog class.

The JOptionPane class can be used to create four kinds of
standard dialogs:

Message dialog shows a message and waits for the user to
click OK.
Confirmation dialog shows a question and asks for
confirmation, such as OK or Cancel.
Input dialog shows a question and gets the user's input
from a text field, combo box, or list.
Option dialog shows a question and gets the user's answer
from a set of options.

These dialogs are created using the static methods showXxxDialog
and generally appear as shown in Figure 38.10(a).

19

(a) (b)

Figure 38.10
(a) A JOptionPane dialog can display an icon, a message, an input, and
option buttons. (b) The message dialog displays a message and waits for
the user to click OK.

For example, you can use the following method to create a message
dialog box,as shown in Figure 38.10(b):

JOptionPane.showMessageDialog(null, "SSN not found",
"For Your Information", JOptionPane.INFORMATION_MESSAGE);

38.6.1 Message Dialogs
A message dialog box displays a message that alerts
the user and waits for the user to click the OK button
to close the dialog. The methods for creating message
dialogs are:

public static void showMessageDialog(Component parentComponent,
 Object message)
public static void showMessageDialog(Component parentComponent,
 Object message,
 String title,

int messageType)
public static void showMessageDialog(Component parentComponent,
 Object message,
 String title,

int messageType,
 Icon icon)

The parentComponent can be any component or null. The message is
an object, but often a string is used. These two parameters must
always be specified. The title is a string displayed in the title
bar of the dialog with the default value "Message”.
The messageType is one of the following constants:

JOptionPane.ERROR_MESSAGE
JOptionPane.INFORMATION_MESSAGE
JOptionPane.PLAIN_MESSAGE
JOptionPane.WARNING_MESSAGE
JOptionPane.QUESTION_MESSAGE

By default, messageType is JOptionPane.INFORMATION_MESSAGE. Each
type has an associated icon except the PLAIN_MESSAGE type, as
shown in Figure 38.11. You can also supply your own icon in the
icon parameter.

20

Figure 38.11
There are five types of message dialog boxes.

The message parameter is an object. If it is a GUI component, the
component is displayed. If it is a non-GUI component, the string
representation of the object is displayed. For example, the
following statement displays a clock in a message dialog, as
shown in Figure 38.12. StillClock was defined in Listing 15.10.

JOptionPane.showMessageDialog(null, new StillClock(),
"Current Time", JOptionPane.PLAIN_MESSAGE);

Figure 38.12
A clock is displayed in a message dialog.

38.6.2 Confirmation Dialogs
A message dialog box displays a message and waits for
the user to click the OK button to dismiss the dialog.
The message dialog does not return any value. A
confirmation dialog asks a question and requires the
user to respond with an appropriate button. The
confirmation dialog returns a value that corresponds
to a selected button.
The methods for creating confirmation dialogs are:

public static int showConfirmDialog(Component parentComponent,
 Object message)
public static int showConfirmDialog(Component parentComponent,
 Object message,
 String title,
 int optionType)
public static int showConfirmDialog(Component parentComponent,
 Object message,
 String title,

int optionType,
int messageType)

public static int showConfirmDialog(Component parentComponent,
 Object message,
 String title,

int optionType,
int messageType,

 Icon icon)

21

The parameters parentComponent, message, title, icon, and
messageType are the same as in the showMessageDialog method. The
default value for title is "Select an Option" and for messageType
is QUESTION_MESSAGE. The optionType determines which buttons are
displayed in the dialog. The possible values are:

JOptionPane.YES_NO_OPTION
JOptionPane.YES_NO_CANCEL_OPTION
JOptionPane.OK_CANCEL_OPTION

Figure 38.13 shows the confirmation dialogs with these options.

Figure 38.13
The confirmation dialog displays a question and three types of option
buttons, and requires responses from the user.

The showConfirmDialog method returns one of the following int
values corresponding to the selected option:

JOptionPane.YES_OPTION
JOptionPane.NO_OPTION
JOptionPane.CANCEL_OPTION
JOptionPane.OK_OPTION
JOptionPane.CLOSED_OPTION

These options correspond to the button that was activated, except
for the CLOSED_OPTION, which implies that the dialog box is
closed without buttons activated.

38.6.3 Input Dialogs
An input dialog box is used to receive input from the user. The
input can be entered from a text field or selected from a combo
box or a list. Selectable values can be specified in an array,
and one of them can be designated as the initial selected value.
If no selectable value is specified when an input dialog is
created, a text field is used for entering input. If fewer than
twenty selection values are specified, a combo box is displayed
in the input dialog. If twenty or more selection values are
specified, a list is used in the input dialog.
The methods for creating input dialogs are shown below:

public static String showInputDialog(Object message)
public static String showInputDialog(Component parentComponent,
 Object message)
public static String showInputDialog(Component parentComponent,
 Object message,
 String title,

int messageType)
public static Object showInputDialog(Component parentComponent,
 Object message,

 int messageType,
 Icon icon,
 Object[] selectionValues,
 Object initialSelectionValue)

The first three methods listed above use a text field for input,
as shown in Figure 38.14(a). The last method listed above
specifies an array of Object type as selection values in addition
to an object specified as an initial selection. The first three

22

methods return a String that is entered from the text field in
the input dialog. The last method returns an Object selected from
a combo box or a list. The input dialog displays a combo box if
there are fewer than twenty selection values, as shown in Figure
38.14(b); it displays a list if there are twenty or more
selection values, as shown in Figure 38.14(c).

(a) text field (b) combo box (c) list

Figure 38.14
(a) When creating an input dialog without specifying selection values,
the input dialog displays a text field for data entry. (b) When
creating an input dialog with selection values, the input dialog
displays a combo box if there are fewer than twenty selection values.
(c) When creating an input dialog with selection values, the input
dialog displays a list if there are twenty or more selection values.

NOTE
The showInputDialog method does not have the optionType
parameter. The buttons for input dialog are not
configurable. The OK and Cancel buttons are always used.

38.6.4 Option Dialogs
An option dialog allows you to create custom buttons. You can
create an option dialog using the following method:

public static int showOptionDialog(Component parentComponent,
 Object message,
 String title,

int optionType,
int messageType,

 Icon icon,
 Object[] options,
 Object initialValue)

The buttons are specified using the options parameter. The
initialValue parameter allows you to specify a button to receive
initial focus. The showOptionDialog method returns an int value
indicating the button that was activated. For example, here is
the code that creates an option dialog, as shown in Figure 38.15:

int value =
 JOptionPane.showOptionDialog(null, "Select a button",

"Option Dialog", JOptionPane.DEFAULT_OPTION,
 JOptionPane.PLAIN_MESSAGE, null,

new Object[]{"Button 0", "Button 1", "Button 2"}, "Button 1");

Figure 38.15
The option dialog displays the custom buttons.

23

38.6.5 Example: Creating JOptionPane Dialogs

This section gives an example that demonstrates the use of
JOptionPane dialogs. The program prompts the user to select the
annual interest rate from a list in an input dialog, the number
of years from a combo box in an input dialog, and the loan amount
from an input dialog, and it displays the loan payment schedule
in a text area inside a JScrollPane in a message dialog, as shown
in Figure 38.16.

Figure 38.16
The input dialogs can contain a list or a combo box for selecting
input, and the message dialogs can contain GUI objects like
JScrollPane.

Here are the major steps in the program (Listing 38.5):
1. Display an input dialog box to let the user select an annual
interest rate from a list.
2. Display an input dialog box to let the user select the number
of years from a combo box.
3. Display an input dialog box to let the user enter the loan
amount.
4. Compute the monthly payment, total payment, and loan payment
schedule, and display the result in a text area in a message dialog
box.

Listing 38.5 JOptionPaneDemo.java

<margin note line 12: input dialog>
<margin note line 23: input dialog>
<margin note line 29: input dialog>
<margin note line 70: message dialog>

 1 import javax.swing.*;
 2
 3 public class JOptionPaneDemo {

24

 4 public static void main(String args[]) {
 5 // Create an array for annual interest rates
 6 Object[] rateList = new Object[25];
 7 int i = 0;
 8 for (double rate = 5; rate <= 8; rate += 1.0 / 8)
 9 rateList[i++] = new Double(rate);
 10
 11 // Prompt the user to select an annual interest rate
 12 Object annualInterstRateObject = JOptionPane.showInputDialog(
 13 null, "Select annual interest rate:", "JOptionPaneDemo",
 14 JOptionPane.QUESTION_MESSAGE, null, rateList, null);
 15 double annualInterestRate =
 16 ((Double)annualInterstRateObject).doubleValue();
 17
 18 // Create an array for number of years
 19 Object[] yearList = {new Integer(7), new Integer(15),
 20 new Integer(30)};
 21
 22 // Prompt the user to enter number of years
 23 Object numberOfYearsObject = JOptionPane.showInputDialog(null,
 24 "Select number of years:", "JOptionPaneDemo",
 25 JOptionPane.QUESTION_MESSAGE, null, yearList, null);
 26 int numberOfYears = ((Integer)numberOfYearsObject).intValue();
 27
 28 // Prompt the user to enter loan amount
 29 String loanAmountString = JOptionPane.showInputDialog(null,
 30 "Enter loan amount,\nfor example, 150000 for $150000",
 31 "JOptionPaneDemo", JOptionPane.QUESTION_MESSAGE);
 32 double loanAmount = Double.parseDouble(loanAmountString);
 33
 34 // Obtain monthly payment and total payment
 35 Loan loan = new Loan(
 36 annualInterestRate, numberOfYears, loanAmount);
 37 double monthlyPayment = loan.getMonthlyPayment();
 38 double totalPayment = loan.getTotalPayment();
 39
 40 // Prepare output string
 41 String output = "Interest Rate: " + annualInterestRate + "%" +
 42 " Number of Years: " + numberOfYears + " Loan Amount: $"
 43 + loanAmount;
 44 output += "\nMonthly Payment: " + "$" +
 45 (int)(monthlyPayment * 100) / 100.0;
 46 output += "\nTotal Payment: $" +
 47 (int)(monthlyPayment * 12 * numberOfYears * 100) / 100.0 + "\n";
 48
 49 // Obtain monthly interest rate
 50 double monthlyInterestRate = annualInterestRate / 1200;
 51
 52 double balance = loanAmount;
 53 double interest;
 54 double principal;
 55
 56 // Display the header
 57 output += "\nPayment#\tInterest\tPrincipal\tBalance\n";
 58
 59 for (i = 1; i <= numberOfYears * 12; i++) {
 60 interest = (int)(monthlyInterestRate * balance * 100) / 100.0;
 61 principal = (int)((monthlyPayment - interest) * 100) / 100.0;
 62 balance = (int)((balance - principal) * 100) / 100.0;
 63 output += i + "\t" + interest + "\t" + principal + "\t" +
 64 balance + "\n";
 65 }
 66
 67 // Display monthly payment and total payment
 68 JScrollPane jsp = new JScrollPane(new JTextArea(output));
 69 jsp.setPreferredSize(new java.awt.Dimension(400, 200));

25

 70 JOptionPane.showMessageDialog(null, jsp,
 71 "JOptionPaneDemo", JOptionPane.INFORMATION_MESSAGE, null);
 72 }
 73 }

The JOptionPane dialog boxes are modal, which means that no other
window can be accessed until a dialog box is dismissed.

You have used the input dialog box to enter input from a text
field. This example shows that input dialog boxes can also
contain a list (lines 12–14) or a combo box (lines 23–25) to list
input options. The elements of the list are objects. The return
value from these input dialog boxes is of the Object type. To
obtain a double value or an int value, you have to cast the
return object into Double or Integer, then use the doubleValue or
intValue method to get the double or int value (lines 15–16 and
26).

You have already used the message dialog box to display a string.
This example shows that the message dialog box can also contain
GUI objects. The output string is contained in a text area, the
text area is inside a scroll pane, and the scroll pane is placed
in the message dialog box (lines 68–71).

38.7 Creating Custom Dialogs
Standard JOptionPane dialogs are sufficient in most cases.
Occasionally, you need to create custom dialogs. In Swing, the
JDialog class can be extended to create custom dialogs.

As with JFrame, components are added to the contentPane of
JDialog. Creating a custom dialog usually involves laying out
user interface components in the dialog, adding buttons for
dismissing the dialog, and installing listeners that respond to
button actions.

The standard dialog is modal, which means that no other window
can be accessed before the dialog is dismissed. However, the
custom dialogs derived from JDialog are not modal by default. To
make a dialog modal, set its modal property to true. To display
an instance of JDialog, set its visible property to true.

Let us create a custom dialog box for choosing colors, as shown
in Figure 38.17(a). Use this dialog to choose the color for the
foreground of the button, as shown in Figure 38.17(b). When the
user clicks the Change Button Text Color button, the Choose Color
dialog box is displayed.

(a) (b)

Figure 38.17
The custom dialog allows you to choose a color for the label's
foreground.

26

Create a custom dialog component named ColorDialog by extending
JDialog. Use three sliders to specify red, green, and blue
components of a color. The program is given in Listing 38.6.

Listing 38.6 ColorDialog.java

<margin note line 8: color value>
<margin note line 12: sliders>
<margin note line 17: buttons>
<margin note line 23: constructor>
<margin note line 27: constructor>
<margin note line 29: create UI>
<margin note line 69: listeners>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 import javax.swing.event.*;
 5
 6 public class ColorDialog extends JDialog {
 7 // Declare color component values and selected color
 8 private int redValue, greenValue, blueValue;
 9 private Color color = null;
 10
 11 // Create sliders
 12 private JSlider jslRed = new JSlider(0, 128);
 13 private JSlider jslGreen = new JSlider(0, 128);
 14 private JSlider jslBlue = new JSlider(0, 128);
 15
 16 // Create two buttons
 17 private JButton jbtOK = new JButton("OK");
 18 private JButton jbtCancel = new JButton("Cancel");
 19
 20 // Create a panel to display the selected color
 21 private JPanel jpSelectedColor = new JPanel();
 22
 23 public ColorDialog() {
 24 this(null, true);
 25 }
 26
 27 public ColorDialog(java.awt.Frame parent, boolean modal) {
 28 super(parent, modal);
 29 setTitle("Choose Color");
 30
 31 // Group two buttons OK and Cancel
 32 JPanel jpButtons = new JPanel();
 33 jpButtons.add(jbtOK);
 34 jpButtons.add(jbtCancel);
 35
 36 // Group labels
 37 JPanel jpLabels = new JPanel();
 38 jpLabels.setLayout(new GridLayout(3, 0));
 39 jpLabels.add(new JLabel("Red"));
 40 jpLabels.add(new JLabel("Green"));
 41 jpLabels.add(new JLabel("Blue"));
 42
 43 // Group sliders for selecting red, green, and blue colors
 44 JPanel jpSliders = new JPanel();
 45 jpSliders.setLayout(new GridLayout(3, 0));
 46 jpSliders.add(jslRed);

27

 47 jpSliders.add(jslGreen);
 48 jpSliders.add(jslBlue);
 49
 50 // Group jpLabels and jpSliders
 51 JPanel jpSelectColor = new JPanel();
 52 jpSelectColor.setLayout(new BorderLayout());
 53 jpSelectColor.setBorder(
 54 BorderFactory.createTitledBorder("Select Color"));
 55 jpSelectColor.add(jpLabels, BorderLayout.WEST);
 56 jpSelectColor.add(jpSliders, BorderLayout.CENTER);
 57
 58 // Group jpSelectColor and jpSelectedColor
 59 JPanel jpColor = new JPanel();
 60 jpColor.setLayout(new BorderLayout());
 61 jpColor.add(jpSelectColor, BorderLayout.SOUTH);
 62 jpColor.add(jpSelectedColor, BorderLayout.CENTER);
 63
 64 // Place jpButtons and jpColor into the dialog box
 65 add(jpButtons, BorderLayout.SOUTH);
 66 add(jpColor, BorderLayout.CENTER);
 67 pack();
 68
 69 jbtOK.addActionListener(new ActionListener() {
 70 @Override
 71 public void actionPerformed(ActionEvent e) {
 72 setVisible(false);
 73 }
 74 });
 75
 76 jbtCancel.addActionListener(new ActionListener() {
 77 @Override
 78 public void actionPerformed(ActionEvent e) {
 79 color = null;
 80 setVisible(false);
 81 }
 82 });
 83
 84 jslRed.addChangeListener(new ChangeListener() {
 85 @Override
 86 public void stateChanged(ChangeEvent e) {
 87 redValue = jslRed.getValue();
 88 color = new Color(redValue, greenValue, blueValue);
 89 jpSelectedColor.setBackground(color);
 90 }
 91 });
 92
 93 jslGreen.addChangeListener(new ChangeListener() {
 94 @Override
 95 public void stateChanged(ChangeEvent e) {
 96 greenValue = jslGreen.getValue();
 97 color = new Color(redValue, greenValue, blueValue);
 98 jpSelectedColor.setBackground(color);
 99 }
100 });
101
102 jslBlue.addChangeListener(new ChangeListener() {
103 @Override
104 public void stateChanged(ChangeEvent e) {
105 blueValue = jslBlue.getValue();

28

106 color = new Color(redValue, greenValue, blueValue);
107 jpSelectedColor.setBackground(color);
108 }
109 });
110 }
111
112 @Override
113 public Dimension getPreferredSize() {
114 return new java.awt.Dimension(200, 200);
115 }
116
117 /** Return color */
118 public Color getColor() {
119 return color;
120 }
121 }

Create a test class to use the color dialog to select the color
for the foreground color of the button in Listing 38.7.

Listing 38.7 TestColorDialog.java

<margin note line 12: listener>
<margin note line 22: main method omitted>

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 public class TestColorDialog extends JApplet {
 6 private ColorDialog colorDialog1 = new ColorDialog();
 7 private JButton jbtChangeColor = new JButton("Choose color");
 8
 9 public TestColorDialog() {
 10 setLayout(new java.awt.FlowLayout());
 11 jbtChangeColor.setText("Change Button Text Color");
 12 jbtChangeColor.addActionListener(new ActionListener() {
 13 @Override
 14 public void actionPerformed(ActionEvent e) {
 15 colorDialog1.setVisible(true);
 16
 17 if (colorDialog1.getColor() != null)
 18 jbtChangeColor.setForeground(colorDialog1.getColor());
 19 }
 20 });
 21 add(jbtChangeColor);
 22 }
 23 }

The custom dialog box allows the user to use the sliders to
select colors. The selected color is stored in the color
variable. When the user clicks the Cancel button, color becomes
null, which implies that no selection has been made.

The dialog box is displayed when the user clicks the Change
Button Text Color button and is closed when the OK button or the
Cancel button is clicked.

TIP: Not setting the dialog modal when needed
is a common mistake. In this example, the

29

dialog is set modal in line 24 in
ColorDialog.java (Listing 38.6). If the dialog
is not modal, all the statements in the Change
Button Text Color button handler are executed
before the color is selected from the dialog
box.

38.8 JColorChooser
You created a color dialog in the preceding example as a subclass
of JDialog, which is a subclass of java.awt.Dialog (a top-level
heavy-weight component). Therefore, it cannot be added to a
container as a component. Color dialogs are commonly used in GUI
programming. Swing provides a convenient and versatile color
dialog named javax.swing.JColorChooser. JColorChooser is a
lightweight component inherited from JComponent. It can be added
to any container. For example, the following code places a
JColorChooser in an applet, as shown in Figure 38.18.

<margin note line 3: create JColorChooser>

public class JColorChooserDemo extends javax.swing.JApplet {

public JColorChooserDemo() {

this.add(new javax.swing.JColorChooser());

 }
}

Figure 38.18
An instance of JColorChooser is displayed in an applet; (b)

Often an instance of JColorChooser is displayed in a dialog box
using JColorChooser's static showDialog method:

public static Color showDialog(Component parentComponent,
 String title,
 Color initialColor)

For example, the following code displays a JColorChooser, as
shown in Figure 38.18.

Color color = JColorChooser.showDialog(this, "Choose a color",

 Color.YELLOW);

30

 (a) (b)

Figure 38.19
An instance of JColorChooser is displayed in a dialog box with the OK,
Cancel, and Reset buttons.

The showDialog method creates an instance of JDialog with three
buttons, OK, Cancel, and Reset, to hold a JColorChooser object,
as shown in Figure 38.19(a). The method displays a modal dialog.
If the user clicks the OK button, the method dismisses the dialog
and returns the selected color. If the user clicks the Cancel
button or closes the dialog, the method dismisses the dialog and
returns null.

JColorChooser consists of a tabbed pane and a color preview
panel. The tabbed pane has three tabs for choosing colors using
Swatches, HSB, and RGB, as shown in Figure 38.19(b). The preview
panel shows the effect of the selected color.

NOTE: JColorChooser is very flexible. It allows you to
replace the tabbed pane or the color preview panel with
custom components. The default tabbed pane and the color
preview panel are sufficient. You rarely need to use
custom components.

38.9 JFileChooser
The javax.swing.JFileChooser class displays a dialog box from
which the user can navigate through the file system and select
files for loading or saving, as shown in Figure 38.20.

Figure 38.20
The Swing JFileChooser shows files and directories, and enables the
user to navigate through the file system visually.

Like JColorChooser, JFileChooser is a lightweight component
inherited from JComponent. It can be added to any container if

31

desired, but often you create an instance of JFileChooser and
display it standalone.

JFileChooser is a subclass of JComponent. There are several ways
to construct a file dialog box. The simplest is to use
JFileChooser's no-arg constructor.

The file dialog box can appear in two types: open and save. The
open type is for opening a file, and the save type is for storing
a file. To create an open file dialog, use the following method:

public int showOpenDialog(Component parent)

This method creates a dialog box that contains an instance of
JFileChooser for opening a file. The method returns an int value,
either APPROVE_OPTION or CANCEL_OPTION, which indicates whether
the Open button or the Cancel button was clicked.
Similarly, you can use the following method to create a dialog
for saving files:

public int showSaveDialog(Component parent)

The file dialog box created with showOpenDialog or showSaveDialog
is modal. The JFileChooser class has the properties inherited
from JComponent. It also has the following useful properties:

dialogType specifies the type of this dialog. Use OPEN_DIALOG
when you want to bring up a file chooser that the user can use
to open a file. Likewise, use SAVE_DIALOG to let the user
choose a file for saving.
dialogTitle is the string that is displayed in the title bar of
the dialog box.
currentDirectory is the current directory of the file. The type
of this property is java.io.File. If you want the current
directory to be used, use setCurrentDirectory(new File(".")).
selectedFile is the file you have selected. You can use
getSelectedFile() to return the selected file from the dialog
box. The type of this property is java.io.File. If you have a
default file name that you expect to use, use
setSelectedFile(new File(filename)).
multiSelectionEnabled is a boolean value indicating whether
multiple files can be selected. By default, it is false.
selectedFiles is a list of the files selected if the file
chooser is set to allow multi-selection. The type of this
property is File[].

Let us create an example of a simple text editor that uses Swing
menus, toolbar, file chooser, and color chooser, as shown in
Figure 38.21, which allows the user to open and save text files,
clear text, and change the color and font of the text. Listing
38.8 shows the program.

32

Figure 38.21
The editor enables you to open and save text files from the File
menu or from the toolbar, and to change the color and font of the
text from the Edit menu.

Listing 38.8 TextEditor.java

<margin note line 33: create UI>
<margin note line 88: color chooser>
<margin note line 100: color chooser>
<margin note line 112: file chooser>
<margin note line 119: file chooser>
<margin note line 182: main method omitted>

 1 import java.io.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4 import javax.swing.*;
 5
 6 public class TextEditor extends JApplet {
 7 // Declare and create image icons
 8 private ImageIcon openImageIcon =
 9 new ImageIcon(getClass().getResource("/image/open.gif"));
 10 private ImageIcon saveImageIcon =
 11 new ImageIcon(getClass().getResource("/image/save.gif"));
 12
 13 // Create menu items
 14 private JMenuItem jmiOpen = new JMenuItem("Open", openImageIcon);
 15 private JMenuItem jmiSave = new JMenuItem("Save", saveImageIcon);
 16 private JMenuItem jmiClear = new JMenuItem("Clear");
 17 private JMenuItem jmiExit = new JMenuItem("Exit");
 18 private JMenuItem jmiForeground = new JMenuItem("Foreground");
 19 private JMenuItem jmiBackground = new JMenuItem("Background");
 20
 21 // Create buttons to be placed in a tool bar
 22 private JButton jbtOpen = new JButton(openImageIcon);
 23 private JButton jbtSave = new JButton(saveImageIcon);
 24 private JLabel jlblStatus = new JLabel();
 25
 26 // Create a JFileChooser with the current directory
 27 private JFileChooser jFileChooser1
 28 = new JFileChooser(new File("."));
 29
 30 // Create a text area
 31 private JTextArea jta = new JTextArea();
 32
 33 public TextEditor() {
 34 // Add menu items to the menu
 35 JMenu jMenu1 = new JMenu("File");
 36 jMenu1.add(jmiOpen);
 37 jMenu1.add(jmiSave);
 38 jMenu1.add(jmiClear);
 39 jMenu1.addSeparator();
 40 jMenu1.add(jmiExit);
 41

33

 42 // Add menu items to the menu
 43 JMenu jMenu2 = new JMenu("Edit");
 44 jMenu2.add(jmiForeground);
 45 jMenu2.add(jmiBackground);
 46
 47 // Add menus to the menu bar
 48 JMenuBar jMenuBar1 = new JMenuBar();
 49 jMenuBar1.add(jMenu1);
 50 jMenuBar1.add(jMenu2);
 51
 52 // Set the menu bar
 53 setJMenuBar(jMenuBar1);
 54
 55 // Create tool bar
 56 JToolBar jToolBar1 = new JToolBar();
 57 jToolBar1.add(jbtOpen);
 58 jToolBar1.add(jbtSave);
 59
 60 jmiOpen.addActionListener(new ActionListener() {
 61 @Override
 62 public void actionPerformed(ActionEvent e) {
 63 open();
 64 }
 65 });
 66
 67 jmiSave.addActionListener(new ActionListener() {
 68 @Override
 69 public void actionPerformed(ActionEvent evt) {
 70 save();
 71 }
 72 });
 73
 74 jmiClear.addActionListener(new ActionListener() {
 75 @Override
 76 public void actionPerformed(ActionEvent evt) {
 77 jta.setText(null);
 78 }
 79 });
 80
 81 jmiExit.addActionListener(new ActionListener() {
 82 @Override
 83 public void actionPerformed(ActionEvent evt) {
 84 System.exit(0);
 85 }
 86 });
 87
 88 jmiForeground.addActionListener(new ActionListener() {
 89 @Override
 90 public void actionPerformed(ActionEvent evt) {
 91 Color selectedColor =
 92 JColorChooser.showDialog(null, "Choose Foreground Color",
 93 jta.getForeground());
 94
 95 if (selectedColor != null)
 96 jta.setForeground(selectedColor);
 97 }
 98 });
 99
100 jmiBackground.addActionListener(new ActionListener() {
101 @Override
102 public void actionPerformed(ActionEvent evt) {
103 Color selectedColor =
104 JColorChooser.showDialog(null, "Choose Background Color",
105 jta.getForeground());
106
107 if (selectedColor != null)

34

108 jta.setBackground(selectedColor);
109 }
110 });
111
112 jbtOpen.addActionListener(new ActionListener() {
113 @Override
114 public void actionPerformed(ActionEvent evt) {
115 open();
116 }
117 });
118
119 jbtSave.addActionListener(new ActionListener() {
120 @Override
121 public void actionPerformed(ActionEvent evt) {
122 save();
123 }
124 });
125
126 add(jToolBar1, BorderLayout.NORTH);
127 add(jlblStatus, BorderLayout.SOUTH);
128 add(new JScrollPane(jta), BorderLayout.CENTER);
129 }
130
131 /** Open file */
132 private void open() {
133 if (jFileChooser1.showOpenDialog(this) ==
134 JFileChooser.APPROVE_OPTION)
135 open(jFileChooser1.getSelectedFile());
136 }
137
138 /** Open file with the specified File instance */
139 private void open(File file) {
140 try {
141 // Read from the specified file and store it in jta
142 BufferedInputStream in = new BufferedInputStream(
143 new FileInputStream(file));
144 byte[] b = new byte[in.available()];
145 in.read(b, 0, b.length);
146 jta.append(new String(b, 0, b.length));
147 in.close();
148
149 // Display the status of the Open file operation in jlblStatus
150 jlblStatus.setText(file.getName() + " Opened");
151 }
152 catch (IOException ex) {
153 jlblStatus.setText("Error opening " + file.getName());
154 }
155 }
156
157 /** Save file */
158 private void save() {
159 if (jFileChooser1.showSaveDialog(this) ==
160 JFileChooser.APPROVE_OPTION) {
161 save(jFileChooser1.getSelectedFile());
162 }
163 }
164
165 /** Save file with specified File instance */
166 private void save(File file) {
167 try {
168 // Write the text in jta to the specified file
169 BufferedOutputStream out = new BufferedOutputStream(
170 new FileOutputStream(file));
171 byte[] b = (jta.getText()).getBytes();
172 out.write(b, 0, b.length);
173 out.close();

35

174
175 // Display the status of the save file operation in jlblStatus
176 jlblStatus.setText(file.getName() + " Saved ");
177 }
178 catch (IOException ex) {
179 jlblStatus.setText("Error saving " + file.getName());
180 }
181 }
182 }

The program creates the File and Edit menus (lines 34-45). The
File menu contains the menu commands Open for loading a file,
Save for saving a file, Clear for clearing the text editor, and
Exit for terminating the program. The Edit menu contains the menu
commands Foreground Color and Background Color for setting
foreground color and background color in the text. The Open and
Save menu commands can also be accessed from the toolbar, which
is created in lines 56-58. The status of executing Open and Save
is displayed in the status label, which is created in line 24.

jFileChooser1, an instance of JFileChooser, is created for
displaying the file dialog box to open and save files (lines 27-
28). new File(".") is used to set the current directory to the
directory where the class is stored.

The open method is invoked when the user clicks the Open menu
command or the Open toolbar button (lines 62, 108). The
showOpenDialog method (line 125) displays an Open dialog box, as
shown in Figure 38.20. Upon receiving the selected file, the
method open(file) (line 127) is invoked to load the file to the
text area using a BufferedInputStream wrapped on a
FileInputStream.

The save method is invoked when the user clicks the Save menu
command or the Save toolbar button (lines 68, 114). The
showSaveDialog method (line 151) displays a Save dialog box. Upon
receiving the selected file, the method save(file) (line 153) is
invoked to save the contents from the text area to the file,
using a BufferedOutputStream wrapped on a FileOutputStream.

The color dialog is displayed using the static method showDialog
(lines 87, 98) of JColorChooser. Thus you don't need to create an
instance of JFileChooser. The showDialog method returns the
selected color if the OK button is clicked after a color is
selected.

Chapter Summary
1. Menus make selection easier and are widely used in window

applications. Java provides five classes that implement
menus: JMenuBar, JMenu, JMenuItem, JCheckBoxMenuItem, and
JRadioButtonMenuItem. These classes are subclasses of
AbstractButton. They are very similar to buttons.

2. JMenuBar is a top-level menu component used to hold menus.
A menu consists of menu items that the user can select (or
toggle on or off). A menu item can be an instance of
JMenuItem, JCheckBoxMenuItem, or JRadioButtonMenuItem. Menu
items can be associated with icons, keyboard mnemonics, and
keyboard accelerators. Menu items can be separated using
separators.

36

3. A popup menu, also known as a context menu, is like a
regular menu, but does not have a menu bar and can float
anywhere on the screen. Creating a popup menu is similar to
creating a regular menu. First, you create an instance of
JPopupMenu, then you can add JMenuItem, JCheckBoxMenuItem,
JRadioButtonMenuItem, and separators to the popup menu.

4. Customarily, you display a popup menu by pointing to a GUI
component and clicking a certain mouse button, the so-
called popup trigger. Popup triggers are system dependent.
In Windows, the popup menu is displayed when the right
mouse button is released. In Motif, the popup menu is
displayed when the third mouse button is pressed and held
down.

5. Swing provides the JToolBar class as the container to hold
toolbar components. JToolBar uses BoxLayout to manage
components. The components usually appear as icons. Since
icons are not components, they cannot be placed into a
toolbar directly. Instead you place buttons into the
toolbar and set the icons on the buttons. An instance of
JToolBar is like a regular container. Often it is placed in
the north, west, or east of a container of BorderLayout.

6. Swing provides the Action interface, which can be used to
create action objects for processing actions. Using Action
objects, common action processing for menu items and
toolbar buttons can be centralized and separated from the
other application code.

7. The JOptionPane class contains the static methods for
creating message dialogs, confirmation dialogs, input
dialogs, and option dialogs. You can also create custom
dialogs by extending the JDialog class.

8. Swing provides a convenient and versatile color dialog
named javax.swing.JColorChooser. Like JOptionPane,
JColorChooser is a lightweight component inherited from
JComponent. It can be added to any container.

9. Swing provides the javax.swing.JFileChooser class that
displays a dialog box from which the user can navigate
through the file system and select files for loading or
saving.

Test Questions

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions
Section 38.2
38.1 How do you create a menu bar?
38.2 How do you create a submenu? How do you create a check-box menu
item? How do you create a radio-button menu item?
38.3 How do you add a separator in a menu?

37

38.4 How do you set an icon and a text in a menu item? How do you
associate keyboard mnemonics and accelerators in a menu item?

Section 38.3
38.5 How do you create a popup menu? How do you show a popup menu?
38.6 Describe a popup trigger.

Section 38.4
38.7 What is the layout manager used in JToolBar? Can you change the
layout manager?
38.8 How do you add buttons into a JToolBar? How do you add a JToolBar
into a frame or an applet?

Section 38.5
38.9 What is the Action interface for?
38.10 How do you add an Action object to a JToolBar, JMenu, JButton,
JRadioButton, and JCheckBox?

Section 38.6
38.11 Describe the standard dialog boxes created using the JOptionPane
class.
38.12 How do you create a message dialog? What are the message types?
What is the button in the message dialog?
38.13 How do you create a confirmation dialog? What are the button
option types?
38.14 How do you create an input dialog with a text field for entering
input? How do you create a combo box dialog for selecting values as
input? How do you create a list dialog for selecting values as input?

Sections 38.7-38.10
38.15 How do you show an instance of JDialog? Is a standard dialog box
created using the static methods in JOptionPane modal? Is an instance
of JDialog modal?
38.16 How do you display an instance of JColorChooser? Is an instance
of JColorChooser modal? How do you obtain the selected color?
38.17 How do you display an instance of JFileChooser? Is an instance of
JFileChooser modal? How do you obtain the selected file? What is the
return type for getSelectedFile() and getSelectedDirectory()? How do
you set the current directory as the default directory for a
JFileChooser dialog?

Programming Exercises
Sections 38.2-38.3
38.1*
(Create an investment value calculator) Write a program

that calculates the future value of an investment
at a given interest rate for a specified number
of years. The formula for the calculation is as
follows:

futureValue = investmentAmount × (1 + monthlyInterestRate)years×12

Use text fields for interest rate, investment
amount, and years. Display the future amount in a
text field when the user clicks the Calculate
button or chooses Calculate from the Operation

38

menu (see Figure 38.22). Show a message dialog
box when the user clicks the About menu item from
the Help menu.

Figure 38.22
The user enters the investment amount, years, and interest rate to
compute future value.

38.2*
(Use popup menus) Modify Listing 38.1, MenuDemo.java, to create a

popup menu that contains the menus Operations and Exit, as
shown in Figure 38.23. The popup is displayed when you click
the right mouse button on the panel that contains the labels
and the text fields.

Figure 38.23
The popup menu contains the commands to perform arithmetic operations.

Sections 38.4-38.5
38.3**
(A paint utility) Write a program that emulates a paint utility. Your

program should enable the user to choose options and draw
shapes or get characters from the keyboard based on the
selected options (see Figure 38.24). The options are displayed
in a toolbar. To draw a line, the user first clicks the line
icon in the toolbar and then uses the mouse to draw a line in
the same way you would draw using Microsoft Paint.

Figure 38.24
This exercise produces a prototype drawing utility that enables you to
draw lines, rectangles, ovals, and characters.

39

38.4*
(Use actions) Write a program that contains the menu items and toolbar

buttons that can be used to select flags to be displayed in an
ImageViewer, as shown in Figure 38.25. Use the Action interface
to centralize the processing for the actions.

Figure 38.25
The menu items and tool buttons are used to display selected images in
the ImageViewer.

Sections 38.6-38.10
38.5*
(Demonstrate JOptionPane) Write a program that creates option panes of

all types, as shown in Figure 38.26. Each menu item invokes a
static showXxxDialog method to display a dialog box.

Figure 38.26
You can display a dialog box by clicking a menu item.

38.6*
(Create custom dialog) Write a program that creates a custom dialog

box to gather user information, as shown in Figure 38.27(a).

 (a) (b)

Figure 38.27
(a) The custom dialog box prompts the user to enter username and
password. (b) The program enables the user to view a file by
selecting it from a file open dialog box.

38.7*

 (Use JFileChooser) Write a program that enables the user
to select a file from a file open dialog box. A
file open dialog box is displayed when the Browse
button is clicked, as shown in Figure 38.27(b).
The file is displayed in the text area, and the

40

file name is displayed in the text field when the
OK button is clicked in the file open dialog box.
You can also enter the file name in the text
field and press the Enter key to display the file
in the text area.

38.8*
(Select an audio file) Write a program that selects an

audio file using the file dialog box, and use
three buttons, Play, Loop, and Stop, to control
the audio, as shown in Figure 38.28. If you click
the Play button, the audio file is played once.
If you click the Loop button, the audio file
keeps playing repeatedly. If you click the Stop
button, the playing stops. The selected audio
files are stored in the folder named anthems
under the exercise directory. The exercise
directory contains the class file for this
exercise.

Figure 38.28
The program allows you to choose an audio file from a
dialog box and use the buttons to play, repeatedly play, or
stop the audio.

38.9**
(Play TicTacToe with a computer) The game in §18.9,
“Case Study: TicTacToe,” facilitates two players.
Write a new game that enables a player to play
against the computer. Add a File menu with two
items, New Game and Exit, as shown in Figure 38.29.
When you click New Game, it displays a dialog box.
From this dialog box, you can decide whether to let
the computer go first.

41

Figure 38.29
The new TicTacToe game enables you to play against the
computer.

1

***This is a bonus Web chapter

CHAPTER 39

MVC and Swing Models

Objectives

To use the model-view-controller approach to separate data and
logic from the presentation of data (§39.2).

To implement the model-view-controller components using the
JavaBeans event model (§39.2).

To explain the Swing model-view-controller architecture (§39.4).

To use JSpinner to scroll the next and previous values (§39.5).

To create custom spinner models and editors (§39.6).

To use JList to select single or multiple items in a list (§39.7).

To add and remove items using ListModel and DefaultListModel
(§39.8).

To render list cells using a default or custom cell renderer
(§39.9).

To create custom combo box models and renderers (§39.10).

2

39.1 Introduction

The Swing user interface components are implemented using
variations of the MVC architecture. You have used simple Swing
components without concern for their supporting models, but in
order to use advanced Swing components, you have to use their
models to store, access, and modify data. This chapter introduces
the MVC architecture and Swing models. Specifically, you will
learn how to use the models in JSpinner, JList, and JComboBox.
The next chapter will introduce JTable and JTree.

39.2 MVC
<margin note: model>
<margin note: view>
<margin note: controller>

The model-view-controller (MVC) approach is a way of developing
components by separating data storage and handling from the
visual representation of the data. The component for storing and
handling data, known as a model, contains the actual contents of
the component. The component for presenting the data, known as a
view, handles all essential component behaviors. It is the view
that comes to mind when you think of the component. It does all
the displaying of the components. The controller is a component
that is usually responsible for obtaining data, as shown in
Figure 39.1.

Model View

Obtain input

Controller

Store data Display data

Figure 39.1
The controller obtains data and stores it in a model. The view displays
the data stored in the model.

<margin note: MVC benefits>
Separating a component into a model and a view has two major
benefits:

It makes multiple views possible so that data can be shared
through the same model. For example, a model storing student
names can be displayed simultaneously in a combo box and a
list box.

It simplifies the task of writing complex applications and
makes the components scalable and easy to maintain. Changes
can be made to the view without affecting the model, and
vice versa.

A model contains data, whereas a view makes the data visible.
Once a view is associated with a model, it is synchronized with
the model. This ensures that all of the model’s views display the
same data consistently. To achieve consistency and
synchronization with its dependent views, the model should notify
the views when there is a change in any of its properties that
are used in the view. In response to a change notification, the
view is responsible for redisplaying the viewing area affected by
the property change.

3

The Java event delegation model provides a superior architecture
for supporting MVC component development. The model can be
implemented as a source with appropriate event and event listener
registration methods. The view can be implemented as a listener.
Thus, if data are changed in the model, the view will be
notified. To enable the selection of the model from the view,
simply add the model as a property in the view with a set method.

Let us use an example to demonstrate the development of
components using the MVC approach. The example creates a model
named CircleModel, a view named CircleView, and a controller
named CircleControl. CircleModel stores the properties (radius,
filled, and color) that describe a circle. filled is a boolean
value that indicates whether a circle is filled. CircleView draws
a circle according to the properties of the circle. CircleControl
enables the user to enter circle properties from a graphical user
interface. Create an applet with two buttons named Show
Controller and Show View, as shown in Figure 39.2(a). When you
click the Show Controller button, the controller is displayed in
a frame, as shown in Figure 39.2(b). When you click the Show View
button, the view is displayed in a separate frame, as shown in
Figure 39.2(c).

 (a) (b) (c)
Figure 39.2
The controller obtains circle properties and stores them in a circle
model. The view displays the circle specified by the circle model.

<margin note: date model>
The circle model contains the properties radius, filled, and
color, as well as the registration/deregistration methods for
action event, as shown in Figure 39.3.

CircleModel
-radius: double
-filled: boolean
-color: java.awt.Color

+addActionListener(l: ActionListener): void
+removeActionListener(l: ActionListener): void
-processEvent(e: ActionEvent): void

The radius of this circle.
True if the circle is filled.
The color of the circle.

Adds a new listener to this object.
Removes a listener from this object.
Processes the event.

JavaBeans properties with get and set
methods omitted in the UML diagram

Figure 39.3
The circle model stores the data and notifies the listeners if the data
change.

When a property value is changed, the listeners are notified.
The complete source code for CircleModel is given in Listing
39.1.

Listing 39.1 CircleModel.java

<margin note line 6: properties>
<margin note line 25: fire event>

4

<margin note line 37: fire event>
<margin note line 49: fire event>
<margin note line 54: standard code>
<margin note line 62: standard code>
<margin note line 68: standard code>

 1 import java.awt.event.*;
 2 import java.util.*;
 3
 4 public class CircleModel {
 5 /** Property radius. */
 6 private double radius = 20;
 7
 8 /** Property filled. */
 9 private boolean filled;
 10
 11 /** Property color. */
 12 private java.awt.Color color;
 13
 14 /** Utility field used by event firing mechanism. */
 15 private ArrayList<ActionListener> actionListenerList;
 16
 17 public double getRadius() {
 18 return radius;
 19 }
 20
 21 public void setRadius(double radius) {
 22 this.radius = radius;
 23
 24 // Notify the listener for the change on radius
 25 processEvent(
 26 new ActionEvent(this, ActionEvent.ACTION_PERFORMED, "radius"));
 27 }
 28
 29 public boolean isFilled() {
 30 return filled;
 31 }
 32
 33 public void setFilled(boolean filled) {
 34 this.filled = filled;
 35
 36 // Notify the listener for the change on filled
 37 processEvent(
 38 new ActionEvent(this, ActionEvent.ACTION_PERFORMED, "filled"));
 39 }
 40
 41 public java.awt.Color getColor() {
 42 return color;
 43 }
 44
 45 public void setColor(java.awt.Color color) {
 46 this.color = color;
 47
 48 // Notify the listener for the change on color
 49 processEvent(
 50 new ActionEvent(this, ActionEvent.ACTION_PERFORMED, "color"));
 51 }
 52
 53 /** Register an action event listener */
 54 public synchronized void addActionListener(ActionListener l) {
 55 if (actionListenerList == null)
 56 actionListenerList = new ArrayList<ActionListener>();
 57
 58 actionListenerList.add(l);
 59 }

5

 60
 61 /** Remove an action event listener */
 62 public synchronized void removeActionListener(ActionListener l) {
 63 if (actionListenerList != null && actionListenerList.contains(l))
 64 actionListenerList.remove(l);
 65 }
 66
 67 /** Fire TickEvent */
 68 private void processEvent(ActionEvent e) {
 69 ArrayList<ActionListener> list;
 70
 71 synchronized (this) {
 72 if (actionListenerList == null) return;
 73 list = (ArrayList<ActionListener>)(actionListenerList.clone());
 74 }
 75
 76 for (int i = 0; i < list.size(); i++) {
 77 ActionListener listener = list.get(i);
 78 listener.actionPerformed(e);
 79 }
 80 }
 81 }

NOTE
The registration/deregistration/processEvent methods
(lines 54-80) are the same as in lines 49-82 in Listing
27.2, CourseWithActionEvent.java. If you use a GUI
builder tool such as NetBeans and Eclipse, the code can
be generated automatically.

<margin note: view>
The UML diagram for CircleView is shown in Figure 39.4 and its
source code is given in Listing 39.2. The view listens for
notifications from the model. It contains the model as its
property. When a model is set in the view, a listener is created
and registered with the model (lines 13-17). The view extends
JPanel and overrides the paintComponent method to draw the circle
according to the property values specified in the model.

CircleView
-model: CircleModel

#paintCompon ent(g: Graphics): void

Stores the circle model.

Paints the view.

javax.swing.JPanel
JavaBeans properties with ge t a nd set
methods omitted in the UML diagram

Figure 39.4
The view displays the circle according to the model.

Listing 39.2 CircleView.java

<margin note line 5: model>
<margin note line 8: set model>
<margin note line 26: paint view>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3
 4 public class CircleView extends javax.swing.JPanel {
 5 private CircleModel model;

6

 6
 7 /** Set a model */
 8 public void setModel(CircleModel newModel) {
 9 model = newModel;
 10
 11 if (model != null)
 12 // Register the view as listener for the model
 13 model.addActionListener(new ActionListener() {
 14 @Override
 15 public void actionPerformed(ActionEvent e) {
 16 repaint();
 17 }
 18 });
 19 }
 20
 21 public CircleModel getModel() {
 22 return model;
 23 }
 24
 25 @Override
 26 protected void paintComponent(Graphics g) {
 27 if (model != null) {
 28 super.paintComponent(g);
 29 g.setColor(model.getColor());
 30
 31 int xCenter = getWidth() / 2;
 32 int yCenter = getHeight() / 2;
 33 int radius = (int)model.getRadius();
 34
 35 if (model.isFilled()) {
 36 g.fillOval(xCenter - radius, yCenter - radius,
 37 2 * radius, 2 * radius);
 38 }
 39 else {
 40 g.drawOval(xCenter - radius, yCenter - radius,
 41 2 * radius, 2 * radius);
 42 }
 43 }
 44 }
 45 }

The controller presents a GUI interface that enables the user to
enter circle properties radius and filled. It contains the model
as its property. You can use the setModel method to associate a
circle model with the controller. It uses a text field to obtain
a new radius and a combo box to obtain a boolean value to specify
whether the circle is filled. The source code for
CircleController is given in Listing 39.3.

Listing 39.3 CircleController.java

<margin note line 6: model>
<margin note line 14: create UI>
<margin note line 47: set model>

 1 import java.awt.event.*;
 2 import java.awt.*;
 3 import javax.swing.*;
 4
 5 public class CircleController extends JPanel {

7

 6 private CircleModel model;
 7 private JTextField jtfRadius = new JTextField();
 8 private JComboBox jcboFilled = new JComboBox(new Boolean[]{
 9 new Boolean(false), new Boolean(true)});
 10
 11 /** Creates new form CircleController */
 12 public CircleController() {
 13 // Panel to group labels
 14 JPanel panel1 = new JPanel();
 15 panel1.setLayout(new GridLayout(2, 1));
 16 panel1.add(new JLabel("Radius"));
 17 panel1.add(new JLabel("Filled"));
 18
 19 // Panel to group text field, combo box, and another panel
 20 JPanel panel2 = new JPanel();
 21 panel2.setLayout(new GridLayout(2, 1));
 22 panel2.add(jtfRadius);
 23 panel2.add(jcboFilled);
 24
 25 setLayout(new BorderLayout());
 26 add(panel1, BorderLayout.WEST);
 27 add(panel2, BorderLayout.CENTER);
 28
 29 // Register listeners
 30 jtfRadius.addActionListener(new ActionListener() {
 31 @Override
 32 public void actionPerformed(ActionEvent e) {
 33 if (model != null) // Set radius in the model
 34 model.setRadius(Double.parseDouble(jtfRadius.getText()));
 35 }
 36 });
 37 jcboFilled.addActionListener(new ActionListener() {
 38 @Override
 39 public void actionPerformed(ActionEvent e) {
 40 if (model != null) // Set filled property value in the model
 41 model.setFilled(((Boolean)jcboFilled.getSelectedItem()).
 42 booleanValue());
 43 }
 44 });
 45 }
 46
 47 public void setModel(CircleModel newModel) {
 48 model = newModel;
 49 }
 50
 51 public CircleModel getModel() {
 52 return model;
 53 }
 54 }

Finally, let us create an applet named MVCDemo with two buttons,
Show Controller and Show View. The Show Controller button
displays a controller in a frame, and the Show View button
displays a view in a separate frame. The program is shown in
Listing 39.4.

Listing 39.4 MVCDemo.java
<margin note line 8: create model>
<margin note line 11: create UI>
<margin note line 20: set model>
<margin note line 33: set model>
<margin note line 41: main method omitted>

 1 import java.awt.*;

8

 2 import java.awt.event.*;
 3 import javax.swing.*;
 4
 5 public class MVCDemo extends JApplet {
 6 private JButton jbtController = new JButton("Show Controller");
 7 private JButton jbtView = new JButton("Show View");
 8 private CircleModel model = new CircleModel();
 9
 10 public MVCDemo() {
 11 setLayout(new FlowLayout());
 12 add(jbtController);
 13 add(jbtView);
 14
 15 jbtController.addActionListener(new ActionListener() {
 16 @Override
 17 public void actionPerformed(ActionEvent e) {
 18 JFrame frame = new JFrame("Controller");
 19 CircleController controller = new CircleController();
 20 controller.setModel(model);
 21 frame.add(controller);
 22 frame.setSize(200, 200);
 23 frame.setLocation(200, 200);
 24 frame.setVisible(true);
 25 }
 26 });
 27
 28 jbtView.addActionListener(new ActionListener() {
 29 @Override
 30 public void actionPerformed(ActionEvent e) {
 31 JFrame frame = new JFrame("View");
 32 CircleView view = new CircleView();
 33 view.setModel(model);
 34 frame.add(view);
 35 frame.setSize(500, 200);
 36 frame.setLocation(200, 200);
 37 frame.setVisible(true);
 38 }
 39 });
 40 }
 41 }

The model stores and handles data, and the views are responsible
for presenting data. The fundamental issue in the model-view
approach is to ensure consistency between the views and the
model. Any change in the model should be notified to the
dependent views, and all the views should display the same data
consistently. The data in the model is changed through the
controller.

The methods setRadius, setFilled, and setColor (lines 21, 33, 45)
in CircleModel invoke the processEvent method to notify the
listeners of any change in the properties.

The setModel method in CircleView sets a new model and registers
with a listener for the model by invoking the model's
addActionListener method (line 13). When the data in the model
are changed, the listener’s actionPerformed method is invoked to
repaint the circle (line 15).

9

The controller CircleController presents a GUI. You can enter the
radius from the radius text field. You can specify whether the
circle is filled from the combo box that contains two Boolean
objects, new Boolean(false) and new Boolean(true) (lines 8-9).

In MVCDemo, every time you click the Show Controller button, a
new controller is created (line 18). Every time you click the
Show View button, a new view is created (line 30). The controller
and view share the same model.

39.3 MVC Variations
A variation of the model-view-controller architecture combines
the controller with the view. In this case, a view not only
presents the data, but is also used as an interface to interact
with the user and accept user input, as shown in Figure 39.5.

Model View
(Controller)

Model may be
modified via view

Controller is part of
the view

Figure 39.5
The view can interact with the user as well as displaying data.

For example, you can modify the view in the preceding example to
enable the user to change the circle’s radius using the mouse.
When the left mouse button is clicked, the radius is increased by
5 pixels. When the right mouse button is clicked, the radius is
decreased by 5 pixels. The new view, named ViewController, can be
implemented by extending CircleView, as follows:

<margin note line 6: mouse listener>
<margin note line 11: left button?>
<margin note line 13: right button?>

 1 import java.awt.event.MouseEvent;
 2
 3 public class ViewController extends CircleView {
 4 public ViewController() {
 5 // Register mouse listener
 6 addMouseListener(new java.awt.event.MouseAdapter() {
 7 public void mousePressed(java.awt.event.MouseEvent e) {
 8 CircleModel model = getModel(); // Get model
 9
10 if (model != null)
11 if (e.getButton() == MouseEvent.BUTTON1)
12 model.setRadius(model.getRadius() + 5); // Left button
13 else if (e.getButton() == MouseEvent.BUTTON3)
14 model.setRadius(model.getRadius() - 5); // Right button
15 }
16 });
17 }
18 }

10

Another variation of the model-view-controller architecture adds
some of the data from the model to the view so that frequently
used data can be accessed directly from the view. Swing
components are designed using the MVC architecture. Each Swing
GUI component is a view that uses a model to store data. A Swing
GUI component contains some data in the model, so that it can be
accessed directly from the component.

39.4 Swing Model-View-Controller Architecture

Every Swing user interface component (except some containers and
dialog boxes, such as JPanel, JSplitPane, JFileChooser, and
JColorChooser) has a property named model that refers to its data
model. The data model is defined in an interface whose name ends
with Model. For example, the model for button component is
ButtonModel. Most model interfaces have a default implementation
class, commonly named DefaultX, where X is its model interface
name. For example, the default implementation class for
ButtonModel is DefaultButtonModel. The relationship of a Swing
component, its model interface, and its default model
implementation class is illustrated in Figure 39.6.

Generic Model InterfaceGeneric Swing Component
Each Swing component
contains the model property

Default Model Class
Implements the model
interface

«interface»
javax.swing.ButtonModel

+actionCommand: String
+mnemonic: String
Other properties omitted

javax.swing.JButton
+model: ButtonModel
+actionCommand: String
+mnemonic: String
Other properties omitted

javax.swing.DefaultButtonModel

(a) Generic Swing model-view architecture (b) JButton model-view implementation

Figure 39.6

Swing components are implemented using the MVC architecture.

For convenience, most Swing components contain some properties of
their models, and these properties can be accessed and modified
directly from the component without the existence of the model
being known. For example, the properties actionCommand and
mnemonic are defined in both ButtonModel and JButton. Actually,
these properties are in the AbstractButton class. Since JButton
is a subclass of AbstractButton, it inherits all the properties
from AbstractButton.

When you create a Swing component without specifying a model, a
default data model is assigned to the model property. For
example, lines 9-10 in the following code set the actionCommand
and mnemonic properties of a button through its model.

<margin note line 6: get model>
<margin note line 9: set model properties>

 1 public class TestSwingModel1 {
 2 public static void main(String[] args) {
 3 javax.swing.JButton jbt = new javax.swing.JButton();
 4
 5 // Obtain the default model from the component
 6 javax.swing.ButtonModel model = jbt.getModel();

11

 7
 8 // Set properties in the model
 9 model.setActionCommand("OK");
10 model.setMnemonic('O');
11
12 // Display the property values from the component
13 System.out.println("actionCommand is " + jbt.getActionCommand());
14 System.out.println("mnemonic is " + (char)(jbt.getMnemonic()));
15 }
16 }

<Output>
actionCommand is OK
mnemonic is O

<End Output>

You can also create a new model and assign it to a Swing
component. For example, the following code creates an instance of
ButtonModel (line 7) and assigns it to an instance of JButton
(line 14).

<margin note line 7: create model>
<margin note line 10: set model properties>
<margin note line 14: set a new model>

 1 public class TestSwingModel2 {
 2 public static void main(String[] args) {
 3 javax.swing.JButton jbt = new javax.swing.JButton();
 4
 5 // Create a new button model
 6 javax.swing.ButtonModel model =
 7 new javax.swing.DefaultButtonModel();
 8
 9 // Set properties in the model
10 model.setActionCommand("Cancel");
11 model.setMnemonic('C');
12
13 // Assign the model to the button
14 jbt.setModel(model);
15
16 // Display the property values from the component
17 System.out.println("actionCommand is " + jbt.getActionCommand());
18 System.out.println("mnemonic is " + (char)jbt.getMnemonic());
19 }
20 }

<Output>
actionCommand is Cancel
mnemonic is C

<End Output>

It is unnecessary to use the models for simple Swing components,
such as JButton, JToggleButton, JCheckBox, JRadioButton,
JTextField, and JTextArea, because the frequently used properties
in the models of these Swing components are also the properties
in these components. You can access and modify these properties
directly through the components. For advanced components, such as

12

JSpinner, JList, JComboBox, JTable, and JTree, you have to work
with their models to store, access, and modify data.

39.5 JSpinner

A spinner is a text field with a pair of tiny arrow buttons on
its right side that enable the user to select numbers, dates, or
values from an ordered sequence, as shown in Figure 39.7. The
keyboard up/down arrow keys also cycle through the elements. The
user may also be allowed to type a (legal) value directly into
the spinner. A spinner is similar to a combo box but is sometimes
preferred because it doesn't require a drop-down list that can
obscure important data.

Figure 39.7

Two JSpinner components enable the user to select a month and a year
for the calendar.

Figure 39.8 shows the constructors and commonly used methods in
JSpinner. A JSpinner's sequence value is defined by the
SpinnerModel interface, which manages a potentially unbounded
sequence of elements. The model doesn't support indexed random
access to sequence elements. Only three sequence elements are
accessible at a time—current, next, and previous—using the
methods getValue(), getNextValue(), and getPreviousValue(),
respectively. The current sequence element can be modified using
the setValue method. When the current value in a spinner is
changed, the model invokes the
stateChanged(javax.swing.event.ChangeEvent e) method of the
registered listeners. The listeners must implement
javax.swing.event.ChangeListener. All these methods in
SpinnerModel are also defined in JSpinner for convenience, so you
can access the data in the model from JSpinner directly.

 Spinner Spinner

13

1javax.swing.JSpinner

-model: SpinnerModel
-editor: JComponent

+JSpinner()

+JSpinner(model: SpinnerModel)
+getNextValue(): Object
+getPreviousValue(): Object
+getValue(): Object
+setValue(value: Object): void
+addChangeListener(l: ChangeListener): void
+removeChangeListener(l: ChangeListener): void

javax.swing.SpinnerModel

Specifies a model with get/set methods.
Specifies an editor with get/set methods.
Constructs a JSpinner with a SpinnerNumberModel with

initial value 0 and no minimum or maximum limits.
Constructs a JSpinner with a specified SpinnerModel.
Gets the next element value in this JSpinner.
Gets the previous element value in this JSpinner.
Gets the current element value in this JSpinner.
Sets the current element value.
Adds a listener for value change.
Removes a listener.

1

JavaBeans properties with get and set
methods omitted in the UML diagram

Figure 39.8

JSpinner uses a spinner model to store data.

NOTE: If you create a JSpinner object without specifying
a model, the spinner displays a sequence of integers.

Listing 39.5 gives an example that creates a JSpinner object for
a sequence of numbers and displays the previous, current, and
next numbers from the spinner on a label, as shown in Figure
39.9.

Figure 39.9

The previous, current, and next values in the spinner are displayed on
the label.

Listing 39.5 SimpleSpinner.java

<margin note line 7: spinner>
<margin note line 18: spinner listener>
<margin note line 27: main method omitted>

 1 import javax.swing.*;
 2 import javax.swing.event.*;
 3 import java.awt.BorderLayout;
 4
 5 public class SimpleSpinner extends JApplet {
 6 // Create a JSpinner
 7 private JSpinner spinner = new JSpinner();
 8
 9 // Create a JLabel
 10 private JLabel label = new JLabel("", JLabel.CENTER);
 11
 12 public SimpleSpinner() {
 13 // Add spinner and label to the UI
 14 add(spinner, BorderLayout.NORTH);
 15 add(label, BorderLayout.CENTER);
 16
 17 // Register and create a listener

14

18 spinner.addChangeListener(new ChangeListener() {
19 @Override

 20 public void stateChanged(javax.swing.event.ChangeEvent e) {
 21 label.setText("Previous value: " + spinner.getPreviousValue()
 22 + " Current value: " + spinner.getValue()
 23 + " Next value: " + spinner.getNextValue());
 24 }
 25 });
 26 }
 27 }

A JSpinner object is created using its no-arg constructor (line
7). By default, a spinner displays a sequence of integers.

An anonymous inner class event adapter is created to process the
value change event on the spinner (lines 18-25). The previous,
current, and next values in a spinner can be obtained using the
JSpinner’s instance methods getPreviousValue(), getValue(), and
getNextValue().

To display a sequence of values other than integers, you have to
use spinner models.

39.6 Spinner Models and Editors

SpinnerModel is an interface for all spinner models.
AbstractSpinnerModel is a convenient abstract class that
implements SpinnerModel and provides the implementation for its
registration/deregistration methods. SpinnerListModel,
SpinnerNumberModel, and SpinnerDateModel are concrete
implementations of SpinnerModel. The relationship among them is
illustrated in Figure 39.10. Besides these models, you can create
a custom spinner model that extends AbstractSpinnerModel or
directly implements SpinnerModel.

«interface»
javax.swing.SpinnerModel

+getPreviousValue(): Object
+getNextValue(): Object
+getValue(): Object
+setValue(value: Object): void
+addChangeListener(l: ChangeListener): void
+removeChangeListener(l: ChangeListener): void

AbstractSpinnerModel SpinnerNumberModel

SpinnerListModel

SpinnerDateModel
Gets the previous element value.
Gets the next element value.
Gets the current element value.
Sets the current element value.
Adds a listener for value change.
Removes a listener.

Figure 39.10

SpinnerListModel, SpinnerNumberModel, and SpinnerDateModel are concrete
implementations for SpinnerModel.

39.6.1 SpinnerListModel

SpinnerListModel (see Figure 39.11) is a simple implementation of
SpinnerModel whose values are stored in a java.util.List.

15

javax.swing.SpinnerListModel

-list: java.util.List
+SpinnerListModel()
+SpinnerListModel(values: List)
+SpinnerListModel(values: Object[])

Stores data in a list.
Constructs a SpinnerListModel that contains “empty” string elements.
Constructs a SpinnerListModel with the specified list.
Constructs a SpinnerListModel with the specified array.

«interface»
javax.swing.SpinnerModel

javax.swing.AbstractSpinnerModel

JavaBeans properties with get and set
methods omitted in the UML diagram

Figure 39.11

SpinnerListModel uses a java.util.List to store a sequence of data in
the model.

You can create a SpinnerListModel using an array or a list. For
example, the following code creates a model that consists of
values Freshman, Sophomore, Junior, Senior, and Graduate in an
array.

// Create an array
String[] grades = {"Freshman", "Sophomore", "Junior",
"Senior", "Graduate"};

// Create a model from an array
model = new SpinnerListModel(grades);

Alternatively, the following code creates a model using a list:

// Create an array
String[] grades = {"Freshman", "Sophomore", "Junior",
"Senior", "Graduate"};

// Create an ArrayList from the array
list = new ArrayList(Arrays.asList(grades));

// Create a model from the list
model = new SpinnerListModel(list);

The alternative code seems unnecessary. However, it is useful if
you need to add or remove elements from the model. The size of
the array is fixed once the array is created. The list is a
flexible data structure that enables you to add or remove
elements dynamically.

39.6.2 SpinnerNumberModel

SpinnerNumberModel (see Figure 39.12) is a concrete
implementation of SpinnerModel that represents a sequence of
numbers. It contains the properties maximum, minimum, and
stepSize. The maximum and minimum properties specify the upper
and lower bounds of the sequence. The stepSize specifies the size
of the increase or decrease computed by the nextValue and
previousValue methods defined in SpinnerModel. The minimum and

16

maximum properties can be null to indicate that the sequence has
no lower or upper limit. All of the properties in this class are
defined as Number or Comparable, so that all Java numeric types
may be accommodated.

javax.swing.SpinnerNumberModel

-maximum: java.lang.Comparable
-minimum: java.lang.Comparable
-stepSize: java.lang.Number
-value: java.lang.Number

+SpinnerNumberModel()

+SpinnerNumberModel(value: int, minimum: int, maximum:
int, stepSize: int)

+SpinnerNumberModel(value: double, minimum: double,
maximum: double, stepSize: double)

+SpinnerNumberModel(value: Number, minimum:
Comparable, maximum: Comparable, stepSize: Number)

Specifies the upper bound of the sequence with get/set methods.
Specifies the lower bound of the sequence with get/set methods.
Specifies the interval in the sequence with get/set methods.
Holds the current selected value with get/set methods.

Constructs an unbounded SpinnerNumberModel with an initial
value of zero and stepSize equal to one.

Constructs a SpinnerNumberModel with the specified initial
value, minimum/maximum bounds, and stepSize in int.

Constructs a SpinnerNumberModel with the specified initial
value, minimum/maximum bounds, and stepSize in double.

Constructs a SpinnerNumberModel that represents a closed
sequence of numbers from minimum to maximum.

«interface»
javax.swing.SpinnerModel

javax.swing.AbstractSpinnerModel

JavaBeans properties with get and set
methods omitted in the UML diagram

Figure 39.12

SpinnerNumberModel represents a sequence of numbers.

You can create a SpinnerNumberModel with integers or double. For
example, the following code creates a model that represents a
sequence of numbers from 0 to 3000 with initial value 2004 and
interval 1.

// Create a spinner number model
SpinnerNumberModel model = new SpinnerNumberModel(2004, 0, 3000, 1);

The following code creates a model that represents a sequence of
numbers from 0 to 120 with initial value 50 and interval 0.1.

// Create a spinner number model
SpinnerNumberModel model = new SpinnerNumberModel(50, 0, 120, 0.1);

39.6.3 SpinnerDateModel

SpinnerDateModel (see Figure 39.13) is a concrete implementation
of SpinnerModel that represents a sequence of dates. The upper
and lower bounds of the sequence are defined by properties called
start and end, and the size of the increase or decrease computed
by the nextValue and previousValue methods is defined by a
property called calendarField. The start and end properties can
be null to indicate that the sequence has no lower or upper
limit. The value of the calendarField property must be one of the
java.util.Calendar constants that specify a field within a
Calendar. The getNextValue and getPreviousValue methods change
the date forward or backward by this amount. For example, if

17

calendarField is Calendar.DAY_OF_WEEK, then nextValue produces a
date that is 24 hours after the current value, and previousValue
produces a date that is 24 hours earlier.

javax.swing.SpinnerDateModel

-start: java.lang.Comparable
-end: java.lang.Comparable
-calendarField: int
-value: java.util.Calendar

+SpinnerDateModel()

+SpinnerDateModel(value: Date, start: Comparable,
end: Comparable, calendarField: int)

Specifies the start date (upper bound) in the model with get/set methods.
Specifies the end date (lower bound) in the model with get/set methods.
Specifies the calendar field (interval) in the sequence with get/set methods.
Holds the current selected date with get/set methods.

Constructs an unbounded SpinnerDateModel whose initial value is the
current date, calendarField is equal to Calendar.DAY_OF_MONTH.

Constructs a SpinnerNumberModel with the specified initial date, start/end
bounds, and calendarField.

«interface»
javax.swing.SpinnerModel

javax.swing.AbstractSpinnerModel

JavaBeans properties with get and set
methods omitted in the UML diagram

Figure 39.13

SpinnerDateModel represents a sequence of dates.

For example, the following code creates a spinner model that
represents a sequence of dates, starting from the current date
without a lower/upper limit and with calendar field on month.

SpinnerDateModel model = new SpinnerDateModel(
new Date(), null, null, Calendar.MONTH);

39.6.4 Spinner Editors

A JSpinner has a single child component, called the editor, which
is responsible for displaying the current element or value of the
model. Four editors are defined as static inner classes inside
JSpinner.

JSpinner.DefaultEditor is a simple base class for all other
specialized editors to display a read-only view of the
model's current value with a JFormattedTextField.
JFormattedTextField extends JTextField, adding support for
formatting arbitrary values, as well as retrieving a
particular object once the user has edited the text.
JSpinner.NumberEditor is a specialized editor for a
JSpinner whose model is a SpinnerNumberModel. The value of
the editor is displayed with a JFormattedTextField whose
format is defined by a NumberFormatter instance.
JSpinner.DateEditor is a specialized editor for a JSpinner
whose model is a SpinnerDateModel. The value of the editor
is displayed with a JFormattedTextField whose format is
defined by a DateFormatter instance.
JSpinner.ListEditor is a specialized editor for a JSpinner
whose model is a SpinnerListModel. The value of the editor
is displayed with a JFormattedTextField.

18

The JSpinner's constructor creates a NumberEditor for
SpinnerNumberModel, a DateEditor for SpinnerDateModel, a
ListEditor for SpinnerListModel, and a DefaultEditor for all
other models. The editor can also be changed using the setEditor
method. The JSpinner's editor stays in sync with the model by
listening for ChangeEvents. The commitEdit() method should be
used to commit the currently edited value to the model.

39.6.5 Example: Using Spinner Models and Editors

This example uses a JSpinner component to display the date and
three other JSpinner components to display the day in a sequence
of numbers, the month in a sequence of strings, and the year in a
sequence of numbers, as shown in Figure 39.14. All four
components are synchronized. For example, if you change the year
in the spinner for year, the date value in the date spinner is
updated accordingly. The source code of the example is given in
Listing 39.6.

Figure 39.14

The four spinner components are synchronized to display the date in one
field and the day, month, and year in three separate fields.

Listing 39.6 SpinnerModelEditorDemo.java

<margin note line 9: spinners>
<margin note line 20: create UI>
<margin note line 41: date editor>
<margin note line 46: number editor>
<margin note line 54: spinner listener>
<margin note line 62: spinner listener>
<margin note line 70: spinner listener>
<margin note line 109: main method omitted>

 1 import javax.swing.*;
 2 import javax.swing.event.*;
 3 import java.util.*;
 4 import java.text.*;
 5 import java.awt.*;
 6
 7 public class SpinnerModelEditorDemo extends JApplet {
 8 // Create four spinners for date, day, month, and year
 9 private JSpinner jspDate =
 10 new JSpinner(new SpinnerDateModel());
 11 private JSpinner jspDay =
 12 new JSpinner(new SpinnerNumberModel(1, 1, 31, 1));
 13 private String[] monthNames = new DateFormatSymbols().getMonths();
 14 private JSpinner jspMonth = new JSpinner
 15 (new SpinnerListModel(Arrays.asList(monthNames).subList(0, 12)));
 16 private JSpinner spinnerYear =
 17 new JSpinner(new SpinnerNumberModel(2004, 1, 3000, 1));
 18
 19 public SpinnerModelEditorDemo() {
 20 // Group labels
 21 JPanel panel1 = new JPanel();

19

 22 panel1.setLayout(new GridLayout(4, 1));
 23 panel1.add(new JLabel("Date"));
 24 panel1.add(new JLabel("Day"));
 25 panel1.add(new JLabel("Month"));
 26 panel1.add(new JLabel("Year"));
 27
 28 // Group spinners
 29 JPanel panel2 = new JPanel();
 30 panel2.setLayout(new GridLayout(4, 1));
 31 panel2.add(jspDate);
 32 panel2.add(jspDay);
 33 panel2.add(jspMonth);
 34 panel2.add(spinnerYear);
 35
 36 // Add spinner and label to the UI
 37 add(panel1, BorderLayout.WEST);
 38 add(panel2, BorderLayout.CENTER);
 39
 40 // Set editor for date
 41 JSpinner.DateEditor dateEditor =
 42 new JSpinner.DateEditor(jspDate, "MMM dd, yyyy");
 43 jspDate.setEditor(dateEditor);
 44
 45 // Set editor for year
 46 JSpinner.NumberEditor yearEditor =
 47 new JSpinner.NumberEditor(spinnerYear, "####");
 48 spinnerYear.setEditor(yearEditor);
 49
 50 // Update date to synchronize with the day, month, and year
 51 updateDate();
 52
 53 // Register and create a listener for jspDay
 54 jspDay.addChangeListener(new ChangeListener() {
 55 @Override
 56 public void stateChanged(javax.swing.event.ChangeEvent e) {
 57 updateDate();
 58 }
 59 });
 60
 61 // Register and create a listener for jspMonth
 62 jspMonth.addChangeListener(new ChangeListener() {
 63 @Override
 64 public void stateChanged(javax.swing.event.ChangeEvent e) {
 65 updateDate();
 66 }
 67 });
 68
 69 // Register and create a listener for spinnerYear
 70 spinnerYear.addChangeListener(new ChangeListener() {
 71 @Override
 72 public void stateChanged(javax.swing.event.ChangeEvent e) {
 73 updateDate();
 74 }
 75 });
 76 }
 77
 78 /** Update date spinner to synchronize with the other spinners */
 79 private void updateDate() {
 80 // Get current month and year in int
 81 int month = ((SpinnerListModel)jspMonth.getModel()).
 82 getList().indexOf(jspMonth.getValue());
 83 int year = ((Integer)spinnerYear.getValue()).intValue();
 84
 85 // Set a new maximum number of days for the new month and year
 86 SpinnerNumberModel numberModel =
 87 (SpinnerNumberModel)jspDay.getModel();

20

 88 numberModel.setMaximum(new Integer(maxDaysInMonth(year, month)));
 89
 90 // Set a new current day if it exceeds the maximum
 91 if (((Integer)(numberModel.getValue())).intValue() >
 92 maxDaysInMonth(year, month))
 93 numberModel.setValue(new Integer(maxDaysInMonth(year, month)));
 94
 95 // Get the current day
 96 int day = ((Integer)jspDay.getValue()).intValue();
 97
 98 // Set a new date in the date spinner
 99 jspDate.setValue(
100 new GregorianCalendar(year, month, day).getTime());
101 }
102
103 /** Return the maximum number of days in a month. For example,
104 Feb 2004 has 29 days. */
105 private int maxDaysInMonth(int year, int month) {
106 Calendar calendar = new GregorianCalendar(year, month, 1);
107 return calendar.getActualMaximum(Calendar.DAY_OF_MONTH);
108 }
109 }

A JSpinner object for dates, jspDate, is created with a default
SpinnerDateModel (lines 9-10). The format of the date displayed
in the spinner is MMM dd, yyyy (e.g., Feb 01, 2006). This format
is created using the JSpinner’s inner class constructor
DateEditor (lines 41-42) and is set as jspDate’s editor (line
43).

A JSpinner object for days, jspDay, is created with a
SpinnerNumberModel with a sequence of integers between 1 and 31
in which the initial value is 1 and the interval is 1 (lines 11-
12). The maximum number is reset in the updateDate() method based
on the current month and year (lines 91-93). For example,
February 2004 has 29 days, so the maximum in jspDay is set to 29
for February 2004.

A JSpinner object for months, jspMonth, is created with a
SpinnerListModel with a list of month names (lines 14-15). Month
names are locale specific and can be obtained using the new
DateFormatSymbols().getMonths() (line 13). Some calendars can
have 13 months. Arrays.asList(monthNames) creates a list from an
array of strings, and subList(0, 12) returns the first 12
elements in the list.

A JSpinner object for years, spinnerYear, is created with a
SpinnerNumberModel with a sequence of integers between 1 and 3000
in which the initial value is 2004 and the interval is 1 (lines
16-17). By default, locale-specific number separators are used.
For example, 2004 would be displayed as 2,004 in the spinner. To
display the number without separators, the number pattern #### is
specified to construct a new NumberEditor for spinnerYear (lines
46-47). The editor is set as spinnerYear’s editor (line 48).

The updateDate() method synchronizes the date spinner with the
day, month, and year spinners. Whenever a new value is selected
in the day, month, or year spinner, a new date is set in the date
spinner. The maxDaysInMonth method (lines 105-108) returns the
maximum number of days in a month. For example, February 2004 has
29 days.

21

A JSpinner object can fire javax.swing.event.ChangeEvent to
notify the listeners of the state change in the spinner. The
anonymous event adapters are created to process spinner state
changes for the day, month, and year spinners (lines 54-75).
Whenever a new value is selected in one of these three spinners,
the date spinner value is updated accordingly. In Exercise 39.3,
you will improve the example to synchronize the day, month, and
year spinners with the date spinner. Then, when a new value is
selected in the date spinner, the values in the day, month, and
year spinners will be updated accordingly.

This example uses SpinnerNumberModel, SpinnerDateModel, and
SpinnerListModel. They are predefined concrete spinner models in
the API. You can also create custom spinner models (see Exercise
39.4).

39.7 JList and its Models

The basic features of JList were introduced in §17.9, “Lists,”
without using list models. You learned how to create a list and
how to respond to list selections. However, you cannot add or
remove elements from a list without using list models. This
section introduces list models and gives a detailed discussion on
how to use JList.

JList has two supporting models: a list model and a list-
selection model. The list model is for storing and processing
data. The list-selection model is for selecting items. By
default, items are rendered as strings or icons. You can also
define a custom renderer that implements the ListCellRenderer
interface. The relationship of these interfaces and classes is
shown in Figure 39.15.

javax.swing.JList<E>

-model: ListModel<E>

-selectionMode: int

-selectionModel: ListSelectionModel

-cellRenderer:
 ListCel lRenderer<? Super E>

ListModel<E>

ListSelectionModel

ListCellRenderer<E>

AbstractListModel<E> DefaultListModel<E>

DefaultListCel lRenderer<E>

DefaultListSelectionModel

Figure 39.15

JList contains several supporting interfaces and classes.

NOTE

<margin note: JDK 7 new features>
Since JDK 7, JList, ListModel, AbstractListModel,
DefaultListModel, ListCellRenderer, and
DefaultListCellRenderer have been redefined as generic
classes and interfaces. The generic type E represents the
element type stored in the list.

22

39.7.1 JList Constructors, Properties, and Methods

Figure 39.16 shows the properties and constructors of JList. You
can create a list from a list model, an array of objects, or a
vector.

javax.swing.JList<E>

-cellRenderer: Lis tCellRenderer<? su per E>
-fixedCellHeight: int
-fixedCellWidth: int
-layoutOrientation: int
-model: ListModel<E>
-selectedIndex: int
-selectedIndices: int[]
-selectedValue: E
-selectedValues: Object[]
-selectedBackground: int
-selectedForegroun d: int
-select ionMode: int
-select ionModel: ListSelectionModel
-vi sibleRowCount: int

+JList()
+JList(d ataModel : ListModel<E>)
+JList(l istData: E[])
+JList(l istData: Vector<? extends E>)
+setListData(l istData: E[]): void
+setListData(l istData: Vector<? extend s

E>): void

javax.swing.ListModel<E>

The object that renders the li st items.
The fixed cell height value in pixels.
The fixed cell width value.
Defines the way list cells are laid out.
Specifies th e lis t model for this list.
The index of the first s elected item in this li st.
An array of all of the selected indices in increasing order.
The first selected value.
An array of the values for the selected values in increasing index order.
The back ground color of the selected items.
The foreground color of the selected items .
Specifies whether single- or mul tiple-interval selections are allowed.
Specifies a selection model.
The preferred number of rows to display without using a scroll bar

(default: 8).
Const ructs an empty JList.
Const ructs a JList with the speci fied model.
Const ructs a JList with t he data specified in the array.
Const ructs a JList with t he data specified in the vector.
Sets an array of objects as data for the list.
Sets a vector of objects as data for th e lis t.

1 1

JavaBeans properties with get and set
methods omitted in the UML diagram

Figure 39.16

JList displays elements in a list.

39.7.2 List Layout Orientations

The layoutOrientation property specifies the layout of the items
using one of the following three values:

JList.VERTICAL specifies that the cells should be laid out
vertically in one column. This is the default value.

JList.HORIZONTAL_WRAP specifies that the cells should be laid out
horizontally, wrapping to a new row as necessary. The number of
rows to use is determined by the visibleRowCount property if its
value is greater than 0; otherwise the number of rows is
determined by the width of the JList.

JList.VERTICAL_WRAP specifies that the cells should be laid out
vertically, wrapping to a new column as necessary. The number of
rows to use is determined by the visibleRowCount property if its
value is greater than 0; otherwise the number of rows is
determined by the height of the JList.

23

For example, suppose there are five elements (item1, item2,
item3, item4, and item5) in the list and the visibleRowCount is
2. Figure 39.17 shows the layout in these three cases.

 (a) Vertical (b) Vertical wrap (c) Horizontal wrap

Figure 39.17

Layout orientation specifies how elements are laid out in a list.

39.7.3 List-Selection Modes and List-Selection Models

The selectionMode property is one of the three values
(SINGLE_SELECTION, SINGLE_INTERVAL_SELECTION,
MULTIPLE_INTERVAL_SELECTION) that indicate whether a single item,
single-interval item, or multiple-interval item can be selected,
as shown in Figure 39.18. Single selection allows only one item
to be selected. Single-interval selection allows multiple
selections, but the selected items must be contiguous. These
items can be selected all together by holding down the SHIFT key.
Multiple-interval selection allows selections of multiple
contiguous items without restrictions. These items can be
selected by holding down the Ctrl key. The default value is
MULTIPLE_INTERVAL_SELECTION.

(a) Single-selection (b) Single-interval selection (c) Multiple-interval
selection

Figure 39.18

A list has three selection modes.

The selectionModel property specifies an object that tracks list
selection. JList has two models: a list model and a list-
selection model. List models handle data management, and list-
selection models deal with data selection. A list-selection model
must implement the ListSelectionModel interface, which defines
constants for three selection modes (SINGLE_SELECTION,
SINGLE_INTERVAL_SELECTION, and MULTIPLE_INTERVAL_SELECTION), and
registration methods for ListSectionListener. It also defines the
methods for adding and removing selection intervals, and the
access methods for the properties, such as selectionMode,
anchorSelectionIndex, leadSelectionIndex, and valueIsAdjusting.

By default, an instance of JList uses DefaultListSelectionModel,
which is a concrete implementation of ListSelectionModel.
Usually, you do not need to provide a custom list-selection

24

model, because the DefaultListSelectionModel class is sufficient
in most cases. List-selection models are rarely used explicitly,
because you can set the selection mode directly in JList.

39.7.4 Example: List Properties Demo

This example creates a list of a fixed number of items displayed
as strings. The example enables you to dynamically set
visibleRowCount from a spinner, layoutOrientation from a combo
box, and selectionMode from a combo box, as shown in Figure
39.19. When you select one or more items, their values are
displayed in a status label below the list. The source code of
the example is given in Listing 39.7.

Figure 39.19

You can dynamically set the properties for visibleRowCount,
layoutOrientation, and selectionMode in a list.

Listing 39.7 ListPropertiesDemo.java

<margin note line 7: list>
<margin note line 9: spinner>
<margin note line 11: combo box>
<margin note line 14: combo box>
<margin note line 22: create UI>
<margin note line 53: spinner listener>
<margin note line 61: combo box listener>
<margin note line 69: combo box listener>
<margin note line 77: list listener>
<margin note line 91: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 import javax.swing.event.*;
 5
 6 public class ListPropertiesDemo extends JApplet {
 7 private JList<String> jlst = new JList<String>(new String[] {
 8 "Item1", "Item2", "Item3", "Item4", "Item5", "Item6"});
 9 private JSpinner jspVisibleRowCount =
 10 new JSpinner(new SpinnerNumberModel(8, -1, 20, 1));
 11 private JComboBox jcboLayoutOrientation =
 12 new JComboBox(new String[] {"VERTICAL (0)",
 13 "VERTICAL_WRAP (1)", "HORIZONTAL_WRAP (2)"});
 14 private JComboBox jcboSelectionMode =
 15 new JComboBox(new String[] {"SINGLE_SELECTION (0)",
 16 "SINGLE_INTERVAL_SELECTION (1)",
 17 "MULTIPLE_INTERVAL_SELECTION (2)"});
 18 private JLabel jlblStatus = new JLabel();
 19
 20 /** Construct the applet */

25

 21 public ListPropertiesDemo() {
 22 // Place labels in a panel
 23 JPanel panel1 = new JPanel();
 24 panel1.setLayout(new GridLayout(3, 1));
 25 panel1.add(new JLabel("visibleRowCount"));
 26 panel1.add(new JLabel("layoutOrientation"));
 27 panel1.add(new JLabel("selectionMode"));
 28
 29 // Place text fields in a panel
 30 JPanel panel2 = new JPanel();
 31 panel2.setLayout(new GridLayout(3, 1));
 32 panel2.add(jspVisibleRowCount);
 33 panel2.add(jcboLayoutOrientation);
 34 panel2.add(jcboSelectionMode);
 35
 36 // Place panel1 and panel2
 37 JPanel panel3 = new JPanel();
 38 panel3.setLayout(new BorderLayout(5, 5));
 39 panel3.add(panel1, BorderLayout.WEST);
 40 panel3.add(panel2, BorderLayout.CENTER);
 41
 42 // Place elements in the applet
 43 add(panel3, BorderLayout.NORTH);
 44 add(new JScrollPane(jlst), BorderLayout.CENTER);
 45 add(jlblStatus, BorderLayout.SOUTH);
 46
 47 // Set initial property values
 48 jlst.setFixedCellWidth(50);
 49 jlst.setFixedCellHeight(20);
 50 jlst.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 51
 52 // Register listeners
 53 jspVisibleRowCount.addChangeListener(new ChangeListener() {
 54 @Override
 55 public void stateChanged(ChangeEvent e) {
 56 jlst.setVisibleRowCount(
 57 ((Integer)jspVisibleRowCount.getValue()).intValue());
 58 }
 59 });
 60
 61 jcboLayoutOrientation.addActionListener(new ActionListener() {
 62 @Override
 63 public void actionPerformed(ActionEvent e) {
 64 jlst.setLayoutOrientation(
 65 jcboLayoutOrientation.getSelectedIndex());
 66 }
 67 });
 68
 69 jcboSelectionMode.addActionListener(new ActionListener() {
 70 @Override
 71 public void actionPerformed(ActionEvent e) {
 72 jlst.setSelectionMode(
 73 jcboSelectionMode.getSelectedIndex());
 74 }
 75 });
 76
 77 jlst.addListSelectionListener(new ListSelectionListener() {
 78 @Override
 79 public void valueChanged(ListSelectionEvent e) {

26

 80 Object[] values = jlst.getSelectedValues();
 81 String display = "";
 82
 83 for (int i = 0; i < values.length; i++) {
 84 display += (String)values[i] + " ";
 85 }
 86
 87 jlblStatus.setText(display);
 88 }
 89 });
 90 }
 91 }

A JList is created with six string values (lines 7-8). A JSpinner
is created using a SpinnerNumberModel with initial value 8,
minimum value –1, maximum value 20, and step 1 (lines 9-10). A
JComboBox is created with string values VERTICAL (0),
VERTICAL_WRAP (1), and HORIZONTAL_WRAP (2) for choosing layout
orientation (lines 11-13). A JComboBox is created with string
values SINGLE_SELECTION (0), INTERVAL_SELECTION (1), and
MULTIPLE_INTERVAL_SELECTION (2) for choosing a selection mode
(lines 14-17). A JLabel is created to display the selected
elements in the list (lines 18).

A JList does not support scrolling. To create a scrollable list,
create a JScrollPane and add an instance of JList to it (line
44).

The fixed list cell width and height are specified in lines 48-
49. The default selection mode is multiple-interval selection.
Line 50 sets the selection mode to single selection.

When a new visible row count is selected from the spinner, the
setVisibleRowCount method is used to set the count (lines 53-58).
When a new layout orientation is selected from the
jcboLayoutOrientation combo box, the setLayoutOrientation method
is used to set the layout orientation (lines 60-65). Note that
the constant values for VERTICAL, VERTICAL_WRAP, and
HORIZONTAL_WRAP are 0, 1, and 2, which correspond to the index
values of these items in the combo box. When a new selection mode
is selected from the jcboSelectionMode combo box, the
setSelectionMode method is used to set the selection mode (lines
67-72). Note that the constant values for SINGLE_SELECTION,
SINGLE_INTERVAL_SELECTION, and MULTIPLE_INTERVAL_SELECTION are 0,
1, and 2, which correspond to the index value of these items in
the combo box.

JList fires javax.swing.event.ListSelectionEvent to notify the
listeners of the selections. The listener must implement the
valueChanged handler to process the event. When the user selects
an item in the list, the valueChanged handler is executed, which
gets the selected items and displays all the items in the label
(lines 74-85).

39.8 List Models

The preceding example constructs a list with a fixed set of
strings. If you want to add new items to the list or delete

27

existing items, you have to use a list model. This section
introduces list models.

The JList class delegates the responsibilities of storing and
maintaining data to its data model. The JList class itself does
not have methods for adding or removing items from the list.
These methods are supported in ListModel, as shown in Figure
39.20.

«interface»
javax.swing.ListModel<E>

+getElementAt(index: int): E
+getSize(): int
+addListData Listener(l: ListDataListener): void
+removeListDataListen er(l: ListDataListener)

javax.swing.AbstractListModel<E>

javax.swing.DefaultListModel<E>
+DefaultListModel()
+add(index: i nt, element: E): void
+addElement (element: E): void
+cap acity(): int
+clear(): void
+contains(element: Object): boolean
+copyInto(anArray: Object[]): void
+elementAt(in dex: int): E
+elements(): Enumeration<E>
+ensureCapacity(minCapacity: int): void
+firstElement(): E
+get(index: int): E
+getElementAt(in dex: in t): E
+getSize(): int
+indexOf(element: Object): int
+indexOf(element: Object, index: int): int
+insertElementAt(obj: E, index: int): void
+isEmpty(): boolean
+lastElement(): E
+lastIndexOf(element: Object): int
+lastIndexOf(element: Object, index: int): int
+remove(index: int): Object
+removeAllElements(): void
+removeElement(obj: Object): boolean
+removeElementAt(index: int): void
+removeRange(fromIndex: int , toIndex: in t): void
+set(index: int, element: E): E
+setElemen tAt(obj : E, index: int): void
+setSize(newSize: int): void
+s ize(): in t
+toArray(): Object[]
+t rimToSize(): void

Figure 39.20

ListModel stores and manages data in a list.

All list models implement the ListModel interface, which defines
the registration methods for ListDataEvent. The instances of
ListDataListener are notified when the items in the list are
modified. ListModel also defines the methods getSize and
getElementAt. The getSize method returns the length of the list,
and the getElementAt method returns the element at the specified
index.

28

AbstractListModel implements the ListModel and Serializable
interfaces. AbstractListModel implements the registration methods
in the ListModel, but does not implement the getSize and
getElementAt methods.

DefaultListModel extends AbstractListModel and implements the two
methods getSize and getElementAt, which are not implemented by
AbstractListModel.

The methods in DefaultListModel are similar to those in the
java.util.Vector class. You use the add method to insert an
element to the list, the remove method to remove an element from
the list, the clear method to clear the list, the getSize method
to return the number of elements in the list, and the
getElementAt method to retrieve an element. In fact, the
DefaultListModel stores data in an instance of Vector, which is
essentially a resizable array. Swing components were developed
before the Java Collections Framework. In future implementations,
Vector may be replaced by java.util.ArrayList.

NOTE

<margin note: default list model>
In most cases, if you create a Swing GUI object without
specifying a model, an instance of the default model
class is created. But this is not true for JList. By
default, the model property in JList is not an instance
of DefaultListModel. To use a list model, you should
explicitly create one using DefaultListModel.

Listing 39.8 gives an example that creates a list using a list
model and allows the user to add and delete items in the list, as
shown in Figure 39.21. When the user clicks the Add new item
button, an input dialog box is displayed to receive a new item.

Figure 39.21

You can add elements and remove elements in a list using list models.

Listing 39.8 ListModelDemo.java

<margin note line 6: list model>
<margin note line 8: list>
<margin note line 15: add items>
<margin note line 30: button listener>
<margin note line 44: button listener>
<margin note line 51: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;

29

 4
 5 public class ListModelDemo extends JApplet {
 6 private DefaultListModel<String> listModel
 7 = new DefaultListModel<String>();
 8 private JList<String> jlst = new JList<String>(listModel);
 9 private JButton jbtAdd = new JButton("Add new item");
 10 private JButton jbtRemove = new JButton("Remove selected item");
 11
 12 /** Construct the applet */
 13 public ListModelDemo() {
 14 // Add items to the list model
 15 listModel.addElement("Item1");
 16 listModel.addElement("Item2");
 17 listModel.addElement("Item3");
 18 listModel.addElement("Item4");
 19 listModel.addElement("Item5");
 20 listModel.addElement("Item6");
 21
 22 JPanel panel = new JPanel();
 23 panel.add(jbtAdd);
 24 panel.add(jbtRemove);
 25
 26 add(panel, BorderLayout.NORTH);
 27 add(new JScrollPane(jlst), BorderLayout.CENTER);
 28
 29 // Register listeners
 30 jbtAdd.addActionListener(new ActionListener() {
 31 @Override
 32 public void actionPerformed(ActionEvent e) {
 33 String newItem =
 34 JOptionPane.showInputDialog("Enter a new item");
 35
 36 if (newItem != null)
 37 if (jlst.getSelectedIndex() == -1)
 38 listModel.addElement(newItem);
 39 else
 40 listModel.add(jlst.getSelectedIndex(), newItem);
 41 }
 42 });
 43
 44 jbtRemove.addActionListener(new ActionListener() {
 45 @Override
 46 public void actionPerformed(ActionEvent e) {
 47 listModel.remove(jlst.getSelectedIndex());
 48 }
 49 });
 50 }
 51 }

The program creates listModel (line 6), which is an instance of
DefaultListModel, and uses it to manipulate data in the list. The
model enables you to add and remove items in the list.

A list is created from the list model (line 7). The initial
elements are added into the model using the addElement method
(lines 13-19).

To add an element, the user clicks the Add new item button to
display an input dialog box. Type a new item in the dialog box.

30

The new item is inserted before the currently selected element in
the list (line 38). If no element is selected, the new element is
appended to the list (line 36).

To remove an element, the user has to select the element and then
click the Remove selected item button. Note that only the first
selected item is removed. You can modify the program to remove
all the selected items (see Exercise 39.6).

What would happen if you clicked the Remove selected item button
but no items were currently selected? This would cause an error.
To fix it, see Exercise 39.6.

39.9 List Cell Renderer

The preceding example displays items as strings in a list. JList
is very flexible and versatile, and it can be used to display
images and GUI components in addition to simple text. This
section introduces list cell renderers for displaying graphics.

In addition to delegating data storage and processing to list
models, JList delegates the rendering of list cells to list cell
renderers. All list cell renderers implement the ListCellRenderer
interface, which defines a single method,
getListCellRendererComponent, as follows:

public Component getListCellRendererComponent
 (JList list, Object value, int index, boolean isSelected,

boolean cellHasFocus)

This method is passed with a list, the value associated with the
cell, the index of the value, and information regarding whether
the value is selected and whether the cell has the focus. The
component returned from the method is painted on the cell in the
list. By default, JList uses DefaultListCellRenderer to render
its cells. The DefaultListCellRenderer class implements
ListCellRenderer, extends JLabel, and can display either a string
or an icon, but not both in the same cell.

For example, you can use JList’s default cell renderer to display
strings, as shown in Figure 39.22(a), using the following code:

JList list = new JList(new String[]{"Denmark", "Germany",
"China", "India", "Norway", "UK", "US"});

 (a) Strings (b) Icons (c) Icons and strings

Figure 39.22

The cell renderer displays list items in a list.

31

You can use JList’s default cell renderer to display icons, as
shown in Figure 39.22(b), using the following code:

ImageIcon denmarkIcon = new ImageIcon(getClass().getResource(
"image/denmarkIcon.gif"));

...
JList list = new JList(new ImageIcon[]{denmarkIcon, germanyIcon,
 chinaIcon, indiaIcon, norwayIcon, ukIcon, usIcon});

How do you display a string along with an icon in one cell, as
shown in Figure 39.22(c)? You need to create a custom renderer by
implementing ListCellRenderer, as shown in Figure 39.23.

JList «interface»
javax.swing.ListCellRenderer

+getListCellRendererComponent(list: JList,
value: Object, index: int, isSelected: boolean,
cellHasFocus: boolean): Component

DefaultListCellRenderer

YourCustomListCellRenderer

Figure 39.23

ListCellRenderer defines how cells are rendered in a list.

Suppose a list is created as follows:

JList list = new JList(new Object[][]{{denmarkIcon, "Denmark"},
 {germanyIcon, "Germany"}, {chinaIcon, "China"},
 {indiaIcon, "India"}, {norwayIcon, "Norway"}, {ukIcon, "UK"},
 {usIcon, "US"}});

Each item in the list is an array that consists of an icon and a
string. You can create a custom cell renderer that retrieves an
icon and a string from the list data model and display them in a
label. The custom cell renderer class is given in Listing 39.9.

Listing 39.9 MyListCellRenderer.java

<margin note line 6: cell component>
<margin note line 18: set icon>
<margin note line 19: set text>
<margin note line 22: cell selected>
<margin note line 32: return rendering cell>

 1 import java.awt.*;
 2 import javax.swing.*;
 3 import javax.swing.border.*;
 4
 5 public class MyListCellRenderer implements ListCellRenderer {
 6 private JLabel jlblCell = new JLabel(" ", JLabel.LEFT);
 7 private Border lineBorder =
 8 BorderFactory.createLineBorder(Color.black, 1);
 9 private Border emptyBorder =
 10 BorderFactory.createEmptyBorder(2, 2, 2, 2);
 11
 12 /** Implement this method in ListCellRenderer */
 13 public Component getListCellRendererComponent
 14 (JList list, Object value, int index, boolean isSelected,

32

 15 boolean cellHasFocus) {
 16 Object[] pair = (Object[])value; // Cast value into an array
 17 jlblCell.setOpaque(true);
 18 jlblCell.setIcon((ImageIcon)pair[0]);
 19 jlblCell.setText(pair[1].toString());
 20
 21 if (isSelected) {
 22 jlblCell.setForeground(list.getSelectionForeground());
 23 jlblCell.setBackground(list.getSelectionBackground());
 24 }
 25 else {
 26 jlblCell.setForeground(list.getForeground());
 27 jlblCell.setBackground(list.getBackground());
 28 }
 29
 30 jlblCell.setBorder(cellHasFocus ? lineBorder : emptyBorder);
 31
 32 return jlblCell;
 33 }
 34 }

The MyListCellRenderer class implements the
getListCellRendererComponent method in the ListCellRenderer
interface. This method is passed with the parameters list, value,
index, isSelected, and isFocused (lines 13-15). The value
represents the current item value. In this case, it is an array
consisting of two elements. The first element is an image icon
(line 18). The second element is a string (line 19). Both image
icon and string are displayed on a label. The
getListCellRendererComponent method returns the label (line 32),
which is painted on the cell in the list.

If the cell is selected, the background and foreground of the
cell are set to the list's selection background and foreground
(lines 22-23). If the cell is focused, the cell's border is set
to the line border (line 30); otherwise, it is set to the empty
border (line 30). The empty border serves as a divider between
the cells.

NOTE
<margin note: any GUI renderer>

The example in Listing 39.9 uses a JLabel as a renderer.
You may use any GUI component as a renderer, returned
from the getListCellRendererComponent method.

Let us develop an example (Listing 39.10) that creates a list of
countries and displays the flag image and name for each country
as one item in the list, as shown in Figure 39.24. When a country
is selected in the list, its flag is displayed in a label next to
the list.

33

Figure 39.24

The image and the text are displayed in the list cell.

Listing 39.10 ListCellRendererDemo.java

<margin note line 7: nation strings>
<margin note line 9: small icons>
<margin note line 10: big icons>
<margin note line 13: list model>
<margin note line 16: list>
<margin note line 19: list cell renderer>
<margin note line 22: split pane>
<margin note line 25: image label>
<margin note line 31: load image icons>
<margin note line 33: add elements>
<margin note line 35: load image icons>
<margin note line 40: set renderer>
<margin note line 49: list listener>
<margin note line 55: main method omitted>

 1 import javax.swing.*;
 2 import javax.swing.event.*;
 3 import java.awt.*;
 4
 5 public class ListCellRendererDemo extends JApplet {
 6 private final static int NUMBER_OF_NATIONS = 7;
 7 private String[] nations = new String[]
 8 {"Denmark", "Germany", "China", "India", "Norway", "UK", "US"};
 9 private ImageIcon[] icons = new ImageIcon[NUMBER_OF_NATIONS];
 10 private ImageIcon[] bigIcons = new ImageIcon[NUMBER_OF_NATIONS];
 11
 12 // Create a list model
 13 private DefaultListModel listModel = new DefaultListModel();
 14
 15 // Create a list using the list model
 16 private JList jlstNations = new JList(listModel);
 17
 18 // Create a list cell renderer
 19 private ListCellRenderer renderer = new MyListCellRenderer();
 20
 21 // Create a split pane
 22 private JSplitPane jSplitPane1 = new JSplitPane();
 23
 24 // Create a label for displaying iamge
 25 private JLabel jlblImage = new JLabel("", JLabel.CENTER);
 26
 27 /** Construct ListCellRenderer */
 28 public ListCellRendererDemo() {
 29 // Load small and large image icons
 30 for (int i = 0; i < NUMBER_OF_NATIONS; i++) {
 31 icons[i] = new ImageIcon(getClass().getResource(
 32 "/image/flagIcon" + i + ".gif"));
 33 listModel.addElement(new Object[]{icons[i], nations[i]});
 34

Small icon
Large icon

34

 35 bigIcons[i] = new ImageIcon(getClass().getResource(
 36 "/image/flag" + i + ".gif"));
 37 }
 38
 39 // Set list cell renderer
 40 jlstNations.setCellRenderer(renderer);
 41 jlstNations.setPreferredSize(new Dimension(200, 200));
 42 jSplitPane1.setLeftComponent(new JScrollPane(jlstNations));
 43 jSplitPane1.setRightComponent(jlblImage);
 44 jlstNations.setSelectedIndex(0);
 45 jlblImage.setIcon(bigIcons[0]);
 46 add(jSplitPane1, BorderLayout.CENTER);
 47
 48 // Register listener
 49 jlstNations.addListSelectionListener(new ListSelectionListener() {
 50 public void valueChanged(ListSelectionEvent e) {
 51 jlblImage.setIcon(bigIcons[jlstNations.getSelectedIndex()]);
 52 }
 53 });
 54 }
55 }

Two types of icons are used in this program. The small icons are
created from files flagIcon0.gif, ..., flagIcon6.gif (lines 31-
32). These image files are the flags for Denmark, Germany, China,
India, Norway, UK, and US. The small icons are rendered inside
the list. The large icons for the same countries are created from
files flag0.gif, ..., flag6.gif (lines 35-36). The large icons
are displayed on a label on the right side of the split pane.

The ListCellRendererDemo class creates a list model (line 13) and
adds the items to the model (line 33). Each item is an array of
two elements (image icon and string). The list is created using
the list model (line 16). The list cell renderer is created (line
19) and associated with the list (line 40).

The ListCellRendererDemo class creates a split pane (line 22) and
places the list on the left (line 42) and a label on the right
(line 43).

When you choose a country in the list, the list-selection event
handler is invoked (lines 49-53) to set a new image to the label
in the right side of the split pane (line 51).

39.10 JComboBox and its Models

The basic features of JComboBox were introduced in §17.8, “Combo
Boxes,” without using combo box models. This section introduces
combo models and discusses the use of JComboBox in some detail.

A combo box is similar to a list. Combo boxes and lists are both
used for selecting items from a list. A combo box allows the user
to select one item at a time, whereas a list permits multiple
selections. When a combo box is selected, it displays a drop-down
list contained in a popup menu. The selected item can be edited
in the cell as if it were a text field. Figure 39.25 shows the
properties and constructors of JComboBox. The data for a combo
box are stored in ComboBoxModel. You can create a combo box from
a combo box model, an array of objects, or a vector.

35

javax.swing.JComboBox

-actionCommand: String
-editable: boolean
-itemCount: int
-maximumRowCount: int

-model: ComboBoxModel
-popupVisible: boolean

-renderer: ListCellRenderer
-selectedIndex: int
-selectedItem: Object

+JComboBox()
+JComboBox(dataModel: ComboBoxModel)
+JComboBox(items: Object[])
+JComboBox(items: Vector)
+getItemAt(index: int): void
+addItem(anObject: Object): void
+insertItemAt(anObject: Object, index: int): void
+removeItemAt(index: int): void
+removeItem(anObject: Object): void
+removeAllItems(): void

javax.swing.ComboBoxModel

An action string associated with the combo box.
Specifies whether the cell can be edited.
A read-only property to count the number of items.
Specifies the maximum number of items the combo box can display

in the popup menu without a scrollbar.
The data model that holds the items displayed by this combo box.
Indicates whether the popup menu for displaying items is visible.

By default, it is false, which means the user has to click the combo
box to display the popup menu.

The object that renders the list items in the combo box.
Specifies the index of the selected item.
Specifies the selected item.
Constructs a default JComboBox.
Constructs a JComboBox with the specified combo box model.
Constructs a default JComboBox with an array of items.
Constructs a JComboBox with a vector.
Returns the item at the specified index.
Adds the item to the combo box.
Inserts the item to the combo box at the specified index.
Removes an item at the specified index from the combo box.
Removes an item from the combo box.
Removes all items from the combo box.

1 1

JavaBeans properties with get and set
methods omitted in the UML diagram

Figure 39.25

JComboBox displays elements in a list.

JComboBox delegates the responsibilities of storing and
maintaining data to its data model. All combo box models
implement the ComboBoxModel interface, which extends the
ListModel interface and defines the getSelectedItem and
setSelectedItem methods for retrieving and setting a selected
item. The methods for adding and removing items are defined in
the MutableComboBoxModel interface, which extends ComboBoxModel.
When an instance of JComboBox is created without explicitly
specifying a model, an instance of DefaultComboBoxModel is used.
The DefaultComboBoxModel class extends AbstractListModel and
implements MutableComboBoxModel, as shown in Figure 39.26.

36

AbstractListModel

javax.swing.DefaultComboBoxModel
+DefaultComboBoxModel()
+DefaultComboBoxModel(items: Object[])
+DefaultComboBoxModel(vector: Vector)

+addElement(element: Object): void
+getElementAt(index: int): Object
+getIndexOf(anObject: Object): int
+getSelectedItem(): Object
+getSize(): int
+insertElementAt(obj: Object, index: int): void
+removeAllElements(): void
+removeElement(obj: Object): void
+removeElementAt(index: int): void
+setSelectedItem(obj: Object): void

ListModel

ComboBoxModel

MutableComboBoxModel

Figure 39.26

ComboBoxModel stores and manages data in a combo box.

Usually you don’t need to use combo box models explicitly,
because JComboBox contains the methods for retrieving (getItemAt,
getSelectedItem, and getSelectedIndex), adding (addItem and
insertItemAt), and removing (removeItem, removeItemAt, and
removeAllItems) items from the list.

JComboBox can fire ActionEvent and ItemEvent, among many other
events. Whenever a new item is selected, JComboBox fires
ItemEvent twice, once for deselecting the previously selected
item, and the other for selecting the currently selected item.
JComboBox fires an ActionEvent after generating an ItemEvent.

Combo boxes render cells exactly like lists, because the combo
box items are displayed in a list contained in a popup menu.
Therefore, a combo box cell renderer can be created exactly like
a list cell renderer by implementing the ListCellRenderer
interface. Like JList, JComboBox has a default cell renderer that
displays a string or an icon, but not both at the same time. To
display a combination of a string and an icon, you need to create
a custom renderer. The custom list cell renderer
MyListCellRenderer in Listing 39.9 can be used as a combo box
cell renderer without any modification.

Listing 39.11 gives an example that creates a combo box to
display the flag image and name for each country as one item in
the list, as shown in Figure 39.27. When a country is selected in
the list, its flag is displayed in a panel below the combo box.

37

Figure 39.27

The image and the text are displayed in the list cell of a combo box.

Listing 39.11 ComboBoxCellRendererDemo.java

<margin note line 7: nation strings>
<margin note line 9: small icons>
<margin note line 10: big icons>
<margin note line 13: combo box model>
<margin note line 16: combo box>
<margin note line 19: list cell renderer>
<margin note line 22: image label>
<margin note line 28: load image icons>
<margin note line 30: add elements>
<margin note line 32: load image icons>
<margin note line 37: set renderer>
<margin note line 43: action listener>
<margin note line 50: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4
 5 public class ComboBoxCellRendererDemo extends JApplet {
 6 private final static int NUMBER_OF_NATIONS = 7;
 7 private String[] nations = new String[] {"Denmark",
 8 "Germany", "China", "India", "Norway", "UK", "US"};
 9 private ImageIcon[] icons = new ImageIcon[NUMBER_OF_NATIONS];
 10 private ImageIcon[] bigIcons = new ImageIcon[NUMBER_OF_NATIONS];
 11
 12 // Create a combo box model
 13 private DefaultComboBoxModel model = new DefaultComboBoxModel();
 14
 15 // Create a combo box with the specified model
 16 private JComboBox jcboCountries = new JComboBox(model);
 17
 18 // Create a list cell renderer
 19 private MyListCellRenderer renderer = new MyListCellRenderer();
 20
 21 // Create a label for displaying iamge
 22 private JLabel jlblImage = new JLabel("", JLabel.CENTER);
 23
 24 /** Construct the applet */
 25 public ComboBoxCellRendererDemo() {
 26 // Load small and large image icons
 27 for (int i = 0; i < NUMBER_OF_NATIONS; i++) {
 28 icons[i] = new ImageIcon(getClass().getResource(
 29 "/image/flagIcon" + i + ".gif"));
 30 model.addElement(new Object[]{icons[i], nations[i]});
 31
 32 bigIcons[i] = new ImageIcon(getClass().getResource(
 33 "/image/flag" + i + ".gif"));

38

 34 }
 35
 36 // Set list cell renderer for the combo box
 37 jcboCountries.setRenderer(renderer);
 38 jlblImage.setIcon(bigIcons[0]);
 39 add(jcboCountries, java.awt.BorderLayout.NORTH);
 40 add(jlblImage, java.awt.BorderLayout.CENTER);
 41
 42 // Register listener
 43 jcboCountries.addActionListener(new ActionListener() {
 44 @Override
 45 public void actionPerformed(java.awt.event.ActionEvent e) {
 46 jlblImage.setIcon(bigIcons[jcboCountries.getSelectedIndex()]);
 47 }
 48 });
 49 }
 50 }

The program is very similar to the preceding example in Listing
39.10. Two types of image icons are loaded for each country and
stored in the arrays icons and bigIcons (lines 27-34). Each item
in the combo box is an array that consists of an icon and a
string (line 30).

MyListCellRenderer, defined in Listing 39.9, is used to create a
cell renderer in line 19. The cell renderer is plugged into the
combo box in line 37.

When you choose a country from the combo box, the action event
handler is invoked (lines 44-46). This handler sets a new image
on the label (line 45).

Key Terms

controller
model
MVC architecture
view

Chapter Summary

1. The fundamental issue in the model-view approach is to ensure
consistency between the views and the model. Any change in the
model should be notified to the dependent views, and all the
views should display the same data consistently. The model can be
implemented as a source with appropriate event and event listener
registration methods. The view can be implemented as a listener.
Thus, if data are changed in the model, the view will be
notified.

2. Every Swing user interface component (e.g., JButton, JTextField,
JList, and JComboBox) has a property named model that refers to
its data model. The data model is defined in an interface whose
name ends with Model (e.g., SpinnerModel, ListModel,
ListSelectionModel, and ComboBoxModel).

3. Most simple Swing components (e.g., JButton, JTextField,
JTextArea) contain some properties of their models, and these

39

properties can be accessed and modified directly from the
component without the existence of the model being known.

4. A JSpinner is displayed as a text field with a pair of tiny arrow
buttons on its right side that enable the user to select numbers,
dates, or values from an ordered sequence. A JSpinner's sequence
value is defined by the SpinnerModel interface.
AbstractSpinnerModel is a convenient abstract class that
implements SpinnerModel and provides the implementation for its
registration/deregistration methods. SpinnerListModel,
SpinnerNumberModel, and SpinnerDateModel are concrete
implementations of SpinnerModel. SpinnerNumberModel represents a
sequence of numbers with properties maximum, minimum, and
stepSize. SpinnerDateModel represents a sequence of dates.
SpinnerListModel can store a list of any object values.

5. A JSpinner has a single child component, called the editor, which
is responsible for displaying the current element or value of the
model. Four editors are defined as static inner classes inside
JSpinner: JSpinner.DefaultEditor, JSpinner.NumberEditor,
JSpinner.DateEditor, and JSpinner.ListEditor.

6. JList has two supporting models: a list model and a list-
selection model. The list model is for storing and processing
data. The list-selection model is for selecting items. By
default, items are rendered as strings or icons. You can also
create a custom renderer implementing the ListCellRenderer
interface.

7. JComboBox delegates the responsibilities of storing and
maintaining data to its data model. All combo box models
implement the ComboBoxModel interface, which extends the
ListModel interface and defines the getSelectedItem and
setSelectedItem methods for retrieving and setting a selected
item. The methods for adding and removing items are defined in
the MutableComboBoxModel interface, which extends ComboBoxModel.
When an instance of JComboBox is created without explicitly
specifying a model, an instance of DefaultComboBoxModel is used.
The DefaultComboBoxModel class extends AbstractListModel and
implements MutableComboBoxModel.

8. Combo boxes render cells exactly like lists, because the combo
box items are displayed in a list contained in a popup menu.
Therefore, a combo box cell renderer can be created exactly like
a list cell renderer by implementing the ListCellRenderer
interface.

Test Questions

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions

Sections 39.2-39.3
39.1
What is model-view-controller architecture?

40

39.2
How do you do implement models, views, and controllers?
39.3
What are the variations of MVC architecture?

Section 39.4
39.4

Does each Swing GUI component (except containers such as JPanel) have a
property named model? Is the type of model the same for all the
components?

39.5

Does each model interface have a default implementation class? If so,
does a Swing component use the default model class if no model is
specified?

Sections 39.5-39.6
39.6

If you create a JSpinner without specifying a data model, what is the
default model?

39.7

What is the internal data structure for storing data in
SpinnerListModel? How do you convert an array to a list?

Sections 39.7-39.9
39.8

Does JList have a method, such as addItem, for adding an item to a
list? How do you add items to a list? Can JList display icons and
custom GUI objects in a list? Can a list item be edited? How do you
initialize data in a list? How do you specify the maximum number of
visible rows in a list without scrolling? How do you specify the height
of a list cell? How do you specify the horizontal margin of list cells?

39.9 How do you create a list model? How do you add items to a list
model? How do you remove items from a list model?

39.10 What are the three list-selection modes? Can you set the
selection modes directly in an instance of JList? How do you obtain the
selected item(s)?

39.11 How do you define a custom list cell renderer?

39.12 What is the handler for handling the ListSelectionEvent?

Section 39.10
39.13 Can multiple items be selected from a combo box? Can a combo box
item be edited? How do you specify the maximum number of visible rows
in a combo box without scrolling? Can you specify the height of a combo
box cell using a method in JComboBox? How do you obtain the selected
item in a combo box?

39.14 How do you add or remove items from a combo box?

41

39.15 Why is the cell renderer for a combo box the same as the renderer
for a list?

Programming Exercises

Section 39.2
39.1***
 (Create MVC components) Create a model, named ChartModel, which holds

data in an array of double elements named data, and the names
for the data in an array of strings named dataName. For
example, the enrollment data {200, 40, 50, 100, 40} stored in
the array data are for {"CS", "Math", "Chem", "Biol", "Phys"}
in the array dataName. These two properties have their
respective get methods, but not individual set methods. Both
properties are set together in the setChartData(String[]
newDataName, double[] newData) method so that they can be
displayed properly. Create a view named PieChart to present the
data in a pie chart, and create a view named BarChart to
present the data in a bar chart, as shown in Figure 39.28(a).

(Hint: Each pie represents a percentage of the total
data. Color the pie using the colors from an array named
colors, which is {Color.red, Color.yellow, Color.green,
Color.blue, Color.cyan, Color.magenta, Color.orange,
Color.pink, Color.darkGray}. Use colors[i %
colors.length] for the ith pie. Use black color to
display the data names.)

 (a) (b)

Figure 39.28
(a) The two views, PieChart and BarChart, receive data from the
ChartModel; (b) Clicking the eclipse button displays the color chooser
dialog box for specifying a color.

39.2*
(Revise Listing 39.3 CircleController.java) CircleController
uses a text field to obtain a new radius and a combo box to
obtain a Boolean value to specify whether the circle is filled.
Add a new row in CircleController to let the user choose color
using the JColorChooser component, as shown in Figure 39.28(b).
The new row consists of a label with text Color, a label to
display color, and an eclipse button. The user can click the
eclipse button to display a JColorChooser dialog box. Once the
user selects a color, the color is displayed as the background
for the label on the left of the eclipse button.

Sections 39.5-39.6
39.3**

(Synchronize spinners) The date spinner is synchronized with the day,
month, and year spinners in Listing 39.6,

42

SpinnerModelEditorDemo.java. Improve it to synchronize the day,
month, and year spinners with the date spinner. In other words,
when a new value is selected in the date spinner, the values in
the day, month, and year spinners are updated accordingly.

39.4*

(Custom spinner model) Develop a custom spinner model that represents
a sequence of numbers of power 2—that is, 1, 2, 4, 8, 16, 32,
and so on. Your model should implement AbstractSpinnerModel.
The registration/deregistration methods for ChangeListener have
already been implemented in AbstractSpinnerModel. You need to
implement getNextValue(), getPreviousValue(), getValue(), and
setValue(Object) methods.

39.5*

(Reverse the numbers displayed in a spinner) The numbers displayed in
a spinner increase when the up-arrow button is clicked and
decrease when the down-arrow button is clicked. You can reverse
the sequence by creating a new model that extends
SpinnerNumberModel and overrides the getNextValue and
getPreviousValue methods. Write a test program that uses the
new model, as shown in Figure 39.29.

Figure 39.29
The numbers in the spinner are in decreasing order.

Sections 39.7-39.9
39.6*

(Remove selected items in a list) Modify Listing 39.8,
ListModelDemo.java, to meet the following requirements:

Remove all the selected items from the list when the Remove
selected item button is clicked.

Enable the items to be deleted using the DELETE key.

39.7*

(Custom list cell renderer) Listing 39.10, ListCellRendererDemo.java,
has two types of images for each country. The small images are
used for display in the list, and the large ones are used for
display outside the list. Assume that only the large images are
available. Rewrite the custom cell renderer to use a JPanel
instead of a JLabel for rendering a cell. Each cell consists of
an image and a string. Display the image in an ImageViewer and
the string in a label. The ImageViewer component was introduced
in Listing 13.15, ImageViewer.java. The image can be stretched

43

in an ImageViewer. Set the dimension of an image viewer to 32
by 32, as shown in Figure 39.30. Revise Listing 39.10 to test
the new custom cell renderer.

Figure 39.30
ImageViewer is used to render the image in the list.

39.8*

(Delete selected items in a list using the DELETE key) Modify Listing
39.10, ListCellRendererDemo.java, to delete selected items from
the list using the DELETE key. After some items are deleted
from the list, the index of a selected item in the list does
not match the index of the item in the bigIcons array. As a
result, you cannot use the image icon in the bigIcons array to
display the image to the right side of the split pane. Revise
the program to retrieve the icon from the selected item in the
list and display it, as shown in Figure 39.31.

Figure 39.31
Images in the list are also used for display in the label placed in the
right side of a split pane.

39.9**

(Render figures) Create a program that shows a list of geometrical
shapes along with a label in an instance of JList, as shown in
Figure 39.32(a). Display the selected figure in a panel when
selecting a figure from the list. The figures can be drawn
using the FigurePanel class in Listing 14.5, FigurePanel.java.

 (a) (b)

Figure 39.32

ImageViewer

JLabel Same image
as in the list

JLabel

Same image
as in the list

44

(a) The list displays geometrical shapes and their names; (b) The list
displays cities and clocks.

39.10**

(List of clocks) Write a program that displays a list of cities and
their local times in a clock, as shown in Figure 39.32(b). When
a city is selected in the list, its clock is displayed in a
large picture on the right.

Section 39.10
39.11**

(Create custom cell renderer in a combo box) Create a program that
shows a list of geometrical shapes along with a label in a
combo box, as shown in Figure 39.33(a). This exercise may share
the list cell renderer with Exercise 39.9.

 (a) (b)

Figure 39.33

(a) The combo box contains a list of geometrical shapes and the shape
names. (b) The combo box contains a list of color names, each using its
own color for its foreground.

39.12**

(Render colored text) Write a program that enables the user to choose
the foreground colors for a label, as shown in Figure 39.33(b).
The combo box contains 13 standard colors (BLACK, BLUE, CYAN,
DARK_GRAY, GRAY, GREEN, LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED,
WHITE, YELLOW). Each color name in the combo box uses its own
color for its foreground.

39.13*

(Delete a selected item in a combo box using the DELETE key) Modify
Listing 39.11, ComboBoxCellRendererDemo.java, to delete the
selected item from the combo box using the DELETE key.

Comprehensive
39.14*

(Calendar) Write a program that controls a calendar using a spinner,
as shown in Figure 39.7. Use the CalendarPanel class (see
Listing 31.4) to display the calendar.

1

***This is a bonus Web chapter

CHAPTER 40

JTable and JTree

Objectives

To display tables using JTable (§40.2).

To process rows and columns using TableModel, DefaultTableModel,
TableColumnModel, DefaultTableColumnModel, and ListSelectionModel
(§§40.3-40.5).

To enable auto sort and filtering on table model (§40.4).

To add rows and columns, delete rows and columns in a table
(§40.5).

To render and edit table cells using the default renderers and
editors (§40.6).

To render and edit table cells using the custom renderers and
editors (§40.7).

To handle table model events (§40.8).

To display data in a tree hierarchy using JTree (§40.9).

To model the structure of a tree using using TreeModel and
DefaultTreeModel (§40.10).

To add, remove, and process tree nodes using TreeNode,
MutableTreeNode, and DefaultMutableTreeNode (§40.11).

To select tree nodes and paths using TreeSelectionModel and
DefaultTreeSelectionModel (§40.12).

To render and edit tree nodes using the default and custom
renderers and editors (§40.14).

2

40.1 Introduction

The preceding chapter introduced the model-view architecture,
Swing MVC, and the models in JSpinner, JList, and JComboBox. This
chapter introduces JTable and JTree, and how to use the models to
process data in JTable and JTree.

40.2 JTable

JTable is a Swing component that displays data in rows and
columns in a two-dimensional grid, as shown in Figure 40.1.

Figure 40.1

JTable displays data in a table.

JTable doesn't directly support scrolling. To create a scrollable
table, you need to create a JScrollPane and add an instance of
JTable to the scroll pane. If a table is not placed in a scroll
pane, its column header will not be visible, because the column
header is placed in the header of the view port of a scroll pane.

JTable has three supporting models: a table model, a column
model, and a list-selection model. The table model is for storing
and processing data. The column model represents all the columns
in the table. The list-selection model is the same as the one
used by JList for selecting rows, columns, and cells in a table.
JTable also has two useful supporting classes, TableColumn and
JTableHeader. TableColumn contains the information on a
particular column. JTableHeader can be used to display table
header. Each column has a default editor and renderer. You can
also create a custom editor by implementing the TableCellEditor
interface, and create a custom renderer by implementing the
TableCellRenderer interface. The relationship of these interfaces
and classes is shown in Figure 40.2.

javax.swing.JTable

-model: TableModel

-columnModel: TableColumnModel

-selectionMode: int

-selectionModel: ListSelectionModel

-tableHeader: JTableHeader

TableModel

TableColumnTableColumnModel

ListSelectionModel

JTableHeader

TableCellRenderer

TableCellEditor

AbstractTableModel DefaultTableModel

Figure 40.2

JTable contains many supporting interfaces and classes.

3

NOTE: All the supporting interfaces and classes for
JTable are grouped in the javax.swing.table package.

Figure 40.3 shows the constructors, properties, and methods of
JTable.

javax.swing.JTable

-autoCreateColumnsFromModel: boolean
-autoResizeMode: int
-cellEditor: TableCellEditor
-columnModel: TableColumnModel
-columnSelectionAllowed: boolean
-editingColumn: int
-editingRow: int
-gridColor: java.awt.Color
-intercellSpacing: Dimension
-model: TableModel
-rowCount: int
-rowHeight: int
-rowMargin: int
-rowSelectionAllowed: boolean
-selectionBackground: java.awt.Color
-selectionForeground: java.awt.Color
-showGrid: boolean
-selectionMode: int
-selectionModel: ListSelectionModel
-showHorizontalLines: boolean
-showVerticalLines: boolean
-tableHeader: JTableHeader

+JTable()
+JTable(numRows: int, numColumns: int)
+JTable(rowData: Object[][], columnData: Object[])
+JTable(dm: TableModel)
+JTable(dm: TableModel, cm: TableColumnModel)
+JTable(dm: TableModel, cm: TableColumnModel,

sm: ListSelectionModel)
+JTable(rowData: Vector, columnNames: Vector)
+addColumn(aColumn: TableColumn): void
+clearSelection(): void
+editCellAt(row: int, column: int): void
+getDefaultEditor(column: Class): TableCellEditor
+getDefaultRenderer(col: Class): TableCellRenderer
+setDefaultEditor(column: Class, editor:

TableCellEditor): void
+setDefaultRenderer(column: Class, editor:

TableCellRenderer): void

Indicates whether the columns are created in the table (default: true).
Specifies how columns are resized (default: SUBSEQUENT_COLUMNS).
Specifies a cell editor.
Maintains the table column data.
Specifies whether the columns can be selected (default: false).
Specifies the column of the cell that is currently being edited.
Specifies the row of the cell that is currently being edited.
The color used to draw grid lines (default: GRAY).
Specifies horizontal and vertical margins between cells (default: 1, 1).

Maintains the table model.
Read-only property that counts the number of rows in the table.
Specifies the row height of the table (default: 16 pixels).
Specifies the vertical margin between rows (default: 1 pixel).
Specifies whether the rows can be selected (default: true).
The background color of selected cells.
The foreground color of selected cells.
Specify whether the grid lines are displayed (write-only, default: true).
Specifies a selection mode (write-only).
Specifies a selection model.
Specifies whether the horizontal grid lines are displayed (default: true).
Specifies whether the vertical grid lines are displayed (default: true).
Specifies a table header.

Creates a default JTable with all the default models.
Creates a JTable with the specified number of empty rows and columns.
Creates a JTable with the specified row data and column header names.
Creates a JTable with the specified table model.
Creates a JTable with the specified table model and table column model.
Creates a JTable with the specified table model, table column model,

and selection model.
Creates a JTable with the specified row data and column data in vectors.
Adds a new column to the table.
Deselects all selected columns and rows.
Edits the cell if it is editable.
Returns the default editor for the column.
Returns the default renderer for the column.
Sets the default editor for the column.

Sets the default renderer for the column.

JavaBeans properties with get and set
methods omitted in the UML diagram

Figure 40.3

The JTable class is for creating, customizing, and manipulating tables.

The JTable class contains seven constructors for creating tables.
You can create a table using its no-arg constructor, its models,
row data in a two-dimensional array, and column header names in

4

an array, or row data and column header names in vectors. Listing
40.1 creates a table with the row data and column names (line 20)
and places it in a scroll pane (line 23). The table is displayed
in Figure 40.1.

Listing 40.1 TestTable.java
<margin note line 5: column names>
<margin note line 9: row data>
<margin note line 20: create table>
<margin note line 23: scroll pane>
<margin note line 25: main method omitted>

 1 import javax.swing.*;
 2
 3 public class TestTable extends JApplet {
 4 // Create table column names
 5 private String[] columnNames =
 6 {"Country", "Capital", "Population in Millions", "Democracy"};
 7
 8 // Create table data
 9 private Object[][] data = {
 10 {"USA", "Washington DC", 280, true},
 11 {"Canada", "Ottawa", 32, true},
 12 {"United Kingdom", "London", 60, true},
 13 {"Germany", "Berlin", 83, true},
 14 {"France", "Paris", 60, true},
 15 {"Norway", "Oslo", 4.5, true},
 16 {"India", "New Delhi", 1046, true}
 17 };
 18
 19 // Create a table
 20 private JTable jTable1 = new JTable(data, columnNames);
 21
 22 public TestTable() {
 23 add(new JScrollPane(jTable1));
 24 }
 25 }

NOTE

<margin note: autoboxing>
Primitive type values such as 280 and true in line 10 are
autoboxed into new Integer(280) and new Boolean(true).

JTable is a powerful control with a variety of properties that
provide many ways to customize tables. All the frequently used
properties are documented in Figure 40.3. The autoResizeMode
property specifies how columns are resized (you can resize table
columns but not rows). Possible values are:

JTable.AUTO_RESIZE_OFF
JTable.AUTO_RESIZE_LAST_COLUMN
JTable.AUTO_RESIZE_SUBSEQUENT_COLUMNS
JTable.AUTO_RESIZE_NEXT_COLUMN
JTable.AUTO_RESIZE_ALL_COLUMNS

The default mode is JTable.AUTO_RESIZE_SUBSEQUENT_COLUMNS.
Initially, each column in the table occupies the same width (75
pixels). With AUTO_RESIZE_OFF, resizing a column does not affect
the widths of the other columns. With AUTO_RESIZE_LAST_COLUMN,

5

resizing a column affects the width of the last column. With
AUTO_RESIZE_SUBSEQUENT_COLUMNS, resizing a column affects the
widths of all the subsequent columns. With
AUTO_RESIZE_NEXT_COLUMN, resizing a column affects the widths of
the next columns. With AUTO_RESIZE_ALL_COLUMNS, resizing a column
affects the widths of all the columns.

Listing 40.2 gives an example that demonstrates the use of
several JTable properties. The example creates a table and allows
the user to choose an Auto Resize Mode, specify the row height
and margin, and indicate whether the grid is shown. A sample run
of the program is shown in Figure 40.4.

Figure 40.4

You can specify an autoresizing mode, the table’s row height and row
margin, and whether to show the grid in the table.

Listing 40.2 TablePropertiesDemo.java

<margin note line 9: column names>
<margin note line 13: table data>
<margin note line 23: table>
<margin note line 27: spinners>
<margin note line 35: combo box>
<margin note line 40: create UI>
<margin note line 57: table properties>
<margin note line 64: spinner listener>
<margin note line 72: spinner listener>
<margin note line 80: check-box listener>
<margin note line 88: combo box listener>
<margin note line 109: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 import javax.swing.event.*;
 5
 6 public class TablePropertiesDemo extends JApplet {
 7 // Create table column names
 8 private String[] columnNames =
 9 {"Country", "Capital", "Population in Millions", "Democracy"};
 10
 11 // Create table data
 12 private Object[][] rowData = {
 13 {"USA", "Washington DC", 280, true},
 14 {"Canada", "Ottawa", 32, true},
 15 {"United Kingdom", "London", 60, true},
 16 {"Germany", "Berlin", 83, true},
 17 {"France", "Paris", 60, true},
 18 {"Norway", "Oslo", 4.5, true},
 19 {"India", "New Delhi", 1046, true}

6

 20 };
 21
 22 // Create a table
 23 private JTable jTable1 = new JTable(rowData, columnNames);
 24
 25 // Create two spinners
 26 private JSpinner jspiRowHeight =
 27 new JSpinner(new SpinnerNumberModel(16, 1, 50, 1));
 28 private JSpinner jspiRowMargin =
 29 new JSpinner(new SpinnerNumberModel(1, 1, 50, 1));
 30
 31 // Create a checkbox
 32 private JCheckBox jchkShowGrid = new JCheckBox("showGrid", true);
 33
 34 // Create a combo box
 35 private JComboBox jcboAutoResizeMode = new JComboBox(new String[]{
 36 "AUTO_RESIZE_OFF", "AUTO_RESIZE_LAST_COLUMN",
 37 "AUTO_RESIZE_SUBSEQUENT_COLUMNS", "AUTO_RESIZE_NEXT_COLUMN",
 38 "AUTO_RESIZE_ALL_COLUMNS"});
 39
 40 public TablePropertiesDemo() {
 41 JPanel panel1 = new JPanel();
 42 panel1.add(new JLabel("rowHeight"));
 43 panel1.add(jspiRowHeight);
 44 panel1.add(new JLabel("rowMargin"));
 45 panel1.add(jspiRowMargin);
 46 panel1.add(jchkShowGrid);
 47
 48 JPanel panel2 = new JPanel();
 49 panel2.add(new JLabel("autoResizeMode"));
 50 panel2.add(jcboAutoResizeMode);
 51
 52 add(panel1, BorderLayout.SOUTH);
 53 add(panel2, BorderLayout.NORTH);
 54 add(new JScrollPane(jTable1));
 55
 56 // Initialize jTable1
 57 jTable1.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
 58 jTable1.setGridColor(Color.BLUE);
 59 jTable1.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 60 jTable1.setSelectionBackground(Color.RED);
 61 jTable1.setSelectionForeground(Color.WHITE);
 62
 63 // Register and create a listener for jspiRowHeight
 64 jspiRowHeight.addChangeListener(new ChangeListener() {
 65 public void stateChanged(ChangeEvent e) {
 66 jTable1.setRowHeight(
 67 ((Integer)(jspiRowHeight.getValue())).intValue());
 68 }
 69 });
 70
 71 // Register and create a listener for jspiRowMargin
 72 jspiRowMargin.addChangeListener(new ChangeListener() {
 73 public void stateChanged(ChangeEvent e) {
 74 jTable1.setRowMargin(
 75 ((Integer)(jspiRowMargin.getValue())).intValue());
 76 }
 77 });
 78
 79 // Register and create a listener for jchkShowGrid
 80 jchkShowGrid.addActionListener(new ActionListener() {
 81 @Override
 82 public void actionPerformed(ActionEvent e) {
 83 jTable1.setShowGrid(jchkShowGrid.isSelected());
 84 }
 85 });

7

 86
 87 // Register and create a listener for jcboAutoResizeMode
 88 jcboAutoResizeMode.addActionListener(new ActionListener() {
 89 @Override
 90 public void actionPerformed(ActionEvent e) {
 91 String selectedItem =
 92 (String)jcboAutoResizeMode.getSelectedItem();
 93
 94 if (selectedItem.equals("AUTO_RESIZE_OFF"))
 95 jTable1.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
 96 else if (selectedItem.equals("AUTO_RESIZE_LAST_COLUMN"))
 97 jTable1.setAutoResizeMode(JTable.AUTO_RESIZE_LAST_COLUMN);
 98 else if (selectedItem.equals
 99 ("AUTO_RESIZE_SUBSEQUENT_COLUMNS"))
100 jTable1.setAutoResizeMode(
101 JTable.AUTO_RESIZE_SUBSEQUENT_COLUMNS);
102 else if (selectedItem.equals("AUTO_RESIZE_NEXT_COLUMN"))
103 jTable1.setAutoResizeMode(JTable.AUTO_RESIZE_NEXT_COLUMN);
104 else if (selectedItem.equals("AUTO_RESIZE_ALL_COLUMNS"))
105 jTable1.setAutoResizeMode(JTable.AUTO_RESIZE_ALL_COLUMNS);
106 }
107 });
108 }
109 }

If you know the row data in advance, creating a table using the
constructor JTable(Object[][] rowData, Object[] columnNames) is
convenient. As shown in line 23, a JTable is created using this
constructor.

Two JSpinner objects (jspiRowHeight, jspiRowMargin) for selecting
row height and row margin are created in lines 26-29. The initial
value for jspiRowHeight is set to 16, which is the default
property value for rowHeight. The initial value for jspiRowMargin
is set to 1, which is the default property value for rowMargin. A
check box (jchkShowGrid) is created with label showGrid and
initially selected in line 32. A combo box for selecting
autoResizeMode is created in lines 35-38.

The values of the JTable properties (autoResizeMode, gridColor,
selectionMode, selectionBackground, and selectionForeground) are
set in lines 57-61.

The code for processing spinners, check boxes, and combo boxes is
given in lines 64-106.

40.3 Table Models and Table Column Models

<margin note: TableModel>
JTable delegates data storing and processing to its table data
model. A table data model must implement the TableModel
interface, which defines the methods for registering table model
listeners, manipulating cells, and obtaining row count, column
count, column class, and column name.

<margin note: AbstractTableModel>
The AbstractTableModel class provides partial implementations for
most of the methods in TableModel. It takes care of the
management of listeners and provides some conveniences for
generating TableModelEvents and dispatching them to the
listeners. To create a concrete TableModel, you simply extend

8

AbstractTableModel and implement at least the following three
methods:

public int getRowCount()

public int getColumnCount()

public Object getValueAt(int row, int column)

<margin note: DefaultTableModel>
The DefaultTableModel class extends AbstractTableModel and
implements these three methods. Additionally, DefaultTableModel
provides concrete storage for data. The data are stored in a
vector. The elements in the vector are arrays of objects, each of
which represents an individual cell value. The methods in
DefaultTableModel for accessing and modifying data are shown in
Figure 40.5.

«interface»
javax.swing.table.TableModel

+getColumnClass(columnIndex: int): Class
+getColumnName(columnIndex: int): String
+getColumnCount(): int
+getRowCount(): int
+getValueAt(rowIndex: int, columnIndex: int):

Object
+setValueAt(aValue: Object, rowIndex:

int, columnIndex: int): void
+isCellEditable(rowIndex: int, columnIndex:

int): boolean
+addTableModelListener(l:

TableModelListener): void
+removeTableModelListener(l:

TableModelListener): void

javax.swing.table.AbstractTableModel

javax.swing.table.DefaultTableModel

+DefaultTableModel()
+DefaultTableModel(rowCount: int, columnCount: int)
+DefaultTableModel(columnNames: Object[], rowCount: int)
+DefaultTableModel(data: Object[][], columnNames: Object[])
+DefaultTableModel(columnNames: Vector, rowCount: int)
+DefaultTableModel(data: Vector, columnNames: Vector)
+DefaultTableModel(rowData: Vector, columnNames: Vector)
+addColumn(columnName: Object): void
+addColumn(columnName: Object, columnData: Vector)
+addRow(rowData: Object[]): void
+addRow(rowData: Vector): void
+getColumnCount(): int
+getDataVector(): Vector
+getRowCount(): int
+insertRow(row: int, rowData: Object[]): void
+insertRow(row: int, rowData: Vector): void
+removeRow(row: int): void
+setColumnCount(columnCount: int): void
+setColumnIdentifiers(newIdentifiers: Object[]): void
+setColumnIdentifiers(columnIdentifiers: Vector): void
+setDataVector(dataVector: Object[][], columnIdentifiers:

Object[]): void
+setDataVector(dataVector: Vector, columnIdentifiers: Vector):

void
+setRowCount(rowCount: int): void

Figure 40.5

TableModel stores and manages data in a table and DefaultTableModel
provides a default implementation for TableModel.

Listing 40.3 gives an example that demonstrates table models. The
example creates a table model (line 16), plugs the model to the
table (line 20), appends a row to the table (line 25), inserts a
row before the first row (line 26), removes a row with index 1
(line 28), adds a new column (line 29), and sets new values at

9

specified cells (lines 30-32). Figure 40.6 shows the output of
the program.

Listing 40.3 TestTableModel.java

<margin note line 6: column names>
<margin note line 10: row data>
<margin note line 16: create table model>
<margin note line 20: create table>
<margin note line 23: scroll pane>
<margin note line 25: add row>
<margin note line 26: insert row>
<margin note line 28: remove row>
<margin note line 29: add column>
<margin note line 30: set value>
<margin note line 34: main method omitted>

 1 import javax.swing.*;
 2 import javax.swing.table.*;
 3
 4 public class TestTableModel extends JApplet {
 5 // Create table column names
 6 private String[] columnNames =
 7 {"Country", "Capital", "Population in Millions", "Democracy"};
 8
 9 // Create table data
 10 private Object[][] data = {
 11 {"USA", "Washington DC", 280, true},
 12 {"Canada", "Ottawa", 32, true}
 13 };
 14
 15 // Create a model
 16 private DefaultTableModel tableModel =
 17 new DefaultTableModel(data, columnNames);
 18
 19 // Create a table
 20 private JTable jTable1 = new JTable(tableModel);
 21
 22 public TestTableModel() {
 23 add(new JScrollPane(jTable1));
 24
 25 tableModel.addRow(new Object[]{"France", "Paris", 60, true});
 26 tableModel.insertRow(0, new Object[]
 27 {"India", "New Delhi", 1046, true});
 28 tableModel.removeRow(1);
 29 tableModel.addColumn("Area");
 30 tableModel.setValueAt(10, 0, 4);
 31 tableModel.setValueAt(20, 1, 4);
 32 tableModel.setValueAt(30, 2, 4);
 33 }
 34 }

Figure 40.6

10

TableModel and DefaultTableModel contain the methods for adding,
updating, and removing table data.

TableModel manages table data. You can add and remove rows
through a TableModel. You can also add a column through a
TableModel. However, you cannot remove a column through a
TableModel. To remove a column from a JTable, you have to use a
table column model.

<margin note: TableColumnModel>
Table column models manage columns in a table. They can be used
to select, add, move, and remove table columns. A table column
model must implement the TableColumnModel interface, which
defines the methods for registering table column model listeners,
and for accessing and manipulating columns, as shown in Figure
40.7.

<margin note: DefaultTableColumnModel>
DefaultTableColumnModel is a concrete class that implements
TableColumnModel and PropertyChangeListener. The
DefaultTableColumnModel class stores its columns in a vector and
contains an instance of ListSelectionModel for selecting columns.

«interface»
javax.swing.table.TableColumnModel

+addColumn(aColumn: TableColumn): void
+getColumn(columnIndex: int): TableColumn
+getColumnCount(): int
+getColumnIndex(columnIdentifier:Object): int
+getColumnMargin(): int
+getColumns(): Enumeration
+getColumnSelectionAllowed(): boolean
+getSelectedColumnCount(): int
+getSelectedColumns(): void
+getSelectionModel(): ListSelectionModel
+getTotalColumnWidth(): int
+moveColumn(columnIndex: int, newIndex: int): void
+removeColumn(column: TableColumn): void
+setColumnMargin(newMargin: int): void
+setColumnSelectionAllowed(flag: boolean): void
+setSelectionModel(newModel: ListSelectionModel): void

javax.swing.table.DefaultTableColumnModel

javax.swing.table.TableColumn

Figure 40.7

TableColumnModel manages columns in a table and DefaultTableColumnModel
is a concrete implementation of it.

<margin note: TableColumn>
The column model deals with all the columns in a table. The
TableColumn class is used to model an individual column in the
table. An instance of TableColumn for a specified column can be
obtained using the getColumn(index) method in TableColumnModel or
the getColumn(columnIdentifier) method in JTable.

11

Figure 40.8 shows the properties, constructors, and methods in
TableColumn for manipulating column width and specifying the cell
renderer, cell editor, and header renderer.

javax.swing.table.TableColumn
#cellEditor: TableCellEditor
#cellRenderer: TableCellRenderer
#headerRenderer: TableCellRenderer
#headerValue: Object
#identifier: Object
#maxWidth: int
#minWidth: int
#modelIndex: int
#preferredWidth: int
#resizable: boolean
#width: int

+TableColumn()
+TableColumn(modelIndex: int)
+TableColumn(modelIndex: int, width: int)
+TableColumn(modelIndex: int, width: int,

cellRenderer: TableCellRendere)
+sizeWidthToFit(): void

The editor for editing a cell in this column.
The renderer for displaying a cell in this column.
The renderer for displaying the header of this column.
The header value of this column.
The identifier for this column.
The maximum width of this column.
The minimum width of this column (default: 15 pixels).
The index of the column in the table model (default: 0).
The preferred width of this column (default: 75 pixels).
Indicates whether this column can be resized (default: true).
Specifies the width of this column (default: 75 pixels).

Constructs a default table column.
Constructs a table column for the specified column.
Constructs a table column with the specified column and width.
Constructs a table column with the specified column, width, and

cell renderer.
Resizes the column to fit the width of its header cell.

JavaBeans properties with get and set
methods omitted in the UML diagram

Figure 40.8

The TableColumn class models a single column.

Listing 40.4 gives an example that demonstrates table column
models. The example obtains the table column model from the table
(line 21), moves the first column to the second (line 22), and
removes the last column (lines 23). Figure 40.9 shows the output
of the program

Listing 40.4 TestTableColumnModel.java
<margin note line 6: column names>
<margin note line 10: row data>
<margin note line 16: create table>
<margin note line 19: scroll pane>
<margin note line 21: column model>
<margin note line 22: move a column>
<margin note line 23: remove a column>
<margin note line 25: main method omitted>

 1 import javax.swing.*;
 2 import javax.swing.table.*;
 3
 4 public class TestTableColumnModel extends JApplet {
 5 // Create table column names
 6 private String[] columnNames =
 7 {"Country", "Capital", "Population in Millions", "Democracy"};
 8
 9 // Create table data
 10 private Object[][] data = {
 11 {"USA", "Washington DC", 280, true},
 12 {"Canada", "Ottawa", 32, true}
 13 };

12

 14
 15 // Create a table
 16 private JTable jTable1 = new JTable(data, columnNames);
 17
 18 public TestTableColumnModel() {
 19 add(new JScrollPane(jTable1));
 20
 21 TableColumnModel columnModel = jTable1.getColumnModel();
 22 columnModel.moveColumn(0, 1);
 23 columnModel.removeColumn(columnModel.getColumn(3));
 24 }
 25 }

Figure 40.9

TableColumnModel contains the methods for moving and removing columns.

NOTE: Some of the methods defined in the table model and
the table column model are also defined in the JTable
class for convenience. For instance, the getColumnCount()
method is defined in JTable, TableModel, and
TableColumnModel, the addColumn method defined in the
column model is also defined in the table model, and the
getColumn() method defined in the column model is also
defined in the JTable class.

<margin note: TableHeader>
JTableHeader is a GUI component that displayes the header of the
JTable (see Figure 40.10). When you create a JTable, an instance
of JTableHeader is automatically created and stored in the
tableHeader property. By default, you can reorder the columns by
dragging the header of the column. To disable it, set the
reorderingAllowed property to false.

javax.swing.table.JTableHeader
#columnModel: TableColumnModel
#draggedColumn: TableColumn
#draggedDistance: TableCellRenderer
#reorderingAllowed: boolean
#resizingAllowed: boolean
#resizingColumn: TableColumn
#table: JTable

+JTableHeader()
+JTableHeader(cm: TableColumnModel)

The TableColumnModel of the table header.
The column being dragged.
The distance from its original position to the dragged position.
Whether reordering of columns is allowed (default: true).
Whether resizing of columns is allowed (default: true).
The column being resized.
The table for which this object is the header.

Constructs a JTableHeader with a default TableColumnModel.
Constructs a JTableHeader with a TableColumnModel.

javax.swing.JComponent

Figure 40.10

The JTableHeader class displays the header of the JTable.

13

40.4 Auto Sort and Filtering

Auto sort and filtering are two useful features. To enable auto
sort on any column in a JTable, create an instance of
TableRowSorter with a table model and set JTable’s rowSorter as
follows:

<margin note: create a TableRowSorter>
TableRowSorter<TableModel> sorter =

 new TableRowSorter<TableModel>(tableModel);

<margin note: setRowSorter>
jTable.setRowSorter(sorter);

 (a) (b)

Figure 40.11

(a) The table is sorted on Country. (b) The table is sorted on Capital.

When the table is displayed, you can sort the table by clicking a
column head, as shown in Figure 40.11.

You can specify a filter to select rows in the table. The filter
can be applied on one column or all columns. The
javax.swing.RowFilter class contains several static methods for
creating filters. You can use the regexFilter method to create a
RowFilter with the specified regular expression. For example, the
following statement creates a filter for the rows whose first
column or second column begin with letter U.

<margin note: create a filter>
RowFilter rowFilter = RowFilter.regexFilter("U.*", int[]{0, 1});

The second argument in the regexFilter method specifies a set of
column indices. If no indices are specified, all columns are
searched in the filter.

<margin note: set filter in JTable>
To enable filtering, you have to associate a filter with a
TableRowSorter, which is set to the JTable’s rowSorter property.

Listing 40.5 gives an example that demonstrates auto sort and
filtering in JTable.

Listing 40.5 TestTableSortFilter.java

<margin note line 7: column names>
<margin note line 11: row data>
<margin note line 22: create table>
<margin note line 25: create TableRowSorter>

14

<margin note line 33: set sorter>
<margin note line 49: remove filter>
<margin note line 51: set a filter>
<margin note line 55: main method omitted>

 1 import javax.swing.*;
 2 import javax.swing.table.*;
 3 import java.awt.BorderLayout;
 4
 5 public class TestTableSortFilter extends JApplet {
 6 // Create table column names
 7 private String[] columnNames =
 8 {"Country", "Capital", "Population in Millions", "Democracy"};
 9
 10 // Create table data
 11 private Object[][] data = {
 12 {"USA", "Washington DC", 280, true},
 13 {"Canada", "Ottawa", 32, true},
 14 {"United Kingdom", "London", 60, true},
 15 {"Germany", "Berlin", 83, true},
 16 {"France", "Paris", 60, true},
 17 {"Norway", "Oslo", 4.5, true},
 18 {"India", "New Delhi", 1046, true}
 19 };
 20
 21 // Create a table
 22 private JTable jTable1 = new JTable(data, columnNames);
 23
 24 // Create a TableRowSorter
 25 private TableRowSorter<TableModel> sorter =
 26 new TableRowSorter<TableModel>(jTable1.getModel());
 27
 28 private JTextField jtfFilter = new JTextField();
 29 private JButton btFilter = new JButton("Filter");
 30
 31 public TestTableSortFilter() {
 32 // Enable auto sorter
 33 jTable1.setRowSorter(sorter);
 34
 35 JPanel panel = new JPanel(new java.awt.BorderLayout());
 36 panel.add(new JLabel("Specify a word to match:"),
 37 BorderLayout.WEST);
 38 panel.add(jtfFilter, BorderLayout.CENTER);
 39 panel.add(btFilter, BorderLayout.EAST);
 40
 41 add(panel, BorderLayout.SOUTH);
 42 add(new JScrollPane(jTable1), BorderLayout.CENTER);
 43
 44 btFilter.addActionListener(new java.awt.event.ActionListener()
{
 45 @Override
 46 public void actionPerformed(java.awt.event.ActionEvent e) {
 47 String text = jtfFilter.getText();
 48 if (text.trim().length() == 0)
 49 sorter.setRowFilter(null);
 50 else
 51 sorter.setRowFilter(RowFilter.regexFilter(text));
 52 }
 53 });

15

 54 }
 55 }

The example creates a TableRowSorter (line 25) and sets the
sorter in jTable1 (line 33). The program lets the user enter a
filter pattern from a text field, as shown in Figure 40.12. If
nothing is entered, no filter is set (line 48). If a regex is
entered, clicking the Filter button sets the filter to jTable1
(line 50).

 (a) (b)

Figure 40.12

(a) Filter the table with regex U.*. (b) Filter the table with regex w.

40.5 Case Study: Modifying Rows and Columns

This case study demonstrates the use of table models, table
column models, list-selection models, and the TableColumn class.
The program allows the user to choose selection mode and
selection type, add or remove rows and columns, and save, clear,
or restore the table, as shown in Figure 40.13a.

 (a) (b)

Figure 40.13

You can add, remove, and modify rows and columns in a table
interactively.

The Add New Row button adds a new empty row before the currently
selected row, as shown in Figure 40.13b. If no row is currently
selected, a new empty row is appended to the end of the table.

When you click the Add New Column button, an input dialog box is
displayed to receive the title of the column, as shown in Figure
40.14a. The new column is appended in the table, as shown in
Figure 40.14b.

16

 (a) (b)

Figure 40.14

You can add a new column in a table.

The Delete Selected Row button deletes the first selected row.
The Delete Selected Column button deletes the first selected
column.

The Save button saves the current table data and column names.
The Clear button clears the row data in the table. The Restore
button restores the saved table.

Listing 40.6 gives the program.

Listing 40.6 ModifyTable.java

<margin note line 10: column names>
<margin note line 14: table data>
<margin note line 25: table model>
<margin note line 29: table>
<margin note line 32: buttons>
<margin note line 42: combo box>
<margin note line 47: check boxes>
<margin note line 53: create UI>
<margin note line 93: add row>
<margin note line 104: add column>
<margin note line 112: delete row>
<margin note line 120: delete column>
<margin note line 132: save table>
<margin note line 148: clear table>
<margin note line 155: restore table>
<margin note line 173: row selection allowed>
<margin note line 181: column selection allowed>
<margin note line 190: choose selection mode>
<margin note line 209: get column names>
<margin note line 217: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 import javax.swing.table.*;
 5 import java.io.*;
 6 import java.util.Vector;
 7
 8 public class ModifyTable extends JApplet {

17

 9 // Create table column names
 10 private String[] columnNames =
 11 {"Country", "Capital", "Population in Millions", "Democracy"};
 12
 13 // Create table data
 14 private Object[][] rowData = {
 15 {"USA", "Washington DC", 280, true},
 16 {"Canada", "Ottawa", 32, true},
 17 {"United Kingdom", "London", 60, true},
 18 {"Germany", "Berlin", 83, true},
 19 {"France", "Paris", 60, true},
 20 {"Norway", "Oslo", 4.5, true},
 21 {"India", "New Delhi", 1046, true}
 22 };
 23
 24 // Create a table model
 25 private DefaultTableModel tableModel = new DefaultTableModel(
 26 rowData, columnNames);
 27
 28 // Create a table
 29 private JTable jTable1 = new JTable(tableModel);
 30
 31 // Create buttons
 32 private JButton jbtAddRow = new JButton("Add New Row");
 33 private JButton jbtAddColumn = new JButton("Add New Column");
 34 private JButton jbtDeleteRow = new JButton("Delete Selected Row");
 35 private JButton jbtDeleteColumn = new JButton(
 36 "Delete Selected Column");
 37 private JButton jbtSave = new JButton("Save");
 38 private JButton jbtClear = new JButton("Clear");
 39 private JButton jbtRestore = new JButton("Restore");
 40
 41 // Create a combo box for selection modes
 42 private JComboBox jcboSelectionMode =
 43 new JComboBox(new String[] {"SINGLE_SELECTION",
 44 "SINGLE_INTERVAL_SELECTION", "MULTIPLE_INTERVAL_SELECTION"});
 45
 46 // Create check boxes
 47 private JCheckBox jchkRowSelectionAllowed =
 48 new JCheckBox("RowSelectionAllowed", true);
 49 private JCheckBox jchkColumnSelectionAllowed =
 50 new JCheckBox("ColumnSelectionAllowed", false);
 51
 52 public ModifyTable() {
 53 JPanel panel1 = new JPanel();
 54 panel1.setLayout(new GridLayout(2, 2));
 55 panel1.add(jbtAddRow);
 56 panel1.add(jbtAddColumn);
 57 panel1.add(jbtDeleteRow);
 58 panel1.add(jbtDeleteColumn);
 59
 60 JPanel panel2 = new JPanel();
 61 panel2.add(jbtSave);
 62 panel2.add(jbtClear);
 63 panel2.add(jbtRestore);
 64
 65 JPanel panel3 = new JPanel();
 66 panel3.setLayout(new BorderLayout(5, 0));
 67 panel3.add(new JLabel("Selection Mode"), BorderLayout.WEST);
 68 panel3.add(jcboSelectionMode, BorderLayout.CENTER);
 69
 70 JPanel panel4 = new JPanel();
 71 panel4.setLayout(new FlowLayout(FlowLayout.LEFT));
 72 panel4.add(jchkRowSelectionAllowed);
 73 panel4.add(jchkColumnSelectionAllowed);
 74

18

 75 JPanel panel5 = new JPanel();
 76 panel5.setLayout(new GridLayout(2, 1));
 77 panel5.add(panel3);
 78 panel5.add(panel4);
 79
 80 JPanel panel6 = new JPanel();
 81 panel6.setLayout(new BorderLayout());
 82 panel6.add(panel1, BorderLayout.SOUTH);
 83 panel6.add(panel2, BorderLayout.CENTER);
 84
 85 add(panel5, BorderLayout.NORTH);
 86 add(new JScrollPane(jTable1),
 87 BorderLayout.CENTER);
 88 add(panel6, BorderLayout.SOUTH);
 89
 90 // Initialize table selection mode
 91 jTable1.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 92
 93 jbtAddRow.addActionListener(new ActionListener() {
 94 @Override
 95 public void actionPerformed(ActionEvent e) {
 96 if (jTable1.getSelectedRow() >= 0)
 97 tableModel.insertRow(jTable1.getSelectedRow(),
 98 new java.util.Vector<String>());
 99 else
100 tableModel.addRow(new java.util.Vector<String>());
101 }
102 });
103
104 jbtAddColumn.addActionListener(new ActionListener() {
105 @Override
106 public void actionPerformed(ActionEvent e) {
107 String name = JOptionPane.showInputDialog("New Column Name");
108 tableModel.addColumn(name, new java.util.Vector());
109 }
110 });
111
112 jbtDeleteRow.addActionListener(new ActionListener() {
113 @Override
114 public void actionPerformed(ActionEvent e) {
115 if (jTable1.getSelectedRow() >= 0)
116 tableModel.removeRow(jTable1.getSelectedRow());
117 }
118 });
119
120 jbtDeleteColumn.addActionListener(new ActionListener() {
121 @Override
122 public void actionPerformed(ActionEvent e) {
123 if (jTable1.getSelectedColumn() >= 0) {
124 TableColumnModel columnModel = jTable1.getColumnModel();
125 TableColumn tableColumn =
126 columnModel.getColumn(jTable1.getSelectedColumn());
127 columnModel.removeColumn(tableColumn);
128 }
129 }
130 });
131
132 jbtSave.addActionListener(new ActionListener() {
133 @Override
134 public void actionPerformed(ActionEvent e) {
135 try {
136 ObjectOutputStream out = new ObjectOutputStream(
137 new FileOutputStream("tablemodel.dat"));
138 out.writeObject(tableModel.getDataVector());
139 out.writeObject(getColumnNames());
140 out.close();

19

141 }
142 catch (Exception ex) {
143 ex.printStackTrace();
144 }
145 }
146 });
147
148 jbtClear.addActionListener(new ActionListener() {
149 @Override
150 public void actionPerformed(ActionEvent e) {
151 tableModel.setRowCount(0);
152 }
153 });
154
155 jbtRestore.addActionListener(new ActionListener() {
156 @Override
157 public void actionPerformed(ActionEvent e) {
158 try {
159 ObjectInputStream in = new ObjectInputStream(
160 new FileInputStream("tablemodel.dat"));
161 Vector<String> rowData = (Vector<String>)in.readObject();
162 Vector<String> columnNames =
163 (Vector<String>)in.readObject();
164 tableModel.setDataVector(rowData, columnNames);
165 in.close();
166 }
167 catch (Exception ex) {
168 ex.printStackTrace();
169 }
170 }
171 });
172
173 jchkRowSelectionAllowed.addActionListener(new ActionListener() {
174 @Override
175 public void actionPerformed(ActionEvent e) {
176 jTable1.setRowSelectionAllowed(
177 jchkRowSelectionAllowed.isSelected());
178 }
179 });
180
181 jchkColumnSelectionAllowed.addActionListener(
182 new ActionListener() {
183 @Override
184 public void actionPerformed(ActionEvent e) {
185 jTable1.setColumnSelectionAllowed(
186 jchkColumnSelectionAllowed.isSelected());
187 }
188 });
189
190 jcboSelectionMode.addActionListener(new ActionListener() {
191 @Override
192 public void actionPerformed(ActionEvent e) {
193 String selectedItem =
194 (String)jcboSelectionMode.getSelectedItem();
195
196 if (selectedItem.equals("SINGLE_SELECTION"))
197 jTable1.setSelectionMode(
198 ListSelectionModel.SINGLE_SELECTION);
199 else if (selectedItem.equals("SINGLE_INTERVAL_SELECTION"))
200 jTable1.setSelectionMode(
201 ListSelectionModel.SINGLE_INTERVAL_SELECTION);
202 else if (selectedItem.equals("MULTIPLE_INTERVAL_SELECTION"))
203 jTable1.setSelectionMode(
204 ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);
205 }
206 });

20

207 }
208
209 private Vector<String> getColumnNames() {
210 Vector<String> columnNames = new Vector<String>();
211
212 for (int i = 0; i < jTable1.getColumnCount(); i++)
213 columnNames.add(jTable1.getColumnName(i));
214
215 return columnNames;
216 }
217 }

A table model is created using DefaultTableModel with row data
and column names (lines 25-26). This model is used to create a
JTable (line 29).

The GUI objects (buttons, combo box, check boxes) are created in
lines 32-50 and are placed in the UI in lines 53-88.

The table-selection mode is the same as the list-selection mode.
By default, the selection mode is MULTIPLE_INTERVAL_SELECTION. To
match the initial value in the selection combo box
(jcboSelectionMode), the table’s selection mode is set to
SINGLE_SELECTION.

The Add New Row button action is processed in lines 93-102. The
insertRow method inserts a new row before the selected row (lines
97-98). If no row is currently selected, the addRow method
appends a new row into the table model (line 100).

The Add New Column button action is processed in lines 104-110.
The addColumn method appends a new column into the table model
(line 108).

The Delete Selected Row button action is processed in lines 112-
118. The removeRow(rowIndex) method removes the selected row from
the table model (line 116).

The Delete Selected Column button action is processed in lines
120-130. To remove a column, you have to use the removeColumn
method in TableColumnModel (line 127).

The Save button action is processed in lines 132-146. It writes
row data and column names to an output file using object stream
(lines 136-140). The column names are obtained using the
getColumnNames() method (lines 209-216). You may attempt to save
tableModel, because tableModel is an instance of
DefaultTableModel (lines 25-26) and DefaultTableModel is
serializable. However, tableModel may contain nonserializable
listeners for TableModel event.

The Clear button action is processed in lines 148-153. It clears
the table by setting the row count to 0 (line 151).

The Restore button action is processed in lines 155-171. It reads
row data and column names from the file using object stream
(lines 159-165) and sets the new data and column names to the
table model (line 164).

40.6 Table Renderers and Editors

21

Table cells are painted by cell renderers. By default, a cell
object's string representation (toString()) is displayed and the
string can be edited as it was in a text field. JTable maintains
a set of predefined renderers and editors, listed in Table 40.1,
which can be specified to replace default string renderers and
editors.

Table 40.1

Predefined renderers and editors for tables

Class Renderer Editor

Object JLabel (left aligned) JTextField

Date JLabel (right aligned) JTextField

Number JLabel (right aligned) JTextField

ImageIcon JLabel (center aligned)

Boolean JCheckBox (center aligned) JCheckBox (center
aligned)

The predefined renderers and editors are automatically located
and loaded to match the class returned from the getColumnClass()
method in the table model. To use a predefined renderer or editor
for a class other than String, you need to create your own table
model by extending a subclass of TableModel. In your table model
class, you need to override the getColumnClass() method to return
the class of the column, as follows:

public Class getColumnClass(int column) {
return getValueAt(0, column).getClass();

 }

By default, all cells are editable. To prohibit a cell from being
edited, override the isCellEditable(int rowIndex, int columnIndx)
method in TableModel to return false. By default, this method
returns true in AbstractTableModel.

To demonstrate predefined table renderers and editors, let us
write a program that displays a table for books. The table
consists of three rows with the column names Title, Copies
Needed, Publisher, Date Published, In-Stock, and Book Photo, as
shown in Figure 40.15. Assume that dates and icons are not
editable; prohibit users from editing these two columns.

Figure 40.15

You need to use a custom table model to enable predefined
renderers for Boolean and image cells.

22

Listing 40.7 gives a custom table model named MyTableModel that
overrides the getColumnClass method (lines 15-17) to enable
predefined renderers for Boolean and image cells. MyTableModel
also overrides the isCellEditable() method (lines 20-24). By
default, isCellEditable() returns true. The example does not
allow the user to edit image icons and dates, so this method is
overridden to return false to disable editing of date and image
columns. For a cell to be editable, both isCellEditable() in the
table model must be true.

Listing 40.7 MyTableModel.java

<margin note line 15: column class>
<margin note line 20: cell editable?>

import javax.swing.*;
import javax.swing.table.*;
import java.util.*;

public class MyTableModel extends DefaultTableModel {
 public MyTableModel() {
 }

 /** Construct a table model with specified data and columnNames */
 public MyTableModel(Object[][] data, Object[] columnNames) {
 super(data, columnNames);
 }

 /** Override this method to return a class for the column */
 public Class getColumnClass(int column) {
 return getValueAt(0, column).getClass();
 }

 /** Override this method to return true if cell is editable */
 public boolean isCellEditable(int row, int column) {
 Class columnClass = getColumnClass(column);
 return columnClass != ImageIcon.class &&
 columnClass != Date.class;
 }
}

If you create a JTable using a table model created from
MyTableModel, the default renderers and editors for numbers,
Boolean values, dates, and icons are used to display and edit
these columns. Listing 40.8 gives a test program. The program
creates a table model using MyTableModel (line 36). JTable
assigns a predefined cell renderer and a predefined editor to the
cell, whose class is specified in the getColumnClass() method in
MyTableModel.

Listing 40.8 TableCellRendererEditorDemo.java

<margin note line 7: column names>
<margin note line 12: image icons>
<margin note line 20: row data>
<margin note line 36: table model>
<margin note line 40: table>
<margin note line 47: main method omitted>

import java.awt.*;
import javax.swing.*;
import java.util.*;

public class TableCellRendererEditorDemo extends JApplet {
 // Create table column names
 private String[] columnNames =
 {"Title", "Copies Needed", "Publisher", "Date Published",
 "In-stock", "Book Photo"};

23

 // Create image icons

 private ImageIcon intro1eImageIcon = new ImageIcon(

 getClass().getResource("image/intro1e.gif"));

 private ImageIcon intro2eImageIcon = new ImageIcon(

 getClass().getResource("image/intro2e.gif"));

 private ImageIcon intro3eImageIcon = new ImageIcon(

 getClass().getResource("image/intro3e.jpg"));

 // Create table data
 private Object[][] rowData = {
 {"Introduction to Java Programming", 120,
 "Que Education & Training",
 new GregorianCalendar(1998, 1-1, 6).getTime(),
 false, intro1eImageIcon},
 {"Introduction to Java Programming, 2E", 220,
 "Que Education & Training",
 new GregorianCalendar(1999, 1-1, 6).getTime(),
 false, intro2eImageIcon},
 {"Introduction to Java Programming, 3E", 220,
 "Prentice Hall",
 new GregorianCalendar(2000, 12-1, 0).getTime(),
 true, intro3eImageIcon},
 };

 // Create a table model
 private MyTableModel tableModel = new MyTableModel(
 rowData, columnNames);

 // Create a table
 private JTable jTable1 = new JTable(tableModel);

 public TableCellRendererEditorDemo() {
 jTable1.setRowHeight(60);
 add(new JScrollPane(jTable1), BorderLayout.CENTER);
 }
}

The example defines two classes: MyTableModel and
TableCellRendererEditorDemo. MyTableModel is an extension of
DefaultTableModel. The purpose of MyTableModel is to override the
default implementation of the getColumnClass() method to return
the class of the column, so that an appropriate predefined JTable
can be used for the column. By default, getColumnClass() returns
Object.class.

40.7 Custom Table Renderers and Editors

Predefined renderers and editors are convenient and easy to use,
but their functions are limited. The predefined image icon
renderer displays the image icon in a label. The image icon
cannot be scaled. If you want the whole image to fit in a cell,
you need to create a custom renderer.

A custom renderer can be created by extending the
DefaultTableCellRenderer, which is a default implementation for
the TableCellRenderer interface. The custom renderer must
override the getTableCellRendererComponent method to return a
component for rendering the table cell. The
getTableCellRendererComponent method is defined as follows:

public Component getTableCellRendererComponent
 (JTable table, Object value, boolean isSelected,

boolean isFocused, int row, int column)

24

This method signature is very similar to the
getListCellRendererComponent() method used to create custom list
cell renderers.

This method is passed with a JTable, the value associated with
the cell, information regarding whether the value is selected and
whether the cell has the focus, and the row and column indices of
the value. The component returned from the method is painted on
the cell in the table. The class in Listing 40.9,
MyImageCellRenderer, defines a renderer for displaying image
icons in a panel.

Listing 40.9 MyImageCellRenderer.java
<margin note line 7: override method>
<margin note line 10: getImage()>
<margin note line 11: create image viewer>
<margin note line 13: return image viewer>

import javax.swing.*;
import javax.swing.table.*;
import java.awt.*;

public class MyImageCellRenderer extends DefaultTableCellRenderer {
 /** Override this method in DefaultTableCellRenderer */
 public Component getTableCellRendererComponent
 (JTable table, Object value, boolean isSelected,
 boolean isFocused, int row, int column) {
 Image image = ((ImageIcon)value).getImage();

 ImageViewer imageViewer = new ImageViewer(image);

 return imageViewer;
 }
}

You can also create a custom editor. JTable provides the
DefaultCellEditor class, which can be used to edit a cell in a
text field, a check box, or a combo box. To use it, simply create
a text field, a check box, or a combo box, and pass it to
DefaultCellEditor's constructor to create an editor.

Using a custom renderer and editor, the preceding example can be
revised to display scaled images and to use a custom combo editor
to edit the cells in the Publisher column, as shown in Figure
40.16. The program is given in Listing 40.10.

Figure 40.16

A custom renderer displays a scaled image, and a custom editor
edits the Publisher column using a combo box.

Listing 40.10 CustomTableCellRendererEditorDemo.java

<margin note line 8: column names>

25

<margin note line 13: image icons>
<margin note line 21: row data>
<margin note line 37: table model>
<margin note line 41: table>
<margin note line 46: set renderer>
<margin note line 49: combo box>
<margin note line 56: set editor>
<margin note line 63: main method omitted>

import java.awt.*;
import javax.swing.*;
import javax.swing.table.*;
import java.util.*;

public class CustomTableCellRendererEditorDemo extends JApplet {
 // Create table column names
 private String[] columnNames =
 {"Title", "Copies Needed", "Publisher", "Date Published",
 "In-stock", "Book Photo"};

 // Create image icons

 private ImageIcon intro1eImageIcon =

 new ImageIcon(getClass().getResource("image/intro1e.gif"));

 private ImageIcon intro2eImageIcon =

 new ImageIcon(getClass().getResource("image/intro2e.gif"));

 private ImageIcon intro3eImageIcon =

 new ImageIcon(getClass().getResource("image/intro3e.jpg"));

 // Create table data
 private Object[][] rowData = {
 {"Introduction to Java Programming", 120,
 "Que Education & Training",
 new GregorianCalendar(1998, 1-1, 6).getTime(),
 false, intro1eImageIcon},
 {"Introduction to Java Programming, 2E", 220,
 "Que Education & Training",
 new GregorianCalendar(1999, 1-1, 6).getTime(),
 false, intro2eImageIcon},
 {"Introduction to Java Programming, 3E", 220,
 "Prentice Hall",
 new GregorianCalendar(2000, 12-1, 0).getTime(),
 true, intro3eImageIcon},
 };

 // Create a table model
 private MyTableModel tableModel = new MyTableModel(
 rowData, columnNames);

 // Create a table
 private JTable jTable1 = new JTable(tableModel);

 public CustomTableCellRendererEditorDemo() {
 // Set custom renderer for displaying images
 TableColumn bookCover = jTable1.getColumn("Book Photo");
 bookCover.setCellRenderer(new MyImageCellRenderer());

 // Create a combo box for publishers
 JComboBox jcboPublishers = new JComboBox();
 jcboPublishers.addItem("Prentice Hall");
 jcboPublishers.addItem("Que Education & Training");
 jcboPublishers.addItem("McGraw-Hill");

 // Set combo box as the editor for the publisher column
 TableColumn publisherColumn = jTable1.getColumn("Publisher");
 publisherColumn.setCellEditor(
 new DefaultCellEditor(jcboPublishers));

 jTable1.setRowHeight(60);
 add(new JScrollPane(jTable1),
 BorderLayout.CENTER);

26

 }
}

This example uses the same table model (MyTableModel) that was
created in the preceding example (lines 37-38). By default, image
icons are displayed using the predefined image icon renderer. To
use MyImageCellRenderer to display the image, you have to
explicitly specify the MyImageCellRenderer renderer for the Book
Photo column (line 46). Likewise, you have to explicitly specify
the combo box editor for the Publisher column (lines 56-57);
otherwise the default editor would be used.

When you edit a cell in the Publisher column, a combo box of
three items is displayed. When you select an item from the box,
it is displayed in the cell. You did not write the code for
handling selections. The selections are handled by the
DefaultCellEditor class.

When you resize the Book Photo column, the image is resized to
fit into the whole cell. With the predefined image renderer, you
can see only part of the image if the cell is smaller than the
image.

40.8 Table Model Events

JTable does not fire table events. It fires events like
MouseEvent, KeyEvent, and ComponentEvent that are inherited from
its superclass, JComponent. Table events are fired by table
models, table column models, and table-selection models whenever
changes are made to these models. Table models fire
TableModelEvent when table data are changed. Table column models
fire TableColumnModelEvent when columns are added, removed, or
moved, or when a column is selected. Table-selection models fire
ListSelectionEvent when a selection is made.

To listen for these events, a listener must be registered with an
appropriate model and implement the correct listener interface.
Listing 40.11 gives an example that demonstrates how to use these
events. The program displays messages on a text area when a row
or a column is selected, when a cell is edited, or when a column
is removed. Figure 40.17 is a sample run of the program.

Figure 40.17

Table event handlers display table events on a text area.

Listing 40.11 TableEventsDemo.java

27

<margin note line 10: column names>
<margin note line 15: image icons>
<margin note line 23: table data>
<margin note line 39: table model>
<margin note line 43: table>
<margin note line 46: column model>
<margin note line 50: selection model>
<margin note line 86: table model listener>
<margin note line 94: column model listener>
<margin note line 131: selection model listener>
<margin note line 141: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 import javax.swing.event.*;
 5 import javax.swing.table.*;
 6 import java.util.*;
 7
 8 public class TableEventsDemo extends JApplet {
 9 // Create table column names
 10 private String[] columnNames =
 11 {"Title", "Copies Needed", "Publisher", "Date Published",
 12 "In-stock", "Book Photo"};
 13
 14 // Create image icons
 15 private ImageIcon intro1eImageIcon =
 16 new ImageIcon(getClass().getResource("/image/intro1e.gif"));
 17 private ImageIcon intro2eImageIcon =
 18 new ImageIcon(getClass().getResource("/image/intro2e.gif"));
 19 private ImageIcon intro3eImageIcon =
 20 new ImageIcon(getClass().getResource("/image/intro3e.jpg"));
 21
 22 // Create table data
 23 private Object[][] rowData = {
 24 {"Introduction to Java Programming", 120,
 25 "Que Education & Training",
 26 new GregorianCalendar(1998, 1-1, 6).getTime(),
 27 false, intro1eImageIcon},
 28 {"Introduction to Java Programming, 2E", 220,
 29 "Que Education & Training",
 30 new GregorianCalendar(1999, 1-1, 6).getTime(),
 31 false, intro2eImageIcon},
 32 {"Introduction to Java Programming, 3E", 220,
 33 "Prentice Hall",
 34 new GregorianCalendar(2000, 12-1, 0).getTime(),
 35 true, intro3eImageIcon},
 36 };
 37
 38 // Create a table model
 39 private MyTableModel tableModel = new MyTableModel(
 40 rowData, columnNames);
 41
 42 // Create a table
 43 private JTable jTable1 = new JTable(tableModel);
 44
 45 // Get table column model
 46 private TableColumnModel tableColumnModel =
 47 jTable1.getColumnModel();
 48
 49 // Get table selection model
 50 private ListSelectionModel selectionModel =
 51 jTable1.getSelectionModel();
 52
 53 // Create a text area

28

 54 private JTextArea jtaMessage = new JTextArea();
 55
 56 // Create a button
 57 private JButton jbtDeleteColumn =
 58 new JButton("Delete Selected Column");
 59
 60 public TableEventsDemo() {
 61 // Set custom renderer for displaying images
 62 TableColumn bookCover = jTable1.getColumn("Book Photo");
 63 bookCover.setCellRenderer(new MyImageCellRenderer());
 64
 65 // Create a combo box for publishers
 66 JComboBox jcboPublishers = new JComboBox();
 67 jcboPublishers.addItem("Prentice Hall");
 68 jcboPublishers.addItem("Que Education & Training");
 69 jcboPublishers.addItem("McGraw-Hill");
 70
 71 // Set combo box as the editor for the publisher column
 72 TableColumn publisherColumn = jTable1.getColumn("Publisher");
 73 publisherColumn.setCellEditor(
 74 new DefaultCellEditor(jcboPublishers));
 75
 76 jTable1.setRowHeight(60);
 77 jTable1.setColumnSelectionAllowed(true);
 78
 79 JSplitPane jSplitPane1 = new JSplitPane(
 80 JSplitPane.VERTICAL_SPLIT);
 81 jSplitPane1.add(new JScrollPane(jTable1), JSplitPane.LEFT);
 82 jSplitPane1.add(new JScrollPane(jtaMessage), JSplitPane.RIGHT);
 83 add(jbtDeleteColumn, BorderLayout.NORTH);
 84 add(jSplitPane1, BorderLayout.CENTER);
 85
 86 tableModel.addTableModelListener(new TableModelListener() {
 87 @Override
 88 public void tableChanged(TableModelEvent e) {
 89 jtaMessage.append("Table changed at row " +
 90 e.getFirstRow() + " and column " + e.getColumn() + "\n");
 91 }
 92 });
 93
 94 tableColumnModel.addColumnModelListener(
 95 new TableColumnModelListener() {
 96 @Override
 97 public void columnRemoved(TableColumnModelEvent e) {
 98 jtaMessage.append("Column indexed at " + e.getFromIndex() +
 99 " is deleted \n");
100 }
101
102 @Override
103 public void columnAdded(TableColumnModelEvent e) {
104 }
105
106 @Override
107 public void columnMoved(TableColumnModelEvent e) {
108 }
109
110 @Override
111 public void columnMarginChanged(ChangeEvent e) {
112 }
113
114 @Override
115 public void columnSelectionChanged(ListSelectionEvent e) {
116 }
117 });
118
119 jbtDeleteColumn.addActionListener(new ActionListener() {

29

120 @Override
121 public void actionPerformed(ActionEvent e) {
122 if (jTable1.getSelectedColumn() >= 0) {
123 TableColumnModel columnModel = jTable1.getColumnModel();
124 TableColumn tableColumn =
125 columnModel.getColumn(jTable1.getSelectedColumn());
126 columnModel.removeColumn(tableColumn);
127 }
128 }
129 });
130
131 selectionModel.addListSelectionListener(
132 new ListSelectionListener() {
133 @Override
134 public void valueChanged(ListSelectionEvent e) {
135 jtaMessage.append("Row " + jTable1.getSelectedRow() +
136 " and column " + jTable1.getSelectedColumn() +
137 " selected\n");
138 }
139 });
140 }
141 }

To respond to the row and column selection events, you need to
implement the valueChanged method in ListSelectionListener. To
respond to the cell-editing event, you need to implement the
tableChanged method in TableModelListener. To respond to the
column-deletion event, you need to implement the columnRemoved
method in TableColumnModelListener. Let’s use the same table from
the preceding example, but with a button added for deleting the
selected column and a text area for displaying the messages.

A table model is created using MyTableModel (lines 39-40), which
was given in Listing 40.7. When a table is created (line 43), its
default column model and selection model are also created.
Therefore, you can obtain the table column model and selection
model from the table (lines 46-51).

When a row or a column is selected, a ListSelectionEvent is fired
by selectionModel, which invokes the handler to display the
selected row and column in the text area (lines 134-138). When
the content or structure of the table is changed, a
TableModelEvent is fired by tableModel, which invokes the handler
to display the last row and last column of the changed data in
the text area (lines 88-91). When a column is deleted by clicking
the Delete Selected Column button, a ColumnModelEvent is fired by
tableColumnModel, which invokes the handler to display the index
of the deleted column (lines 97-100).

40.9 JTree

JTree is a Swing component that displays data in a treelike
hierarchy, as shown in Figure 40.18.

30

Figure 40.18

JTree displays data in a treelike hierarchy.

All the nodes displayed in the tree are in the form of a
hierarchical indexed list. The tree can be used to navigate
structured data with hierarchical relationships. A node can have
child nodes. A node is called a leaf if it has no children; a
node with no parent is called the root of its tree. A tree may
consist of many subtrees, each node acting as the root for its
own subtree.

A nonleaf node can be expanded or collapsed by double-clicking on
the node or on the node's handle in front of the node. The handle
usually has a visible sign to indicate whether the node is
expanded or collapsed. For example, on Windows, the + symbol
indicates that the node can be expanded, and the – symbol, that
it can be collapsed.

Like JTable, JTree is a very complex component with many
supporting interfaces and classes. JTree is in the javax.swing
package, but its supporting interfaces and classes are all
included in the javax.swing.tree package. The supporting
interfaces are TreeModel, TreeSelectionModel, TreeNode, and
MutableTreeNode, and the supporting classes are DefaultTreeModel,
DefaultMutableTreeNode, DefaultTreeCellEditor,
DefaultTreeCellRenderer, and TreePath.

While JTree displays the tree, the data representation of the
tree is handled by TreeModel, TreeNode, and TreePath. TreeModel
represents the entire tree, TreeNode represents a node, and
TreePath represents a path to a node. Unlike the ListModel or
TableModel, TreeModel does not directly store or manage tree
data. Tree data are stored and managed in TreeNode and TreePath.
DefaultTreeModel is a concrete implementation of TreeModel.
MutableTreeNode is a subinterface of TreeNode, which represents a
tree node that can be mutated by adding or removing child nodes,
or by changing the contents of a user object stored in the node.

The TreeSelectionModel interface handles tree node selection. The
DefaultTreeCellRenderer class provides a default tree node
renderer that can display a label and/or an icon in a node. The
DefaultTreeCellEditor can be used to edit the cells in a text
field.

A TreePath is an array of Objects that are vended from a
TreeModel. The elements of the array are ordered such that the

31

root is always the first element (index 0) of the array. Figure
40.19 shows how these interfaces and classes are interrelated.

javax.swing.JTree

-model: TreeModel

-anchorPath: TreePath

-leadPath: TreePath

-selectionModel: TreeSelectionModel

-cellRenderer: TreeCellRenderer

-cellEditor: TreeCellEditor

TreeModel

TreeSelectionModel

TreeCellRenderer

TreeNode

TreeCellEditor

DefaultTreeModel MutableTreeNode

TreePath
DefaultMutableTreeNode

DefaultTreeCellRenderer

DefaultTreeCellEditor

DefaultTreeSelectionModel

Figure 40.19

JTree contains many supporting interfaces and classes.

Figure 40.20 shows the constructors, frequently used properties,
and methods of JTree.

32

javax.swing.JTree

#cellEditor: TreeCellEditor
#cellRenderer: TreeCellRenderer
#editable: boolean
#model: TreeModel
#rootVisible: boolean
#rowHeight: int

#scrol lsOnExpand: boo lean

#selectionModel: TreeSelectionModel
#showsRootHandles: boolean
#toggleClick Count: int
-anchorSelectionPath: TreePath
-expandsSelectedPaths: boolean
-leadSelect ionPaths: TreePath

+JTree()
+JTree(value: java.util .Hashtable)

+JTree(value: Object[])

+JTree(newModel: TreeModel)
+JTree(root: TreeNode)
+JTree(root: TreeNode, asksAllowsChildren:

boolean)
+JTree(value: Vector)

+addSelect ionPath(path: TreePath): void
+addSelect ionPaths(paths: TreePath[]): void
+addSelect ionRow(row: int): void
+addSelect ionRows(rows: int[]): void
+clearSelection(): v oid
+collapsePath(path : TreePath): vo id

+getSelectionPath(): TreePath
+getSelectionPaths (): TreePath[]
+getLastSelectedPath Component()
+getRowCount(): int
+removeSelectionPath(path: TreePath): void
+removeSelectionPaths(paths: TreePath[]): void

Specifies a cell editor used to edit entries in the t ree.
Specifies a cell renderer.
Specifies whether the cell s are editable (defaul t: false).
Maintains the tree model.
Specifies whether the root is displayed (depending on the constructor).
Specifies the height of the row for the node displayed in the tree

(default: 16 pixels).
If t rue, when a node i s expanded, as many of the descendants as

possible are scrolled to be vi sible (default: 16 pixels).
Models the set of selected nodes in this tree.
Specifies whether the root han dles are displayed (d efaul t: true).
Number of mouse clicks before a node is expanded (default: 2).
The path identified as the anchor.
True if paths in the selection should be expand ed (default: true).
The path identified as the lead.
Creates a JTree with a sample tree model, as shown in Figure 36.18.
Creates a JTree with an invisible roo t and the keys in the Hashtable

key/value pairs as its children.
Creates a JTree with an invisible roo t and the elements in the array as

i ts ch ildren.
Creates a JTree with the specified t ree model.
Creates a JTree with the specified t ree node as its root.
Creates a JTree with the specified t ree node as its root and decides

whether a node is a leaf node in the specified manner.
Creates a JTree with an invisible roo t and the elements in the vector as

i ts ch ildren.
Adds the specified TreePath to the current selection.
Adds the specified TreePaths to the current selection.
Adds the path at the speci fied row to the current selection.
Adds the path at the speci fied rows to the current selection.
Clears the select ion.
Ensures that the node identified by the specified path is collapsed and

viewab le.
Returns the path from the root to the firs t selected no de.
Returns the paths from the root to all the selected nodes.
Returns the last node in the first selected TreePath.
Returns the number of rows currently being displayed.
Removes the node in the specified path.
Removes the node in the specified paths.

JavaBe ans prope rties with get and se t
methods omitted in the UML diagram

Figure 40.20

The JTree class is for creating, customizing, and manipulating trees.

The JTree class contains seven constructors for creating trees.
You can create a tree using its no-arg constructor, a tree model,
a tree node, a Hashtable, an array, or a vector. Using the no-arg
constructor, a sample tree is created as shown in Figure 40.18.
Using a Hashtable, an array, or a vector, a root is created but
not displayed. All the keys in a Hashtable, all the objects in an
array, and all the elements in a vector are added into the tree
as children of the root. If you wish the root to be displayed,
set the rootVisible property to true.

33

All the methods related to path selection are also defined in the
TreeSelectionModel interface, which will be covered in §40.12,
“TreePath and TreeSelectionModel.”

Listing 40.12 gives an example that creates four trees: a default
tree using the no-arg constructor, a tree created from an array
of objects, a tree created from a vector, and a tree created from
a hash table, as shown in Figure 40.21. Enable the user to
dynamically set the properties for rootVisible, rowHeight, and
showsRootHandles.

Figure 40.21

You can dynamically set the properties for rootVisible, rowHeight,
and showRootHandles in a tree.

Listing 40.12 SimpleTreeDemo.java

<margin note line 9: tree 1>
<margin note line 12: tree 2>
<margin note line 16: tree 3>
<margin note line 22: tree 4>
<margin note line 43: tree>
<margin note line 63: combo box listener>
<margin note line 86: spinner listener>
<margin note line 97: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 import javax.swing.event.*;
 5 import java.util.*;
 6
 7 public class SimpleTreeDemo extends JApplet {
 8 // Create a default tree
 9 private JTree jTree1 = new JTree();
 10
 11 // Create a tree with an array of Objects.
 12 private JTree jTree2 = new JTree(new String[]
 13 {"dog", "cow", "cat", "pig", "rabbit"});
 14
 15 // Create a tree with a Hashtable
 16 private Vector<Object> vector = new Vector<Object>(Arrays.asList(
 17 new Object[]{"red", "green", "black", "white", "purple"}));
 18 private JTree jTree3 = new JTree(vector);
 19
 20 private Hashtable<Integer, String> hashtable =
 21 new Hashtable<Integer, String>();
 22 private JTree jTree4;
 23
 24 // Create a combo box for selecting rootVisible
 25 private JComboBox jcboRootVisible = new JComboBox(
 26 new String[]{"false", "true"});
 27
 28 // Create a combo box for selecting showRootHandles

34

 29 private JComboBox jcboShowsRootHandles = new JComboBox(
 30 new String[] {"false", "true"});
 31
 32 // Create a spinner for selecting row height
 33 private JSpinner jSpinnerRowHeight = new JSpinner(
 34 new SpinnerNumberModel(16, 1, 50, 1));
 35
 36 public SimpleTreeDemo() {
 37 jTree1.setRootVisible(false);
 38
 39 hashtable.put(1, "red");
 40 hashtable.put(2, "green");
 41 hashtable.put(3, "blue");
 42 hashtable.put(4, "yellow");
 43 jTree4 = new JTree(hashtable);
 44
 45 JPanel panel1 = new JPanel(new GridLayout(1, 4));
 46 panel1.add(new JScrollPane(jTree1));
 47 panel1.add(new JScrollPane(jTree2));
 48 panel1.add(new JScrollPane(jTree3));
 49 panel1.add(new JScrollPane(jTree4));
 50
 51 JPanel panel2 = new JPanel();
 52 panel2.add(new JLabel("rootVisible"));
 53 panel2.add(jcboRootVisible);
 54 panel2.add(new JLabel("rowHeight"));
 55 panel2.add(jSpinnerRowHeight);
 56 panel2.add(new JLabel("showsRootHandles"));
 57 panel2.add(jcboShowsRootHandles);
 58
 59 add(panel1, BorderLayout.CENTER);
 60 add(panel2, BorderLayout.SOUTH);
 61
 62 // Register listeners
 63 jcboRootVisible.addActionListener(new ActionListener() {
 64 public void actionPerformed(ActionEvent e) {
 65 boolean rootVisible =
 66 jcboRootVisible.getSelectedItem().equals("true");
 67 jTree1.setRootVisible(rootVisible);
 68 jTree2.setRootVisible(rootVisible);
 69 jTree3.setRootVisible(rootVisible);
 70 jTree4.setRootVisible(rootVisible);
 71 }
 72 });
 73
 74 jcboShowsRootHandles.addActionListener(new ActionListener() {
 75 @Override
 76 public void actionPerformed(ActionEvent e) {
 77 boolean showsRootHandles =
 78 jcboShowsRootHandles.getSelectedItem().equals("true");
 79 jTree1.setShowsRootHandles(showsRootHandles);
 80 jTree2.setShowsRootHandles(showsRootHandles);
 81 jTree3.setShowsRootHandles(showsRootHandles);
 82 jTree4.setShowsRootHandles(showsRootHandles);
 83 }
 84 });
 85
 86 jSpinnerRowHeight.addChangeListener(new ChangeListener() {
 87 public void stateChanged(ChangeEvent e) {
 88 int height =
 89 ((Integer)(jSpinnerRowHeight.getValue())).intValue();
 90 jTree1.setRowHeight(height);
 91 jTree2.setRowHeight(height);
 92 jTree3.setRowHeight(height);
 93 jTree4.setRowHeight(height);
 94 }

35

 95 });
 96 }
 97 }

Four trees are created in this example. The first is created
using the no-arg constructor (line 9) with a default sample tree.
The second is created using an array of objects (lines 12-13).
All the objects in the array become the children of the root. The
third is created using a vector (lines 16-18). All the elements
in the vector become the children of the root. The fourth is
created using a hash table (lines 39-43). A Hashtable is like a
Map. Hashtable was introduced earlier than Java 2 and has since
been replaced by Map. It is used in the Java API (e.g., JTree),
which was developed before Java 2. The keys of the hash table
become the children of the root.

JTree doesn't directly support scrolling. To create a scrollable
tree, create a JScrollPane and add an instance of JTree to the
scroll pane (lines 46-49).

The example enables you to specify whether the root is visible
and whether the root handles are visible from two combo boxes
(lines 63-83). It also lets you specify the row height of the
node in a spinner (lines 85-94).

40.10 TreeModel and DefaultTreeModel

The TreeModel interface represents the entire tree. Unlike
ListModel or TableModel, TreeModel does not directly store or
manage tree data. TreeModel contains the structural information
about the tree, and tree data are stored and managed by TreeNode.

DefaultTreeModel is a concrete implementation for TreeModel that
uses TreeNodes. Figure 40.22 shows TreeModel and
DefaultTreeModel.

36

«interface»
javax.swing.tree.TreeModel

+getChild(parent: Object, index: int): Object
+getChildCount(parent: Object): int
+getIndexOfChild(parent: Object, child: Object): int
+getRoot(): Object
+isLeaf(node: Object): boolean
+addTreeModelListener(listener:

TreeModelListener): void
+removeTreeModelListener(listener:

TreeModelListener): void
+valueForPathChanged(path: TreePath, newValue:

Object): void

javax.swing.tree.DefaultTreeModel

#asksAllowsChildren: boolean

#root: TreeNode

+DefaultTreeModel(root: TreeNode)
+DefaultTreeModel(root: TreeNode,

asksAllowsChildren: boolean)
+asksAllowsChildren(): boolean
+getPathToRoot(aNode: TreeNode): TreeNode[]
+insertNodeInto(newChild: MutableTreeNode,

parent: MutableTreeNode, index: int): void
+reload(): void
+removeNodeFromParent(node: MutableTreeNode):

void

Returns the child of the parent at the index in the parent's child array.
Returns the number of children of the specified parent in the tree model.
Returns the index of the child in the parent. If the parent or child is null, returns –1.
Returns the root of the tree. Returns null if the tree is empty.
Returns true if the specified node is a leaf.
Adds a listener for the TreeModelEvent posted after the tree changes.

Removes a listener previously added with addTreeModelListener.

Messaged when the user has altered the value for the item identified by path to
newValue.

Tells how leaf nodes are determined. True if only nodes that do not allow
children are leaf nodes, false if nodes that have no children are leaf nodes.

The root of the tree.

Creates a DefaultTreeModel with the specified root.
Creates a DefaultTreeModel with the specified root and decides whether a

node is a leaf node in the specified manner.
Returns asksAllowsChildren.
Returns the nodes in an array from root to the specified node.
Inserts newChild at location index in parent’s children.

Reloads the model (invoke this method if the tree has been modified).
Removes the node from its parent.

Figure 40.22

TreeModel represents an entire tree and DefaultTreeModel is a concrete
implementation of it.

Once a tree is created, you can obtain its tree model using the
getModel method. Listing 40.13 gives an example that traverses
all the nodes in a tree using the tree model. Line 1 creates a
tree using JTree’s no-arg constructor with the default sample
nodes, as shown in Figure 40.18. The tree model for the tree is
obtained in line 4. Line 5 invokes the traversal method to
traverse the nodes in the tree.

Listing 40.13 TestTreeModel.java

<margin note line 3: default tree>
<margin note line 4: tree model>
<margin note line 5: getRoot>
<margin note line 11: is leaf?>
<margin note line 12: getChildCount>
<margin note line 13: getChild>

 1 public class TestTreeModel {
 2 public static void main(String[] args) {
 3 javax.swing.JTree jTree1 = new javax.swing.JTree();

37

 4 javax.swing.tree.TreeModel model = jTree1.getModel();
 5 traversal(model, model.getRoot());
 6 }
 7
 8 private static void traversal
 9 (javax.swing.tree.TreeModel model, Object root) {
 10 System.out.print(root + " ");
 11 if (model.isLeaf(root)) return;
 12 for (int i = 0; i < model.getChildCount(root); i++) {
 13 traversal(model, model.getChild(root, i));
 14 }
 15 }
 16 }

<Output>
JTree colors blue violet red yellow sports basketball soccer
football hockey food hot dogs pizza ravioli bananas
<End Output>

The traversal method starts from the root of the tree. The root
is obtained by invoking the getRoot method (line 5). If the root
is a leaf, the method returns (line 11). Otherwise, it
recursively invokes the traversal method to start from the
children of the root (line 13).

40.11 TreeNode, MutableTreeNode, and DefaultMutableTreeNode

While TreeModel represents the entire tree, TreeNode stores a
single node of the tree. MutableTreeNode defines a subinterface
of TreeNode with additional methods for changing the content of
the node, for inserting and removing a child node, for setting a
new parent, and for removing the node itself.

DefaultMutableTreeNode is a concrete implementation of
MutableTreeNode that maintains a list of children in a vector and
provides the operations for creating nodes, for examining and
modifying a node's parent and children, and also for examining
the tree to which the node belongs. Normally, you should use
DefaultMutableTreeNode to create a tree node. Figure 40.23 shows
TreeNode, MutableTreeNode, and DefaultMutableTreeNode.

38

«interface»
javax.swing.tree.TreeNode

+children(): java.util.Enumeration
+getAllowsChildren(): boolean
+getChildAt(childIndex: int): TreeNode
+getChildCount(): int
+getIndex(node: TreeNode): int
+getParent(): TreeNode
+isLeaf(): boolean

«interface»
javax.swing.tree.MutableTreeNode

+insert(child: MutableTreeNode, index: int): void
+remove(index: int): void
+remove(node: MutableTreeNode): void
+removeFromParent(): void
+setParent(newParent: MutableTreeNode): void
+setUserObject(object: Object): void

Returns the children of this node.
Returns true if this node can have children.
Returns the child TreeNode at index childIndex.
Returns the number of children under this node.
Returns the index of the specified node in the current node’s children.
Returns the parent of this node.
Returns true if this node is a leaf.

Adds the specified child under this node at the specified index.
Removes the child at the specified index from this node’s child list.
Removes the specified node from this node’s child list.
Removes this node from its parent.
Sets the parent of this node to the specified newParent.
Resets the user object of this node to the specified object.

javax.swing.tree.DefaultMutableTreeNode

#allowsChildren: Boolean
#parent: MutableTreeNode
#userObject: Object

+DefaultMutableTreeNode()
+DefaultMutableTreeNode(userObject: Object)
+DefaultMutableTreeNode(userObject: Object,

allowsChildren: boolean)
+add(newChild: MutableTreeNode)
+getChildAfter(aChild: TreeNode): TreeNode
+getChildBefore(aChild: TreeNode): TreeNode
+getFirstChild(): TreeNode
+getLastChild(): TreeNode
+getFirstLeaf(): DefaultMutableTreeNode
+getLastLeaf(): DefaultMutableTreeNode
+getNextLeaf(): DefaultMutableTreeNode
+getPreviousLeaf(): DefaultMutableTreeNode
+getLeafCount(): int
+getDepth(): int
+getLevel(): int
+getNextNode(): DefaultMutableTreeNode
+getPreviousNode(): DefaultMutableTreeNode
+getSiblingCount(): int
+getNextSibling(): DefaultMutableTreeNode
+getPath(): TreeNode[]
+getRoot(): TreeNode
+isRoot(): boolean
+breadthFirstEnumeration(): Enumeration
+depthFirstEnumeration(): Enumeration
+postorderEnumeration(): Enumeration
+preorderEnumeration(): Enumeration

True if the node is able to have children.
Stores the parent of this node.
Stores the content of this node.

Creates a tree node without user object, and allows children.
Creates a tree node with the specified user object, and allows children.
Creates a tree node with the specified user object and the specified

mode to indicate whether children are allowed.
Adds the specified node to the end of this node's child vector.
These two methods return the next (previous) sibling of the specified

child in this node's child vector.
These two methods return this node's first (last) child in the child’s

vector of this node.
These four methods return the first (last, next, and previous) leaf that

is a descendant of this node. The first (last, next, and previous) leaf
is recursively defined as the first (last, next, and previous) child’s
first (last, next, and previous) leaf.

Returns the total number of leaves that are descendants of this node.
Returns the depth of the tree rooted at this node.
Returns the distance from the root to this node.
Returns the node that follows (precedes) this node in a preorder

traversal of this node.
Returns the number of siblings of this node.
Returns the next sibling of this node in the parent's child vector.
Returns the path from the root to this node.
Returns the root of the tree that contains this node.
Returns true if this node is the root of the tree.
These four methods create and return an enumeration that traverses the

subtree rooted at this node in breadth-first order (depth-first order,
postorder, preorder). These traversals were discussed in §25.2.4,
“Tree Traversal.”

Figure 40.23

TreeNode represents a node.

NOTE

39

<margin note: depth-first traversal>
In graph theory, depth-first traversal is defined the
same as preorder traversal, but in the
depthFirstEnumeration() method in DefaultMutableTreeNode,
it is the same as postorder traversal.

NOTE

<margin note: creating trees>
You can create a JTree from a root using new
JTree(TreeNode) or from a model using new
JTree(TreeModel). To create a tree model, you first
create an instance of TreeNode to represent the root of
the tree, and then create an instance of DefaultTreeModel
fitted with the root.

Listing 40.14 gives an example that creates two trees to display
world, continents, countries, and states. The two trees share the
same nodes and thus display identical contents. The program also
displays the properties of the tree in a text area, as shown in
Figure 40.24.

Figure 40.24

The two trees have the same data because their roots are the same.

Listing 40.14 TreeNodeDemo.java

<margin note line 9: tree nodes>
<margin note line 12: add children>
<margin note line 19: add children>
<margin note line 62: main method omitted>

 1 import java.awt.*;
 2 import javax.swing.*;
 3 import javax.swing.tree.*;
 4 import java.util.*;
 5
 6 public class TreeNodeDemo extends JApplet {
 7 public TreeNodeDemo() {
 8 // Create the first tree
 9 DefaultMutableTreeNode root, europe, northAmerica, us;
 10
 11 europe = new DefaultMutableTreeNode("Europe");
 12 europe.add(new DefaultMutableTreeNode("UK"));
 13 europe.add(new DefaultMutableTreeNode("Germany"));

40

 14 europe.add(new DefaultMutableTreeNode("France"));
 15 europe.add(new DefaultMutableTreeNode("Norway"));
 16
 17 northAmerica = new DefaultMutableTreeNode("North America");
 18 us = new DefaultMutableTreeNode("US");
 19 us.add(new DefaultMutableTreeNode("California"));
 20 us.add(new DefaultMutableTreeNode("Texas"));
 21 us.add(new DefaultMutableTreeNode("New York"));
 22 us.add(new DefaultMutableTreeNode("Florida"));
 23 us.add(new DefaultMutableTreeNode("Illinois"));
 24 northAmerica.add(us);
 25 northAmerica.add(new DefaultMutableTreeNode("Canada"));
 26
 27 root = new DefaultMutableTreeNode("World");
 28 root.add(europe);
 29 root.add(northAmerica);
 30
 31 JPanel panel = new JPanel();
 32 panel.setLayout(new GridLayout(1, 2));
 33 panel.add(new JScrollPane(new JTree(root)));
 34 panel.add(new JScrollPane(new JTree(new DefaultTreeModel(root))));
 35
 36 JTextArea jtaMessage = new JTextArea();
 37 jtaMessage.setWrapStyleWord(true);
 38 jtaMessage.setLineWrap(true);
 39 add(new JSplitPane(JSplitPane.VERTICAL_SPLIT,
 40 panel, new JScrollPane(jtaMessage)), BorderLayout.CENTER);
 41
 42 // Get tree information
 43 jtaMessage.append("Depth of the node US is " + us.getDepth());
 44 jtaMessage.append("\nLevel of the node US is " + us.getLevel());
 45 jtaMessage.append("\nFirst child of the root is " +
 46 root.getFirstChild());
 47 jtaMessage.append("\nFirst leaf of the root is " +
 48 root.getFirstLeaf());
 49 jtaMessage.append("\nNumber of the children of the root is " +
 50 root.getChildCount());
 51 jtaMessage.append("\nNumber of leaves in the tree is " +
 52 root.getLeafCount());
 53 String breadthFirstSearchResult = "";
 54
 55 // Breadth-first traversal
 56 Enumeration bf = root.breadthFirstEnumeration();
 57 while (bf.hasMoreElements())
 58 breadthFirstSearchResult += bf.nextElement().toString() + " ";
 59 jtaMessage.append("\nBreath-first traversal from the root is "
 60 + breadthFirstSearchResult);
 61 }
 62 }

You can create a JTree using a TreeNode root (line 33) or a
TreeModel (line 34), whichever is convenient. A TreeModel is
actually created using a TreeNode root (line 34). The two trees
have the same contents because the root is the same. However, it
is important to note that the two JTree objects are different,
and so are their TreeModel objects, although both trees have the
same root.

A tree is created by adding the nodes to the tree (lines 9-29).
Each node is created using the DefaultMutableTreeNode class. This
class provides many methods to manipulate the tree (e.g., adding
a child, removing a child) and obtaining information about the
tree (e.g., level, depth, number of children, number of leaves,

41

traversals). Some examples of using these methods are given in
lines 43-60.

As shown in this example, often you don’t have to directly use
TreeModel. Using DefaultMutableTreeNode is sufficient, since the
tree data are stored in DefaultMutableTreeNode, and
DefaultMutableTreeNode contains all the methods for modifying the
tree and obtaining tree information.

40.12 TreePath and TreeSelectionModel

The JTree class contains the methods for selecting tree paths.
The TreePath class represents a path from an ancestor to a
descendant in a tree. Figure 40.25 shows TreePath.

javax.swing.tree.TreePath
+TreePath(singlePath: Object)
+TreePath(path: Object[])
+getLastPathComponent(): Object
+getParentPath(): TreePath
+getPath(): Object[]
+getPathComponent(element: int): Object
+getPathCount(): int
+isDescendant(aTreePath: TreePath): boolean
+pathByAddingChild(child: Object): TreePath

Constructs a TreePath containing only a single element.
Constructs a path from an array of objects.
Returns the last component of this path.
Returns a path containing all but the last path component.
Returns an ordered array of objects containing the components of this TreePath.
Returns the path component at the specified index.
Returns the number of elements in the path.
Returns true if aTreePath contains all the components in this TreePath.
Returns a new path containing all the elements of this TreePath plus child.

Figure 40.25

TreePath represents a path from an ancestor to a descendant in a tree.

<margin note: obtain tree paths>
You can construct a TreePath from a single object or an array of
objects, but often instances of TreePath are returned from the
methods in JTree and TreeSelectionModel. For instance, the
getLeadSelectionPath() method in JTree returns the path from the
root to the selected node. There are many ways to extract the
nodes from a tree path. Often you use the getLastPathComponent()
method to obtain the last node in the path, and then the
getParent() method to get all the nodes in the path upward
through the link.

The selection of tree nodes is defined in the TreeSelectionModel
interface, as shown in Figure 40.26. The
DefaultTreeSelectionModel class is a concrete implementation of
the TreeSelectionModel that maintains an array of TreePath
objects representing the current selection. The last TreePath
selected, called the lead path, can be obtained using the
getLeadSelectionPath() method. To obtain all the selection paths,
use the getSelectionPaths() method, which returns an array of
tree paths.

42

«interface»
javax.swing.tree.TreeSelectionModel

+addSelectionPath(path: TreePath): void
+addSelectionPaths(paths: TreePath[]): void
+clearSelection() : void
+getLeadSelectionPath(): TreePath
+getSelectionCount(): int
+getSelectionPath(): TreePath
+getSelectionPaths(): TreePath[]
+getSelectionMode(): int
+removeSelectionPath(path: TreePath): void
+removeSelectionPaths(paths: TreePath[]):void
+setSelectionMode(mode: int): void
+setSelectionPath(path: TreePath): void
+setSelectionPaths(paths: TreePath[]): void
+addTreeSelectionListener(x: TreeSelectionListener): void
+removeTreeSelectionListener(x: TreeSelectionListener): void

Adds the specified TreePath to the current selection.
Adds the specified TreePaths to the current selection.
Clears the selection.
Returns the last path in the selection.
Returns the number of paths in the selection.
Returns the first path in the selection.
Returns all the paths in the selection.
Returns the current selection mode,
Removes path from the selection.
Removes paths from the selection.
Sets the selection mode.
Sets the selection to path.
Sets the selection to paths.
Registers a TreeSelectionListener.
Removes a TreeSelectionListener.

javax.swing.tree.DefaultTreeSelectionModel

Figure 40.26

The TreeSelectionModel handles selection in a tree and
DefaultTreeSelectionModel is a concrete implementation of it.

<margin note: tree selection modes>
TreeSelectionModel supports three selection modes: contiguous
selection, discontiguous selection, and single selection. Single
selection allows only one item to be selected. Contiguous
selection allows multiple selections, but the selected items must
be contiguous. Discontigous selection is the most flexible; it
allows any item to be selected at a given time. The default tree
selection mode is discontiguous. To set a selection mode, use the
setSelectionMode(int mode) method in TreeSelectionModel. The
constants for the three modes are:

CONTIGUOUS_TREE_SELECTION

DISCONTIGUOUS_TREE_SELECTION

SINGLE_TREE_SELECTION

NOTE

<margin note: bypass TreeSelectionModel>
When you create a JTree, a DefaultTreeSelectionModel is
automatically created, and thus you rarely need to create
an instance of TreeSelectionModel explicitly. Since most
of the methods in TreeSelectionModel are also in JTree,
you can get selection paths and process the selection
without directly dealing with TreeSelectionModel.

Listing 40.15 gives an example that displays a selected path or
selected paths in tree. The user may select a node or multiple
nodes and click the Show Path button to display the properties of
the first selected path or the Show Paths button to display all

43

the selected paths in a text area, as shown in Figure 40.27. The
Show Path button displays a path from the last node up to the
root.

Figure 40.27
The selected path(s) are processed.

Listing 40.15 TestTreePath.java

<margin note line 7: default tree>
<margin note line 8: text area>
<margin note line 9: Show Path button>
<margin note line 10: Show Paths button>
<margin note line 13: split pane>
<margin note line 23: Show Path button>
<margin note line 26: selected path>
<margin note line 28: path count>
<margin note line 32: last node>
<margin note line 35: get parent>
<margin note line 39: Show Paths button>
<margin note line 43: selected paths>
<margin note line 44: display a path>
<margin note line 48: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 import javax.swing.tree.*;
 5
 6 public class TestTreePath extends JApplet {
 7 private JTree jTree = new JTree();
 8 private JTextArea jtaOutput = new JTextArea();
 9 private JButton jbtShowPath = new JButton("Show Path");
 10 private JButton jbtShowPaths = new JButton("Show Paths");
 11
 12 public TestTreePath() {
 13 JSplitPane splitPane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 14 new JScrollPane(jTree), new JScrollPane(jtaOutput));
 15
 16 JPanel panel = new JPanel();
 17 panel.add(jbtShowPath);
 18 panel.add(jbtShowPaths);
 19
 20 add(splitPane, BorderLayout.CENTER);
 21 add(panel, BorderLayout.NORTH);
 22
 23 jbtShowPath.addActionListener(new ActionListener() {
 24 @Override
 25 public void actionPerformed(ActionEvent e) {
 26 TreePath path = jTree.getSelectionPath();

44

 27 jtaOutput.append("\nProcessing a single path\n");
 28 jtaOutput.append("# of elements: " + path.getPathCount());
 29 jtaOutput.append("\nlast element: "
 30 + path.getLastPathComponent());
 31 jtaOutput.append("\nfrom last node in the path to the root: ");
 32 TreeNode node = (TreeNode)path.getLastPathComponent();
 33 while (node != null) {
 34 jtaOutput.append(node.toString() + " ");
 35 node = node.getParent();
 36 }
 37 }});
 38
 39 jbtShowPaths.addActionListener(new ActionListener() {
 40 @Override
 41 public void actionPerformed(ActionEvent e) {
 42 jtaOutput.append("\nProcessing multiple paths\n");
 43 javax.swing.tree.TreePath[] paths = jTree.getSelectionPaths();
 44 for (int i = 0; i < paths.length; i++)
 45 jtaOutput.append(paths[i].toString() + "\n");
 46 }});
 47 }
 48 }

The getSelectionPath() method invoked from a JTree returns a
TreePath in line 25. The first node in the path is always the
root of the tree. The getPathCount() invoked from a TreePath
returns the number of the nodes in the path (line 27). The
getLastPathComponent() invoked from a TreePath returns the last
node in the path (line 29). The return node type is Object. You
need to cast it to a TreeNode (line 31) in order to invoke the
getParent() method from a TreeNode (line 34).

While the getSelectionPath() method (line 25) returns the first
selected path, the getSelectionPaths() method (line 41) returns
all the selected paths in an array of paths.

40.13 Case Study: Modifying Trees

Write a program to create two trees that display the same
contents: world, continents, countries, and states, as shown in
Figure 40.28. For the tree on the left, enable the user to choose
a selection mode, specify whether it can be edited, add a new
child under the first selected node, and remove all the selected
nodes.

 (a) (b)

Figure 40.28

You can rename a node, add a child, and remove nodes in a tree
dynamically.

45

You can choose a selection mode from the selectionMode combo box.
You can specify whether the left tree nodes can be edited from
the editable check box.

When you click a button, if no nodes are currently selected in
the left tree, a message dialog box is displayed, as shown in
Figure 40.29a. When you click the Add a Child for Selected Node
button, an input dialog box is displayed to prompt the user to
enter a child name for the selected node, as shown in Figure
40.29b. The new node becomes a child of the first selected node.
When you click the Remove Selected Nodes button, all the selected
nodes in the left tree are removed.

 (a) (b)
Figure 40.29

You can add a new node to the tree.

Listing 40.16 gives the program.

Listing 40.16 ModifyTree.java

<margin note line 8: combo box>
<margin note line 13: check box>
<margin note line 16: buttons>
<margin note line 21: trees>
<margin note line 25: tree nodes>
<margin note line 27: fill nodes>
<margin note line 56: create jTree1>
<margin note line 57: create jTree2>
<margin note line 69: choose selection mode>
<margin note line 74: set selection mode>
<margin note line 86: choose editable>
<margin note line 89: set editable>
<margin note line 93: add child>
<margin note line 96: get selected node>
<margin note line 111: add new node>
<margin note line 114: reload tree model>
<margin note line 119: remove node>
<margin note line 122: get selected paths>
<margin note line 140: remove node>
<margin note line 144: reload tree model>
<margin note line 149: main method omitted>

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 import javax.swing.tree.*;
 5
 6 public class ModifyTree extends JApplet {
 7 // Create a combo box for choosing selection modes
 8 private JComboBox jcboSelectionMode = new JComboBox(new String[]{
 9 "CONTIGUOUS_TREE_SELECTION", "DISCONTIGUOUS_TREE_SELECTION",
 10 "SINGLE_TREE_SELECTION"});
 11
 12 // Create a check box for specifying editable

46

 13 private JCheckBox jchkEditable = new JCheckBox();
 14
 15 // Create two buttons
 16 private JButton jbtAdd =
 17 new JButton("Add a Child for Selected Node");
 18 private JButton jbtRemove = new JButton("Remove Selected Nodes");
 19
 20 // Declare two trees
 21 private JTree jTree1, jTree2;
 22
 23 public ModifyTree() {
 24 // Create the first tree
 25 DefaultMutableTreeNode root, europe, northAmerica, us;
 26
 27 europe = new DefaultMutableTreeNode("Europe");
 28 europe.add(new DefaultMutableTreeNode("UK"));
 29 europe.add(new DefaultMutableTreeNode("Germany"));
 30 europe.add(new DefaultMutableTreeNode("France"));
 31 europe.add(new DefaultMutableTreeNode("Norway"));
 32
 33 northAmerica = new DefaultMutableTreeNode("North America");
 34 us = new DefaultMutableTreeNode("US");
 35 us.add(new DefaultMutableTreeNode("California"));
 36 us.add(new DefaultMutableTreeNode("Texas"));
 37 us.add(new DefaultMutableTreeNode("New York"));
 38 us.add(new DefaultMutableTreeNode("Florida"));
 39 us.add(new DefaultMutableTreeNode("Illinois"));
 40 northAmerica.add(us);
 41 northAmerica.add(new DefaultMutableTreeNode("Canada"));
 42
 43 root = new DefaultMutableTreeNode("World");
 44 root.add(europe);
 45 root.add(northAmerica);
 46
 47 jcboSelectionMode.setSelectedIndex(1);
 48
 49 JPanel p1 = new JPanel();
 50 p1.add(new JLabel("selectionMode"));
 51 p1.add(jcboSelectionMode);
 52 p1.add(new JLabel("editable"));
 53 p1.add(jchkEditable);
 54
 55 JPanel p2 = new JPanel(new GridLayout(1, 2));
 56 p2.add(new JScrollPane(jTree1 = new JTree(root)));
 57 p2.add(new JScrollPane(jTree2 =
 58 new JTree(new DefaultTreeModel(root)))); // Same root as jTree1
 59
 60 JPanel p3 = new JPanel();
 61 p3.add(jbtAdd);
 62 p3.add(jbtRemove);
 63
 64 add(p1, BorderLayout.NORTH);
 65 add(p2, BorderLayout.CENTER);
 66 add(p3, BorderLayout.SOUTH);
 67
 68 // Register listeners
 69 jcboSelectionMode.addActionListener(new ActionListener() {
 70 @Override
 71 public void actionPerformed(ActionEvent e) {
 72 if (jcboSelectionMode.getSelectedItem().
 73 equals("CONTIGUOUS_TREE_SELECTION"))
 74 jTree1.getSelectionModel().setSelectionMode(
 75 TreeSelectionModel.CONTIGUOUS_TREE_SELECTION);
 76 else if (jcboSelectionMode.getSelectedItem().
 77 equals("DISCONTIGUOUS_TREE_SELECTION"))
 78 jTree1.getSelectionModel().setSelectionMode(

47

 79 TreeSelectionModel.DISCONTIGUOUS_TREE_SELECTION);
 80 else
 81 jTree1.getSelectionModel().setSelectionMode(
 82 TreeSelectionModel.SINGLE_TREE_SELECTION);
 83 }
 84 });
 85
 86 jchkEditable.addActionListener(new ActionListener() {
 87 @Override
 88 public void actionPerformed(ActionEvent e) {
 89 jTree1.setEditable(jchkEditable.isSelected());
 90 }
 91 });
 92
 93 jbtAdd.addActionListener(new ActionListener() {
 94 @Override
 95 public void actionPerformed(ActionEvent e) {
 96 DefaultMutableTreeNode parent = (DefaultMutableTreeNode)
 97 jTree1.getLastSelectedPathComponent();
 98
 99 if (parent == null) {
100 JOptionPane.showMessageDialog(null,
101 "No node in the left tree is selected");
102 return;
103 }
104
105 // Enter a new node
106 String nodeName = JOptionPane.showInputDialog(
107 null, "Enter a child node for "+ parent, "Add a Child",
108 JOptionPane.QUESTION_MESSAGE);
109
110 // Insert the new node as a child of treeNode
111 parent.add(new DefaultMutableTreeNode(nodeName));
112
113 // Reload the model since a new tree node is added
114 ((DefaultTreeModel)(jTree1.getModel())).reload();
115 ((DefaultTreeModel)(jTree2.getModel())).reload();
116 }
117 });
118
119 jbtRemove.addActionListener(new ActionListener() {
120 public void actionPerformed(ActionEvent e) {
121 // Get all selected paths
122 TreePath[] paths = jTree1.getSelectionPaths();
123
124 if (paths == null) {
125 JOptionPane.showMessageDialog(null,
126 "No node in the left tree is selected");
127 return;
128 }
129
130 // Remove all selected nodes
131 for (int i = 0; i < paths.length; i++) {
132 DefaultMutableTreeNode node = (DefaultMutableTreeNode)
133 (paths[i].getLastPathComponent());
134
135 if (node.isRoot()) {
136 JOptionPane.showMessageDialog(null,
137 "Cannot remove the root");
138 }
139 else
140 node.removeFromParent();
141 }
142
143 // Reload the model since a new tree node is added
144 ((DefaultTreeModel)(jTree1.getModel())).reload();

48

145 ((DefaultTreeModel)(jTree2.getModel())).reload();
146 }
147 });
148 }
149 }

Two JTree objects (jTree1 and jTree2) are created with the same
root (lines 56-58), but each has its own TreeSelectionModel. When
you choose a selection mode in the combo box, the new selection
mode is set in jTree1’s selection model (line 69-83). The
selection mode for jTree2 is not affected.

When the editable check box is checked or unchecked, the editable
property in jTree1 is set accordingly. If editable is true, you
can edit a node in the left tree.

When you click the Add a Child for Selected Node button, the
first selected node is returned as parent (lines 93-94). Suppose
you selected Europe, UK, and US in this order; parent is Europe.
If parent is null, no node is selected in the left tree (lines
96-100). Otherwise, prompt the user to enter a new node from an
input dialog box (lines 103-105) and add this node as a child of
parent (line 108). Since the tree has been modified, you need to
invoke the reload() method to notify that the models for both
trees have been changed (lines 111-112). Otherwise, the new node
may not be displayed in jTree1 and jTree2.

When you click the Remove Selected Nodes button, all the tree
paths for each selected node are obtained in paths (line 119).
Suppose you selected Europe, UK, and US in this order; three tree
paths are obtained. Each path starts from the root to a selected
node. If no node is selected, paths is null. To delete a selected
node is to delete the last node in each selected tree path (128-
138). The last node in a path is obtained using
getLastPathComponent(). If the node is the root, it cannot be
removed (lines 132-135). The removeFromParent() method removes a
node (line 137).

40.14 Tree Node Rendering and Editing

JTree delegates node rendering to a renderer. All renderers are
instances of the TreeCellRenderer interface, which defines a
single method, getTreeCellRendererComponent, as follows:

public Component getTreeCellRendererComponent
 (JTree tree, Object value, boolean selected, boolean expanded,

boolean leaf, int row, boolean hasFocus);

You can create a custom tree cell renderer by implementing the
TreeCellRenderer interface, or use the DefaultTreeCellRenderer
class, which provides a default implementation for
TreeCellRenderer. When a new JTree is created, an instance of
DefaultTreeCellRenderer is assigned to the tree renderer. The
DefaultTreeCellRenderer class maintains three icon properties
named leafIcon, openIcon, and closedIcon for leaf nodes, expanded
nodes, and collapsed nodes. It also provides colors for text and
background. The following code sets new leaf, open and closed
icons, and new background selection color in the tree:

DefaultTreeCellRenderer renderer =

49

 (DefaultTreeCellRenderer)jTree1.getCellRenderer();
renderer.setLeafIcon(yourCustomLeafImageIcon);
renderer.setOpenIcon(yourCustomOpenImageIcon);
renderer.setClosedIcon(yourCustomClosedImageIcon);
renderer.setBackgroundSelectionColor(Color.red);

NOTE: The default leaf, open icon, and closed icon are
dependent on the look-and-feel. For instance, on Windows
look-and-feel, the open icon is - and the closed icon is
+.

JTree comes with a default cell editor. If JTree's editable
property is true, the default editor activates a text field for
editing when the node is clicked three times. By default, this
property is set to false. To create a custom editor, you need to
extend the DefaultCellEditor class, which is the same class you
used in table cell editing. You can use a text field, a check
box, or a combo box, and pass it to DefaultCellEditor's
constructor to create an editor. The following code uses a combo
box for editing colors. The combo box editor is shown in Figure
40.30a.

// Customize editor
JComboBox jcboColor = new JComboBox();
jcboColor.addItem("red");
jcboColor.addItem("green");
jcboColor.addItem("blue");
jcboColor.addItem("yellow");
jcboColor.addItem("orange");

jTree1.setCellEditor(new javax.swing.DefaultCellEditor(jcboColor));
jTree1.setEditable(true);

 (a) (b)

Figure 40.30

You can supply a custom editor for editing tree nodes.

There are two annoying problems with the editor created in the
preceding code. First, it is activated with just one mouse click.
Second, it overlaps the node's icon, as shown in Figure 40.30a.
These two problems can be fixed by using the
DefaultTreeCellEditor, as shown in the following code:

jTree1.setCellEditor
 (new javax.swing.tree.DefaultTreeCellEditor(jTree1,

new javax.swing.tree.DefaultTreeCellRenderer(),
new javax.swing.DefaultCellEditor(jcboColor)));

The new editor is shown in Figure 40.30b. Editing using
DefaultTreeCellEditor starts on a triple mouse click. The combo
box does not overlap the node’s icon.

50

40.15 Tree Events

JTree can fire TreeSelectionEvent and
TreeExpansionEvent, among many other events. Whenever
a new node is selected, JTree fires a
TreeSelectionEvent. Whenever a node is expanded or
collapsed, JTree fires a TreeExpansionEvent. To handle
the tree-selection event, a listener must implement
the TreeSelectionListener interface, which contains a
single handler named valueChanged method.
TreeExpansionListener contains two handlers named
treeCollapsed and treeExpanded for handling node
expansion or node closing.

The following code displays a selected node in a listener class
for TreeSelectionEvent:

public void valueChanged(TreeSelectionEvent e) {
 TreePath path = e.getNewLeadSelectionPath();
 TreeNode treeNode = (TreeNode)path.getLastPathComponent();
 System.out.println("The selected node is " + treeNode.toString());
}

Chapter Summary

1. JTable has three supporting models: a table model, a column
model, and a list-selection model. The table model is for storing
and processing data. The column model represents all the columns
in the table. The list-selection model is the same as the one
used by JList for selecting rows, columns, and cells in a table.
JTable also has two useful supporting classes, TableColumn and
JTableHeader. TableColumn contains the information on a
particular column. JTableHeader can be used to display the header
of a JTable. Each column has a default editor and renderer. You
can also create a custom editor by implementing the
TableCellEditor interface, and you can create a custom renderer
by implementing the TableCellRenderer interface.

2. Like JTable, JTree is a very complex component with many
supporting interfaces and classes. While JTree displays the tree,
the data representation of the tree is handled by TreeModel,
TreeNode, and TreePath. TreeModel represents the entire tree,
TreeNode represents a node, and TreePath represents a path to a
node. Unlike the ListModel or TableModel, the tree model does not
directly store or manage tree data. Tree data are stored and
managed in TreeNode and TreePath. A TreePath is an array of
Objects that are vended from a TreeModel. The elements of the
array are ordered such that the root is always the first element
(index 0) of the array. The TreeSelectionModel interface handles
tree node selection. The DefaultTreeCellRenderer class provides a
default tree node renderer that can display a label and/or an
icon in a node. The DefaultTreeCellEditor can be used to edit the
cells in a text field. The TreePath class is a support class that
represents a set of nodes in a path.

51

3. JTable and JTree are in the javax.swing package, but their
supporting interfaces and classes are all included in the
javax.swing.table and javax.swing.tree packages, respectively.

Test Questions

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions

Sections 40.2-40.7
40.1 How do you initialize a table? Can you specify the maximum number
of visible rows in a table without scrolling? How do you specify the
height of a table cell? How do you specify the horizontal margin of
table cells?

40.2 How do you modify table contents? How do you add or remove a row?
How do you add or remove a column?

40.3 What is autoresizing of a table column? How many types of
autoresizing are available?

40.4 What are the properties that show grids, horizontal grids, and
vertical grids? What are the properties that specify the table row
height, vertical margin, and horizontal margin?

40.5 What are the default table renderers and editors? How do you
create a custom table cell renderer and editor?

40.6 What are the default tree renderers and editors? How do you create
a custom tree cell renderer and editor?

40.7 How do you disable table cell editing?

Sections 40.8-40.14
40.8 How do you create a tree? How do you specify the row height of a
tree node? How do you obtain the default tree model and tree-selection
model from an instance of JTree?

40.9 How do you initialize data in a tree using TreeModel? How do you
add a child to an instance of DefaultMutableTreeNode?

40.10 How do you enable tree node editing?

40.11 How do you add or remove a node from a tree?

40.12 How do you obtain a selected tree node?

Programming Exercises

Sections 40.2-40.7
40.1*

(Create a table for a loan schedule) Exercise 31.5 displays an
amortization schedule in a text area. Write a program that

52

enables the user to enter or choose the loan amount, number of
years, and interest rate from spinners and displays the
schedule in a table, as shown in Figure 40.31. The step for
loan amount is $500, for number of years is 1, and for annual
interest rate is 0.125%.

Figure 40.31

The table shows the loan schedule.

40.2*

(Delete rows and columns) Listing 40.6, ModifyTable.java, allows you
to delete only the first selected row or column. Enable the
program to delete all the selected rows or columns. Also enable
the program to delete a row or a column by pressing the DELETE
key.

40.3**

 (Create a student table) Create a table for student records. Each
record consists of name, birthday, class status, in-state, and
a photo, as shown in Figure 40.32a. The name is of the String
type; birthday is of the Date type; class status is one of the
following five values: Freshman, Sophomore, Junior, Senior, or
Graduate; in-state is a boolean value indicating whether the
student is a resident of the state; and photo is an image icon.
Use the default editors for name, birthday, and in-state.
Supply a combo box as custom editor for class status.

 (a) (b)

Figure 40.32

(a) The table displays student records. (b) The data in the file are
displayed in a JTable.

40.4*

53

(Display a table for data from a text file) Suppose that a table named
Exercise36_4Table.txt is stored in a text file. The first line in the
file is the header, and the remaining lines correspond to rows in the
table. The elements are separated by commas. Write a program to display
the table using the JTable component. For example, the following text
file is displayed in a table, as shown in Figure 40.32b.

Country, Capital, Population, Democracy
USA, Washington DC, 280, true
Canada, Ottawa, 32, true
United Kingdom, London, 60, true
Germany, Berlin, 83, true
France, Paris, 60, true
Norway, Oslo, 4.5, true
India, New Delhi, 1046, true

40.5***

(Create a controller using JTable) In Exercise 35.1, you created a
chart model (ChartModel) and two views (PieChart and BarChart). Create
a controller that enables the user to modify the data, as shown in
Figure 40.33. You will see the changes take effect in the pie-chart
view and the bar-chart view. Your exercise consists of the following
classes:

• The controller named ChartController. This class uses a table
to display data. You can modify the data in the table. Click
the Insert button to insert a new row above the selected row
in the table, click the Delete button to delete the selected
row in the table, and click the Update button to update the
changes you made in the table.

• The class MyTableModel. This class extends DefaultTableModel
to override the getColumnClass method so that you can use the
JTable’s default editor for numerical values. This class is
same as in Listing 40.7.

• The classes ChartModel, PieChart, and BarChart from Exercise
35.1.

• The main class Exercise36_5. This class creates a user
interface with a controller and two buttons, View Pie Chart
and View Bar Chart. Click the View Pie Chart button to pop up
a frame to display a pie chart, and click the View Bar Chart
button to pop up a frame to display a bar chart.

Figure 40.33

You can modify the data in the controller. The views are synchronized
with the controller.

54

Sections 40.8-40.14
40.6*

(Create a tree for book chapters) Create a tree to display the table of
contents for a book. When a node is selected in the tree, display a
paragraph to describe the selected node, as shown in Figure 40.34.

Figure 40.34

The content of the node is displayed in a text area when the node is
clicked.

40.7*

(Store and restore trees) Modify Listing 40.16, ModifyTree.java, to add
two buttons, as shown in Figure 40.35 to store and restore trees. Use
the object I/O to store the tree model.

Figure 40.35

You can store tree data to a file and restore them later.

40.8*

(Traverse trees) Create a tree using the default JTree constructor and
traverse the nodes in breadth-first, depth-first, preorder, and
postorder.

40.9***

(File explorer) Use JTree to develop a file explorer. The program lets
the user enter a directory and displays all files under the directory,
as shown in Figure 40.36.

55

Figure 40.36

The file explorer explores the files in a directory.

40.10**

(Add and delete tree nodes using the INSERT and DELETE keys) Modify
Listing 40.16, ModifyTree.java, to add a new child node by pressing the
INSERT key, and delete a node by pressing the DELETE key.

40.11*

(Find tables and show their contents) Revise Programming Exercise 33.6
to display the table contents in a JTable rather than in a text area.

1

***This is a bonus Web chapter

CHAPTER 41
Advanced Java Database Programming

Objectives

To create a universal SQL client for accessing local or remote
database (§41.2).

To execute SQL statements in a batch mode (§41.3).

To process updatable and scrollable result sets (§41.4).

To simplify Java database programming using RowSet (§41.5).

To create a custom table model for RowSet (§41.5).

To store and retrieve images in JDBC (§41.7).

2

41.1 Introduction

The preceding chapter introduced JDBC’s basic features. This chapter
covers its advanced features. You will learn how to develop a universal
SQL client for accessing any local or remote relational database, learn
how to execute statements in a batch mode to improve performance, learn
scrollable result sets and how to update a database through result sets,
learn how to use RowSet to simplify database access, and learn how to
store and retrieve images.

41.2 A Universal SQL Client

In the preceding chapter, you used various drivers to connect to the
database, created statements for executing SQL statements, and processed
the results from SQL queries. This section presents a universal SQL
client that enables you to connect to any relational database and
execute SQL commands interactively, as shown in Figure 41.1. The client
can connect to any JDBC data source and can submit SQL SELECT commands
and non-SELECT commands for execution. The execution result is displayed
for the SELECT queries, and the execution status is displayed for the
non-SELECT commands. Listing 41.1 gives the program.

Figure 41.1

You can connect to any JDBC data source and execute SQL commands
interactively.

Listing 41.1 SQLClient.java

<margin note line 10: connection>
<margin note line 13: statement>
<margin note line 24: URLs>
<margin note line 28: drivers>
<margin note line 47: create UI>
<margin note line 109: execute SQL>
<margin note line 114: connect database>
<margin note line 119: clear command>
<margin note line 124: clear result>
<margin note line 139: load driver>
<margin note line 140: connect to database>
<margin note line 161: process SQL select>

3

<margin note line 164: process non-select>
<margin note line 222: main method omitted>

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import java.sql.*;
import java.util.*;

public class SQLClient extends JApplet {
 // Connection to the database
 private Connection connection;

 // Statement to execute SQL commands
 private Statement statement;

 // Text area to enter SQL commands
 private JTextArea jtasqlCommand = new JTextArea();

 // Text area to display results from SQL commands
 private JTextArea jtaSQLResult = new JTextArea();

 // JDBC info for a database connection
 JTextField jtfUsername = new JTextField();
 JPasswordField jpfPassword = new JPasswordField();
 JComboBox jcboURL = new JComboBox(new String[] {
 "jdbc:mysql://localhost/javabook",
 "jdbc:odbc:exampleMDBDataSource",
 "jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl"});
 JComboBox jcboDriver = new JComboBox(new String[] {
 "com.mysql.jdbc.Driver", "sun.jdbc.odbc.JdbcOdbcDriver",
 "oracle.jdbc.driver.OracleDriver"});

 JButton jbtExecuteSQL = new JButton("Execute SQL Command");
 JButton jbtClearSQLCommand = new JButton("Clear");
 JButton jbtConnectDB1 = new JButton("Connect to Database");
 JButton jbtClearSQLResult = new JButton("Clear Result");

 // Create titled borders
 Border titledBorder1 = new TitledBorder("Enter an SQL Command");
 Border titledBorder2 = new TitledBorder("SQL Execution Result");
 Border titledBorder3 = new TitledBorder(
 "Enter Database Information");

 JLabel jlblConnectionStatus = new JLabel("No connection now");

 /** Initialize the applet */
 public void init() {
 JScrollPane jScrollPane1 = new JScrollPane(jtasqlCommand);
 jScrollPane1.setBorder(titledBorder1);
 JScrollPane jScrollPane2 = new JScrollPane(jtaSQLResult);
 jScrollPane2.setBorder(titledBorder2);

 JPanel jPanel1 = new JPanel(new FlowLayout(FlowLayout.RIGHT));
 jPanel1.add(jbtClearSQLCommand);
 jPanel1.add(jbtExecuteSQL);

 JPanel jPanel2 = new JPanel();

4

 jPanel2.setLayout(new BorderLayout());
 jPanel2.add(jScrollPane1, BorderLayout.CENTER);
 jPanel2.add(jPanel1, BorderLayout.SOUTH);
 jPanel2.setPreferredSize(new Dimension(100, 100));

 JPanel jPanel3 = new JPanel();
 jPanel3.setLayout(new BorderLayout());
 jPanel3.add(jlblConnectionStatus, BorderLayout.CENTER);
 jPanel3.add(jbtConnectDB1, BorderLayout.EAST);

 JPanel jPanel4 = new JPanel();
 jPanel4.setLayout(new GridLayout(4, 1, 10, 5));
 jPanel4.add(jcboDriver);
 jPanel4.add(jcboURL);
 jPanel4.add(jtfUsername);
 jPanel4.add(jpfPassword);

 JPanel jPanel5 = new JPanel();
 jPanel5.setLayout(new GridLayout(4, 1));
 jPanel5.add(new JLabel("JDBC Driver"));
 jPanel5.add(new JLabel("Database URL"));
 jPanel5.add(new JLabel("Username"));
 jPanel5.add(new JLabel("Password"));

 JPanel jPanel6 = new JPanel();
 jPanel6.setLayout(new BorderLayout());
 jPanel6.setBorder(titledBorder3);
 jPanel6.add(jPanel4, BorderLayout.CENTER);
 jPanel6.add(jPanel5, BorderLayout.WEST);

 JPanel jPanel7 = new JPanel();
 jPanel7.setLayout(new BorderLayout());
 jPanel7.add(jPanel3, BorderLayout.SOUTH);
 jPanel7.add(jPanel6, BorderLayout.CENTER);

 JPanel jPanel8 = new JPanel();
 jPanel8.setLayout(new BorderLayout());
 jPanel8.add(jPanel2, BorderLayout.CENTER);
 jPanel8.add(jPanel7, BorderLayout.WEST);

 JPanel jPanel9 = new JPanel(new FlowLayout(FlowLayout.LEFT));
 jPanel9.add(jbtClearSQLResult);

 jcboURL.setEditable(true);
 jcboDriver.setEditable(true);

 add(jPanel8, BorderLayout.NORTH);
 add(jScrollPane2, BorderLayout.CENTER);
 add(jPanel9, BorderLayout.SOUTH);

 jbtExecuteSQL.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 executeSQL();
 }
 });
 jbtConnectDB1.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 connectToDB();
 }
 });

5

 jbtClearSQLCommand.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 jtasqlCommand.setText(null);
 }
 });
 jbtClearSQLResult.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 jtaSQLResult.setText(null);
 }
 });
 }

 /** Connect to DB */
 private void connectToDB() {
 // Get database information from the user input
 String driver = (String)jcboDriver.getSelectedItem();
 String url = (String)jcboURL.getSelectedItem();
 String username = jtfUsername.getText().trim();
 String password = new String(jpfPassword.getPassword());

 // Connection to the database
 try {
 connection = DriverManager.getConnection(
 url, username, password);
 jlblConnectionStatus.setText("Connected to " + url);
 }
 catch (java.lang.Exception ex) {
 ex.printStackTrace();
 }
 }

 /** Execute SQL commands */
 private void executeSQL() {
 if (connection == null) {
 jtaSQLResult.setText("Please connect to a database first");
 return;
 }
 else {
 String sqlCommands = jtasqlCommand.getText().trim();
 String[] commands = sqlCommands.replace('\n', ' ').split(";");

 for (String aCommand: commands) {
 if (aCommand.trim().toUpperCase().startsWith("SELECT")) {
 processSQLSelect(aCommand);
 }
 else {
 processSQLNonSelect(aCommand);
 }
 }
 }
 }

 /** Execute SQL SELECT commands */
 private void processSQLSelect(String sqlCommand) {
 try {
 // Get a new statement for the current connection
 statement = connection.createStatement();

 // Execute a SELECT SQL command
 ResultSet resultSet = statement.executeQuery(sqlCommand);

6

 // Find the number of columns in the result set
 int columnCount = resultSet.getMetaData().getColumnCount();
 String row = "";

 // Display column names
 for (int i = 1; i <= columnCount; i++) {
 row += resultSet.getMetaData().getColumnName(i) + "\t";
 }

 jtaSQLResult.append(row + '\n');

 while (resultSet.next()) {
 // Reset row to empty
 row = "";

 for (int i = 1; i <= columnCount; i++) {
 // A non-String column is converted to a string
 row += resultSet.getString(i) + "\t";
 }

 jtaSQLResult.append(row + '\n');
 }
 }
 catch (SQLException ex) {
 jtaSQLResult.setText(ex.toString());
 }
 }

 /** Execute SQL DDL, and modification commands */
 private void processSQLNonSelect(String sqlCommand) {
 try {
 // Get a new statement for the current connection
 statement = connection.createStatement();

 // Execute a non-SELECT SQL command
 statement.executeUpdate(sqlCommand);

 jtaSQLResult.setText("SQL command executed");
 }
 catch (SQLException ex) {
 jtaSQLResult.setText(ex.toString());
 }
 }
}

The user selects or enters the JDBC driver, database URL, username, and
password, and clicks the Connect to Database button to connect to the
specified database using the connectToDB() method (lines 130-147).

When the user clicks the Execute SQL Command button, the executeSQL()
method is invoked (lines 150-168) to get the SQL commands from the text
area (jtaSQLCommand) and extract each command separated by a semicolon
(;). It then determines whether the command is a SELECT query or a DDL
or data modification statement (lines 160-165). If the command is a
SELECT query, the processSQLSelect method is invoked (lines 171-205).
This method uses the executeQuery method (line 177) to obtain the query
result. The result is displayed in the text area jtaSQLResult (line
188). If the command is a non-SELECT query, the processSQLNonSelect()

7

method is invoked (lines 208-221). This method uses the executeUpdate
method (line 214) to execute the SQL command.

The getMetaData method (lines 180, 185) in the ResultSet interface is
used to obtain an instance of ResultSetMetaData. The getColumnCount
method (line 180) returns the number of columns in the result set, and
the getColumnName(i) method (line 185) returns the column name for the
ith column.

41.3 Batch Processing

In all the preceding examples, SQL commands are submitted to the
database for execution one at a time. This is inefficient for processing
a large number of updates. For example, suppose you wanted to insert a
thousand rows into a table. Submitting one INSERT command at a time
would take nearly a thousand times longer than submitting all the INSERT
commands in a batch at once. To improve performance, JDBC introduced the
batch update for processing nonselect SQL commands. A batch update
consists of a sequence of nonselect SQL commands. These commands are
collected in a batch and submitted to the database all together.
To use the batch update, you add nonselect commands to a batch using the
addBatch method in the Statement interface. After all the SQL commands
are added to the batch, use the executeBatch method to submit the batch
to the database for execution.

For example, the following code adds a create table command, adds two
insert statements in a batch, and executes the batch.

Statement statement = connection.createStatement();

// Add SQL commands to the batch
statement.addBatch("create table T (C1 integer, C2 varchar(15))");
statement.addBatch("insert into T values (100, 'Smith')");
statement.addBatch("insert into T values (200, 'Jones')");

// Execute the batch
int count[] = statement.executeBatch();

The executeBatch() method returns an array of counts, each of which
counts the number of rows affected by the SQL command. The first count
returns 0 because it is a DDL command. The other counts return 1 because
only one row is affected.

NOTE: To find out whether a driver supports batch
updates, invoke supportsBatchUpdates() on a
DatabaseMetaData instance. If the driver supports batch
updates, it will return true. The JDBC drivers for MySQL,
Access, and Oracle all support batch updates.

To demonstrate batch processing, consider writing a program that gets
data from a text file and copies the data from the text file to a table,
as shown in Figure 41.2. The text file consists of lines that each
corresponds to a row in the table. The fields in a row are separated by
commas. The string values in a row are enclosed in single quotes. You
can view the text file by clicking the View File button and copy the
text to the table by clicking the Copy button. The table must already be
defined in the database. Figure 41.2 shows the text file table.txt
copied to table Person. Person is created using the following statement:

8

create table Person (
 firstName varchar(20),
 mi char(1),
 lastName varchar(20)
)

Figure 41.2

The CopyFileToTable utility copies text files to database tables.

Listing 41.2 gives the solution to the problem.

Listing 41.2 CopyFileToTable.java

<margin note line 15: drivers>
<margin note line 18: URLs>
<margin note line 31: create UI>
<margin note line 74: view file>
<margin note line 81: to table>
<margin note line 114: load driver>
<margin note line 118: connect database>
<margin note line 125: insert row>
<margin note line 144: statement>
<margin note line 154: batch>
<margin note line 180: execute batch>
<margin note line 199: main method omitted>

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.sql.*;
import java.util.*;

public class CopyFileToTable extends JFrame {
 // Text file info
 private JTextField jtfFilename = new JTextField();
 private JTextArea jtaFile = new JTextArea();

 // JDBC and table info
 private JComboBox jcboDriver = new JComboBox(new String[] {
 "com.mysql.jdbc.Driver", "sun.jdbc.odbc.JdbcOdbcDriver",
 "oracle.jdbc.driver.OracleDriver"});
 private JComboBox jcboURL = new JComboBox(new String[] {
 "jdbc:mysql://localhost/javabook",
 "jdbc:odbc:exampleMDBDataSource",

9

 "jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl"});
 private JTextField jtfUsername = new JTextField();
 private JPasswordField jtfPassword = new JPasswordField();
 private JTextField jtfTableName = new JTextField();

 private JButton jbtViewFile = new JButton("View File");
 private JButton jbtCopy = new JButton("Copy");
 private JLabel jlblStatus = new JLabel();

 public CopyFileToTable() {
 JPanel jPanel1 = new JPanel();
 jPanel1.setLayout(new BorderLayout());
 jPanel1.add(new JLabel("Filename"), BorderLayout.WEST);
 jPanel1.add(jbtViewFile, BorderLayout.EAST);
 jPanel1.add(jtfFilename, BorderLayout.CENTER);

 JPanel jPanel2 = new JPanel();
 jPanel2.setLayout(new BorderLayout());
 jPanel2.setBorder(new TitledBorder("Source Text File"));
 jPanel2.add(jPanel1, BorderLayout.NORTH);
 jPanel2.add(new JScrollPane(jtaFile), BorderLayout.CENTER);

 JPanel jPanel3 = new JPanel();
 jPanel3.setLayout(new GridLayout(5, 0));
 jPanel3.add(new JLabel("JDBC Driver"));
 jPanel3.add(new JLabel("Database URL"));
 jPanel3.add(new JLabel("Username"));
 jPanel3.add(new JLabel("Password"));
 jPanel3.add(new JLabel("Table Name"));

 JPanel jPanel4 = new JPanel();
 jPanel4.setLayout(new GridLayout(5, 0));
 jcboDriver.setEditable(true);
 jPanel4.add(jcboDriver);
 jcboURL.setEditable(true);
 jPanel4.add(jcboURL);
 jPanel4.add(jtfUsername);
 jPanel4.add(jtfPassword);
 jPanel4.add(jtfTableName);

 JPanel jPanel5 = new JPanel();
 jPanel5.setLayout(new BorderLayout());
 jPanel5.setBorder(new TitledBorder("Target Database Table"));
 jPanel5.add(jbtCopy, BorderLayout.SOUTH);
 jPanel5.add(jPanel3, BorderLayout.WEST);
 jPanel5.add(jPanel4, BorderLayout.CENTER);

 add(jlblStatus, BorderLayout.SOUTH);
 add(new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 jPanel2, jPanel5), BorderLayout.CENTER);

 jbtViewFile.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 showFile();
 }
 });

 jbtCopy.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 try {

10

 copyFile();
 }
 catch (Exception ex) {
 jlblStatus.setText(ex.toString());
 }
 }
 });
 }

 /** Display the file in the text area */
 private void showFile() {
 Scanner input = null;
 try {
 // Use a Scanner to read text from the file
 input = new Scanner(new File(jtfFilename.getText().trim()));

 // Read a line and append the line to the text area
 while (input.hasNext())
 jtaFile.append(input.nextLine() + '\n');
 }
 catch (FileNotFoundException ex) {
 System.out.println("File not found: " + jtfFilename.getText());
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 finally {
 if (input != null) input.close();
 }
 }

 private void copyFile() throws Exception {
 // Load the JDBC driver
 Class.forName(((String)jcboDriver.getSelectedItem()).trim());
 System.out.println("Driver loaded");

 // Establish a connection
 Connection conn = DriverManager.getConnection
 (((String)jcboURL.getSelectedItem()).trim(),
 jtfUsername.getText().trim(),
 String.valueOf(jtfPassword.getPassword()).trim());
 System.out.println("Database connected");

 // Read each line from the text file and insert it to the table
 insertRows(conn);
 }

 private void insertRows(Connection connection) {
 // Build the SQL INSERT statement
 String sqlInsert = "insert into " + jtfTableName.getText()
 + " values (";

 // Use a Scanner to read text from the file
 Scanner input = null;

 // Get file name from the text field
 String filename = jtfFilename.getText().trim();

 try {
 // Create a scanner

11

 input = new Scanner(new File(filename));

 // Create a statement
 Statement statement = connection.createStatement();

 System.out.println("Driver major version? " +
 connection.getMetaData().getDriverMajorVersion());

 // Determine if batchUpdatesSupported is supported
 boolean batchUpdatesSupported = false;

 try {
 if (connection.getMetaData().supportsBatchUpdates()) {
 batchUpdatesSupported = true;
 System.out.println("batch updates supported");
 }
 else {
 System.out.println("The driver " +
 "does not support batch updates");
 }
 }
 catch (UnsupportedOperationException ex) {
 System.out.println("The operation is not supported");
 }

 // Determine if the driver is capable of batch updates
 if (batchUpdatesSupported) {
 // Read a line and add the insert table command to the batch
 while (input.hasNext()) {
 statement.addBatch(sqlInsert + input.nextLine() + ")");
 }

 statement.executeBatch();

 jlblStatus.setText("Batch updates completed");
 }
 else {
 // Read a line and execute insert table command
 while (input.hasNext()) {
 statement.executeUpdate(sqlInsert + input.nextLine() + ")");
 }

 jlblStatus.setText("Single row update completed");
 }
 }
 catch (SQLException ex) {
 System.out.println(ex);
 }
 catch (FileNotFoundException ex) {
 System.out.println("File not found: " + filename);
 }
 finally {
 if (input != null) input.close();
 }
 }
}

The insertRows method (lines 128-195) uses the batch updates to submit
SQL INSERT commands to the database for execution, if the driver
supports batch updates. Lines 152-164 check whether the driver supports

12

batch updates. If the driver does not support the operation, an
UnsupportedOperationException exception will be thrown (line 162) when
the supportsBatchUpdates() method is invoked.

The tables must already be created in the database. The file format and
contents must match the database table specification. Otherwise, the SQL
INSERT command will fail.

In Exercise 41.1, you will write a program to insert a thousand records
to a database and compare the performance with and without batch
updates.

41.4 Scrollable and Updatable Result Set

<margin note: sequential forward reading>
The result sets used in the preceding examples are read sequentially. A
result set maintains a cursor pointing to its current row of data.
Initially the cursor is positioned before the first row. The next()
method moves the cursor forward to the next row. This is known as
sequential forward reading. It is the only way of processing the rows in
a result set that is supported by JDBC 1.

With the new versions of JDBC, you can scroll the rows both forward and
backward and move the cursor to a desired location using the first,
last, next, previous, absolute, or relative method. Additionally, you
can insert, delete, or update a row in the result set and have the
changes automatically reflected in the database.

To obtain a scrollable or updatable result set, you must first create a
statement with an appropriate type and concurrency mode. For a static
statement, use

Statement statement = connection.createStatement
(int resultSetType, int resultSetConcurrency);

For a prepared statement, use

PreparedStatement statement = connection.prepareStatement
 (String sql, int resultSetType, int resultSetConcurrency);

<margin note: scrollable?>
The possible values of resultSetType are the constants defined in the
ResultSet:

TYPE_FORWARD_ONLY: The result set is accessed forward
sequentially.

TYPE_SCROLL_INSENSITIVE: The result set is scrollable, but not
sensitive to changes in the database.

TYPE_SCROLL_SENSITIVE: The result set is scrollable and
sensitive to changes made by others. Use this type if you want
the result set to be scrollable and updatable.

<margin note: updatable?>
The possible values of resultSetConcurrency are the constants defined in
the ResultSet:

CONCUR_READ_ONLY: The result set cannot be used to update the
database.

13

CONCUR_UPDATABLE: The result set can be used to update the
database.

For example, if you want the result set to be scrollable and updatable,
you can create a statement, as follows:

Statement statement = connection.createStatement
(ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE)

You use the executeQuery method in a Statement object to execute an SQL
query that returns a result set as follows:

ResultSet resultSet = statement.executeQuery(query);

<margin note: ResultSet methods>
You can now use the methods first(), next(), previous(), and last() to
move the cursor to the first row, next row, previous row, and last row.
The absolute(int row) method moves the cursor to the specified row; and
the getXxx(int columnIndex) or getXxx(String columnName) method is used
to retrieve the value of a specified field at the current row. The
methods insertRow(), deleteRow(), and updateRow() can also be used to
insert, delete, and update the current row. Before applying insertRow or
updateRow, you need to use the method updateXxx(int columnIndex, Xxx
value) or update(String columnName, Xxx value) to write a new value to
the field at the current row. The cancelRowUpdates() method cancels the
updates made to a row. The close() method closes the result set and
releases its resource. The wasNull() method returns true if the last
column read had a value of SQL NULL.

Listing 41.3 gives an example that demonstrates how to create a
scrollable and updatable result set. The program creates a result set
for the StateCapital table. The StateCapital table is defined as
follows:

create table StateCapital (
 state varchar(40),
 capital varchar(40)
);

Listing 41.3 ScrollUpdateResultSet.java

<margin note line 7: load driver>
<margin note line 11: connect to DB>
<margin note line 14: set auto commit>
<margin note line 18: scrollable updatable>
<margin note line 22: get result set>
<margin note line 29: move cursor>
<margin note line 32: update row>
<margin note line 35: move cursor>
<margin note line 39: insert row>
<margin note line 43: move cursor>
<margin note line 44: delete row>
<margin note line 52: close result set>
<margin note line 55: display result set>

import java.sql.*;

14

public class ScrollUpdateResultSet {
 public static void main(String[] args)
 throws SQLException, ClassNotFoundException {
 // Load the JDBC driver
 Class.forName("oracle.jdbc.driver.OracleDriver");
 System.out.println("Driver loaded");

 // Connect to a database
 Connection connection = DriverManager.getConnection
 ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
 "scott", "tiger");
 connection.setAutoCommit(true);
 System.out.println("Database connected");

 // Get a new statement for the current connection
 Statement statement = connection.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

 // Get ResultSet
 ResultSet resultSet = statement.executeQuery
 ("select state, capital from StateCapital");

 System.out.println("Before update ");
 displayResultSet(resultSet);

 // Update the second row
 resultSet.absolute(2); // Move cursor to the second row
 resultSet.updateString("state", "New S"); // Update the column
 resultSet.updateString("capital", "New C"); // Update the column
 resultSet.updateRow(); // Update the row in the data source

 // Insert after the last row
 resultSet.last();
 resultSet.moveToInsertRow(); // Move cursor to the insert row
 resultSet.updateString("state", "Florida");
 resultSet.updateString("capital", "Tallahassee");
 resultSet.insertRow(); // Insert the row
 resultSet.moveToCurrentRow(); // Move the cursor to the current row

 // Delete fourth row
 resultSet.absolute(4); // Move cursor to the 5th row
 resultSet.deleteRow(); // Delete the second row

 System.out.println("After update ");
 resultSet = statement.executeQuery
 ("select state, capital from StateCapital");
 displayResultSet(resultSet);

 // Close the connection
 resultSet.close();
 }

 private static void displayResultSet(ResultSet resultSet)
 throws SQLException {
 ResultSetMetaData rsMetaData = resultSet.getMetaData();
 resultSet.beforeFirst();
 while (resultSet.next()) {
 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
 System.out.printf("%-12s\t", resultSet.getObject(i));
 System.out.println();

15

 }
 }
}

<Output>

Driver loaded
Database connected

Before update
Indiana Indianapolis
Illinois Springfield
California Sacramento
Georgia Atlanta
Texas Austin

After update
Indiana Indianapolis
New S New C
California Sacramento
Texas Austin
Florida Tallahassee

<End Output>

<margin note: scrollable and updatable>
The code in lines 18-19 creates a Statement for producing scrollable and
updatable result sets.

<margin note: update row>
The program moves the cursor to the second row in the result set (line
29), updates two columns in this row (lines 30-31), and invokes the
updateRow() method to update the row in the underlying database (line
32).

<margin note: insert row>
An updatable ResultSet object has a special row associated with it that
serves as a staging area for building a row to be inserted. This special
row is called the insert row. To insert a row, first invoke the
moveToInsertRow() method to move the cursor to the insert row (line 36),
then update the columns using the updateXxx method (lines 37–38), and
finally insert the row using the insertRow() method (line 39). Invoking
moveToCurrentRow() moves the cursor to the current inserted row (lines
40).

<margin note: insert row>
The program moves to the fourth row and invokes the deleteRow() method
to delete the row from the database (lines 43–44).

<margin note: driver support>
NOTE: Not all current drivers support scrollable and
updatable result sets. The example is tested using Oracle
ojdbc6 driver. You can use supportsResultSetType(int
type) and supportsResultSetConcurrency(int type, int
concurrency) in the DatabaseMetaData interface to find
out which result type and currency modes are supported by
the JDBC driver. But even if a driver supports the
scrollable and updatable result set, a result set for a

16

complex query might not be able to perform an update. For
example, the result set for a query that involves several
tables is likely not to support update operations.

NOTE: The program may not work, if lines 22–23 are
replaced by

ResultSet resultSet = statement.executeQuery
 ("select * from StateCapital");

41.5 RowSet, JdbcRowSet, and CachedRowSet

<margin note: extends ResultSet>
JDBC introduced a new RowSet interface that can be used to simplify
database programming. The RowSet interface extends java.sql.ResultSet
with additional capabilities that allow a RowSet instance to be
configured to connect to a JDBC url, username, and password, set an SQL
command, execute the command, and retrieve the execution result. In
essence, it combines Connection, Statement, and ResultSet into one
interface.

NOTE:
<margin note: supported?>

Not all JDBC drivers support RowSet. Currently, the JDBC-
ODBC driver does not support all features of RowSet.

41.5.1 RowSet Basics
<margin note: connected vs. disconnected>
There are two types of RowSet objects: connected and disconnected. A
connected RowSet object makes a connection with a data source and
maintains that connection throughout its life cycle. A disconnected
RowSet object makes a connection with a data source, executes a query to
get data from the data source, and then closes the connection. A
disconnected rowset may make changes to its data while it is
disconnected and then send the changes back to the original source of
the data, but it must reestablish a connection to do so.

There are several versions of RowSet. Two frequently used are JdbcRowSet
and CachedRowSet. Both are subinterfaces of RowSet. JdbcRowSet is
connected, while CachedRowSet is disconnected. Also, JdbcRowSet is
neither serializable nor cloneable, while CachedRowSet is both. The
database vendors are free to provide concrete implementations for these
interfaces. Sun has provided the reference implementation JdbcRowSetImpl
for JdbcRowSet and CachedRowSetImpl for CachedRowSet. Figure 41.3 shows
the relationship of these components.

17

«interface»
java.sql.ResultSet

«interface»
javax.sql.RowSet

«interface»
javax.sql.rowset.JdbcRowSet

«interface»
javax.sql.rowset.CachedRowSet

com.sun.rowset.JdbcRowSetImpl com.sun.rowset.CachedRowSetImpl

Figure 41.3

The JdbcRowSetImpl and CachedRowSetImpl are concrete implementations of
RowSet.

The RowSet interface contains the JavaBeans properties with get and set
methods. You can use the set methods to set a new url, username,
password, and command for an SQL statement. Using a RowSet, Listing 37.1
can be simplified, as shown in Listing 41.4.

Listing 41.4 SimpleRowSet.java

<margin note line 9: load driver>
<margin note line 13: create RowSet>
<margin note line 16: set url>
<margin note line 17: set username>
<margin note line 18: set password>
<margin note line 19: set command>
<margin note line 21: execute command>
<margin note line 25: get result>
<margin note line 29: close connection>

import java.sql.SQLException;
import javax.sql.RowSet;
import com.sun.rowset.*;

public class SimpleRowSet {
 public static void main(String[] args)
 throws SQLException, ClassNotFoundException {
 // Load the JDBC driver
 Class.forName("com.mysql.jdbc.Driver");
 System.out.println("Driver loaded");

 // Create a row set
 RowSet rowSet = new JdbcRowSetImpl();

 // Set RowSet properties
 rowSet.setUrl("jdbc:mysql://localhost/javabook");
 rowSet.setUsername("scott");
 rowSet.setPassword("tiger");

18

 rowSet.setCommand("select firstName, mi, lastName " +
 "from Student where lastName = 'Smith'");
 rowSet.execute();

 // Iterate through the result and print the student names
 while (rowSet.next())
 System.out.println(rowSet.getString(1) + "\t" +
 rowSet.getString(2) + "\t" + rowSet.getString(3));

 // Close the connection
 rowSet.close();
 }
}

Line 13 creates a RowSet object using JdbcRowSetImpl. The program uses
the RowSet’s set method to set a URL, username, and password (lines 16-
18) and a command for a query statement (line 19). Line 24 executes the
command in the RowSet. The methods next() and getString(int) for
processing the query result (lines 25-26) are inherited from ResultSet.

<margin note: using CachedRowSet>
If you replace JdbcRowSet with CachedRowSet in line 13, the program will
work just fine. Note that the JDBC-ODBC driver supports JdbcRowSetImpl,
but not CachedRowSetImpl.

TIP
<margin note: obtain metadata>

Since RowSet is a subinterface of ResultSet, all the
methods in ResultSet can be used in RowSet. For example,
you can obtain ResultSetMetaData from a RowSet using the
getMetaData() method.

41.5.2 RowSet for PreparedStatement
The discussion in §37.5, “PreparedStatement,” introduced processing
parameterized SQL statements using the PreparedStatement interface.
RowSet has the capability to support parameterized SQL statements. The
set methods for setting parameter values in PreparedStatement are
implemented in RowSet. You can use these methods to set parameter values
for a parameterized SQL command. Listing 41.5 demonstrates how to use a
parameterized statement in RowSet. Line 19 sets an SQL query statement
with two parameters for lastName and mi in a RowSet. Since these two
parameters are strings, the setString method is used to set actual
values in lines 21-22.

Listing 41.5 RowSetPreparedStatement.java

<margin note line 9: load driver>
<margin note line 13: create RowSet>
<margin note line 16: set url>
<margin note line 19: SQL with parameters>
<margin note line 21: set parameter>
<margin note line 22: set parameter>
<margin note line 23: execute>
<margin note line 25: metadata>
<margin note line 38: close connection>

19

import java.sql.*;
import javax.sql.RowSet;
import com.sun.rowset.*;

public class RowSetPreparedStatement {
 public static void main(String[] args)
 throws SQLException, ClassNotFoundException {
 // Load the JDBC driver
 Class.forName("com.mysql.jdbc.Driver");
 System.out.println("Driver loaded");

 // Create a row set
 RowSet rowSet = new JdbcRowSetImpl();

 // Set RowSet properties
 rowSet.setUrl("jdbc:mysql://localhost/javabook");
 rowSet.setUsername("scott");
 rowSet.setPassword("tiger");
 rowSet.setCommand("select * from Student where lastName = ? " +
 "and mi = ?");
 rowSet.setString(1, "Smith");
 rowSet.setString(2, "R");
 rowSet.execute();

 ResultSetMetaData rsMetaData = rowSet.getMetaData();
 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
 System.out.printf("%-12s\t", rsMetaData.getColumnName(i));
 System.out.println();

 // Iterate through the result and print the student names
 while (rowSet.next()) {
 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
 System.out.printf("%-12s\t", rowSet.getObject(i));
 System.out.println();
 }

 // Close the connection
 rowSet.close();
 }
}

41.5.3 Scrolling and Updating RowSet
By default, a ResultSet object is neither scrollable nor updatable.
However, a RowSet object is both. It is easier to scroll and update a
database through a RowSet than through a ResultSet. Listing 41.6
rewrites Listing 41.3 using a RowSet. You can use methods such as
absolute(int) to move the cursor and methods such as delete(),
updateRow(), and insertRow() to update the database.

Listing 41.6 ScrollUpdateRowSet.java

<margin note line 9: load driver>
<margin note line 13: create a RowSet>

20

<margin note line 16: set url>
<margin note line 17: set username>
<margin note line 18: set password>
<margin note line 19: set SQL command>
<margin note line 20: execute>
<margin note line 23: display rowSet>
<margin note line 26: move cursor>
<margin note line 29: update row>
<margin note line 34: prepare insert>
<margin note line 36: insert row>
<margin note line 41: delete row>
<margin note line 47: close rowSet>

import java.sql.*;
import javax.sql.RowSet;
import com.sun.rowset.JdbcRowSetImpl;

public class ScrollUpdateRowSet {
 public static void main(String[] args)
 throws SQLException, ClassNotFoundException {
 // Load the JDBC driver
 Class.forName("oracle.jdbc.driver.OracleDriver");
 System.out.println("Driver loaded");

 // Create a row set
 RowSet rowSet = new JdbcRowSetImpl();

 // Set RowSet properties
 rowSet.setUrl("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl");
 rowSet.setUsername("scott");
 rowSet.setPassword("tiger");
 rowSet.setCommand("select state, capital from StateCapital");
 rowSet.execute();

 System.out.println("Before update ");
 displayRowSet(rowSet);

 // Update the second row
 rowSet.absolute(2); // Move cursor to the 2nd row
 rowSet.updateString("state", "New S"); // Update the column
 rowSet.updateString("capital", "New C"); // Update the column
 rowSet.updateRow(); // Update the row in the data source

 // Insert after the second row
 rowSet.last();
 rowSet.moveToInsertRow(); // Move cursor to the insert row
 rowSet.updateString("state", "Florida");
 rowSet.updateString("capital", "Tallahassee");
 rowSet.insertRow(); // Insert the row
 rowSet.moveToCurrentRow(); // Move the cursor to the current row

 // Delete fourth row
 rowSet.absolute(4); // Move cursor to the fifth row
 rowSet.deleteRow(); // Delete the second row

21

 System.out.println("After update ");
 displayRowSet(rowSet);

 // Close the connection
 rowSet.close();
 }

 private static void displayRowSet(RowSet rowSet)
 throws SQLException {
 ResultSetMetaData rsMetaData = rowSet.getMetaData();
 rowSet.beforeFirst();
 while (rowSet.next()) {
 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
 System.out.printf("%-12s\t", rowSet.getObject(i));
 System.out.println();
 }
 }
}

<margin note: updating CachedRowSet>
If you replace JdbcRowSet with CachedRowSet in line 13, the database is
not changed. To make the changes on the CachedRowSet effective in the
database, you must invoke the acceptChanges() method after you make all
the changes, as follows:

// Write changes back to the database
((com.sun.rowset.CachedRowSetImpl)rowSet).acceptChanges();

This method automatically reconnects to the database and writes all the
changes back to the database.

41.5.4 RowSetEvent
A RowSet object fires a RowSetEvent whenever the object’s cursor has
moved, a row has changed, or the entire row set has changed. This event
can be used to synchronize a RowSet with the components that rely on the
RowSet. For example, a visual component that displays the contents of a
RowSet should be synchronized with the RowSet. The RowSetEvent can be
used to achieve synchronization. The handlers in RowSetListener are
cursorMoved(RowSetEvent), rowChanged(RowSetEvent), and
cursorSetChanged(RowSetEvent).

Listing 41.7 gives an example that demonstrates RowSetEvent. A listener
for RowSetEvent is registered in lines 14-26. When rowSet.execute()
(line 33) is executed, the entire row set is changed, so the listener’s
rowSetChanged handler is invoked. When rowSet.last() (line 35) is
executed, the cursor is moved, so the listener’s cursorMoved handler is
invoked. When rowSet.updateRow() (line 37) is executed, the row is
updated, so the listener’s rowChanged handler is invoked.

Listing 41.7 TestRowSetEvent.java

<margin note line 9: load driver>
<margin note line 13: create RowSet>
<margin note line 14: register listener>

22

<margin note line 33: row set changed>
<margin note line 35: cursor moved>
<margin note line 37: row updated>

import java.sql.*;
import javax.sql.*;
import com.sun.rowset.*;

public class TestRowSetEvent {
 public static void main(String[] args)
 throws SQLException, ClassNotFoundException {
 // Load the JDBC driver
 Class.forName("com.mysql.jdbc.Driver");
 System.out.println("Driver loaded");

 // Create a row set
 RowSet rowSet = new JdbcRowSetImpl();
 rowSet.addRowSetListener(new RowSetListener() {
 public void cursorMoved(RowSetEvent e) {
 System.out.println("Cursor moved");
 }

 public void rowChanged(RowSetEvent e) {
 System.out.println("Row changed");
 }

 public void rowSetChanged(RowSetEvent e) {
 System.out.println("row set changed");
 }
 });

 // Set RowSet properties
 rowSet.setUrl("jdbc:mysql://localhost/javabook");
 rowSet.setUsername("scott");
 rowSet.setPassword("tiger");
 rowSet.setCommand("select * from Student");
 rowSet.execute();

 rowSet.last(); // Cursor moved
 rowSet.updateString("lastName", "Yao"); // Update column
 rowSet.updateRow(); // Row updated

 // Close the connection
 rowSet.close();
 }
}

41.6 Custom RowSetTableModel

Often you need to display a query result set in a JTable. You may define
a table model for a row set and plug this model to a JTable. To define a
table model, extend the AbstractTableModel class and implement at least
three methods: getRowCount(), getColumnCount(), and getValueAt(int row,

23

int column). The AbstractTableModel class was introduced in §40.3,
“Table Models and Table Column Models.”

Listing 41.8 shows the RowSetTableModel class.

Listing 41.8 RowSetTableModel.java

<margin note line 8: rowSet>
<margin note line 11: getRowSet>
<margin note line 16: setRowSet>
<margin note line 19: add listener>
<margin note line 25: getRowCount()>
<margin note line 38: getColumnCount()>
<margin note line 52: getValueAt>
<margin note line 65: getColumnName()>
<margin note line 77: rowSetChanged>
<margin note line 83: rowChanged>
<margin note line 89: cursorMoved>

import java.sql.*;
import javax.sql.*;
import javax.swing.table.AbstractTableModel;

public class RowSetTableModel extends AbstractTableModel
 implements RowSetListener {
 // RowSet for the result set
 private RowSet rowSet;

 /** Return the rowset */
 public RowSet getRowSet() {
 return rowSet;
 }

 /** Set a new rowset */
 public void setRowSet(RowSet rowSet) {
 if (rowSet != null) {
 this.rowSet = rowSet;
 rowSet.addRowSetListener(this);
 fireTableStructureChanged();
 }
 }

 /** Return the number of rows in the row set */
 public int getRowCount() {
 try {
 rowSet.last();
 return rowSet.getRow(); // Get the current row number
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }

 return 0;
 }

24

 /** Return the number of columns in the row set */
 public int getColumnCount() {
 try {
 if (rowSet != null) {
 return rowSet.getMetaData().getColumnCount();
 }
 }
 catch (SQLException ex) {
 ex.printStackTrace();
 }

 return 0;
 }

 /** Return value at the specified row and column */
 public Object getValueAt(int row, int column) {
 try {
 rowSet.absolute(row + 1);
 return rowSet.getObject(column + 1);
 }
 catch (SQLException sqlex) {
 sqlex.printStackTrace();
 }

 return null;
 }

 /** Return the column name at a specified column */
 public String getColumnName(int column) {
 try {
 return rowSet.getMetaData().getColumnLabel(column + 1);
 }
 catch (SQLException ex) {
 ex.printStackTrace();
 }

 return "";
 }

 /** Implement rowSetChanged */
 public void rowSetChanged(RowSetEvent e) {
 System.out.println("RowSet changed");
 fireTableStructureChanged();
 }

 /** Implement rowChanged */
 public void rowChanged(RowSetEvent e) {
 System.out.println("Row changed");
 fireTableDataChanged();
 }

 /** Implement cursorMoved */
 public void cursorMoved(RowSetEvent e) {

25

 System.out.println("Cursor moved");
 }
}

The RowSetTableModel class defines the rowSet property with get and set
methods (lines 11-22). The setRowSet method sets a new rowSet in the
model. The model becomes a listener for the rowSet (line 19) in response
to the changes in the rowSet. The fireTableStructureChanged() method
defined in AbstractTableModel is invoked to refill the model with the
data in rowSet (line 20).

The getRowCount() method returns the number of rows in the rowSet.
Invoking rowSet.last() moves the cursor to the last row (line 27), and
rowSet.getRow() returns the row number (line 28).

The getColumnCount() method returns the number of columns in the rowSet.
The number of the columns in the rowSet can be obtained from the meta
data (line 41).

The getValueAt(row, column) method returns the cell value at the
specified row and column (lines 52-62). The getColumnName(column) method
returns the column name for the specified column (lines 65-74).

NOTE
<margin note: index inconsistency>

The index of row and column in JTable is 0-based.
However, the index of row and column in RowSet is 1-
based.

The RowSetTableModel implements the RowSetListener (lines 77-91). So, a
RowSetTableModel can be a listener for RowSet events.

Now let us turn our attention to developing a useful utility that
displays a row set in a JTable. As shown in Figure 41.4, you enter or
select a JDBC driver and database, enter a username and a password, and
specify a table name to connect the database and display the table
contents in the JTable. You can then use the buttons First, Next, Prior,
and Last to move the cursor to the first row, next row, previous row,
and last row in the table, use the Delete button to delete a selected
row, and use the Commit button to save the change in the database.

Figure 41.4

The program enables you to navigate the table and delete rows.

The status bar at the bottom of the window shows the current row in the
row set. The cursor in the row set and the row in the JTable are
synchronized. You can move the cursor by using the navigation buttons or
by selecting a row in the JTable.

26

Define two classes: TestTableEditor (Listing 41.9) and TableEditor
(Listing 41.10). TestTableEditor is the main class that enables the user
to enter the database connection information and a table name. Once the
database is connected, the table contents are displayed in an instance
of TableEditor. The TableEditor class can be used to browse a table and
modify a table.

Listing 41.9 TestTableEditor.java

<margin note line 8: drives>
<margin note line 13: urls>
<margin note line 19: UI components>
<margin note line 29: create UI>
<margin note line 60: load driver>
<margin note line 61: create rowSet>
<margin note line 62: set url>
<margin note line 63: set username>
<margin note line 64: set password>
<margin note line 65: set command>
<margin note line 67: execute command>
<margin note line 69: rowSet to tableEditor1>
<margin note line 77: main method omitted>

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.sql.RowSet;
import com.sun.rowset.CachedRowSetImpl;

public class TestTableEditor extends JApplet {
 private JComboBox jcboDriver = new JComboBox(new String[] {
 "sun.jdbc.odbc.JdbcOdbcDriver",
 "com.mysql.jdbc.Driver",
 "oracle.jdbc.driver.OracleDriver"
 });
 private JComboBox jcboURL = new JComboBox(new String[] {
 "jdbc:odbc:exampleMDBDataSource",
 "jdbc:mysql://localhost/javabook",
 "jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl"
 });

 private JButton jbtConnect =
 new JButton("Connect to DB & Get Table");
 private JTextField jtfUserName = new JTextField();
 private JPasswordField jpfPassword = new JPasswordField();
 private JTextField jtfTableName = new JTextField();
 private TableEditor tableEditor1 = new TableEditor();
 private JLabel jlblStatus = new JLabel();

 /** Creates new form TestTableEditor */
 public TestTableEditor() {
 JPanel jPanel1 = new JPanel(new GridLayout(5, 0));
 jPanel1.add(jcboDriver);

27

 jPanel1.add(jcboURL);
 jPanel1.add(jtfUserName);
 jPanel1.add(jpfPassword);
 jPanel1.add(jtfTableName);

 JPanel jPanel2 = new JPanel(new GridLayout(5, 0));
 jPanel2.add(new JLabel("JDBC Driver"));
 jPanel2.add(new JLabel("Database URL"));
 jPanel2.add(new JLabel("Username"));
 jPanel2.add(new JLabel("Password"));
 jPanel2.add(new JLabel("Table Name"));

 JPanel jPanel3 = new JPanel(new BorderLayout());
 jPanel3.add(jbtConnect, BorderLayout.SOUTH);
 jPanel3.add(jPanel2, BorderLayout.WEST);
 jPanel3.add(jPanel1, BorderLayout.CENTER);
 tableEditor1.setPreferredSize(new Dimension(400, 200));

 jcboURL.setEditable(true);
 jcboDriver.setEditable(true);

 add(new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 jPanel3, tableEditor1), BorderLayout.CENTER);
 add(jlblStatus, BorderLayout.SOUTH);

 jbtConnect.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 try {
 // Connect to the database and create a rowset
 Class.forName(((String)jcboDriver.getSelectedItem()).trim());
 RowSet rowSet = new CachedRowSetImpl();
 rowSet.setUrl(((String)jcboURL.getSelectedItem()).trim());
 rowSet.setUsername(jtfUserName.getText().trim());
 rowSet.setPassword(new String(jpfPassword.getPassword()));
 rowSet.setCommand("select * from " +
 jtfTableName.getText().trim());
 rowSet.execute();
 rowSet.beforeFirst();
 tableEditor1.setRowSet(rowSet);
 }
 catch (Exception ex) {
 jlblStatus.setText(ex.toString());
 }
 }
 });
 }
}

When the user clicks the Connect to DB & Get Table button, a
CachedRowSet is created (line 61). The url, username, password, and a
command are set in the row set (lines 62-66). The row set is executed
(line 67) and is plugged to the TableEditor (line 69).

Listing 41.10 TableEditor.java

28

<margin note line 10: UI components>
<margin note line 19: RowSetTableModel>
<margin note line 21: selection model>
<margin note line 22: JTable>
<margin note line 23: rowSet>
<margin note line 28: plug rowSet>
<margin note line 29: plug tableModel>
<margin note line 32: auto sort>
<margin note line 39: create UI>
<margin note line 53: plug selection model>
<margin note line 58: move cursor>
<margin note line 63: move cursor>
<margin note line 68: move cursor>
<margin note line 73: move cursor>
<margin note line 68: delete row>
<margin note line 84: save changes>
<margin note line 104: delete row>
<margin note line 117: synchronize table cursor>
<margin note line 124: move cursor>
<margin note line 142: table cursor selection>

import javax.swing.*;
import javax.swing.table.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import javax.sql.*;
import com.sun.rowset.CachedRowSetImpl;

public class TableEditor extends JPanel {
 private JButton jbtFirst = new JButton("First");
 private JButton jbtNext = new JButton("Next");
 private JButton jbtPrior = new JButton("Prior");
 private JButton jbtLast = new JButton("Last");
 private JButton jbtDelete = new JButton("Delete");
 private JButton jbtCommit = new JButton("Commit");
 private JLabel jlblStatus = new JLabel();

 // Table model, table selection model, table, rowset
 private RowSetTableModel tableModel = new RowSetTableModel();
 private DefaultListSelectionModel listSelectionModel =
 new DefaultListSelectionModel();
 private JTable jTable1 = new JTable();
 private RowSet rowSet;

 /** Set a new row set */
 public void setRowSet(RowSet rowSet) {
 this.rowSet = rowSet;
 tableModel.setRowSet(rowSet);
 jTable1.setModel(tableModel);

 // Enable auto sort on columns
 TableRowSorter<TableModel> sorter =
 new TableRowSorter<TableModel>(tableModel);
 jTable1.setRowSorter(sorter);

29

 }

 /** Create a TableEditor */
 public TableEditor() {
 JPanel jPanel1 = new JPanel();
 jPanel1.add(jbtFirst);
 jPanel1.add(jbtNext);
 jPanel1.add(jbtPrior);
 jPanel1.add(jbtLast);
 jPanel1.add(jbtDelete);
 jPanel1.add(jbtCommit);

 setLayout(new BorderLayout());
 add(jPanel1, BorderLayout.NORTH);
 add(new JScrollPane(jTable1), BorderLayout.CENTER);
 add(jlblStatus, BorderLayout.SOUTH);

 // Set selection model for the table
 jTable1.setSelectionModel(listSelectionModel);

 // Register listeners
 jbtFirst.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 moveCursor("first");
 }
 });
 jbtNext.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 moveCursor("next");
 }
 });
 jbtPrior.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 moveCursor("previous");
 }
 });
 jbtLast.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 moveCursor("last");
 }
 });
 jbtDelete.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 delete();
 }
 });
 jbtCommit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 try {
 ((CachedRowSetImpl)rowSet).acceptChanges();
 }
 catch (java.sql.SQLException ex) {
 ex.printStackTrace();
 }

30

 }
 });
 listSelectionModel.addListSelectionListener(
 new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent e) {
 handleSelectionValueChanged(e);
 }
 });
 }

 /* Delete a row */
 private void delete() {
 try {
 // Delete the record from the database
 int currentRow = rowSet.getRow();
 rowSet.deleteRow();
 if (rowSet.isAfterLast())
 rowSet.last();
 else if (rowSet.getRow() >= currentRow)
 rowSet.absolute(currentRow);
 setTableCursor();
 }
 catch (java.sql.SQLException ex) {
 jlblStatus.setText(ex.toString());
 }
 }

 /** Set cursor in the table and set the row number in the status */
 private void setTableCursor() throws java.sql.SQLException {
 int row = rowSet.getRow();
 listSelectionModel.setSelectionInterval(row - 1, row - 1);
 jlblStatus.setText("Current row number: " + row);
 }

 /** Move cursor to the specified location */
 private void moveCursor(String whereToMove) {
 try {
 if (whereToMove.equals("first"))
 rowSet.first();
 else if (whereToMove.equals("next") && !rowSet.isLast())
 rowSet.next();
 else if (whereToMove.equals("previous") && !rowSet.isFirst())
 rowSet.previous();
 else if (whereToMove.equals("last"))
 rowSet.last();
 setTableCursor();
 }
 catch (java.sql.SQLException ex) {
 jlblStatus.setText(ex.toString());
 }
 }

 /** Handle the selection in the table */
 private void handleSelectionValueChanged(ListSelectionEvent e) {

31

 int selectedRow = jTable1.getSelectedRow();

 try {
 if (selectedRow != -1) {
 rowSet.absolute(selectedRow + 1);
 setTableCursor();
 }
 }
 catch (java.sql.SQLException ex) {
 jlblStatus.setText(ex.toString());
 }
 }
}

The setRowSet method (lines 26-35) sets a new row set in TableEditor.
The rowSet is plugged into the table model (line 29) and the table model
is attached to the table (line 32). The code in lines 32-34 enables the
column names to be sorted.

The handling of the navigation buttons First, Next, Prior, and Last is
simply to invoke the methods first(), next(), previous(), and last() to
move the cursor in the rowSet and (lines 126-133), at the same time, set
the selected row in JTable by invoking setTableCursor() (line 134).

To implement the Delete button, invoke the deleteRow() method (line 104)
to remove the row from the rowSet. After the row is removed, set the
cursor to the next row in the rowSet (lines 105-108) and synchronize the
cursor in the table (line 109).

Note that the deleteRow() method removes the row from the CachedRowSet.
The Commit button actually saves the changes into the database (line
84).

To implement the handler for list-selection events on jTable1, set the
cursor in the row set to match the row selected in jTable1 (lines 142-
154).

41.7 Storing and Retrieving Images in JDBC

A database can store not only numbers and strings, but also images. SQL3
introduced a new data type called BLOB (Binary Large OBject) for storing
binary data, which can be used to store images. Another new SQL3 type is
CLOB (Character Large OBject) for storing a large text in the character
format. JDBC introduced the interfaces java.sql.Blob and java.sql.Clob
to support mapping for these new SQL types. You can use getBlob,
setBinaryStream, getClob, setBlob, and setClob, to access SQL BLOB and
CLOB values in the interfaces ResultSet and PreparedStatement.

To store an image into a cell in a table, the corresponding column for
the cell must be of the BLOB type. For example, the following SQL
statement creates a table whose type for the flag column is BLOB.

create table Country(name varchar(30), flag blob,
 description varchar(255));

32

In the preceding statement, the description column is limited to 255
characters, which is the upper limit for MySQL. For Oracle, the upper
limit is 32,672 bytes. For a large character field, you can use the CLOB
type for Oracle, which can store up to two GB characters. MySQL does not
support CLOB. However, you can use BLOB to store a long string and
convert binary data into characters.

NOTE

<margin note: supported?>
Access does not support the BLOB and CLOB types.

To insert a record with images to a table, define a prepared statement
like this one:

PreparedStatement pstmt = connection.prepareStatement(
"insert into Country values(?, ?, ?)");

<margin note: store image>
Images are usually stored in files. You may first get an instance of
InputStream for an image file and then use the setBinaryStream method to
associate the input stream with a cell in the table, as follows:

// Store image to the table cell
File file = new File(imageFilename);
InputStream inputImage = new FileInputStream(file);
pstmt.setBinaryStream(2, inputImage, (int)(file.length()));

<margin note: retrieve image>
To retrieve an image from a table, use the getBlob method, as shown
below:

// Store image to the table cell
Blob blob = rs.getBlob(1);
ImageIcon imageIcon = new ImageIcon(
 blob.getBytes(1, (int)blob.length()));

Listing 41.11 gives a program that demonstrates how to store and
retrieve images in JDBC. The program first creates the Country table and
stores data to it. Then the program retrieves the country names from the
table and adds them to a combo box. When the user selects a name from
the combo box, the country’s flag and description are displayed, as
shown in Figure 41.5.

Figure 41.5

The program enables you to retrieve data, including images, from a table
and displays them.

Listing 41.11 StoreAndRetrieveImage.java

33

<margin note line 45: load driver>
<margin note line 49: connect database>
<margin note line 54: create statement>
<margin note line 57: prepare statement>
<margin note line 62: data to database>
<margin note line 75: insert>
<margin note line 83: get image URL>
<margin note line 86: binary stream>
<margin note line 103: fill combo box>
<margin note line 109: set name>
<margin note line 113: get image icon>
<margin note line 118: set description>
<margin note line 125: main method omitted>

import java.sql.*;
import java.io.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class StoreAndRetrieveImage extends JApplet {
 // Connection to the database
 private Connection connection;

 // Statement for static SQL statements
 private Statement stmt;

 // Prepared statement
 private PreparedStatement pstmt = null;
 private DescriptionPanel descriptionPanel1
 = new DescriptionPanel();

 private JComboBox jcboCountry = new JComboBox();

 /** Creates new form StoreAndRetrieveImage */
 public StoreAndRetrieveImage() {
 try {
 connectDB(); // Connect to DB
 storeDataToTable(); //Store data to the table (including image)
 fillDataInComboBox(); // Fill in combo box
 retrieveFlagInfo((String)(jcboCountry.getSelectedItem()));
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }

 jcboCountry.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent evt) {
 retrieveFlagInfo((String)(evt.getItem()));
 }
 });

 add(jcboCountry, BorderLayout.NORTH);
 add(descriptionPanel1, BorderLayout.CENTER);
 }

 private void connectDB() throws Exception {
 // Load the driver

34

 Class.forName("com.mysql.jdbc.Driver");
 System.out.println("Driver loaded");

 // Establish connection
 connection = DriverManager.getConnection
 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
 System.out.println("Database connected");

 // Create a statement for static SQL
 stmt = connection.createStatement();

 // Create a prepared statement to retrieve flag and description
 pstmt = connection.prepareStatement("select flag, description " +
 "from Country where name = ?");
 }

 private void storeDataToTable() {
 String[] countries = {"Canada", "UK", "USA", "Germany",
 "Indian", "China"};

 String[] imageFilenames = {"image/ca.gif", "image/uk.gif",
 "image/us.gif", "image/germany.gif", "image/india.gif",
 "image/china.gif"};

 String[] descriptions = {"A text to describe Canadian " +
 "flag is omitted", "British flag ...", "American flag ...",
 "German flag ...", "Indian flag ...", "Chinese flag ..."};

 try {
 // Create a prepared statement to insert records
 PreparedStatement pstmt = connection.prepareStatement(
 "insert into Country values(?, ?, ?)");

 // Store all predefined records
 for (int i = 0; i < countries.length; i++) {
 pstmt.setString(1, countries[i]);

 // Store image to the table cell
 java.net.URL url =
 this.getClass().getResource(imageFilenames[i]);
 InputStream inputImage = url.openStream();
 pstmt.setBinaryStream(2, inputImage,
 (int)(inputImage.available()));

 pstmt.setString(3, descriptions[i]);
 pstmt.executeUpdate();
 }

 System.out.println("Table Country populated");
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 private void fillDataInComboBox() throws Exception {
 ResultSet rs = stmt.executeQuery("select name from Country");
 while (rs.next()) {
 jcboCountry.addItem(rs.getString(1));
 }

35

 }

 private void retrieveFlagInfo(String name) {
 try {
 pstmt.setString(1, name);
 ResultSet rs = pstmt.executeQuery();
 if (rs.next()) {
 Blob blob = rs.getBlob(1);
 ImageIcon imageIcon = new ImageIcon(
 blob.getBytes(1, (int)blob.length()));
 descriptionPanel1.setImageIcon(imageIcon);
 descriptionPanel1.setName(name);
 String description = rs.getString(2);
 descriptionPanel1.setDescription(description);
 }
 }
 catch (Exception ex) {
 System.err.println(ex);
 }
 }
}

DescriptionPanel (line 14) is a component for displaying a country
(name, flag, and description). This component was presented in Listing
17.2, DescriptionPanel.java.

The storeDataToTable method (lines 58-95) populates the table with data.
The fillDataInComboBox method (lines 97-102) retrieves the country names
and adds them to the combo box. The retrieveFlagInfo(name) method (lines
104-121) retrieves the flag and description for the specified country
name.

Key Terms

BLOB type
CLOB type
batch mode
cached row set
row set
scrollable result set
updatable result set

Chapter Summary

1. This chapter developed a universal SQL client that can be used to
access any local or remote relational database.

2. You can use the addBatch(SQLString) method to add SQL statements
to a statement for batch processing.

3. You can create a statement to specify that the result set be
scrollable and updatable. By default, the result set is neither of
these.

4. The RowSet can be used to simplify Java database programming. A
RowSet object is scrollable and updatable. A RowSet can fire a
RowSetEvent.

5. You can store and retrieve image data in JDBC using the SQL BLOB
type.

36

Test Questions

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions

Section 41.3
41.1 What is batch processing in JDBC? What are the benefits of using
batch processing?

41.2 How do you add an SQL statement to a batch? How do you execute a
batch?

41.3 Can you execute a SELECT statement in a batch?

41.4 How do you know whether a JDBC driver supports batch updates?

Section 41.4
41.5 What is a scrollable result set? What is an updatable result set?

41.6 How do you create a scrollable and updatable ResultSet?

41.7 How do you know whether a JDBC driver supports a scrollable and
updatable ResultSet?

Sections 41.5-41.6
41.8 What are the advantages of RowSet?

41.9 What are JdbcRowSet and CachedRowSet? What are the differences
between them?

41.10 How do you create a JdbcRowSet and a CachedRowSet?

41.11 Can you scroll and update a RowSet? What method must be invoked to
write the changes in a CachedRowSet to the database?

41.12 Describe the handlers in RowSetListener.

Section 41.7
41.13 How do you store images into a database?

41.14 How do you retrieve images from a database?

41.15 Does Oracle support the SQL3 BLOB type and CLOB type? What about
MySQL and Access?

Exercises

41.1*

(Batch update) Write a program that inserts a thousand records to a
database, and compare the performance with and without batch updates,
as shown in Figure 41.6a. Suppose the table is defined as follows:

create table Temp(num1 double, num2 double, num3 double)

37

Use the Math.random() method to generate random numbers for
each record. Create a dialog box that contains
DBConnectionPanel, discussed in Exercise 37.3. Use this dialog
box to connect to the database. When you click the Connect to
Database button in Figure 41.6a, the dialog box in Figure 41.6b
is displayed.

 (a) (b)

Figure 41.6

The program demonstrates the performance improvements that result from
using batch updates.

41.2**

(Scrollable result set) Write a program that uses the buttons First,
Next, Prior, Last, Insert, Delete, and Update, and modify a single
record in the Address table, as shown in Figure 41.7.

Figure 41.7

You can use the buttons to display and modify a single record in the
Address table.

41.3**

(ResultSetTableModel) Listing 41.8, RowSetTableModel.java, defines a
table model for RowSet. Develop a new class named ResultSetTableModel
for ResultSet. ResultSetTableModel extends AbstractTableModel. Write a
test program that displays the Course table to a JTable, as shown in
Figure 41.8. Enable autosort on columns.

38

Figure 41.8

The Course table is displayed in a JTable using ResultSetTableModel.

41.4**

(Revise SQLClient.java) Rewrite Listing 41.1, SQLClient.java, to
display the query result in a JTable, as shown in Figure 41.9.

Figure 41.9

The query result is displayed in a JTable.

41.5***

(Edit table using RowSet) Rewrite Listing 41.10 to add an Insert
button to insert a new row and an Update button to update the row.

41.6*

(Display images from database) Write a program that uses JTable to
display the Country table created in Listing 41.11,
StoreAndRetrieveImage.java, as shown in Figure 41.10.

Figure 41.10

39

The Country table is displayed in a JTable instance.

41.7**

(Store and retrieve images using RowSet) Rewrite the example in
Listing 41.11, StoreAndRetrieveImage.java, using RowSet.

41.8*

(Populate Salary table) Rewrite Exercise 33.8 using a batch mode to
improve performance.

1

***This is a bonus Web chapter

CHAPTER 42

Servlets

Objectives

To explain how a servlet works (§42.2).

To create/develop/run servlets (§42.3).

To deploy servlets on application servers such as Tomcat and
GlassFish (§42.3).

To describe the servlets API (§42.4).

To create simple servlets (§42.5).

To create and process HTML forms (§42.6).

To develop servlets to access databases (§42.7).

To use hidden fields, cookies, and HttpSession to track sessions
(§42.8).

To send images from servlets (§42.9).

2

42.1 Introduction

<Side Remark: servlet>
Servlets are Java programs that run on a Web server. They can be used to
process client requests or produce dynamic Web pages. For example, you
can write servlets to generate dynamic Web pages that display stock
quotes or process client registration forms and store registration data
in a database. This chapter introduces the concept of Java servlets. You
will learn how to develop Java servlets using NetBeans.

NOTE:
<Side Remark: why NetBeans?>
You can develop servlets without using an IDE. However, using an IDE
such as NetBeans can greatly simplify the development task. The tool can
automatically create the supporting directories and files. We choose
NetBeans because it has the best support for Java Web development. You
can still use your favorite IDE or no IDE for this chapter.

NOTE:
<Side Remark: why servlets?>
Servlets are the foundation of Java Web technologies. JSP, JSF, and Java
Web services are based on servlets. A good understanding of servlets
helps you see the big picture of Java Web technology and learn JSP, JSF,
and Web services.

42.2 HTML and Common Gateway Interface

Java servlets run in the Web environment. To understand Java servlets,
let us review HTML and the Common Gateway Interface (CGI).

42.2.1 Static Web Contents

You create Web pages using HTML. Your Web pages are stored as files on
the Web server. The files are usually stored in the /htdocs directory on
Unix, as shown in Figure 42.1. A user types a URL for the file from a
Web browser. The browser contacts the Web server and requests the file.
The server finds the file and returns it to the browser. The browser
then displays the file to the user. This works fine for static
information that does not change regardless of who requests it or when
it is requested. Static information is stored in files. The information
in the files can be updated, but at any given time every request for the
same document returns exactly the same result.

Figure 42.1

3

A Web browser requests a static HTML page from a Web server.

42.2.2 Dynamic Web Contents and Common Gateway Interface

Not all information, however, is static in nature. Stock quotes are
updated whenever a trade takes place. Election vote counts are updated
constantly on Election Day. Weather reports are frequently updated. The
balance in a customer’s bank account is updated whenever a transaction
takes place. To view up-to-date information on the Web, the HTML pages
for displaying this information must be generated dynamically. Dynamic
Web pages are generated by Web servers. The Web server needs to run
certain programs to process user requests from Web browsers in order to
produce a customized response.

<Side Remark: CGI>
The Common Gateway Interface, or CGI, was proposed to generate dynamic
Web content. The interface provides a standard framework for Web servers
to interact with external programs, known as CGI programs. As shown in
Figure 42.2, the Web server receives a request from a Web browser and
passes it to the CGI program. The CGI program processes the request and
generates a response at runtime. CGI programs can be written in any
language, but the Perl language is the most popular choice. CGI programs
are typically stored in the /cgi-bin directory. Here is a pseudocode
example of a CGI program for displaying a customer’s bank account
balance:

1. Obtain account ID and password.
2. Verify account ID and password. If it fails, generate an HTML

page to report incorrect account ID and password, and exit.
3. Retrieve account balance from the database; generate an HTML page

to display the account ID and balance.

Figure 42.2

A Web browser requests a dynamic HTML page from a Web server.

42.2.3 The GET and POST Methods

4

<Side Remark: query string>
The two most common HTTP requests, also known as methods, are GET and
POST. The Web browser issues a request using a URL or an HTML form to
trigger the Web server to execute a CGI program. HTML forms will be
introduced in §42.6, “HTML Forms.” When issuing a CGI request directly
from a URL, the GET method is used. This URL is known as a query string.
The URL query string consists of the location of the CGI program, the
parameters, and their values. For example, the following URL causes the
CGI program getBalance to be invoked on the server side:

http://www.webserverhost.com/cgi-bin/
 getBalance.cgi?accountId=scott+smith&password=tiger

The ? symbol separates the program from the parameters. The parameter
name and value are associated using the = symbol. Parameter pairs are
separated using the & symbol. The + symbol denotes a space character.
So, here accountId is scott smith.

When issuing a request from an HTML form, either a GET method or a POST
method can be used. The form explicitly specifies one of these. If the
GET method is used, the data in the form are appended to the request
string as if it were submitted using a URL. If the POST method is used,
the data in the form are packaged as part of the request file. The
server program obtains the data by reading the file. The POST method is
more secure than the GET method.

NOTE
<Side Remark: GET vs. POST>

The GET and POST methods both send requests to the Web
server. The POST method always triggers the execution of
the corresponding CGI program. The GET method may not
cause the CGI program to be executed, if the previous
same request is cached in the Web browser. Web browsers
often cache Web pages so that the same request can be
quickly responded to without contacting the Web server.
The browser checks the request sent through the GET
method as a URL query string. If the results for the
exact same URL are cached on a disk, then the previous
Web pages for the URL may be displayed. To ensure that a
new Web page is always displayed, use the POST method.
For example, use a POST method if the request will
actually update the database. If your request is not time
sensitive, such as finding the address of a student in
the database, use the GET method to speed up performance.

42.2.4 From CGI to Java Servlets

<Side Remark: CGI vs. servlets>
CGI provides a relatively simple approach for creating dynamic Web
applications that accept a user request, process it on the server side,
and return responses to the Web browser. But CGI is very slow when
handling a large number of requests simultaneously, because the Web
server spawns a process for executing each CGI program. Each process has
its own runtime environment that contains and runs the CGI program. It
is not difficult to imagine what will happen if many CGI programs were
executed simultaneously. System resource would be quickly exhausted,
potentially causing the server to crash.

<Side Remark: servlet engine>
Several new approaches have been developed to remedy the performance
problem of CGI programs. Java servlets are one successful technology for

5

this purpose. Java servlets are Java programs that function like CGI
programs. They are executed upon request from a Web browser. All
servlets run inside a servlet container, also referred to as a servlet
server or a servlet engine. A servlet container is a single process that
runs in a Java Virtual Machine. The JVM creates a thread to handle each
servlet. Java threads have much less overhead than full-blown processes.
All the threads share the same memory allocated to the JVM. Since the
JVM persists beyond the life cycle of a single servlet execution,
servlets can share objects already created in the JVM. For example, if
multiple servlets access the same database, they can share the
connection object. Servlets are much more efficient than CGI.

Servlets have other benefits that are inherent in Java. As Java
programs, they are object oriented, portable, and platform independent.
Since you know Java, you can develop servlets immediately with the
support of Java API for accessing databases and network resources.

42.3 Creating and Running Servlets

<side remark: Tomcat>
<side remark: GlassFish>
To run Java servlets, you need a servlet container. Many servlet
containers are available for free. Two popular ones are Tomcat
(developed by Apache, www.apache.org) and GlassFish (developed by Sun,
glassfish.dev.java.net). Both Tomcat and GlassFish are bundled and
integrated with NetBeans 7 (Java EE version). When you run a servlet
from NetBeans, Tomcat or GlassFish will be automatically started. You
can choose to use either of them, or any other application server.
GlassFish has more features than Tomcat and it takes more system
resource.

42.3.1 Creating a Servlet

Before our introduction to the servlet API, let us look at a simple
example to see how servlets work. A servlet to some extent resembles an
applet. Every Java applet is a subclass of the Applet class. You need to
override appropriate methods in the Applet class to implement the
applet. Every servlet is a subclass of the HttpServlet class. You need
to override appropriate methods in the HttpServlet class to implement
the servlet. Listing 42.1 is a servlet that generates a response in HTML
using the doGet method.

Listing 42.1 FirstServlet.java

<Side Remark line 11: process GET>
<Side Remark line 14: content type>
<Side Remark line 15: output to browser>
<Side Remark line 25: close stream>

package chapter42;

import javax.servlet.*;
import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {
 /** Handle the HTTP GET method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doGet(HttpServletRequest request,

6

 HttpServletResponse response)
 throws ServletException, java.io.IOException {
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 // output your page here
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("Hello, Java Servlets");
 out.println("</body>");
 out.println("</html>");
 out.close();
 }
}

<Side Remark: request>
<Side Remark: response>
<Side Remark: PrintWriter>
The doGet method (line 11) is invoked when the Web browser issues a
request using the GET method. The doGet method has two parameters,
request and response. request is for obtaining data from the Web browser
and response is for sending data back to the browser. Line 14 indicates
that data are sent back to the browser as text/html. Line 15 obtains an
instance of PrintWriter for actually outputing data to the browser.

42.3.2 Creating Servlets in NetBeans

<Side Remark: create a Web project>
NetBeans is updated frequently. The current version is 7.0 at the time
of this writing. To create a servlet in NetBeans 7, you have to first
create a Web project, as follows:

1. Choose File › New Project to display the New Project dialog box.
Choose Java Web in the Categories section and Web Application in
the Projects section, as shown in Figure 42.3a. Click Next to
display the New Web Application dialog box, as shown in Figure
42.3b.

2. Enter liangweb in the Project Name field and c:\book in the
Project Location field. Check Set as Main Project. Click Next to
display the dialog box for specifying server and settings, as
shown in Figure 42.4.

3. Select Apache Tomcat 7.0.11 for server and Java EE 5 for J2EE
Version. Click Finish to create the Web project, as shown in
Figure 42.5.

 (a) (b)

7

Figure 42.3

(a) Choose Web Application to create a Web project. (b) Specify
project name and location.

Figure 42.4

Choose servers and settings.

Figure 42.5

A new Web project is created.

Now you can create a servlet in the project, as follows:

<Side Remark: create a servlet>
1. Right-click the liangweb node in the project pane to display a

context menu. Choose New › Servlet to display the New Servlet
dialog box, as shown in Figure 42.6.

2. Enter FirstServlet in the Class Name field and chapter42 in the
Package field and click Next to display the Configure Servlet
Deployment dialog box, as shown in Figure 42.7.

8

3. Select the checkbox to add the servlet information to web.xml and
click Finish to create the servlet. A servlet template is now
created in the project, as shown in Figure 42.8.

4. Replace the code in the content pane for the servlet using the
code in Listing 42.1.

<Side Remark: run a servlet>
5. Right-click liangweb node in the Project pane to display a

context menu and choose Run to launch the Web server. In the Web
browser, enter http://localhost:8084/liangweb/FirstServlet in the
URL. You will now see the servlet result displayed, as shown in
Figure 42.9.

Figure 42.6

You can create a servlet in the New Servlet dialog box.

Figure 42.7

You need to click the checkbox to add servlet information to
web.xml.

9

Figure 42.8

A new servlet class is created in the project.

Figure 42.9

Servlet result is displayed in a Web browser.

NOTE
<Side Remark: IDE issues>

If the servlet is not displayed in the browser, do the
following: 1. Make sure you have you have added the
servlet in the xml.web file. 2. Right-click liangweb and
choose Clean and Build. 3. Right-click liangweb and
choose Run. Reenter
http://localhost:8084/liangweb/FirstServlet in the URL.
If still not working, exit NetBeans and restart it.

***End of NOTE

NOTE
<Side Remark: port number>

Depending on the server setup, you may have a port number
other than 8084.

***End of NOTE

TIP
<Side Remark: deploy Web project>
<Side Remark: WAR file>

10

You can deploy a Web application using a Web archive file
(WAR) to a Web application server (e.g., Tomcat). To
create a WAR file for the liangweb project, right-click
liangweb and choose Build Project. You can now locate
liangweb.war in the c:\book\liangweb\dist folder. To
deploy on Tomcat, simply place liangweb.war into the
webapps directory. When Tomcat starts, the .war file will
be automatically installed.

NOTE:
<side remark: Tomcat Tutorial>

If you wish to use NetBeans as the development tool and
Tomcat as the deployment server, please see Supplement
V.E, “Tomcat Tutorial.”

42.4 The Servlet API

You have to know the servlet API in order to understand the source code
in FirstServlet.java. The servlet API provides the interfaces and
classes that support servlets. These interfaces and classes are grouped
into two packages, javax.servlet and javax.servlet.http, as shown in
Figure 42.10. The javax.servlet package provides basic interfaces, and
the javax.servlet.http package provides classes and interfaces derived
from them, which provide specific means for servicing HTTP requests.

Figure 42.10

The servlet API contains interfaces and classes that you use to
develop and run servlets.

42.4.1 The Servlet Interface

The javax.servlet.Servlet interface defines the methods that all
servlets must implement. The methods are listed below:

/** Invoked for every servlet constructed */
public void init() throws ServletException;

/** Invoked to respond to incoming requests */

11

public void service(ServletRequest request, ServletResponse
response)

throws ServletException, IOException;

/** Invoked to release resource by the servlet */
public void destroy();

<Side Remark: servlet life cycle>
The init, service, and destroy methods are known as life-cycle methods
and are called in the following sequence (see Figure 42.11):

1. The init method is called when the servlet is first created and
is not called again as long as the servlet is not destroyed. This
resembles an applet’s init method, which is invoked after the
applet is created and is not invoked again as long as the applet
is not destroyed.
2. The service method is invoked each time the server receives a
request for the servlet. The server spawns a new thread and
invokes service.
3. The destroy method is invoked after a timeout period has passed
or as the Web server is terminated. This method releases resources
for the servlet.

Loaded Initialized

Invokes the
init method

Served Destroyed Created

Creates the
servlet using
its constructor

JVM loads
the servlet
class

Invokes the
service method

Invokes destroy() after
a timeout period has
passed or the Web
server is being stopped

The same servlet is invoked again, bypassing
the Loaded, Created, and Initialized states, as
long as it has not been destroyed

Servlet is
invoked for
the first time

Invokes the
service method

Figure 42.11

The JVM uses the init, service, and destroy methods to control the
servlet.

42.4.2 The GenericServlet Class, ServletConfig Interface, and
HttpServlet Class

The javax.servlet.GenericServlet class defines a generic, protocol-
independent servlet. It implements javax.servlet.Servlet and
javax.servlet.ServletConfig. ServletConfig is an interface that defines
four methods (getInitParameter, getInitParameterNames,
getServletContext, and getServletName) for obtaining information from a
Web server during initialization. All the methods in Servlet and
ServletConfig are implemented in GenericServlet except service.
Therefore, GenericServlet is an abstract class.

The javax.servlet.http.HttpServlet class defines a servlet for the HTTP
protocol. It extends GenericServlet and implements the service method.
The service method is implemented as a dispatcher of HTTP requests. The
HTTP requests are processed in the following methods:

doGet is invoked to respond to a GET request.

doPost is invoked to respond to a POST request.

doDelete is invoked to respond to a DELETE request. Such a request
is normally used to delete a file on the server.

12

doPut is invoked to respond to a PUT request. Such a request is
normally used to send a file to the server.

doOptions is invoked to respond to an OPTIONS request. This
returns information about the server, such as which HTTP methods
it supports.

doTrace is invoked to respond to a TRACE request. Such a request
is normally used for debugging. This method returns an HTML page
that contains appropriate trace information.

All these methods use the following signature:
protected void doXxx(HttpServletRequest req, HttpServletResponse

resp)
throws ServletException, java.io.IOException

The HttpServlet class provides default implementation for these methods.
You need to override doGet, doPost, doDelete, and doPut if you want the
servlet to process a GET, POST, DELETE, or PUT request. By default,
nothing will be done. Normally, you should not override the doOptions
method unless the servlet implements new HTTP methods beyond those
implemented by HTTP 1.1. Nor is there any need to override the doTrace
method.

NOTE: GET and POST requests are often used, whereas
DELETE, PUT, OPTIONS, and TRACE are not. For more
information about these requests, please refer to the
HTTP 1.1 specification from www.cis.ohio-
state.edu/htbin/rfc/rfc2068.html.

NOTE: Although the methods in HttpServlet are all
nonabstract, HttpServlet is defined as an abstract class.
Thus you cannot create a servlet directly from
HttpServlet. Instead you have to define your servlet by
extending HttpServlet.

The relationship of these interfaces and classes is shown in Figure
42.12.
<PD: UML Class Diagram>

«interface»
javax.servlet.ServletConfig

+getInitParameter(name: String):
String

+getInitParameterNames():
Enumeration

+getServletContext(): ServletContext
+getServletName(): String

«interface»
javax.servlet.Servlet

+init(config: ServletConfig): void
+service(req: ServletRequest, resp:

ServletResponse): void
+destroy(): void
+getServletInfo(): String

javax.servlet.GenericServlet javax.servlet.http.HttpServlet

+doGet(req: HttpServletRequest,
resp: HttpServletResponse): void

+doPost(req: HttpServletRequest,
resp: HttpServletResponse): void

+doDelete(req: HttpServletRequest,
resp: HttpServletResponse): void

+doPut(req: HttpServletRequest,
resp: HttpServletResponse): void

+doOptions(req: HttpServletRequest,
resp: HttpServletResponse): void

+doTrace(req: HttpServletRequest,
resp: HttpServletResponse): void

Figure 42.12

13

HttpServlet inherits abstract class GenericServlet, which
implements interfaces Servlet and ServletConfig.

42.4.3 The ServletRequest Interface and HttpServletRequest Interface

Every doXxx method in the HttpServlet class has a parameter of the
HttpServletRequest type, which is an object that contains HTTP request
information, including parameter name and values, attributes, and an
input stream. HttpServletRequest is a subinterface of ServletRequest.
ServletRequest defines a more general interface to provide information
for all kinds of clients. The frequently used methods in these two
interfaces are shown in Figure 42.13.
<PD: UML Class Diagram>

«interface»
javax.servlet.http.HttpServletRequest

+getHeader(name: String): String

+getMethod(): String

+getQueryString(): String

+getCookies():
javax.servlet.http.Cookies[]

+getSession(create: boolean):
HttpSession

«interface»
javax.servlet.ServletRequest

+getParamter(name: String): String
+getParameterValues(): String[]

+getRemoteAddr(): String
+getRemoteHost(): String

Returns the value of a request parameter as a String, or null if the parameter
does not exist. Request parameters are extra information sent with the request.
For HTTP servlets, parameters are contained in the query string or posted
from data. Only use this method when you are sure that the parameter has only
one value. If it has more than one value, use getParameterValues.

Returns the Internet Protocol (IP) address of the client that sent the request.
Returns the fully qualified name of the client that sent the request, or the IP

address of the client if the name cannot be determined.

Returns the value of the specified request header as a String. If the request did not include
a header of the specified name, this method returns null. Since the header name is case-
insensitive, you can use this method with any request header.

Returns the name of the HTTP method with which this request was made; for example,
GET, POST, DELETE, PUT, OPTIONS, or TRACE.

Returns the query string that is contained in the request URL after the path. This method
returns null if the URL does not have a query string.

Returns an array containing all of the Cookie objects the client sent with the request. This
method returns null if no cookies were sent. Using cookies is introduced in Section
26.8.2, “Session Tracking Using Cookies.”

getSession(true) returns the current session associated with this request. If the request does
not have a session, it creates one. getSession(false) returns the current session associated
with the request. If the request does not have a session, it returns null. The getSession
method is used in session tracking, which is introduced in Section 26.8.3, “Session
Tracking Using the Servlet API.”

Figure 42.13

HttpServletRequest is a subinterface of ServletRequest.

42.4.4 The ServletResponse Interface and HttpServletResponse Interface

Every doXxx method in the HttpServlet class has a parameter of the
HttpServletResponse type, which is an object that assists a servlet in
sending a response to the client. HttpServletResponse is a subinterface
of ServletResponse. ServletResponse defines a more general interface for
sending output to the client.

The frequently used methods in these two interfaces are shown in Figure
42.14.

<PD: UML Class Diagram>

14

«interface»
javax.servlet.http.HttpServletResponse

+addCookie(Cookie cookie): void

«interface»
javax.servlet.ServletResponse

+getWriter(): java.io.PrintWriter
+setContentType(type: String): void

Returns a PrintWriter object that can send character text to the client.
Sets the content type of the response being sent to the client before writing response

to the client. When you are writing HTML to the client, the type should be set to
“text/html.” For plain text, use “text/plain.” For sending a gif image to the
browser, use “image/gif.”

Adds the specified cookie to the response. This method can be called multiple times
to set more than one cookie.

Figure 42.14

HttpServletResponse is a subinterface of ServletResponse.

42.5 Creating Servlets

Servlets are the opposite of Java applets. Java applets run from a Web
browser on the client side. To write Java programs, you define classes.
To write a Java applet, you define a class that extends the Applet
class. The Web browser runs and controls the execution of the applet
through the methods defined in the Applet class. Similarly, to write a
Java servlet, you define a class that extends the HttpServlet class. The
servlet container runs and controls the execution of the servlet through
the methods defined in the HttpServlet class. Like a Java applet, a
servlet does not have a main method. A servlet depends on the servlet
engine to call the methods. Every servlet has a structure like the one
shown below:

package chapter42;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class MyServlet extends HttpServlet {
/** Called by the servlet engine to initialize servlet */
public void init() throws ServletException {

 ...
 }

/** Process the HTTP Get request */
public void doGet(HttpServletRequest request,

HttpServletResponse
 response) throws ServletException, IOException {
 ...
 }

/** Process the HTTP Post request */
public void doPost(HttpServletRequest request,

HttpServletResponse
 response) throws ServletException, IOException {
 ...
 }

/** Called by the servlet engine to release resource */

15

public void destroy() {
 ...
 }

// Other methods if necessary
}

The servlet engine controls the servlets using init, doGet, doPost,
destroy, and other methods. By default, the doGet and doPost methods do
nothing. To handle a GET request, you need to override the doGet method;
to handle a POST request, you need to override the doPost method.

Listing 42.2 gives a simple Java servlet that generates a dynamic Web
page for displaying the current time, as shown in Figure 42.15.

Figure 42.15

Servlet CurrentTime displays the current time.

Listing 42.2 CurrentTime.java

<Side Remark line 9: process GET>
<Side Remark line 11: content type>
<Side Remark line 12: output to browser>
<Side Remark line 14: close stream>

package chapter42;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class CurrentTime extends HttpServlet {
 /** Process the HTTP Get request */
 public void doGet(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<p>The current time is " + new java.util.Date());
 out.close(); // Close stream
 }
}

The HttpServlet class has a doGet method. The doGet method is invoked
when the browser issues a request to the servlet using the GET method.
Your servlet class should override the doGet method to respond to the
GET request. In this case, you write the code to display the current
time.

Servlets return responses to the browser through an HttpServletResponse
object. Since the setContentType("text/html") method sets the MIME type
to “text/html,” the browser will display the response in HTML. The
getWriter method returns a PrintWriter object for sending HTML back to
the client.

16

NOTE: The URL query string uses the GET method to issue a
request to the servlet. The current time may not be
current if the Web page for displaying the current time
is cached. To ensure that a new current time is
displayed, refresh the page in the browser. In the next
example, you will write a new servlet that uses the POST
method to obtain the current time.

42.6 HTML Forms

HTML forms enable you to submit data to the Web server in a convenient
form. As shown in Figure 42.16, the form can contain text fields, text
area, check boxes, combo boxes, lists, radio buttons, and buttons.

Figure 42.16

An HTML form may contain text fields, radio buttons, combo boxes,
lists, check boxes, text areas, and buttons.

<Side Remark: HTML/XHTML Tutorial>
The HTML code for creating the form in Figure 42.16 is given in Listing
42.3. (If you are unfamiliar with HTML, please see Supplement V.A, “HTML
and XHTML Tutorial.”)

Listing 42.3 StudentRegistrationForm.html

<Side Remark line 9: form tag>
<Side Remark line 12: label>
<Side Remark line 13: text field>
<Side Remark line 21: radio button>
<Side Remark line 26: combo box>
<Side Remark line 35: list>
<Side Remark line 44: check box>
<Side Remark line 51: text area>
<Side Remark line 54: submit button>
<Side Remark line 55: reset button>

<!--An HTML Form Demo -->

17

<html>
<head>
<title>Student Registration Form</title>

</head>
<body>
<h3>Student Registration Form</h3>

<form action = "GetParameters"
method = "get">
<!-- Name text fields -->
<p><label>Last Name</label>
<input type = "text" name = "lastName" size = "20" />
<label>First Name</label>
<input type = "text" name = "firstName" size = "20" />
<label>MI</label>
<input type = "text" name = "mi" size = "1" /></p>

<!-- Gender radio buttons -->
<p><label>Gender:</label>
<input type = "radio" name = "gender" value = "M" checked />
Male

<input type = "radio" name = "gender" value = "F" /> Female</p>

<!-- Major combo box -->
<p><label>Major</label>
<select name = "major" size = "1">
<option value = "CS">Computer Science</option>
<option value = "Math">Mathematics</option>
<option>English</option>
<option>Chinese</option>

 </select>

<!-- Minor list -->
<label>Minor</label>
<select name = "minor" size = "2" multiple>
<option>Computer Science</option>
<option>Mathematics</option>
<option>English</option>
<option>Chinese</option>

</select></p>

<!-- Hobby check boxes -->
<p><label>Hobby:</label>
<input type = "checkbox" name = "tennis" /> Tennis
<input type = "checkbox" name = "golf" /> Golf
<input type = "checkbox" name = "pingPong" checked />Ping Pong

</p>

<!-- Remark text area -->
<p>Remarks:</p>
<p><textarea name = "remarks" rows = "3" cols = "56">

 </textarea></p>

<!-- Submit and Reset buttons -->
<p><input type = "submit" value = "Submit" />

18

<input type = "reset" value = "Reset" /></p>
</form>

 </body>
</html>

The following HTML tags are used to construct HTML forms:
<Side Remark: <form>>
<Side Remark: action>
<Side Remark: method>

<form> ... </form> defines a form body. The attributes for the
<form> tag are action and method. The action attribute
specifies the server program to be executed on the Web server
when the form is submitted. The method attribute is either get
or post.

<Side Remark: <label>>
<label> ... </label> simply defines a label.

<Side Remark: <input>>
<input> defines an input field. The attributes for this tag are
type, name, value, checked, size, and maxlength. The type
attribute specifies the input type. Possible types are text for
a one-line text field, radio for a radio button, and checkbox
for a check box. The name attribute gives a formal name for the
attribute. This name attribute is used by the servlet program
to retrieve its associated value. The names of the radio
buttons in a group must be identical. The value attribute
specifies a default value for a text field and text area. The
checked attribute indicates whether a radio button or a check
box is initially checked. The size attribute specifies the size
of a text field, and the maxlength attribute specifies the
maximum length of a text field.

<Side Remark: <select>>
<select> ... </select> defines a combo box or a list. The
attributes for this tag are name, size, and multiple. The size
attribute specifies the number of rows visible in the list. The
multiple attribute specifies that multiple values can be
selected from a list. Set size to 1 and do not use a multiple
for a combo box.

<Side Remark: <option>>
<option> ... </option> defines a selection list within a
<select> ... </select> tag. This tag may be used with the value
attribute to specify a value for the selected option (e.g.,
<option value = "CS">Computer Science). If no value is
specified, the selected option is the value.

<Side Remark: <textarea>>
<textarea> ... </textarea> defines a text area. The attributes
are name, rows, and cols. The rows and cols attributes specify
the number of rows and columns in a text area.

 NOTE:
<Side Remark: create an HTML file>

19

You can create the HTML file from NetBeans. Right-click
liangweb and choose New, HTML, to display the New HTML
File dialog box. Enter StudentRegistrationForm as the
file name and click Finish to create the file.

42.6.1 Obtaining Parameter Values from HTML Forms

To demonstrate how to obtain parameter values from an HTML form, Listing
42.4 creates a servlet to obtain all the parameter values from the
preceding student registration form in Figure 42.16 and display their
values, as shown in Figure 42.17.

Figure 42.17

The servlet displays the parameter values entered in Figure 42.16.

Listing 42.4 GetParameters.java

<Side Remark line 9: process GET>
<Side Remark line 11: content type>
<Side Remark line 12: output to browser>
<Side Remark line 15: get parameters>
<Side Remark line 20: multiple values>
<Side Remark line 38: close stream>

package chapter42;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class GetParameters extends HttpServlet {
 /** Process the HTTP Post request */
 public void doGet(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 // Obtain parameters from the client
 String lastName = request.getParameter("lastName");
 String firstName = request.getParameter("firstName");
 String mi = request.getParameter("mi");
 String gender = request.getParameter("gender");
 String major = request.getParameter("major");
 String[] minors = request.getParameterValues("minor");
 String tennis = request.getParameter("tennis");
 String golf = request.getParameter("golf");
 String pingPong = request.getParameter("pingPong");

20

 String remarks = request.getParameter("remarks");

 out.println("Last Name: " + lastName + " First Name: "
 + firstName + " MI: " + mi + "
");
 out.println("Gender: " + gender + "
");
 out.println("Major: " + major + " Minor: ");

 if (minors != null)
 for (int i = 0; i < minors.length; i++)
 out.println(minors[i] + " ");

 out.println("
 Tennis: " + tennis + " Golf: " +
 golf + " PingPong: " + pingPong + "
");
 out.println("Remarks: " + remarks + "");
 out.close(); // Close stream
 }
}

The HTML form is already created in StudentRegistrationForm.html and
displayed in Figure 42.16. Since the action for the form is
HGetParametersH, clicking the Submit button invokes the GetParameters
servlet.

Each GUI component in the form has a name attribute. The servlet uses
the name attribute in the getParameter(attributeName) method to obtain
the parameter value as a string. In case of a list with multiple values,
use the getParameterValues(attributeName) method to return the parameter
values in an array of strings (line 20).

You may optionally specify the value attribute in a text field, text
area, combo box, list, check box, or radio button in an HTML form. For
text field and text area, the value attribute specifies a default value
to be displayed in the text field and text area. The user can type in
new values to replace it. For combo box, list, check box, and radio
button, the value attribute specifies the parameter value to be returned
from the getParameter and getParameterValues methods. If the value
attribute is not specified for a combo box or a list, it returns the
selected string from the combo box or the list. If the value attribute
is not specified for a radio button or a check box, it returns string on
for a checked radio button or a checked check box, and returns null for
an unchecked check box.

NOTE: If an attribute does not exist, the
getParameter(attributeName) method returns null. If an
empty value of the parameter is passed to the servlet,
the getParameter(attributeName) method returns a string
with an empty value. In this case, the length of the
string is 0.

42.6.2 Obtaining Current Time Based on Locale and Time Zone

This example creates a servlet that processes the GET and POST requests.
The GET request generates a form that contains a combo box for locale
and a combo box for time zone, as shown in Figure 42.18a. The user can
choose a locale and a time zone from this form to submit a POST request
to obtain the current time based on the locale and time zone, as shown
in Figure 42.18b.

21

 (a) (b)

Figure 42.18

The GET method in the TimeForm servlet displays a form in (a), and the
POST method in the TimeForm servlet displays the time based on locale
and time zone in (b).

Listing 42.5 gives the servlet.

Listing 42.5 TimeForm.java

<Side Remark line 15: process GET>
<Side Remark line 17: content type>
<Side Remark line 18: output to browser>
<Side Remark line 20: create form>
<Side Remark line 42: close stream>
<Side Remark line 46: process POST>
<Side Remark line 48: content type>
<Side Remark line 49: output to browser>
<Side Remark line 51: get locale>
<Side Remark line 53: get time zone>
<Side Remark line 56: create calendar>
<Side Remark line 65: close stream>

package chapter42;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import java.text.*;

public class TimeForm extends HttpServlet {
 private static final String CONTENT_TYPE = "text/html";
 private Locale[] allLocale = Locale.getAvailableLocales();
 private String[] allTimeZone = TimeZone.getAvailableIDs();

 /** Process the HTTP Get request */
 public void doGet(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();
 out.println("<h3>Choose locale and time zone</h3>");
 out.println("<form method=\"post\" action=" +
 "TimeForm>");
 out.println("Locale <select size=\"1\" name=\"locale\">");

 // Fill in all locales
 for (int i = 0; i < allLocale.length; i++) {
 out.println("<option value=\"" + i +"\">" +

22

 allLocale[i].getDisplayName() + "</option>");
 }
 out.println("</select>");

 // Fill in all time zones
 out.println("<p>Time Zone<select size=\"1\" name=\"timezone\">");
 for (int i = 0; i < allTimeZone.length; i++) {
 out.println("<option value=\"" + allTimeZone[i] +"\">" +
 allTimeZone[i] + "</option>");
 }
 out.println("</select>");

 out.println("<p><input type=\"submit\" value=\"Submit\" >");
 out.println("<input type=\"reset\" value=\"Reset\"></p>");
 out.println("</form>");
 out.close(); // Close stream
 }

 /** Process the HTTP Post request */
 public void doPost(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();
 out.println("<html>");
 int localeIndex = Integer.parseInt(
 request.getParameter("locale"));
 String timeZoneID = request.getParameter("timezone");
 out.println("<head><title>Current Time</title></head>");
 out.println("<body>");
 Calendar calendar =
 new GregorianCalendar(allLocale[localeIndex]);
 TimeZone timeZone = TimeZone.getTimeZone(timeZoneID);
 DateFormat dateFormat = DateFormat.getDateTimeInstance(
 DateFormat.FULL, DateFormat.FULL, allLocale[localeIndex]);
 dateFormat.setTimeZone(timeZone);
 out.println("Current time is " +
 dateFormat.format(calendar.getTime()) + "</p>");
 out.println("</body></html>");
 out.close(); // Close stream
 }
}

When you run this servlet, the servlet TimeForm’s doGet method is
invoked to generate the time form dynamically. The method of the form is
POST, and the action invokes the same servlet, TimeForm. When the form
is submitted to the server, the doPost method is invoked to process the
request.

The variables allLocale and allTimeZone (lines 11–12), respectively,
hold all the available locales and time zone IDs. The names of the
locales are displayed in the locale list. The values for the locales are
the indexes of the locales in the array allLocale. The time zone IDs are
strings. They are displayed in the time zone list. They are also the
values for the list. The indexes of the locale and the time zone are
passed to the servlet as parameters. The doPost method obtains the
values of the parameters (lines 51–53) and finds the current time based
on the locale and time zone.

NOTE
<Side Remark: set character encoding>

23

If you choose an Asian locale (e.g., Chinese, Korean, or
Japanese), the time will not be displayed properly,
because the default character encoding is UTF-8. To fix
this problem, insert the following statement in line 48
to set an international character encoding:

response.setCharacterEncoding("GB18030");

For information on encoding, see §31.6, “Character
Encoding.”

***End of NOTE

42.7 Database Programming in Servlets

Many dynamic Web applications use databases to store and manage data.
Servlets can connect to any relational database via JDBC. In Chapter 37,
“Java Database Programming,” you learned how to create Java programs to
access and manipulate relational databases via JDBC. Connecting a
servlet to a database is no different from connecting a Java application
or applet to a database. If you know Java servlets and JDBC, you can
combine them to develop interesting and practical Web-based interactive
projects.

To demonstrate connecting to a database from a servlet, let us create a
servlet that processes a registration form. The client enters data in an
HTML form and submits the form to the server, as shown in Figure 42.19.
The result of the submission is shown in Figure 42.20. The server
collects the data from the form and stores them in a database.

Figure 42.19

The HTML form enables the user to enter student information.

Figure 42.20

24

The servlet processes the form and stores data in a database.

The registration data are stored in an Address table consisting of the
following fields: firstName, mi, lastName, street, city, state, zip,
telephone, and email, defined in the following statement:

create table Address (
 firstname varchar(25),
 mi char(1),
 lastname varchar(25),
 street varchar(40),
 city varchar(20),
 state varchar(2),
 zip varchar(5),
 telephone varchar(10),
 email varchar(30)
)

<Side Remark: mysqljdbc.jar>
<Side Remark: ojdbc6.jar>
MySQL, Oracle, and Access were used in Chapter 37. You can use any
relational database. If the servlet uses a database driver other than
the JDBC-ODBC driver (e.g., the MySQL JDBC driver and the Oracle JDBC
driver), you need to add the JDBC driver (e.g., mysqljdbc.jar for MySQL
and ojdbc6.jar for Oracle) into the Libraries node in the project.

<Side Remark: place .html file>
Create an HTML file named SimpleRegistration.html in Listing 42.6 for
collecting the data and sending them to the database using the post
method.

Listing 42.6 SimpleRegistration.html

<Side Remark line 9: action>
<Side Remark line 31: submit form>

<!-- SimpleRegistration.html -->
<html>
<head>
<title>Simple Registration without Confirmation</title>

 </head>
 <body>
 Please register to your instructor's student address book.

<form method = "post" action = "SimpleRegistration">
<p>Last Name *

<input type = "text" name = "lastName">
 First Name *

<input type = "text" name = "firstName">
 MI <input type = "text" name = "mi" size = "3">

</p>
<p>Telephone

<input type = "text" name = "telephone" size = "20">
 Email

<input type = "text" name = "email" size = "28">
</p>

 <p>Street <input type = "text" name = "street" size = "50">
 </p>

<p>City <input type = "text" name = "city" size = "23">

25

 State
<select size = "1" name = "state">
<option value = "GA">Georgia-GA</option>
<option value = "OK">Oklahoma-OK</option>
<option value = "IN">Indiana-IN</option>

</select>
 Zip <input type = "text" name = "zip" size = "9">

</p>
<p><input type = "submit" name = "Submit" value = "Submit">

<input type = "reset" value = "Reset">
 </p>

 </form>
<p>* required fields</p>

 </body>
</html>

<Side Remark: place .class file>
Create the servlet named SimpleRegistration in Listing 42.7.

Listing 42.7 SimpleRegistration.java

<Side Remark line 14: initialize db>
<Side Remark line 18: process POST>
<Side Remark line 20: content type>
<Side Remark line 21: output to browser>
<Side Remark line 24: get parameters>
<Side Remark line 39: store record>
<Side Remark line 50: close stream>
<Side Remark line 58: connect db>
<Side Remark line 63: prepare statement>
<Side Remark line 76: set values>
<Side Remark line 85: execute SQL>

package chapter42;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;

public class SimpleRegistration extends HttpServlet {
 // Use a prepared statement to store a student into the database
 private PreparedStatement pstmt;

 /** Initialize variables */
 public void init() throws ServletException {
 initializeJdbc();
 }

 /** Process the HTTP Post request */
 public void doPost(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 // Obtain parameters from the client
 String lastName = request.getParameter("lastName");
 String firstName = request.getParameter("firstName");
 String mi = request.getParameter("mi");

26

 String phone = request.getParameter("telephone");
 String email = request.getParameter("email");
 String address = request.getParameter("street");
 String city = request.getParameter("city");
 String state = request.getParameter("state");
 String zip = request.getParameter("zip");

 try {
 if (lastName.length() == 0 || firstName.length() == 0) {
 out.println("Last Name and First Name are required");
 }
 else {
 storeStudent(lastName, firstName, mi, phone, email,
 address, city, state, zip);

 out.println(firstName + " " + lastName +
 " is now registered in the database");
 }
 }
 catch(Exception ex) {
 out.println("Error: " + ex.getMessage());
 }
 finally {
 out.close(); // Close stream
 }
 }

 /** Initialize database connection */
 private void initializeJdbc() {
 try {
 // Load the JDBC driver
 Class.forName("com.mysql.jdbc.Driver");
 System.out.println("Driver loaded");

 // Establish a connection
 Connection conn = DriverManager.getConnection
 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
 System.out.println("Database connected");

 // Create a Statement
 pstmt = conn.prepareStatement("insert into Address " +
 "(lastName, firstName, mi, telephone, email, street, city, "
 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 /** Store a student record to the database */
 private void storeStudent(String lastName, String firstName,
 String mi, String phone, String email, String address,
 String city, String state, String zip) throws SQLException {
 pstmt.setString(1, lastName);
 pstmt.setString(2, firstName);
 pstmt.setString(3, mi);
 pstmt.setString(4, phone);
 pstmt.setString(5, email);
 pstmt.setString(6, address);
 pstmt.setString(7, city);
 pstmt.setString(8, state);

27

 pstmt.setString(9, zip);
 pstmt.executeUpdate();
 }
}

The init method (line 13) is executed once when the servlet starts.
After the servlet has started, the servlet can be invoked many times as
long as it is alive in the servlet container. Load the driver and
connect to the database from the servlet’s init method (line 14). If a
prepared statement or a callable statement is used, it should also be
created in the init method. In this example, a prepared statement is
desirable, because the servlet always uses the same insert statement
with different values.

A servlet can connect to any relational database via JDBC. The
initializeJdbc method in this example connects to a MySQL database (line
58). Once connected, it creates a prepared statement for inserting a
student record into the database. MySQL is used in this example; you can
replace it with any relational database.

Last name and first name are required fields. If either of them is
empty, the servlet sends an error message to the client (lines 35–36).
Otherwise, the servlet stores the data in the database using the
prepared statement.

42.8 Session Tracking

Web servers use the Hyper-Text Transport Protocol (HTTP). HTTP is a
stateless protocol. An HTTP Web server cannot associate requests from a
client, and therefore treats each request independently. This protocol
works fine for simple Web browsing, where each request typically results
in an HTML file or a text file being sent back to the client. Such
simple requests are isolated. However, the requests in interactive Web
applications are often related. Consider the two requests in the
following scenario:

Request 1: A client sends registration data to the server; the
server then returns the data to the user for confirmation.

Request 2: The client confirms the data that was submitted in
Request 1.

In Request 2, the data submitted in Request 1 are confirmed. These two
requests are related in a session. A session can be defined as a series
of related interactions between a single client and the Web server over
a period of time. Tracking data among requests in a session is known as
session tracking.

This section introduces three techniques for session tracking: using
hidden values, using cookies, and using the session tracking tools from
servlet API.

42.8.1 Session Tracking Using Hidden Values

You can track a session by passing data from the servlet to the client
as hidden values in a dynamically generated HTML form by including a
field like this one:

<input type = "hidden" name = "lastName" value = "Smith">

28

The next request will submit the data back to the servlet. The servlet
retrieves this hidden value just like any other parameter value, using
the getParameter method.

Let us use an example to demonstrate using hidden values in a form. The
example creates a servlet that processes a registration form. The client
submits the form using the GET method, as shown in Figure 42.21. The
server collects the data in the form, displays them to the client, and
asks the client for confirmation, as shown in Figure 42.22. The client
confirms the data by submitting the request with the hidden values using
the POST method. Finally, the servlet writes the data to a database.

Figure 42.21

The registration form collects user information.

Figure 42.22

The servlet asks the client for confirmation of the input.

Create an HTML form named Registration.html in Listing 42.8 for
collecting the data and sending it to the database using the GET method
for confirmation. This file is almost identical to Listing 42.6,
SimpleRegistration.html except that the action is replaced by
Registration (line 9).

Listing 42.8 Registration.html

29

<Side Remark line 9: action>
<Side Remark line 32: submit form>

<!-- Registration.html -->
<html>
<head>
<title>Using Hidden Data for Session Tracking</title>

 </head>
 <body>
 Please register to your instructor's student address book.

<form method = "get" action = "Registration">
<p>Last Name *

<input type = "text" name = "lastName">
 First Name *

<input type = "text" name = "firstName">
 MI <input type = "text" name = "mi" size = "3">

</p>
<p>Telephone

<input type = "text" name = "telephone" size = "20">
 Email

<input type = "text" name = "email" size = "28">
</p>

 <p>Street <input type = "text" name = "street" size = "50">
 </p>

<p>City <input type = "text" name = "city" size = "23">
 State

<select size = "1" name = "state">
<option value = "GA">Georgia-GA</option>
<option value = "OK">Oklahoma-OK</option>
<option value = "IN">Indiana-IN</option>

</select>
 Zip <input type = "text" name = "zip" size = "9">

</p>
<p><input type = "submit" name = "Submit" value = "Submit">

<input type = "reset" value = "Reset">
 </p>

 </form>
<p>* required fields</p>

 </body>
</html>

Create the servlet named Registration in Listing 42.9.

Listing 42.9 Registration.java

<Side Remark line 14: initialize db>
<Side Remark line 18: process GET>
<Side Remark line 20: content type>
<Side Remark line 21: output to browser>
<Side Remark line 24: get parameters>
<Side Remark line 51: client verification>
<Side Remark line 80: process POST>
<Side Remark line 82: content type>
<Side Remark line 83: output to browser>
<Side Remark line 86: get parameters>
<Side Remark line 126: store record>

package chapter42;

30

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;

public class Registration extends HttpServlet {
 // Use a prepared statement to store a student into the database
 private PreparedStatement pstmt;

 /** Initialize variables */
 public void init() throws ServletException {
 initializeJdbc();
 }

 /** Process the HTTP Get request */
 public void doGet(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 // Obtain data from the form
 String lastName = request.getParameter("lastName");
 String firstName = request.getParameter("firstName");
 String mi = request.getParameter("mi");
 String telephone = request.getParameter("telephone");
 String email = request.getParameter("email");
 String street = request.getParameter("street");
 String city = request.getParameter("city");
 String state = request.getParameter("state");
 String zip = request.getParameter("zip");

 if (lastName.length() == 0 || firstName.length() == 0) {
 out.println("Last Name and First Name are required");
 }
 else {
 // Ask for confirmation
 out.println("You entered the following data");
 out.println("<p>Last name: " + lastName);
 out.println("
First name: " + firstName);
 out.println("
MI: " + mi);
 out.println("
Telephone: " + telephone);
 out.println("
Email: " + email);
 out.println("
Address: " + street);
 out.println("
City: " + city);
 out.println("
State: " + state);
 out.println("
Zip: " + zip);

 // Set the action for processing the answers
 out.println("<p><form method=\"post\" action=" +
 "Registration>");
 // Set hidden values
 out.println("<p><input type=\"hidden\" " +
 "value=" + lastName + " name=\"lastName\">");
 out.println("<p><input type=\"hidden\" " +
 "value=" + firstName + " name=\"firstName\">");
 out.println("<p><input type=\"hidden\" " +
 "value=" + mi + " name=\"mi\">");
 out.println("<p><input type=\"hidden\" " +
 "value=" + telephone + " name=\"telephone\">");
 out.println("<p><input type=\"hidden\" " +

31

 "value=" + email + " name=\"email\">");
 out.println("<p><input type=\"hidden\" " +
 "value=" + street + " name=\"street\">");
 out.println("<p><input type=\"hidden\" " +
 "value=" + city + " name=\"city\">");
 out.println("<p><input type=\"hidden\" " +
 "value=" + state + " name=\"state\">");
 out.println("<p><input type=\"hidden\" " +
 "value=" + zip + " name=\"zip\">");
 out.println("<p><input type=\"submit\" value=\"Confirm\" >");
 out.println("</form>");
 }

 out.close(); // Close stream
 }

 /** Process the HTTP Post request */
 public void doPost(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 try {
 String lastName = request.getParameter("lastName");
 String firstName = request.getParameter("firstName");
 String mi = request.getParameter("mi");
 String telephone = request.getParameter("telephone");
 String email = request.getParameter("email");
 String street = request.getParameter("street");
 String city = request.getParameter("city");
 String state = request.getParameter("state");
 String zip = request.getParameter("zip");

 storeStudent(lastName, firstName, mi, telephone, email,
 street, city, state, zip);

 out.println(firstName + " " + lastName +
 " is now registered in the database");
 }
 catch(Exception ex) {
 out.println("Error: " + ex.getMessage());
 }
 }

 /** Initialize database connection */
 private void initializeJdbc() {
 try {
 // Load the JDBC driver
 Class.forName("com.mysql.jdbc.Driver");
 System.out.println("Driver loaded");

 // Establish a connection
 Connection conn = DriverManager.getConnection
 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
 System.out.println("Database connected");

 // Create a Statement
 pstmt = conn.prepareStatement("insert into Address " +
 "(lastName, firstName, mi, telephone, email, street, city, "
 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
 }

32

 catch (Exception ex) {
 System.out.println(ex);
 }
 }

 /** Store a student record to the database */
 private void storeStudent(String lastName, String firstName,
 String mi, String phone, String email, String address,
 String city, String state, String zip) throws SQLException {
 pstmt.setString(1, lastName);
 pstmt.setString(2, firstName);
 pstmt.setString(3, mi);
 pstmt.setString(4, phone);
 pstmt.setString(5, email);
 pstmt.setString(6, address);
 pstmt.setString(7, city);
 pstmt.setString(8, state);
 pstmt.setString(9, zip);
 pstmt.executeUpdate();
 }
}

The servlet processes the GET request by generating an HTML page that
displays the client’s input and asks for the client’s confirmation. The
input data consist of hidden values in the newly generated forms, so
they will be sent back in the confirmation request. The confirmation
request uses the POST method. The servlet retrieves the hidden values
and stores them in the database.

Since the first request does not write anything to the database, it is
appropriate to use the GET method. Since the second request results in
an update to the database, the POST method must be used.

NOTE: The hidden values could also be sent from the URL
query string if the request used the GET method.

42.8.2 Session Tracking Using Cookies

You can track sessions using cookies, which are small text files that
store sets of name/value pairs on the disk in the client’s computer.
Cookies are sent from the server through the instructions in the header
of the HTTP response. The instructions tell the browser to create a
cookie with a given name and its associated value. If the browser
already has a cookie with the key name, the value will be updated. The
browser will then send the cookie with any request submitted to the same
server. Cookies can have expiration dates set, after which they will not
be sent to the server. The javax.servlet.http.Cookie is used to create
and manipulate cookies, as shown in Figure 42.23.

<PD: UML Class Diagram>

33

javax.servlet.http.Cookie

+Cookie(name: String, value: String)
+getName(): String
+getValue(): String
+setValue(newValue: String): void
+getMaxAge(): int
+setMaxAge(expiration: int): void

+getSecure(): boolean
+setSecure(flag: boolean): void

+getComment(): String

+setComment(purpose: String): void

Creates a cookie with the specified name-value pair.
Returns the name of the cookie.
Returns the value of the cookie.
Assigns a new value to a cookie after the cookie is created.
Returns the maximum age of the cookie, specified in seconds.
Specifies the maximum age of the cookie. By default, this value is –1, which implies

that the cookie persists until the browser exits. If you set this value to 0, the cookie
is deleted.

Returns true if the browser is sending cookies only over a secure protocol.
Indicates to the browser whether the cookie should only be sent using a secure

protocol, such as HTTPS or SSL.
Returns the comment describing the purpose of this cookie, or null if the cookie has

no comment.

Sets the comment for this cookie.

Figure 42.23

Cookie stores a name/value pair and other information about the
cookie.

To send a cookie to the browser, use the addCookie method in the
HttpServletResponse class, as shown below:

response.addCookie(cookie);

where response is an instance of HttpServletResponse.

To obtain cookies from a browser, use
request.getCookies();

where request is an instance of HttpServletRequest.

To demonstrate the use of cookies, let us create an example that
accomplishes the same task as Listing 42.9, Registration.java. Instead
of using hidden values for session tracking, it uses cookies.

Create the servlet named RegistrationWithHttpCookie in Listing 42.10.
Create an HTML file named RegistrationWithCookie.html that is identical
to Registration.html except that the action is replaced by
RegistrationWithCookieH..

Listing 42.10 RegistrationWithCookie.java

<Side Remark line 19: process GET>
<Side Remark line 25: get parameters>
<Side Remark line 40: create cookies>
<Side Remark line 42: add cookies>
<Side Remark line 62: client verification>
<Side Remark line 84: process POST>
<Side Remark line 100: get cookies>
<Side Remark line 125: store record>

package chapter42;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;

34

public class RegistrationWithCookie extends HttpServlet {
 private static final String CONTENT_TYPE = "text/html";
 // Use a prepared statement to store a student into the database
 private PreparedStatement pstmt;

 /** Initialize variables */
 public void init() throws ServletException {
 initializeJdbc();
 }

 /** Process the HTTP Get request */
 public void doGet(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 // Obtain data from the form
 String lastName = request.getParameter("lastName");
 String firstName = request.getParameter("firstName");
 String mi = request.getParameter("mi");
 String telephone = request.getParameter("telephone");
 String email = request.getParameter("email");
 String street = request.getParameter("street");
 String city = request.getParameter("city");
 String state = request.getParameter("state");
 String zip = request.getParameter("zip");

 if (lastName.length() == 0 || firstName.length() == 0) {
 out.println("Last Name and First Name are required");
 }
 else {
 // Create cookies and send cookies to browsers
 Cookie cookieLastName = new Cookie("lastName", lastName);
 // cookieLastName.setMaxAge(1000);
 response.addCookie(cookieLastName);
 Cookie cookieFirstName = new Cookie("firstName", firstName);
 response.addCookie(cookieFirstName);
 // cookieFirstName.setMaxAge(0);
 Cookie cookieMi = new Cookie("mi", mi);
 response.addCookie(cookieMi);
 Cookie cookieTelephone = new Cookie("telephone", telephone);
 response.addCookie(cookieTelephone);
 Cookie cookieEmail = new Cookie("email", email);
 response.addCookie(cookieEmail);
 Cookie cookieStreet = new Cookie("street", street);
 response.addCookie(cookieStreet);
 Cookie cookieCity = new Cookie("city", city);
 response.addCookie(cookieCity);
 Cookie cookieState = new Cookie("state", state);
 response.addCookie(cookieState);
 Cookie cookieZip = new Cookie("zip", zip);
 response.addCookie(cookieZip);

 // Ask for confirmation
 out.println("You entered the following data");
 out.println("<p>Last name: " + lastName);
 out.println("
First name: " + firstName);
 out.println("
MI: " + mi);
 out.println("
Telephone: " + telephone);
 out.println("
Email: " + email);

35

 out.println("
Street: " + street);
 out.println("
City: " + city);
 out.println("
State: " + state);
 out.println("
Zip: " + zip);

 // Set the action for processing the answers
 out.println("<p><form method=\"post\" action=" +
 "RegistrationWithCookie>");
 out.println("<p><input type=\"submit\" value=\"Confirm\" >");
 out.println("</form>");
 }

 out.close(); // Close stream
 }

 /** Process the HTTP Post request */
 public void doPost(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();

 String lastName = "";
 String firstName = "";
 String mi = "";
 String telephone = "";
 String email = "";
 String street = "";
 String city = "";
 String state = "";
 String zip = "";

 // Read the cookies
 Cookie[] cookies = request.getCookies();

 // Get cookie values
 for (int i = 0; i < cookies.length; i++) {
 if (cookies[i].getName().equals("lastName"))
 lastName = cookies[i].getValue();
 else if (cookies[i].getName().equals("firstName"))
 firstName = cookies[i].getValue();
 else if (cookies[i].getName().equals("mi"))
 mi = cookies[i].getValue();
 else if (cookies[i].getName().equals("telephone"))
 telephone = cookies[i].getValue();
 else if (cookies[i].getName().equals("email"))
 email = cookies[i].getValue();
 else if (cookies[i].getName().equals("street"))
 street = cookies[i].getValue();
 else if (cookies[i].getName().equals("city"))
 city = cookies[i].getValue();
 else if (cookies[i].getName().equals("state"))
 state = cookies[i].getValue();
 else if (cookies[i].getName().equals("zip"))
 zip = cookies[i].getValue();
 }

 try {
 storeStudent(lastName, firstName, mi, telephone, email, street,
 city, state, zip);

 out.println(firstName + " " + lastName +

36

 " is now registered in the database");

 out.close(); // Close stream
 }
 catch(Exception ex) {
 out.println("Error: " + ex.getMessage());
 }
 }

 /** Initialize database connection */
 private void initializeJdbc() {
 try {
 // Load the JDBC driver
 Class.forName("com.mysql.jdbc.Driver");
 System.out.println("Driver loaded");

 // Establish a connection
 Connection conn = DriverManager.getConnection
 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
 System.out.println("Database connected");

 // Create a Statement
 pstmt = conn.prepareStatement("insert into Address " +
 "(lastName, firstName, mi, telephone, email, street, city, "
 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
 }
 catch (Exception ex) {
 System.out.println(ex);
 }
 }

 /** Store a student record to the database */
 private void storeStudent(String lastName, String firstName,
 String mi, String telephone, String email, String street,
 String city, String state, String zip) throws SQLException {
 pstmt.setString(1, lastName);
 pstmt.setString(2, firstName);
 pstmt.setString(3, mi);
 pstmt.setString(4, telephone);
 pstmt.setString(5, email);
 pstmt.setString(6, street);
 pstmt.setString(7, city);
 pstmt.setString(8, state);
 pstmt.setString(9, zip);
 pstmt.executeUpdate();
 }
}

You have to create a cookie for each value you want to track, using the
Cookie class’s only constructor, which defines a cookie’s name and value
as shown below (line 40):

Cookie cookieLastName = new Cookie("lastName", lastName);

To send the cookie to the browser, use a statement like this one (line
42):

response.addCookie(cookieLastName);

If a cookie with the same name already exists in the browser, its value
is updated; otherwise, a new cookie is created.

37

Cookies are automatically sent to the Web server with each request from
the client. The servlet retrieves all the cookies into an array using
the getCookies method (line 100):

Cookie[] cookies = request.getCookies();

To obtain the name of the cookie, use the getName method (line 104):

String name = cookies[i].getName();

The cookie’s value can be obtained using the getValue method:

String value = cookies[i].getValue();

Cookies are stored as strings just like form parameters and hidden
values. If a cookie represents a numeric value, you have to convert it
into an integer or a double, using the parseInt method in the Integer
class or the parseDouble method in the Double class.

By default, a newly created cookie persists until the browser exits.
However, you can set an expiration date, using the setMaxAge method, to
allow a cookie to stay in the browser for up to 2,147,483,647 seconds
(approximately 24,855 days).

42.8.3 Session Tracking Using the Servlet API

You have now learned both session tracking using hidden values and
session tracking using cookies. These two session-tracking methods have
problems. They send data to the browser either as hidden values or as
cookies. The data are not secure, and anybody with knowledge of
computers can obtain them. The hidden data are in HTML form, which can
be viewed from the browser. Cookies are stored in the Cache directory of
the browser. Because of security concerns, some browsers do not accept
cookies. The client can turn the cookies off and limit their number.
Another problem is that hidden data and cookies pass data as strings.
You cannot pass objects using these two methods.

To address these problems, Java servlet API provides the
javax.servlet.http.HttpSession interface, which provides a way to
identify a user across more than one page request or visit to a Web site
and to store information about that user. The servlet container uses
this interface to create a session between an HTTP client and an HTTP
server. The session persists for a specified time period, across more
than one connection or page request from the user. A session usually
corresponds to one user, who may visit a site many times. The session
enables tracking of a large set of data. The data can be stored as
objects and are secure because they are kept on the server side.

To use the Java servlet API for session tracking, first create a session
object using the getSession() method in the HttpServletRequest
interface:

HttpSession session = request.getSession();

This obtains the session or creates a new session if the client does not
have a session on the server.

The HttpSession interface provides the methods for reading and storing
data to the session, and for manipulating the session, as shown in
Figure 42.24.

38

<PD: UML Class Diagram>

«interface»
javax.servlet.http.HttpSession

+getAttribute(name: String): Object

+setAttribute(name: String, value: Object):
void

+getId(): String

+getLastAccessedTime(): long

+invalidate(): void
+isNew(): boolean
+removeAttribute(name: String): void

+getMaxInactiveInterval(): int
+setMaxInactiveInterval(interval: int): void

Returns the object bound with the specified name in this session, or null if no
object is bound under the name.

Binds an object to this session, using the specified name. If an object of the
same name is already bound to the session, the object is replaced.

Returns a string containing the unique identifier assigned to this session. The
identifier is assigned by the servlet container and is implementation
dependent.

Returns the last time the client sent a request associated with this session, as the
number of milliseconds since midnight January 1, 1970 GMT, and marked by
the time the container received the request.

Invalidates this session, then unbinds any objects bound to it.
Returns true if the session was just created in the current request.
Removes the object bound with the specified name from this session. If the
session does not have an object bound with the specified name, this method does
nothing.
Returns the time, in seconds, between client requests before the servlet container

will invalidate this session. A negative time indicates that the session will
never time-out. Use setMaxInactiveInterval to specify this value.

Figure 42.24

HttpSession establishes a persistent session between a client with
multiple requests and the server.

NOTE: HTTP is stateless. So how does the server associate
a session with multiple requests from the same client?
This is handled behind the scenes by the servlet
container and is transparent to the servlet programmer.

To demonstrate using HttpSession, let us rewrite Listing 42.9,
Registration.java, and Listing 42.10, RegistrationWithCookie.java.
Instead of using hidden values or cookies for session tracking, it uses
servlet HttpSession.

Create the servlet named RegistrationWithHttpSession in Listing 42.11.
Create an HTML file named RegistrationWithHttpSession.html that is
identical to Registration.html except that the action is replaced by
RegistrationWithHttpSessionH.

Listing 42.11 RegistrationWithHttpSession.java

<Side Remark line 18: process GET>
<Side Remark line 25: get parameters>
<Side Remark line 40: create address>
<Side Remark line 52: create session>
<Side Remark line 55: set attribute>
<Side Remark line 80: process POST>
<Side Remark line 87: get session>
<Side Remark line 90: get address>
<Side Remark line 93: store address>

package chapter42;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;

39

public class RegistrationWithHttpSession extends HttpServlet {
 // Use a prepared statement to store a student into the database
 private PreparedStatement pstmt;

 /** Initialize variables */
 public void init() throws ServletException {
 initializeJdbc();
 }

 /** Process the HTTP Get request */
 public void doGet(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 // Set response type and output stream to the browser
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 // Obtain data from the form
 String lastName = request.getParameter("lastName");
 String firstName = request.getParameter("firstName");
 String mi = request.getParameter("mi");
 String telephone = request.getParameter("telephone");
 String email = request.getParameter("email");
 String street = request.getParameter("street");
 String city = request.getParameter("city");
 String state = request.getParameter("state");
 String zip = request.getParameter("zip");

 if (lastName.length() == 0 || firstName.length() == 0) {
 out.println("Last Name and First Name are required");
 }
 else {
 // Create an Address object
 Address address = new Address();
 address.setLastName(lastName);
 address.setFirstName(firstName);
 address.setMi(mi);
 address.setTelephone(telephone);
 address.setEmail(email);
 address.setStreet(street);
 address.setCity(city);
 address.setState(state);
 address.setZip(zip);

 // Get an HttpSession or create one if it does not exist
 HttpSession httpSession = request.getSession();

 // Store student object to the session
 httpSession.setAttribute("address", address);

 // Ask for confirmation
 out.println("You entered the following data");
 out.println("<p>Last name: " + lastName);
 out.println("<p>First name: " + firstName);
 out.println("<p>MI: " + mi);
 out.println("<p>Telephone: " + telephone);
 out.println("<p>Email: " + email);
 out.println("<p>Address: " + street);
 out.println("<p>City: " + city);
 out.println("<p>State: " + state);
 out.println("<p>Zip: " + zip);

40

 // Set the action for processing the answers
 out.println("<p><form method=\"post\" action=" +
 "RegistrationWithHttpSession>");
 out.println("<p><input type=\"submit\" value=\"Confirm\" >");
 out.println("</form>");
 }

 out.close(); // Close stream
 }

 /** Process the HTTP Post request */
 public void doPost(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 // Set response type and output stream to the browser
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 // Obtain the HttpSession
 HttpSession httpSession = request.getSession();

 // Get the Address object in the HttpSession
 Address address = (Address)(httpSession.getAttribute("address"));

 try {
 storeStudent(address);

 out.println(address.getFirstName() + " " + address.getLastName()
 + " is now registered in the database");
 out.close(); // Close stream
 }
 catch(Exception ex) {
 out.println("Error: " + ex.getMessage());
 }
 }

 /** Initialize database connection */
 private void initializeJdbc() {
 try {

 // Load the JDBC driver
 Class.forName("com.mysql.jdbc.Driver");
 System.out.println("Driver loaded");

 // Establish a connection
 Connection conn = DriverManager.getConnection
 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
 System.out.println("Database connected");

 // Create a Statement
 pstmt = conn.prepareStatement("insert into Address " +
 "(lastName, firstName, mi, telephone, email, street, city, "
 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
 }
 catch (Exception ex) {
 System.out.println(ex);
 }
 }

 /** Store an address to the database */
 private void storeStudent(Address address) throws SQLException {
 pstmt.setString(1, address.getLastName());

41

 pstmt.setString(2, address.getFirstName());
 pstmt.setString(3, address.getMi());
 pstmt.setString(4, address.getTelephone());
 pstmt.setString(5, address.getEmail());
 pstmt.setString(6, address.getStreet());
 pstmt.setString(7, address.getCity());
 pstmt.setString(8, address.getState());
 pstmt.setString(9, address.getZip());
 pstmt.executeUpdate();
 }
}

The statement (line 52)

HttpSession httpSession = request.getSession();

obtains a session, or creates a new session if the session does not
exist.

Since objects can be stored in HttpSession, this program defines an
Address class. An Address object is created and is stored in the session
using the setAttribute method, which binds the object with a name like
the one shown below (line 55):

httpSession.setAttribute("address", address);

To retrieve the object, use the following statement (line 90):
Address address = (Address)(httpSession.getAttribute("address"));

There is only one session between a client and a servlet. You can store
any number of objects in a session. By default, the maximum inactive
interval on many Web servers including Tomcat and GlassFish is 1800
seconds (i.e., a half-hour), meaning that the session expires if there
is no activity for 30 minutes. You can change the default using the
setMaxInactiveInterval method. For example, to set the maximum inactive
interval to one hour, use

httpSession.setMaxInactiveInterval(3600);

If you set a negative value, the session will never expire.

<Side Remark: create Address class>
For this servlet program to work, you have to create the Address class
in NetBeans, as follows:

1. Choose New, Java Class from the context menu of the liangweb node
in the project pane to display the New Java Class dialog box.

2. Enter Address as the Class Name and chapter42 as the package
name. Click Finish to create the class.

3. Enter the code, as shown in Listing 42.12.

Listing 42.12 Address.java
<Side Remark line 1: package chapter42>
<Side Remark line 3: class Address>

package chapter42;

public class Address {
 private String firstName;
 private String mi;
 private String lastName;
 private String telephone;

42

 private String street;
 private String city;
 private String state;
 private String email;
 private String zip;

 public String getFirstName() {
 return this.firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getMi() {
 return this.mi;
 }

 public void setMi(String mi) {
 this.mi = mi;
 }

 public String getLastName() {
 return this.lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getTelephone() {
 return this.telephone;
 }

 public void setTelephone(String telephone) {
 this.telephone = telephone;
 }

 public String getEmail() {
 return this.email;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getStreet() {
 return this.street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public String getCity() {

43

 return this.city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getState() {
 return this.state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public String getZip() {
 return this.zip;
 }

 public void setZip(String zip) {
 this.zip = zip;
 }
}

This support class will also be reused in the upcoming chapters.

42.9 Sending Images from Servlets

So far you have learned how to write Java servlets that generate dynamic
HTML text. Java servlets are not limited to sending text to a browser.
They can return images on demand. The images can be stored in files or
created from programs.

42.9.1 Sending Image from Files

You can use the HTML tag to send images from files. The syntax for
the tag is:

The attribute src specifies the source of the image. The attribute alt
specifies an alternative text to be displayed in case the image cannot
be displayed on the browser. The attribute align tells the browser where
to place the image.

To demonstrate getting images from a file in a servlet, let us create a
servlet that dynamically generates the flag of a country and a text that
describes the flag, as shown in Figure 42.25. The flag is stored in an
image file, and the text that describes the flag is stored in a text
file.

44

Figure 42.25

The servlet returns an image along with the text.

Create the servlet named ImageContent in Listing 42.13.

Listing 42.13 ImageContent.java

<Side Remark line 16: image tag>
<Side Remark line 20: read file>

package chapter42;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class ImageContent extends HttpServlet {
 /** Process the HTTP Get request */
 public void doGet(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 String country = request.getParameter("country");

 out.println("<img src = \"resources/image/" + country + ".gif"
 + "\" align=left>");

 // Read description from a file and send it to the browser
 java.util.Scanner input = new java.util.Scanner(
 new File("c:\\book\\" + country + ".txt"));

 // Read a line from the text file and send it to the browser
 while (input.hasNext()) {
 out.println(input.nextLine());
 }

 out.close();
 }
}

<Side Remark: image file location>
You should create a directory C:\book\liangweb\web\resources\image and
store image files in this directory.

The country parameter determines which image file and text file are
displayed. The servlet sends the HTML contents to the browser. The
contents contain an tag (lines 16–17) that references to the image
file.

45

The servlet reads the characters from the text file and sends them to
the browser (lines 20–26).

42.9.2 Sending Images from the Image Object

The preceding example displays an image stored in an image file. You can
also display an image dynamically created in the program.

Before the image is sent to a browser, it must be encoded into a format
acceptable to the browser. Image encoders are not part of Java API, but
several free encoders are available. One of them is the GifEncoder class
(http://www.acme.com/java/software/Acme.JPM.Encoders.GifEncoder.html),
which is included in \book\lib\acme.jar. Use the following statement to
encode and send the image to the browser:

new GifEncoder(image, out, true).encode();

where out is a binary output stream from the servlet to the browser,
which can be obtained using the following statement:

OutputStream out = response.getOutputStream();

To demonstrate dynamically generating images from a servlet, let us
create a servlet that displays a clock to show the current time, as
shown in Figure 42.26.

Figure 42.26

The servlet returns a clock that displays the current time.

<Side Remark: acme.jar>
Create the servlet named ImageContentWithDrawing in Listing 42.14. Add
acme.jar in the Libraries node in the liangweb project in NetBeans.
(acme.jar is in c:\book\lib.)

Listing 42.14 ImageContentWithDrawing.java

<Side Remark line 10: import GifEncoder>
<Side Remark line 18: process GET>
<Side Remark line 20: gif type>
<Side Remark line 24: image>
<Side Remark line 28: graphics>
<Side Remark line 30: draw graphics>
<Side Remark line 35: close stream>
<Side Remark line 38: draw clock>

46

package chapter42;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import java.text.*;
import java.awt.*;
import java.awt.image.BufferedImage;
import Acme.JPM.Encoders.GifEncoder;

public class ImageContentWithDrawing extends HttpServlet {
 /** Initialize variables */
 private final static int width = 300;
 private final static int height = 300;

 /** Process the HTTP Get request */
 public void doGet(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 response.setContentType("image/gif");
 OutputStream out = response.getOutputStream();

 // Create image
 Image image = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_ARGB);

 // Get Graphics context of the image
 Graphics g = image.getGraphics();

 drawClock(g); // Draw a clock on graphics

 // Encode the image and send to the output stream
 new GifEncoder(image, out, true).encode();

 out.close(); // Close stream
 }

 private void drawClock(Graphics g) {
 // Initialize clock parameters
 int clockRadius =
 (int)(Math.min(width, height) * 0.7 * 0.5);
 int xCenter = (width) / 2;
 int yCenter = (height) / 2;

 // Draw circle
 g.setColor(Color.black);
 g.drawOval(xCenter - clockRadius,yCenter - clockRadius,
 2 * clockRadius, 2 * clockRadius);
 g.drawString("12", xCenter - 5, yCenter – clockRadius + 12);
 g.drawString("9", xCenter – clockRadius + 3, yCenter + 5);
 g.drawString("3", xCenter + clockRadius - 10, yCenter + 3);
 g.drawString("6", xCenter - 3, yCenter + clockRadius - 3);

 // Get current time using GregorianCalendar
 TimeZone timeZone = TimeZone.getDefault();
 GregorianCalendar cal = new GregorianCalendar(timeZone);

 // Draw second hand
 int second = (int)cal.get(GregorianCalendar.SECOND);
 int sLength = (int)(clockRadius * 0.9);
 int xSecond = (int)(xCenter + sLength * Math.sin(second *

47

 (2 * Math.PI / 60)));
 int ySecond = (int)(yCenter – sLength * Math.cos(second *
 (2 * Math.PI / 60)));
 g.setColor(Color.red);
 g.drawLine(xCenter, yCenter, xSecond, ySecond);

 // Draw minute hand
 int minute = (int)cal.get(GregorianCalendar.MINUTE);
 int mLength = (int)(clockRadius * 0.75);
 int xMinute = (int)(xCenter + mLength * Math.sin(minute *
 (2 * Math.PI / 60)));
 int yMinute = (int)(yCenter – mLength * Math.cos(minute *
 (2 * Math.PI / 60)));
 g.setColor(Color.blue);
 g.drawLine(xCenter, yCenter, xMinute, yMinute);

 // Draw hour hand
 int hour = (int)cal.get(GregorianCalendar.HOUR_OF_DAY);
 int hLength = (int)(clockRadius * 0.6);
 int xHour = (int)(xCenter + hLength * Math.sin((hour + minute
 / 60.0) * (2 * Math.PI / 12)));
 int yHour = (int)(yCenter – hLength * Math.cos((hour + minute
 / 60.0) * (2 * Math.PI / 12)));
 g.setColor(Color.green);
 g.drawLine(xCenter, yCenter, xHour, yHour);

 // Set display format in specified style, locale and time zone
 DateFormat formatter = DateFormat.getDateTimeInstance
 (DateFormat.MEDIUM, DateFormat.LONG);

 // Display current date
 g.setColor(Color.red);
 String today = formatter.format(cal.getTime());
 FontMetrics fm = g.getFontMetrics();
 g.drawString(today, (width -
 fm.stringWidth(today)) / 2, yCenter + clockRadius + 30);
 }
}

Since the image is sent to the browser as binary data, the content type
of the response is set to image/gif (line 20). The GifEncoder class is
used to encode the image into content understood by the browser (line
33). The content is sent to the OutputStream object out.

The program creates an image with the specified width, height, and image
type, using the BufferedImage class (lines 24–25):

Image image = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_ARGB);

To draw things on the image, you need to get its graphics context using
the getGraphics method (line 28):

Graphics g = image.getGraphics();

You can use various drawing methods in the Graphics class to draw simple
shapes, or you can use Java 2D to draw more sophisticated graphics. This
example uses simple drawing methods to draw a clock that displays the
current time.

42.9.3 Sending Images and Text Together

48

The servlet in the preceding example returns images. Often images are
mixed with other contents. In this case, you have to set the content
type to “image/gif” before sending images, and set the content type to
“text/html” before sending the text. However, the content type cannot be
changed in one request. To circumvent this restriction, you may embed a
GET request for displaying the image in a tag in the HTML content.
When the HTML content is displayed, a separate GET request for
retrieving the image is then sent to the server. Thus text and image are
obtained through two separate GET requests.

To demonstrate mixing images and texts, let us create a servlet in
Listing 42.15 that mixes the clock image created in the preceding
example with some text, as shown in Figure 42.27.

Figure 42.27

The servlet returns an image along with the text.

Listing 42.15 MixedContent.java

<Side Remark line 9: process GET>
<Side Remark line 11: content type>
<Side Remark line 14: get parameter>
<Side Remark line 16: image tag>
<Side Remark line 22: close stream>

package chapter42;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class MixedContent extends HttpServlet {
 /** Process the HTTP Get request */
 public void doGet(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 String country = request.getParameter("country");

 out.println("<img src = \"" +

49

 "ImageContentWithDrawing\" align=right>");

 out.println("This is a clock created using a Java program " +
 "and sent to the browser by a servlet.");

 out.close();
 }
}

The servlet generates an HTML file with the image tag

The HTML file is rendered by the browser. When the browser sees the
image tag, it sends the request to the server. ImageContentWithDrawing,
created in Listing 42.14, is invoked to send the image to the browser.

Key Terms

Common Gateway Interface
CGI programs
cookie
GET and POST methods
GlassFish
HTML form
URL query string
servlet
servlet container (servlet engine)
servelt life-cycle methods
Tomcat

Chapter Summary

1. A servlet is a special kind of program that runs from a Web
server. Tomcat and GlassFish are Web servers that can run
servlets.

2. A servlet URL is specified by the host name, port, and request
string (e.g., Hhttp://localhost:8084/liangweb/ServletClassH). There
are several ways to invoke a servlet: (1) by typing a servlet URL
from a Web browser, (2) by placing a hyper link in an HTML page,
and (3) by embedding a servlet URL in an HTML form. All the
requests trigger the GET method, except that in the HTML form you
can explicitly specify the POST method.

3. You develop a servlet by defining a class that extends the
HttpServlet class, implements the doGet(HttpServletRequest,
HttpServletResponse) method to respond to the GET method, and
implements the doPost(HttpServletRequest, HttpServletResponse)
method to respond to the POST method.

4. The request information passed from a client to the servlet is
contained in an object of HttpServletRequest. You can use the
methods getParameter, getParameterValues, getRemoteAddr,
getRemoteHost, getHeader, getQueryString, getCookies, and
getSession to obtain the information from the request.

5. The content sent back to the client is contained in an object of
HttpServletResponse. To send content to the client, first set the
type of the content (e.g., html/plain) using the
setContentType(contentType) method, then output the content

50

through an I/O stream on the HttpServletResponse object. You can
obtain a character PrintWriter stream using the getWriter() method
and obtain a binary OutputStream using the getOutputStream()
method.

6. A servlet may be shared by many clients. When the servlet is first
created, its init method is called. It is not called again as long
as the servlet is not destroyed. The service method is invoked
each time the server receives a request for the servlet. The
server spawns a new thread and invokes service. The destroy method
is invoked after a timeout period has passed or the Web server is
stopped.

7. There are three ways to track a session. You can track a session
by passing data from the servlet to the client as a hidden value
in a dynamically generated HTML form by including a field such as
<input type=”hidden” name=”lastName” value=”Smith”>. The next
request will submit the data back to the servlet. The servlet
retrieves this hidden value just like any other parameter value
using the getParameter method.

8. You can track sessions using cookies. A cookie is created using
the constructor new Cookie(String name, String value). Cookies are
sent from the server through the object of HttpServletResponse
using the addCookie(aCookie) method to tell the browser to add a
cookie with a given name and its associated value. If the browser
already has a cookie with the key name, the value will be updated.
The browser will then send the cookie with any request submitted
to the same server. Cookies can have expiration dates set, after
which they will not be sent to the server.

9. Java servlet API provides a session-tracking tool that enables
tracking of a large set of data. A session can be obtained using
the getSession() method through an HttpServletRequest object. The
data can be stored as objects and are secure because they are kept
on the server side using the setAttribute(String name, Object
value) method.

10.Java servlets are not limited to sending text to a browser. They
can return images in GIF, JPEG, or PNG format.

Test Questions

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions

Sections 42.1-42.2
42.1 What is the common gateway interface?

42.2 What are the differences between the GET and POST methods in an
HTML form?

42.3 Can you submit a GET request directly from a URL? Can you submit a
POST request directly from a URL?

42.4 What is wrong in the following URL for submitting a GET request to
the servlet FindScore on host liang at port 8084 with parameter name?

http://liang:8084/findScore?name=”P Yates”

42.5 What are the differences between CGI and servlets?

51

Section 42.3
42.6 Can you display an HTML file (e.g. c:\test.html) by typing the
complete file name in the Address field of Internet Explorer? Can you
run a servlet by simply typing the servlet class file name?

42.7 How do you create a Web project in NetBeans?

42.8 How do you create a servlet in NetBeans?

42.9 How do you run a servlet in NetBeans?

42.10 When you run a servlet from NetBeans, what is the port number by
default? What happens if the port number is already in use?

42.11 What is the .war file? How do you obtain a .war file for a Web
project in NetBeans?

Section 42.4
42.12 Describe the life cycle of a servlet.

42.13 Suppose that you started the Web server, ran the following servlet
twice by issuing an appropriate URL from the Web browser, and finally
stopped Tomcat. What was displayed on the console when the servlet was
first invoked? What was displayed on the console when the servlet was
invoked for the second time? What was displayed on the console when
Tomcat was shut down?

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class Test extends HttpServlet {
public Test() {

 System.out.println("Constructor called");
 }

/** Initialize variables */
public void init() throws ServletException {

 System.out.println("init called");
 }

/** Process the HTTP Get request */
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

 System.out.println("doGet called");
 }

/** Clean up resources */
public void destroy() {

 System.out.println("destroy called");
 }
}

Sections 42.5-42.7
42.14 What would be displayed if you changed the content type to
“html/plain” in Listing 42.2, CurrentTime.java?

52

42.15 The statement out.close() is used to close the output stream to
response. Why isn’t this statement enclosed in a try-catch block?

42.16 What happens when you invoke request.getParameter(paramName) if
paramName does not exist?

42.17 How do you write a text field, combo box, check box, and text area
in an HTML form?

42.18 How do you retrieve the parameter value for a text field, combo
box, list, check box, radio button, and text area from an HTML form?

42.19 If the servlet uses a database driver other than the JDBC-ODBC
driver, where should the driver be placed in NetBeans?

Section 42.8
42.20 What is session tracking? What are three techniques for session
tracking?

42.21 How do you create a cookie, send a cookie to a browser, get
cookies from a browser, get the name of a cookie, set a new value in the
cookie, and set cookie expiration time?

42.22 Do you have to create five Cookie objects in the servlet in order
to send five cookies to the browser?

42.23 How do you get a session, set object value for the session, and
get object value from the session?

42.24 Suppose you inserted the following code in line 53 in Listing
42.11.

httpSession.setMaxInactiveInterval(1);

What would happen after the user clicked the Confirm button from the
browser? Test your answer by running the program.

42.25 Suppose you inserted the following code in line 53 in Listing
42.11.

httpSession.setMaxInactiveInterval(-1);

What would happen after the user clicked the Confirm button from the
browser?

Section 42.9

42.26 What output stream should you use to send images to the browser?
What content type do you have to set for the response?

42.27 How do you deal with dynamic contents with images and text?

Programming Exercises

NOTE: Solutions to even-numbered exercises in this
chapter are in exercise\servletexercise from
evennumberedexercise.zip, which can be downloaded from
the Companion Website.

Section 42.5

53

42.1*

(Factorial table) Write a servlet to display a table that contains
factorials for the numbers from 0 to 10, as shown in Figure 42.28a.

 (a) (b)

Figure 42.28

(a) The servlet displays factorials for the numbers from 0 to 10
in a table. (b) The servlet displays the multiplication table.

42.2*

(Multiplication table) Write a servlet to display a multiplication
table, as shown in Figure 42.28(b).

42.3*

(Visit count) Develop a servlet that displays the number of visits on
the servlet. Also display the client’s host name and IP address, as
shown in Figure 42.29.

Figure 42.29

The servlet displays the number of visits and the client’s host
name, IP address, and request URL.

Implement this program in three different ways:

1. Use an instance variable to store count. When the servlet is
created for the first time, count is 0. count is incremented
every time the servlet’s doGet method is invoked. When the
Web server stops, count is lost.

54

2. Store the count in a file named Exercise39_3.dat, and use
RandomAccessFile to read the count in the servlet’s init
method. The count is incremented every time the servlet’s
doGet method is invoked. When the Web server stops, store
the count back to the file.

3. Instead of counting total visits from all clients, count the
visits by each client identified by the client’s IP address.
Use Map to store a pair of IP addresses and visit counts.
For the first visit, an entry is created in the map. For
subsequent visits, the visit count is updated.

Section 42.6
42.4*

(Calculate tax) Write an HTML form to prompt the user to enter
taxable income and filing status, as shown in Figure 42.30a. Clicking
the Compute Tax button invokes a servlet to compute and display the
tax, as shown in Figure 42.30b. Use the computeTax method introduced
in Listing 3.7, ComputingTax.java, to compute tax.

 (a) (b)

Figure 42.30

The servlet computes the tax.

42.5*

(Calculate loan) Write an HTML form that prompts the user to enter
loan amount, interest rate, and number of years, as shown in Figure
42.31a. Clicking the Compute Loan Payment button invokes a servlet to
compute and display the monthly and total loan payments, as shown in
Figure 42.31b. Use the Loan class given in Listing 10.2, Loan.java,
to compute the monthly and total payments.

 (a) (b)

Figure 42.31

55

The servlet computes the loan payment.

42.6**

(Find scores from text files) Write a servlet that displays the
student name and the current score, given the SSN and class ID. For
each class, a text file is used to store the student name, SSN, and
current score. The file is named after the class ID with .txt
extension. For instance, if the class ID were csci1301, the file name
would be csci1301.txt. Suppose each line consists of student name,
SSN, and score. These three items are separated by the # sign. Create
an HTML form that enables the user to enter the SSN and class ID, as
shown in Figure 42.32a. Upon clicking the Submit button, the result
is displayed, as shown in Figure 42.32b. If the SSN or the class ID
does not match, report an error. Assume three courses are available:
CSCI1301, CSCI1302, and CSCI3720.

 (a) (b)

Figure 42.32

The HTML form accepts the SSN and class ID from the user and sends
them to the servlet to obtain the score.

Section 42.7
42.7**

(Find scores from database tables) Rewrite the preceding servlet.
Assume that for each class, a table is used to store the student
name, ssn, and score. The table name is the same as the class ID. For
instance, if the class ID were csci1301, the table name would be
csci1301.

42.8*

(Change the password) Write a servlet that enables the user to change
the password from an HTML form, as shown in Figure 42.33a. Suppose
that the user information is stored in a database table named Account
with three columns: username, password, and name, where name is the
real name of the user. The servlet performs the following tasks:

a. Verify that the username and old password are in the table. If
not, report the error and redisplay the HTML form.

b. Verify that the new password and the confirmed password are the
same. If not, report this error and redisplay the HTML form.

c. If the user information is entered correctly, update the
password and report the status of the update to the user, as
shown in Figure 42.33b.

56

 (a) (b)

Figure 42.33

The user enters the username and the old password and sets a new
password. The servlet reports the status of the update to the
user.

42.9**
(Display database tables) Write an HTML form that prompts the user to
enter or select a JDBC driver, database URL, username, password, and
table name, as shown in Figure 42.34a. Clicking the Submit button
displays the table content, as shown in Figure 42.34b.

 (a) (b)

Figure 42.34

The user enters database information and specifies a table to
display its content.

Section 42.8

42.10*

(Store cookies) Write a servlet that stores the following cookies in
a browser, and set their max age for two days.

Cookie 1: name is “color” and value is red.

Cookie 2: name is “radius” and value is 5.5.

57

Cookie 3: name is “count” and value is 2.

42.11*

(Retrieve cookies) Write a servlet that displays all the cookies on
the client. The client types the URL of the servlet from the browser
to display all the cookies stored on the browser. See Figure 42.35.

Figure 42.35

All the cookies on the client are displayed in the browser.

Comprehensive

42.12***
(Syntax highlighting) Create an HTML form that prompts the user to
enter a Java program in a text area, as shown in Figure 42.36a. The
form invokes a servlet that displays the Java source code in a
syntax-highlighted HTML format, as shown in Figure 42.36b. The
keywords, comments, and literals are displayed in bold navy, green,
and blue, respectively.

 (a) (b)

Figure 42.36

The Java code in plain text in (a) is displayed in HTML with
syntax highlighted in (b).

42.13**
(Access and update a Staff table) Write a Java servlet for Exercise
33.1, as shown in Figure 42.37.

58

Figure 42.37

The web page lets you view, insert, and update staff information.

42.14***
(Opinion poll) Create an HTML form that prompts the user to answer a
question such as “Are you a CS major?”, as shown in Figure 42.38a.
When the Submit button is clicked, the servlet increases the Yes or
No count in a database and displays the current Yes and No counts, as
shown in Figure 42.38b.

 (a) (b)

Figure 42.38

The HTML form prompts the user to enter Yes or No for a question
in (a), and the servlet updates the Yes or No counts (b).

Create a table named Poll, as follows:

create table Poll (
 question varchar(40) primary key,
 yesCount int,
 noCount int);

Insert one row into the table, as follows:

insert into Poll values ('Are you a CS major? ', 0, 0);

1

***This is a bonus Web chapter

CHAPTER 43

JavaServer Pages

Objectives

To create a simple JSP page (§43.2).
To explain how a JSP page is processed (§43.3).
To use JSP constructs to code JSP script (§43.4).
To use predefined variables and directives in JSP (§§43.5–43.6).
To use JavaBeans components in JSP (§43.7).
To get and set JavaBeans properties in JSP (§43.8).
To associate JavaBeans properties with input parameters (§43.9).
To forward requests from one JSP page to another (§43.10).
To develop an application for browsing database tables using JSP
(§43.11).

2

43.1 Introduction
Servlets can be used to generate dynamic Web content. One drawback,
however, is that you have to embed HTML tags and text inside the Java
source code. Using servlets, you have to modify the Java source code and
recompile it if changes are made to the HTML text. If you have a lot of
HTML script in a servlet, the program is difficult to read and maintain,
since the HTML text is part of the Java program. JavaServer Pages (JSP)
was introduced to remedy this drawback. JSP enables you to write regular
HTML script in the normal way and embed Java code to produce dynamic
content.

43.2 Creating a Simple JSP Page
<Side Remark: JSP tag>
JSP provides an easy way to create dynamic Web pages and simplify the
task of building Web applications. A JavaServer page is like a regular
HTML page with special tags, known as JSP tags, which enable the Web
server to generate dynamic content. You can create a Web page with HTML
script and enclose the Java code for generating dynamic content in the
JSP tags. Here is an example of a simple JSP page.

<Side Remark line 9: JSP tag>
<!-- CurrentTime.jsp -->
<html>
<head>
<title>

 CurrentTime
</title>

 </head>
 <body>
 Current time is <%= new java.util.Date() %>
 </body>
</html>

The dynamic content is enclosed in the tag that begins with <%= and ends
with %>. The current time is returned as a string by invoking the
toString method of an object of the java.util.Date class.

<Side Remark: JSP in NetBeans>
An IDE like NetBeans can greatly simplify the task of developing JSP. To
create JSP in NetBeans, first you need to create a Web project. A Web
project named liangweb was created in the preceding chapter. For
convenience, this chapter will create JSP in the liangweb project.

Here are the steps to create and run CurrentTime.jsp:
1. Right-click the liangweb node in the project pane and choose New

› JSP to display the New JSP dialog box, as shown in Figure 43.1.
<Side Remark: create CurrentTime.jsp>

2. Enter CurrentTime in the JSP File Name field and click Finish.
You will see CurrentTime.jsp appearing under the Web Pages node
in liangweb.

3. Complete the code for CurrentTime.jsp, as shown in Figure 43.2.
<Side Remark: run CurrentTime.jsp>

4. Right-click CurrentTime.jsp in the project pane and choose Run
File. You will see the JSP page displayed in a Web browser, as
shown in Figure 43.3.

3

Figure 43.1
You can create a JSP page using NetBeans.

Figure 43.2
A template for a JSP page is created.

Figure 43.3
The result from a JSP page is displayed in a Web browser.

NOTE: Like servlets, you can develop JSP in NetBeans,
create a .war file, and then deploy the .war file in a
Java Web server such as Tomcat and GlassFish.

43.3 How Is a JSP Page Processed?
A JSP page must first be processed by a Web server before it can be
displayed in a Web browser. The Web server must support JSP, and the JSP
page must be stored in a file with a .jsp extension. The Web server
translates the .jsp file into a Java servlet, compiles the servlet, and
executes it. The result of the execution is sent to the browser for
display. Figure 43.4 shows how a JSP page is processed by a Web server.

4

Figure 43.4
A JSP page is translated into a servlet.

NOTE: A JSP page is translated into a servlet when the
page is requested for the first time. It is not
retranslated if the page is not modified. To ensure that
the first-time real user does not encounter a delay, JSP
developers should test the page after it is installed.

43.4 JSP Scripting Constructs
<Side Remark: scripting element>
<Side Remark: directive>
<Side Remark: action>
There are three main types of JSP constructs: scripting constructs,
directives, and actions. Scripting elements enable you to specify Java
code that will become part of the resultant servlet. Directives enable
you to control the overall structure of the resultant servlet. Actions
enable you to control the behavior of the JSP engine. This section
introduces scripting constructs.

Three types of JSP scripting constructs can be used to insert Java code
into a resultant servlet: expressions, scriptlets, and declarations.

<Side Remark: JSP expression>
A JSP expression is used to insert a Java expression directly into the
output. It has the following form:

<%= Java expression %>

The expression is evaluated, converted into a string, and sent to the
output stream of the servlet.

<Side Remark: JSP scriptlet>
A JSP scriptlet enables you to insert a Java statement into the
servlet’s jspService method, which is invoked by the service method. A
JSP scriptlet has the following form:

5

<% Java statement %>

<Side Remark: JSP declaration>
A JSP declaration is for declaring methods or fields into the servlet.
It has the following form:

<%! Java declaration %>

HTML comments have the following form:

<!-- HTML Comment -->

<Side Remark: JSP comment>
If you don’t want the comment to appear in the resultant HTML file, use
the following comment in JSP:

<%-- JSP Comment --%>

Listing 43.1 creates a JavaServer page that displays factorials for
numbers from 0 to 10, as shown in Figure 43.5.

Figure 43.5
The JSP page displays factorials.

Listing 43.1 Factorial.jsp

<Side Remark line 9: JSP scriptlet>
<Side Remark line 10: JSP expression>
<Side Remark line 14: JSP declaration>

<html>
 <head>
 <title>
 Factorial
 </title>
 </head>
 <body>

 <% for (int i = 0; i <= 10; i++) { %>
 Factorial of <%= i %> is

<%= computeFactorial(i) %>

 <% } %>

 <%! private long computeFactorial(int n) {

6

 if (n == 0)
 return 1;
else
return n * computeFactorial(n - 1);

 }
 %>

 </body>
</html>

JSP scriptlets are enclosed between <% and %>. Thus

for (int i = 0; i <= 10; i++) {, (line 9)

is a scriptlet and as such is inserted directly into the servlet’s
jspService method.

JSP expressions are enclosed between <%= and %>. Thus

<%= i %>, (line 10)

is an expression and is inserted into the output stream of the servlet.

JSP declarations are enclosed between <%! and %>. Thus

<%! private long computeFactorial(int n) {
 ...
 }
%>

is a declaration that defines methods or fields in the servlet.

What will be different if line 9 is replaced by the two alternatives
shown below? Both work fine, but there is an important difference. In
(a), i is a local variable in the servlet, whereas in (b) i is an
instance variable when translated to the servlet.

<% int i = 0; %>
<% for (; i <= 10; i++) { %>

(a)

<%! int i; %>
<% for (i = 0; i <= 10; i++) { %>

(b)

CAUTION: For JSP the loop body, even though it contains a
single statement, must be placed inside braces. It would
be wrong to delete the opening brace ({) in line 9 and
the closing brace (<% } %>) in line 12.

CAUTION: There is no semicolon at the end of a JSP
expression. For example, <%= i; %> is incorrect. But
there must be a semicolon for each Java statement in a
JSP scriptlet. For example, <% int i = 0 %> is incorrect.
CAUTION: JSP and Java elements are case sensitive, but
HTML is not.

43.5 Predefined Variables
<Side Remark: JSP implicit object>
You can use variables in JSP. For convenience, JSP provides eight
predefined variables from the servlet environment that can be used with
JSP expressions and scriptlets. These variables are also known as JSP
implicit objects.
<Side Remark: request>

7

request represents the client’s request, which is an instance of
HttpServletRequest. You can use it to access request parameters and
HTTP headers, such as cookies and host name.

<Side Remark: response>
response represents the servlet’s response, which is an instance of
HttpServletResponse. You can use it to set response type and send
output to the client.

<Side Remark: out>
out represents the character output stream, which is an instance of
PrintWriter obtained from response.getWriter(). You can use it to
send character content to the client.

<Side Remark: session>
session represents the HttpSession object associated with the
request, obtained from request.getSession().

<Side Remark: application>
application represents the ServletContext object for storing
persistent data for all clients. The difference between session and
application is that session is tied to one client, but application
is for all clients to share persistent data.

<Side Remark: config>
config represents the ServletConfig object for the page.

<Side Remark: pageContext>
pageContext represents the PageContext object. PageContext is a new
class introduced in JSP to give a central point of access to many
page attributes.

<Side Remark: page>
page is an alternative to this.

As an example, let us write an HTML page that prompts the user to enter
loan amount, annual interest rate, and number of years, as shown in
Figure 43.6a. Clicking the Compute Loan Payment button invokes a JSP to
compute and display the monthly and total loan payments, as shown in
Figure 43.6b.

 (a) (b)
Figure 43.6
The JSP computes the loan payments.

The HTML file is named ComputeLoan.html (Listing 43.2). The JSP file is
named ComputeLoan.jsp (Listing 43.3).

Listing 43.2 ComputeLoan.html

<Side Remark line 7: form action>
<Side Remark line 10: text field>
<Side Remark line 15: submit>

<!-- ComputeLoan.html -->
<html>
 <head>
 <title>ComputeLoan</title>

8

 </head>
 <body>
 <form method = "get" action = "ComputeLoan.jsp">
 Compute Loan Payment

 Loan Amount

<input type = "text" name = "loanAmount" />

 Annual Interest Rate

<input type = "text" name = "annualInterestRate" />

 Number of Years

<input type = "text" name = "numberOfYears" size = "3" />

<p><input type = "submit" name = "Submit"

value = "Compute Loan Payment" />
 <input type = "reset" value = "Reset" /></p>
 </form>
 </body>
</html>

Listing 43.3 ComputeLoan.jsp

<Side Remark line 7: JSP scriptlet>
<Side Remark line 8: get parameters>
<Side Remark line 17: JSP expression>

<!-- ComputeLoan.jsp -->
<html>
 <head>
 <title>ComputeLoan</title>
 </head>
 <body>
 <% double loanAmount = Double.parseDouble(
 request.getParameter("loanAmount"));

double annualInterestRate = Double.parseDouble(
 request.getParameter("annualInterestRate"));

double numberOfYears = Integer.parseInt(
 request.getParameter("numberOfYears"));

double monthlyInterestRate = annualInterestRate / 1200;
double monthlyPayment = loanAmount * monthlyInterestRate /

 (1 - 1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12));
double totalPayment = monthlyPayment * numberOfYears * 12; %>

 Loan Amount: <%= loanAmount %>

 Annual Interest Rate: <%= annualInterestRate %>

 Number of Years: <%= numberOfYears %>

Monthly Payment: <%= monthlyPayment %>

 Total Payment: <%= totalPayment %>

 </body>
</html>

ComputeLoan.html is displayed first to prompt the user to enter the loan
amount, annual interest rate, and number of years. Since this file does
not contain any JSP elements, it is named with an .html extension as a
regular HTML file.

ComputeLoan.jsp is invoked upon clicking the Compute Loan Payment button
in the HTML form. The JSP page obtains the parameter values using the
predefined variable request in lines 7–12 and computes monthly payment
and total payment in lines 13–16. The formula for computing monthly
payment is given in §2.9, “Problem: Computing Loan Payments.”

9

What is wrong if the JSP scriptlet <% in line 7 is replaced by the JSP
declaration <%!? The predefined variables (e.g., request, response, out)
correspond to local variables defined in the servlet methods doGet and
doPost. They must appear in JSP scriptlets, not in JSP declarations.

TIP: ComputeLoan.jsp can also be invoked using the following
query string:
http://localhost:8084/liangweb/ComputeLoan.jsp?loanAmount=10000
&annualInterestRate=6&numberOfYears=15.

43.6 JSP Directives
A JSP directive is a statement that gives the JSP engine information
about the JSP page. For example, if your JSP page uses a Java class from
a package other than the java.lang package, you have to use a directive
to import this package. The general syntax for a JSP directive is shown
below:

<%@ directive attribute = "value" %>, or
<%@ directive attribute1 = "value1"
 attribute2 = "value2"
 ...
 attributen = "valuen" %>

The possible directives are:
page lets you provide information for the page, such as importing
classes and setting up content type. The page directive can appear
anywhere in the JSP file.
include lets you insert a file into the servlet when the page is
translated to a servlet. The include directive must be placed
where you want the file to be inserted.
taglib lets you define custom tags.

The following are useful attributes for the page directive:
import specifies one or more packages to be imported for this
page. For example, the directive <%@ page import="java.util.*,
java.text.*" %> imports java.util.* and java.text.*.
contentType specifies the content type for the resultant JSP page.
By default, the content type is text/html for JSP. The default
content type for servlets is text/plain.
session specifies a boolean value to indicate whether the page is
part of the session. By default, session is true.
buffer specifies the output stream buffer size. By default, it is
8KB. For example, the directive <%@ page buffer="10KB" %>
specifies that the output buffer size is 10KB. The directive <%@
page buffer="none" %> specifies that a buffer is not used.
autoFlush specifies a boolean value to indicate whether the output
buffer should be automatically flushed when it is full or whether
an exception should be raised when the buffer overflows. By
default, this attribute is true. In this case, the buffer
attribute cannot be none.
isThreadSafe specifies a boolean value to indicate whether the
page can be accessed simultaneously without data corruption. By
default, it is true. If it is set to false, the JSP page will be
translated to a servlet that implements the SingleThreadModel
interface.
errorPage specifies a JSP page that is processed when an exception
occurs in the current page. For example, the directive <%@ page

10

errorPage="HandleError.jsp" %> specifies that HandleError.jsp is
processed when an exception occurs.
isErrorPage specifies a boolean value to indicate whether the page
can be used as an error page. By default, this attribute is false.

Listing 43.4 gives an example that shows how to use the page directive
to import a class. The example uses the Loan class created in Listing
10.2, Loan.java, to simplify Listing 43.3, ComputeLoan.jsp. You can
create an object of the Loan class and use its monthlyPayment() and
totalPayment() methods to compute the monthly payment and total payment.

Listing 43.4 ComputeLoan1.jsp

<Side Remark line 7: JSP directive>
<Side Remark line 14: create object>

<!-- ComputeLoan1.jsp -->
<html>
 <head>
 <title>ComputeLoan Using the Loan Class</title>
</head>

 <body>
<%@ page import = "chapter43.Loan" %>
<% double loanAmount = Double.parseDouble(

 request.getParameter("loanAmount"));
double annualInterestRate = Double.parseDouble(

 request.getParameter("annualInterestRate"));
int numberOfYears = Integer.parseInt(

 request.getParameter("numberOfYears"));
 Loan loan =

new Loan(annualInterestRate, numberOfYears, loanAmount);
%>

 Loan Amount: <%= loanAmount %>

 Annual Interest Rate: <%= annualInterestRate %>

 Number of Years: <%= numberOfYears %>

Monthly Payment: <%= loan.getMonthlyPayment() %>

 Total Payment: <%= loan.getTotalPayment() %>

 </body>
</html>

<Side Remark: create Loan class>
This JSP uses the Loan class. You need to create the class in the
liangweb project in package chapter43 as follows:

package chapter43;

public class Loan {
// Same as lines 2-69 in Listing 10.2, Loan.java, so omitted

}

The directive <%@ page import ="chapter43.Loan" %> imports the Loan
class in line 7. Line 14 creates an object of Loan for the given loan
amount, annual interest rate, and number of years. Lines 20–21 invokes
the Loan object’s monthlyPayment() and totalPayment() methods to display
monthly payment and total payment.

43.7 Using JavaBeans in JSP

11

Normally you create an instance of a class in a program and use it in
that program. This method is for sharing the class, not the object. JSP
allows you to share the object of a class among different pages. To
enable an object to be shared, its class must be a JavaBeans component.
Recall that this entails the following three features:

The class is public.
The class has a public constructor with no arguments.
The class is serializable. (This requirement is not necessary in
JSP.)

To create an instance for a JavaBeans component, use the following
syntax:

<jsp:useBean id = "objectName" scope = "scopeAttribute"
class = "ClassName" />

This syntax is roughly equivalent to

<% ClassName objectName = new ClassName() %>

except that the scope attribute is missing. The scope attribute
specifies the scope of the object and the object is not recreated if it
is already within the scope. Listed below are four possible values for
the scope attribute:

application specifies that the object is bound to the application.
The object can be shared by all sessions of the application.
session specifies that the object is bound to the client’s
session. Recall that a client’s session is automatically created
between a Web browser and a Web server. When a client from the
same browser accesses two servlets or two JSP pages on the same
server, the session is the same.
page is the default scope, which specifies that the object is
bound to the page.
request specifies that the object is bound to the client’s
request.

When <jsp:useBean id="objectName" scope="scopeAttribute"
class="ClassName" /> is processed, the JSP engine first searches for an
object of the class with the same id and scope. If found, the
preexisting bean is used; otherwise, a new bean is created.

Here is another syntax for creating a bean:

<jsp:useBean id = "objectName" scope = "scopeAttribute"
class = "ClassName" >

 statements
</jsp:useBean>

The statements are executed when the bean is created. If a bean with the
same ID and class name already exists in the scope, the statements are
not executed.

Listing 43.5 creates a JavaBeans component named Count and uses it to
count the number of visits to a JSP page, as shown in Figure 43.7.

12

Figure 43.7
The number of visits to the page is increased when the page is
visited.

Listing 43.5 Count.java
<Side Remark line 1: package statement>

package chapter43;

public class Count {
private int count = 0;

/** Return count property */
public int getCount() {
return count;

 }

/** Increase count */
public void increaseCount() {

 count++;
 }
}

The JSP page named TestBeanScope.jsp is created in Listing
43.6.

Listing 43.6 TestBeanScope.jsp

<Side Remark line 2: import directive>
<Side Remark line 3: create bean>
<Side Remark line 12: use bean>
<Side Remark line 14: request>
<Side Remark line 15: session>

<!-- TestBeanScope.jsp -->
<%@ page import = "chapter43.Count" %>
<jsp:useBean id = "count" scope = "application"
 class = "chapter43.Count">
</jsp:useBean>
<html>
 <head>
 <title>TestBeanScope</title>
</head>

 <body>
 <h3>Testing Bean Scope in JSP (Application)</h3>

<% count.increaseCount(); %>
 You are visitor number <%= count.getCount() %>

 From host: <%= request.getRemoteHost() %>
 and session: <%= session.getId() %>
</body>

</html>

13

The scope attribute specifies the scope of the bean. scope=”application”
(line 3) specifies that the bean is alive in the JSP engine and
available for all clients to access. The bean can be shared by any
client with the directive <jsp:useBean id="count" scope="application"
class="Count" > (lines 3–4). Every client accessing TestBeanScope.jsp
causes the count to increase by 1. The first client causes count object
to be created, and subsequent access to TestBeanScope uses the same
object.

If scope="application" is changed to scope="session", the scope of the
bean is limited to the session from the same browser. The count will
increase only if the page is requested from the same browser. If
scope="application" is changed to scope="page", the scope of the bean is
limited to the page, and any other page cannot access this bean. The
page will always display count 1. If scope="application" is changed to
scope="request", the scope of the bean is limited to the client’s
request, and any other request on the page will always display count 1.

If the page is destroyed, the count restarts from 0. You can fix the
problem by storing the count in a random access file or in a database
table. Assume that you store the count in the Count table in a database.
The Count class can be modified in Listing 43.7.

Listing 43.7 Count.java (Revised Version)

<Side Remark line 1: package statement>
<Side Remark line 16: execute SQL>
<Side Remark line 43: load driver>
<Side Remark line 46: connection>
<Side Remark line 49: statement>

package chapter43;

import java.sql.*;

public class Count {
 private int count = 0;
 private Statement statement = null;

 public Count() {
 initializeJdbc();
 }

 /** Return count property */
 public int getCount() {
 try {
 ResultSet rset = statement.executeQuery
 ("select countValue from Count");
 rset.next();
 count = rset.getInt(1);
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }

 return count;
 }

 /** Increase count */

14

 public void increaseCount() {
 count++;
 try {
 statement.executeUpdate(
 "update Count set countValue = " + count);
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 /** Initialize database connection */
 public void initializeJdbc() {
 try {
 Class.forName("com.mysql.jdbc.Driver");

 // Connect to the sample database
 Connection connection = DriverManager.getConnection
 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");

 statement = connection.createStatement();
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

43.8 Getting and Setting Properties
By convention, a JavaBeans component provides the get and set methods
for reading and modifying its private properties. You can get the
property in JSP using the syntax shown below:

<jsp:getProperty name = "beanId" property = "sample" />

This is roughly equivalent to

<%= beanId.getSample() %>

You can set the property in JSP using the following syntax:

<jsp:setProperty name = "beanId"
 property = "sample" value = "test1" />

This is equivalent to

<% beanId.setSample("test1"); %>

43.9 Associating Properties with Input Parameters
Often properties are associated with input parameters. Suppose you want
to get the value of the input parameter named score and set it to the
JavaBeans property named score. You could write the following code:

<% double score = Double.parseDouble(
 request.getParameter("score")); %>
<jsp:setProperty name = "beanId" property = "score"

value = "<%= score %>" />

This is cumbersome. JSP provides a convenient syntax that can be used to
simplify it:

15

<jsp:setProperty name = "beanId" property = "score"
param = "score" />

Instead of using the value attribute, you use the param attribute to
name an input parameter. The value of this parameter is set to the
property.

NOTE: Simple type conversion is performed automatically
when a bean property is associated with an input
parameter. A string input parameter is converted to an
appropriate primitive data type or a wrapper class for a
primitive type. For example, if the bean property is of
the int type, the value of the parameter will be
converted to the int type. If the bean property is of the
Integer type, the value of the parameter will be
converted to the Integer type.

Often the bean property and the parameter have the same name. You can
use the following convenient statement to associate all the bean
properties in beanId with the parameters that match the property names:

<jsp:setProperty name = "beanId" property = "*" />

43.9.1 Example: Computing Loan Payments Using JavaBeans

This example uses JavaBeans to simplify Listing 43.4, ComputeLoan1.jsp,
by associating the bean properties with the input parameters. The new
ComputeLoan2.jsp is given in Listing 43.8.

Listing 43.8 ComputeLoan2.jsp

<Side Remark line 7: import>
<Side Remark line 8: create bean>
<Side Remark line 11: use bean>

<!-- ComputeLoan2.jsp -->
<html>
 <head>
 <title>ComputeLoan Using the Loan Class</title>
 </head>
 <body>

<%@ page import = "chapter43.Loan" %>
<jsp:useBean id = "loan" class = "chapter43.Loan"
scope = "page" ></jsp:useBean>

<jsp:setProperty name = "loan" property = "*" />
 Loan Amount: <%= loan.getLoanAmount() %>

 Annual Interest Rate: <%= loan.getAnnualInterestRate() %>

 Number of Years: <%= loan.getNumberOfYears() %>

Monthly Payment: <%= loan.monthlyPayment() %>

 Total Payment: <%= loan.totalPayment() %>

 </body>
</html>

Lines 8-9

<jsp:useBean id = "loan" class = "chapter43.Loan"
scope = "page" ></jsp:useBean>

16

creates a bean named loan for the Loan class. Line 10

<jsp:setProperty name = "loan" property = "*" />

associates the bean properties loanAmount, annualInteresteRate, and
numberOfYears with the input parameter values and performs type
conversion automatically.

Lines 11–13 use the accessor methods of the loan bean to get the loan
amount, annual interest rate, and number of years.

This program acts the same as in Listings 43.3 and 43.4, ComputeLoan.jsp
and ComputeLoan1.jsp, but the coding is much simplified.

43.9.2 Example: Computing Factorials Using JavaBeans

This example creates a JavaBeans component named FactorialBean and uses
it to compute the factorial of an input number in a JSP page named
FactorialBean.jsp, as shown in Figure 43.8.

Figure 43.8
The factorial of an input integer is computed using a method in
FactorialBean.

Create a JavaBeans component named FactorialBean.java (Listing 43.9).
Create FactorialBean.jsp (Listing 43.10).

Listing 43.9 FactorialBean.java

<Side Remark line 1: package statement>
<Side Remark line 7: get>
<Side Remark line 12: set>

package chapter43;

public class FactorialBean {
 private int number;

 /** Return number property */
 public int getNumber() {
 return number;
 }

 /** Set number property */
 public void setNumber(int newValue) {
 number = newValue;
 }

17

 /** Obtain factorial */
 public long getFactorial() {
 long factorial = 1;
 for (int i = 1; i <= number; i++)
 factorial *= i;
 return factorial;
 }
}

Listing 43.10 FactorialBean.jsp

<Side Remark line 2: import>
<Side Remark line 3: create bean>
<Side Remark line 15: form>
<Side Remark line 21: get property>

<!-- FactorialBean.jsp -->
<%@ page import = "chapter43.FactorialBean" %>
<jsp:useBean id = "factorialBeanId"
 class = "chapter43.FactorialBean" scope = "page" >
</jsp:useBean>
<jsp:setProperty name = "factorialBeanId" property = "*" />
<html>
 <head>
 <title>
 FactorialBean

</title>
 </head>
 <body>
 <h3>Compute Factorial Using a Bean</h3>
 <form method = "post">
 Enter new value: <input name = "number" />

<input type = "submit" name = "Submit"
 value = "Compute Factorial" />
<input type = "reset" value = "Reset" />

 Factorial of
<jsp:getProperty name = "factorialBeanId"
property = "number" /> is

<%@ page import = "java.text.*" %>
<% NumberFormat format = NumberFormat.getNumberInstance(); %>

 <%= format.format(factorialBeanId.getFactorial()) %>
 </form>
 </body>
</html>

The jsp:useBean tag (lines 3-4) creates a bean factorialBeanId of the
FactorialBean class. Line 5 <jsp:setProperty name="factorialBeanId"
property="*" /> associates all the bean properties with the input
parameters that have the same name. In this case, the bean property
number is associated with the input parameter number. When you click the
Compute Factorial button, JSP automatically converts the input value for
number from string into int and sets it to factorialBean before other
statements are executed.

Lines 21-22 <jsp:getProperty name="factorialBeanId" property="number" />
tag (line 21) is equivalent to <%= factorialBeanId.getNumber() %>. The

18

method factorialBeanId.getFactorial() (line 25) returns the factorial
for the number in factorialBeanId.

DESIGN GUIDE
<Side Remark: separating Java code from HTML>

Mixing a lot of Java code with HTML in a JSP page makes
the code difficult to read and to maintain. You should
move the Java code to a .java file as much as you can.

***End DESIGN GUIDE

Following the preceding design guide, you may improve the preceding
example by moving the Java code in lines 23–25 to the FactorialBean
class. The new FactorialBean.java and FactorialBean.jsp are given in
Listings 43.11 and 43.12.

Listing 43.11 NewFactorialBean.java

<Side Remark line 1: package statement>
<Side Remark line 9: get>
<Side Remark line 14: set>

package chapter43;

import java.text.*;

public class NewFactorialBean {
 private int number;

 /** Return number property */
 public int getNumber() {
 return number;
 }

 /** Set number property */
 public void setNumber(int newValue) {
 number = newValue;
 }

 /** Obtain factorial */
 public long getFactorial() {
 long factorial = 1;
 for (int i = 1; i <= number; i++)
 factorial *= i;
 return factorial;
 }

 /** Format number */
 public static String format(long number) {
 NumberFormat format = NumberFormat.getNumberInstance();
 return format.format(number);
 }
}

Listing 43.12 NewFactorialBean.jsp

<Side Remark line 2: import>
<Side Remark line 3: create bean>
<Side Remark line 15: form>
<Side Remark line 21: get property>

19

<!-- NewFactorialBean.jsp -->
<%@ page import = "chapter43.NewFactorialBean" %>
<jsp:useBean id = "factorialBeanId"
 class = "chapter43.NewFactorialBean" scope = "page" >
</jsp:useBean>
<jsp:setProperty name = "factorialBeanId" property = "*" />
<html>
 <head>
 <title>
 FactorialBean

</title>
 </head>
 <body>
 <h3>Compute Factorial Using a Bean</h3>
 <form method = "post">
 Enter new value: <input name = "number" />

<input type = "submit" name = "Submit"
 value = "Compute Factorial" />
<input type = "reset" value = "Reset" />

 Factorial of
<jsp:getProperty name = "factorialBeanId"
property = "number" /> is

 <%= NewFactorialBean.format(factorialBeanId.getFactorial()) %>
 </form>
 </body>
</html>

There is a problem in this page. The program cannot display large
factorials. For example, if you entered value 21, the program would
display an incorrect factorial. To fix this problem, all you need to do
is to revise the NewFactorialBean class using BigInteger to computing
factorials. See Exercise 43.18.

43.9.3 Example: Displaying International Time

Listing 42.5, TimeForm.java, gives a Java servlet that uses the doGet
method to generate an HTML form for the user to specify a locale and
time zone (Figure 42.18a) and uses the doPost method to display the
current time for the specified time zone in the specified locale (Figure
42.18b). This section rewrites the servlet using JSP. You have to create
two JSP pages, one for displaying the form and the other for displaying
the current time.

In the TimeForm.java servlet, arrays allLocale and allTimeZone are the
data fields. The doGet and doPost methods both use the arrays. Since the
available locales and time zones are used in both pages, it is better to
create an object that contains all available locales and time zones.
This object can be shared by both pages.

Let us create a JavaBeans component named TimeBean.java (Listing 43.13).
This class obtains all the available locales in an array in line 7 and
all time zones in an array in line 8. The bean properties localeIndex
and timeZoneIndex (lines 9–10) are defined to refer to an element in the
arrays. The currentTimeString() method (lines 42–52) returns a string
for the current time with the specified locale and time zone.

Listing 43.13 TimeBean.java

20

<Side Remark line 1: package statement>
<Side Remark line 7: all locales>
<Side Remark line 8: all time zones>
<Side Remark line 9: locale index>
<Side Remark line 10: time zone index>
<Side Remark line 13: sort time zone>
<Side Remark line 17: return all locales>
<Side Remark line 21: return all time zones>
<Side Remark line 42: return current time>

package chapter43;

import java.util.*;
import java.text.*;

public class TimeBean {
 private Locale[] allLocale = Locale.getAvailableLocales();
 private String[] allTimeZone = TimeZone.getAvailableIDs();
 private int localeIndex;
 private int timeZoneIndex;

 public TimeBean() {
 Arrays.sort(allTimeZone);
 }

 public Locale[] getAllLocale() {
 return allLocale;
 }

 public String[] getAllTimeZone() {
 return allTimeZone;
 }

 public int getLocaleIndex() {
 return localeIndex;
 }

 public int getTimeZoneIndex() {
 return timeZoneIndex;
 }

 public void setLocaleIndex(int index) {
 localeIndex = index;
 }

 public void setTimeZoneIndex(int index) {
 timeZoneIndex = index;
 }

 /** Return a string for the current time
 * with the specified locale and time zone */
 public String currentTimeString(
 int localeIndex, int timeZoneIndex) {
 Calendar calendar =
 new GregorianCalendar(allLocale[localeIndex]);
 TimeZone timeZone =
 TimeZone.getTimeZone(allTimeZone[timeZoneIndex]);
 DateFormat dateFormat = DateFormat.getDateTimeInstance(
 DateFormat.FULL, DateFormat.FULL, allLocale[localeIndex]);
 dateFormat.setTimeZone(timeZone);

21

 return dateFormat.format(calendar.getTime());
 }
}

Create DisplayTimeForm.jsp (Listing 43.14). This page displays a form
just like the one shown in Figure 42.18a. Line 2 imports the TimeBean
class. A bean is created in lines 3–5 and is used in lines 17, 19, 24,
and 26 to return all locales and time zones. The scope of the bean is
application (line 4), so the bean can be shared by all sessions of the
application.

Listing 43.14 DisplayTimeForm.jsp

<Side Remark line 2: import class>
<Side Remark line 3: timeBeanId>
<Side Remark line 15: action>
<Side Remark line 19: all locales>
<Side Remark line 26: all time zones>

<!-- DisplayTimeForm.jsp -->
<%@ page import = "chapter43.TimeBean" %>
<jsp:useBean id = "timeBeanId"
class = "chapter43.TimeBean" scope = "application" >

</jsp:useBean>

<html>
 <head>
 <title>
 Display Time Form
 </title>
 </head>
 <body>
<h3>Choose locale and time zone</h3>
<form method = "post" action = "DisplayTime.jsp">

 Locale <select size = "1" name = "localeIndex">
<% for (int i = 0; i < timeBeanId.getAllLocale().length; i++) {%>

<option value = "<%= i %>">
<%= timeBeanId.getAllLocale()[i] %>

 </option>
<%}%>

 </select>

 Time Zone <select size = "1" name = "timeZoneIndex">

<% for (int i = 0; i < timeBeanId.getAllTimeZone().length; i++) {%>
<option value = "<%= i %>">
<%= timeBeanId.getAllTimeZone()[i] %>

</option>
 <%}%>
 </select>

 <input type = "submit" name = "Submit"

value = "Get Time" />
<input type = "reset" value = "Reset" />

 </form>
 </body>
</html>

22

Create DisplayTime.jsp (Listing 43.15). This page is invoked from
DisplayTimeForm.jsp to display the time with the specified locale and
time zone, just as in Figure 42.18b.

Listing 43.15 DisplayTime.jsp

<Side Remark line 2: page encoding>
<Side Remark line 3: import>
<Side Remark line 4: timeBeanId>
<Side Remark line 7: get parameter>
<Side Remark line 18: use object>

<!-- DisplayTime.jsp -->
<%@page pageEncoding = "GB18030"%>
<%@ page import = "chapter43.TimeBean" %>
<jsp:useBean id = "timeBeanId"
class = "chapter43.TimeBean" scope = "application" >

</jsp:useBean>
<jsp:setProperty name = "timeBeanId" property = "*" />

<html>
 <head>
 <title>
 Display Time
 </title>
 </head>
 <body>
 <h3>Choose locale and time zone</h3>
 Current time is

<%= timeBeanId.currentTimeString(timeBeanId.getLocaleIndex(),
 timeBeanId.getTimeZoneIndex()) %>
 </body>
<html>

Line 2 sets the character encoding for the page to
GB18030 for displaying international characters. By default, it is UTF-
8.

Line 5 imports chapter43.TimeBean and creates a bean using the same id
as in the preceding page. Since the object is already created in the
preceding page, the timeBeanId in this page (lines 4–6) and in the
preceding page point to the same object.

43.9.4 Example: Registering Students

Listing 42.11, RegistrationWithHttpSession.java, gives a Java servlet
that obtains student information from an HTML form (see Figure 42.21)
and displays the information for user confirmation (see Figure 42.22).
Once the user confirms it, the servlet stores the data into the
database. This section rewrites the servlet using JSP. You will create
two JSP pages, one named GetRegistrationData.jsp for displaying the data
for user confirmation and the other named StoreData.jsp for storing the
data into the database.

Since every session needs to connect to the same database, you should
declare a class for connecting to the database and for storing a student
to the database. This class named StoreData is given in Listing 43.16.
The initializeJdbc method (lines 15–31) connects to the database and

23

creates a prepared statement for storing a record to the Address table.
The storeStudent method (lines 34–45) executes the prepared statement to
store a student address. The Address class is created in Listing 42.12.

Listing 43.16 StoreData.java

<Side Remark line 15: initialize DB>
<Side Remark line 32: store student>

package chapter43;

import java.sql.*;
import chapter42.Address;

public class StoreData {
 // Use a prepared statement to store a student into the database
 private PreparedStatement pstmt;

 public StoreData() {
 initializeJdbc();
 }

 /** Initialize database connection */
 private void initializeJdbc() {
 try {
 Class.forName("com.mysql.jdbc.Driver");

 // Connect to the sample database
 Connection connection = DriverManager.getConnection
 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");

 // Create a Statement
 pstmt = connection.prepareStatement("insert into Address " +
 "(lastName, firstName, mi, telephone, email, street, city, "
 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
 }
 catch (Exception ex) {
 System.out.println(ex);
 }
 }

 /** Store a student record to the database */
 public void storeStudent(Address address) throws SQLException {
 pstmt.setString(1, address.getLastName());
 pstmt.setString(2, address.getFirstName());
 pstmt.setString(3, address.getMi());
 pstmt.setString(4, address.getTelephone());
 pstmt.setString(5, address.getEmail());
 pstmt.setString(6, address.getStreet());
 pstmt.setString(7, address.getCity());
 pstmt.setString(8, address.getState());
 pstmt.setString(9, address.getZip());
 pstmt.executeUpdate();
 }
}

24

The HTML file that displays the form is identical to Registration.html
in Listing 42.8 except that the action is replaced by
HGetRegistrationData.jsp.

GetRegistrationData.jsp, which obtains the data from the form, is shown
in Listing 43.17. A bean is created in lines 3–4. Line 5 obtains the
property values from the form. This is a shorthand notation. Note that
the parameter names and the property names must be the same to use this
notation.

Listing 43.17 GetRegistrationData.jsp

<Side Remark line 2: import>
<Side Remark line 3: addressId>
<Side Remark line 5: get property values>

<!-- GetRegistrationData.jsp -->
<%@ page import = "chapter42.Address" %>
<jsp:useBean id = "addressId"
class = "chapter42.Address" scope = "session"></jsp:useBean>

<jsp:setProperty name = "addressId" property = "*" />

<html>
 <body>
 <h1>Registration Using JSP</h1>

 <%
if (addressId.getLastName() == null ||

 addressId.getFirstName() == null) {
 out.println("Last Name and First Name are required");

return; // End the method
 }
 %>

<p>You entered the following data</p>
<p>Last name: <%= addressId.getLastName() %></p>
<p>First name: <%= addressId.getFirstName() %></p>
<p>MI: <%= addressId.getMi() %></p>
<p>Telephone: <%= addressId.getTelephone() %></p>
<p>Email: <%= addressId.getEmail() %></p>
<p>Address: <%= addressId.getStreet() %></p>
<p>City: <%= addressId.getCity() %></p>
<p>State: <%= addressId.getState() %></p>
<p>Zip: <%= addressId.getZip() %></p>

 <!-- Set the action for processing the answers -->
<form method = "post" action = "StoreStudent.jsp">
<input type = "submit" value = "Confirm">

</form>
 </body>
</html>

GetRegistrationData.jsp invokes StoreStudent.jsp (line 31) when the user
clicks the Confirm button. In Listing 43.18, the same addressId is
shared with the preceding page within the scope of the same session in
lines 3–4. A bean for StoreData is created in lines 5–6 with the scope
of application.

25

Listing 43.18 StoreStudent.jsp

<Side Remark line 2: import>
<Side Remark line 3: addressId>
<Side Remark line 5: storeDataId>

<!-- StoreStudent.jsp -->
<%@ page import = "chapter42.Address" %>
<jsp:useBean id = "addressId" class = "chapter42.Address"
scope = "session"></jsp:useBean>

<jsp:useBean id = "storeDataId" class = "chapter43.StoreData"
scope = "application"></jsp:useBean>

<html>
 <body>
 <%
 storeDataId.storeStudent(addressId);

 out.println(addressId.getFirstName() + " " +
 addressId.getLastName() +

" is now registered in the database");
 out.close(); // Close stream

 %>
 </body>
</html>

NOTE
<Side Remark: appropriate scopes>

The scope for addressId is session, but the scope for
storeDataId is application. Why? GetRegistrationData.jsp
obtains student information, and StoreData.jsp stores the
information in the same session. So the session scope is
appropriate for addressId. All the sessions access the
same database and use the same prepared statement to
store data. With the application scope for storeDataId,
the bean for StoreData needs to be created just once.

NOTE
<Side Remark: exceptions>

The storeStudent method in line 11 may throw a
java.sql.SQLException. In JSP, you can omit the try-block
for checked exceptions. In case of an exception, JSP
displays an error page.

TIP
<Side Remark: using beans>

Using beans is an effective way to develop JSP. You
should put Java code into a bean as much as you can. The
bean not only simplifies JSP programming, but also makes
code reusable. The bean can also be used to implement
persistent sessions.

43.10 Forwarding Requests from JavaServer Pages

26

Web applications developed using JSP generally consist of many pages
linked together. JSP provides a forwarding tag in the following syntax
that can be used to forward a page to another page:

<jsp:forward page = "destination" />

43.11 Case Study: Browsing Database Tables

This section presents a very useful JSP application for browsing tables.
When you start the application, the first page prompts the user to enter
the JDBC driver, URL, username, and password for a database, as shown in
Figure 43.9. After you log in to the database, you can select a table to
browse, as shown in Figure 43.10. Clicking the Browse Table Content
button displays the table content, as shown in Figure 43.11.

Figure 43.9
To access a database, you need to provide the JDBC driver, URL,
username, and password.

Figure 43.10
You can select a table to browse from this page.

Figure 43.11
The contents of the selected table are displayed.

Create a JavaBeans component named DBBean.java (Listing 43.19).

27

Listing 43.19 DBBean.java

<Side Remark line 16: load driver>
<Side Remark line 19: connect db>
<Side Remark line 33: get tables>
<Side Remark line 51: return table names>
<Side Remark line 55: getConnection()>
<Side Remark line 59: userName>
<Side Remark line 67: password>
<Side Remark line 79: driver>
<Side Remark line 83: url>

package chapter43;

import java.sql.*;

public class DBBean {
 private Connection connection = null;
 private String username;
 private String password;
 private String driver;
 private String url;

 /** Initialize database connection */
 public void initializeJdbc() {
 try {
 System.out.println("Driver is " + driver);
 Class.forName(driver);

 // Connect to the sample database
 connection = DriverManager.getConnection(url, username,
 password);
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 /** Get tables in the database */
 public String[] getTables() {
 String[] tables = null;

 try {
 DatabaseMetaData dbMetaData = connection.getMetaData();
 ResultSet rsTables = dbMetaData.getTables(null, null, null,
 new String[] {"TABLE"});

 int size = 0;
 while (rsTables.next()) size++;

 rsTables = dbMetaData.getTables(null, null, null,
 new String[] {"TABLE"});

 tables = new String[size];
 int i = 0;
 while (rsTables.next())
 tables[i++] = rsTables.getString("TABLE_NAME");
 }
 catch (Exception ex) {

28

 ex.printStackTrace();
 }

 return tables;
 }

 /** Return connection property */
 public Connection getConnection() {
 return connection;
 }

 public void setUsername(String newUsername) {
 username = newUsername;
 }

 public String getUsername() {
 return username;
 }

 public void setPassword(String newPassword) {
 password = newPassword;
 }

 public String getPassword() {
 return password;
 }

 public void setDriver(String newDriver) {
 driver = newDriver;
 }

 public String getDriver() {
 return driver;
 }

 public void setUrl(String newUrl) {
 url = newUrl;
 }

 public String getUrl() {
 return url;
 }
}

Create an HTML file named DBLogin.html (Listing 43.20) that prompts the
user to enter database information and three JSP files named
DBLoginInitialization.jsp (Listing 43.21), Table.jsp (Listing 43.22),
and BrowseTable.jsp (Listing 43.23) to process and obtain database
information.

Listing 43.20 DBLogin.html

<Side Remark line 9: form action>
<Side Remark line 12: combo box>
<Side Remark line 18: submit>

<!-- DBLogin.html -->
<html>
 <head>
 <title>

29

 DBLogin
 </title>
 </head>
 <body>
 <form method = "post" action = "DBLoginInitialization.jsp">
 JDBC URL

<select name = "url" size = "1">
<option>jdbc:odbc:ExampleMDBDataSource</option>
<option>jdbc:mysql://localhost/javabook</option>
<option>jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl</option>

</select>

 Username <input name = "username" />

 Password <input name = "password" />

<input type = "submit" name = "Submit" value = "Login" />
 <input type = "reset" value = "Reset" />
 </form>
 </body>
</html>

Listing 43.21 DBLoginInitialization.jsp

<Side Remark line 2: import>
<Side Remark line 3: create bean>
<Side Remark line 14: connect db>
<Side Remark line 17: report error>
<Side Remark line 20: get tables>

<!-- DBLoginInitialization.jsp -->
<%@ page import = "chapter43.DBBean" %>
<jsp:useBean id = "dBBeanId" scope = "session"
class = "chapter43.DBBean">

</jsp:useBean>
<jsp:setProperty name = "dBBeanId" property = "*" />
<html>
 <head>
 <title>DBLoginInitialization</title>
 </head>
 <body>

<%-- Connect to the database --%>
<% dBBeanId.initializeJdbc(); %>

 <% if (dBBeanId.getConnection() == null) { %>
 Error: Login failed. Try again.
<% }

 else {%>
<jsp:forward page = "Table.jsp" />

<% } %>
 </body>
</html>

Listing 43.22 Table.jsp

<Side Remark line 2: import>
<Side Remark line 3: get bean>
<Side Remark line 11: get tables>
<Side Remark line 16: create form>

30

<!-- Table.jsp -->
<%@ page import = "chapter43.DBBean" %>
<jsp:useBean id = "dBBeanId" scope = "session"
class = "chapter43.DBBean">

</jsp:useBean>
<html>
 <head>
 <title>Table</title>
 </head>
 <body>
 <% String[] tables = dBBeanId.getTables();

if (tables == null) { %>
 No tables
<% }

else { %>
<form method = "post" action = "BrowseTable.jsp">

 Select a table
<select name = "tablename" size = "1">

<% for (int i = 0; i < tables.length; i++) { %>
 <option><%= tables[i] %></option>

<% }
 } %>
 </select>

<input type = "submit" name = "Submit"
value = "Browse Table Content">

<input type = "reset" value = "Reset">
 </form>
 </body>
</html>

Listing 43.23 BrowseTable.jsp

<Side Remark line 2: import>
<Side Remark line 3: get bean>
<Side Remark line 13: get table name>
<Side Remark line 15: table column>
<Side Remark line 21: column names>
<Side Remark line 28: table content>
<Side Remark line 35: display content>

<!-- BrowseTable.jsp -->
<%@ page import = "chapter43.DBBean" %>
<jsp:useBean id = "dBBeanId" scope = "session"
class = "chapter43.DBBean" >

</jsp:useBean>
<%@ page import = "java.sql.*" %>
<html>
 <head>
 <title>BrowseTable</title>
 </head>
 <body>

 <% String tableName = request.getParameter("tablename");

 ResultSet rsColumns = dBBeanId.getConnection().getMetaData().
 getColumns(null, null, tableName, null);

31

%>
<table border = "1">

 <tr>
 <% // Add column names to the table

while (rsColumns.next()) { %>
<td><%= rsColumns.getString("COLUMN_NAME") %></td>

 <%}%>
 </tr>

 <% Statement statement =
 dBBeanId.getConnection().createStatement();
 ResultSet rs = statement.executeQuery(

"select * from " + tableName);

// Get column count
 int columnCount = rs.getMetaData().getColumnCount();

// Store rows to rowData
while (rs.next()) {

 out.println("<tr>");
for (int i = 0; i < columnCount; i++) { %>
<td><%= rs.getObject(i + 1) %></td>

<% }
 out.println("</tr>");
 } %>
 </table>
 </body>
</html>

You start the application from DBLogin.html. This page prompts the user
to enter a JDBC driver, URL, username, and password to log in to a
database. A list of accessible drivers and URLs is provided in the
selection list. You must make sure that these database drivers are added
into the Libraries node in the project.

When you click the Login button, DBLoginInitialization.jsp is invoked.
When this page is processed for the first time, an instance of DBBean
named dBBeanId is created. The input parameters driver, url, username,
and password are passed to the bean properties. The initializeJdbc
method loads the driver and establishes a connection to the database. If
login fails, the connection property is null. In this case, an error
message is displayed. If login succeeds, control is forwarded to
Table.jsp.

Table.jsp shares dBBeanId with DBLoginInitialization.jsp in the same
session, so it can access connection through dBBeanId and obtain tables
in the database using the database metadata. The table names are
displayed in a selection box in a form. When the user selects a table
name and clicks the Browse Table Content button, BrowseTable.jsp is
processed.

BrowseTable.jsp shares dBBeanId with Table.jsp and
DBLoginInitialization.jsp in the same session. It retrieves the table
contents for the selected table from Table.jsp.

JSP Scripting Constructs Syntax
<%= Java expression %> The expression is evaluated and inserted
into the page.

32

<% Java statement %> Java statements inserted in the jspService
method.
<%! Java declaration %> Defines data fields and methods.
<%-- JSP comment %> The JSP comments do not appear in the
resultant HTML file.
<%@ directive attribute="value" %> The JSP directives give the JSP
engine information about the JSP page. For example, <%@ page
import="java.util.*, java.text.*" %> imports java.util.* and
java.text.*.
<jsp:useBean id="objectName" scope="scopeAttribute"
class="ClassName" /> Creates a bean if new. If a bean is already
created, associates the id with the bean in the same scope.
<jsp:useBean id="objectName" scope="scopeAttribute"
class="ClassName" > statements </jsp:useBean> The statements are
executed when the bean is created. If a bean with the same id and
class name already exists, the statements are not executed.
<jsp:getProperty name="beanId" property="sample" /> Gets the
property value from the bean, which is the same as <%=
beanId.getSample() %>.
<jsp:setProperty name="beanId" property="sample" value="test1" />
Sets the property value for the bean, which is the same as <%
beanId.setSample("test1"); %>.
<jsp:setProperty name="beanId" property="score" param="score" />
Sets the property with an input parameter.
<jsp:setProperty name="beanId" property="*" /> Associates and sets
all the bean properties in beanId with the input parameters that
match the property names.
<jsp:forward page="destination" /> Forwards this page to a new
page.

JSP Predefined Variables
application represents the ServletContext object for storing
persistent data for all clients.
config represents the ServletConfig object for the page.
out represents the character output stream, which is an instance
of PrintWriter, obtained from response.getWriter().
page is alternative to this.
request represents the client’s request, which is an instance of
HttpServletRequest in the servlet’s service method.
response represents the client’s response, which is an instance of
HttpServletResponse in the servlet’s service method.
session represents the HttpSession object associated with the
request, obtained from request.getSession().

Chapter Summary
1. A JavaServer page is like a regular HTML page with special tags,

known as JSP tags, which enable the Web server to generate dynamic
content. You can create a Web page with static HTML and enclose
the code for generating dynamic content in the JSP tags.

2. A JSP page must be stored in a file with a .jsp extension. The Web
server translates the .jsp file into a Java servlet, compiles the
servlet, and executes it. The result of the execution is sent to
the browser for display.

3. A JSP page is translated into a servlet when the page is requested
for the first time. It is not retranslated if the page is not
modified. To ensure that the first-time real user does not

33

encounter a delay, JSP developers should test the page after it is
installed.

4. There are three main types of JSP constructs: scripting
constructs, directives, and actions. Scripting elements enable you
to specify Java code that will become part of the resultant
servlet. Directives enable you to control the overall structure of
the resultant servlet. Actions enable you to control the behaviors
of the JSP engine.

5. Three types of scripting constructs can be used to insert Java
code into the resultant servlet: expressions, scriptlets, and
declarations.

6. The scope attribute (application, session, page, and request)
specifies the scope of a JavaBeans object. Application specifies
that the object be bound to the application. Session specifies
that the object be bound to the client’s session. Page is the
default scope, which specifies that the object be bound to the
page. Request specifies that the object be bound to the client’s
request.

7. Web applications developed using JSP generally consist of many
pages linked together. JSP provides a forwarding tag in the
following syntax that can be used to forward a page to another
page: <jsp:forward page="destination" />.

Test Questions

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions
Sections 43.1-43.3
43.1 What is the file-name extension of a JavaServer page? How is a JSP
page processed?
43.2 Can you create a .war that contains JSP in NetBeans? Where should
the .war be placed in a Java application server?
43.3 You can display an HTML file (e.g., c:\test.html) by typing the
complete file name in the Address field of Internet Explorer. Why can’t
you display a JSP file by simply typing the file name?
Section 43.4
43.4 What are a JSP expression, a JSP scriptlet, and a JSP declaration?
How do you write these constructs in JSP?
43.5 Find three syntax errors in the following JSP code:

<%! int k %>
<% for (int j = 1; j <= 9; j++) %>
 <%= j; %>

43.6 In the following JSP, which variables are instance variables and
which are local variables when it is translated into in the servlet?

<%! int k; %>
<%! int i; %>
<% for (int j = 1; j <= 9; j++) k += 1;%>
<%= k>
 <%= i>
 <%= getTime()>

<% private long getTime() {

long time = System.currentTimeMillis();
return time;

} %>

Section 43.5
43.7 Describe the predefined variables in JSP.

34

43.8 What is wrong if the JSP scriptlet <% in line 7 in ComputeLoan.jsp
(Listing 43.3) is replaced by JSP declaration <%!?
43.9 Can you use predefined variables (e.g., request, response, out) in
JSP declarations?
Section 43.6
43.10 Describe the JSP directives and attributes for the page directive.
43.11 If a class does not have a package statement, can you import it?
43.12 If you use a custom class from a JSP, where should the class be
placed?
Section 43.7
43.13 You can create an object in a JSP scriptlet. What is the
difference between an object created using the new operator and a bean
created using the <jsp:useBean ... > tag?
43.14 What is the scope attribute for? Describe four scope attributes.
43.15 Describe how a <jsp:useBean ... > statement is processed by the
JSP engine.
Sections 43.8-43.10
43.16 How do you associate bean properties with input parameters?
43.17 How do you write a statement to forward requests to another JSP
page?

Programming Exercises

NOTE: Solutions to even-numbered exercises in this
chapter are in exercise\jspexercise from
evennumberedexercise.zip, which can be downloaded from
the Companion Website.

Section 43.4
43.1
(Factorial table in JSP) Rewrite Exercise 42.1 using JSP.
43.2
(Muliplication table in JSP) Rewrite Exercise 42.2 using JSP.

Section 43.5
43.3*
(Obtain parameters in JSP) Rewrite the servlet in Listing 42.4,
GetParameters.java, using JSP. Create an HTML form that is identical to
Student_Registration_Form.html in Listing 42.3 except that the action is
replaced by Exercise40_3.jsp for obtaining parameter values.

Section 43.6
43.4
(Calculate tax in JSP) Rewrite Exercise 42.4 using JSP. You need to
import ComputeTax in the JSP.

43.5*
(Find scores from text files) Rewrite Exercise 42.6 using servlets.

43.6**
(Find scores from database tables) Rewrite Exercise 42.7 using
servlets.

Section 43.7

43.7**
(Change the password) Rewrite Exercise 42.8 using servlets.

Comprehensive
43.8*

35

(Store cookies in JSP) Rewrite Exercise 42.10 using JSP. Use
response.addCookie(Cookie) to add a cookie.

43.9*
(Retrieve cookies in JSP) Rewrite Exercise 42.11 using JSP. Use Cookie[]
cookies = request.getCookies() to get all cookies.

43.10
(Draw images) Rewrite Listing 42.13, ImageContent.java, using JSP.

43.11***
(Syntax highlighting) Rewrite Exercise 42.12 using JSP.

43.12**
(Opinion poll) Rewrite Exercise 42.13 using JSP.

43.13***
(Multiple-question opinion poll) The Poll table in Exercise 42.13
contains only one question. Suppose you have a Poll table that contains
multiple questions. Write a JSP that reads all the questions from the
table and display them in a form, as shown in Figure 43.12a. When the
user clicks the Submit button, another JSP page is invoked. This page
updates the Yes or No counts for each question and displays the current
Yes and No counts for each question in the Poll table, as shown in
Figure 43.12b. Note that the table may contain many questions. The
questions in the figure are just examples. Sort the questions in
alphabetical order.

 (a) (b)
Figure 43.12
The form prompts the user to enter Yes or No for each question in
(a), and the updated Yes or No counts are displayed in (b).

43.14**
(Addition quiz) Write a JSP program that generates addition quizzes
randomly, as shown in Figure 43.13a. After the user answers all
questions, the JSP displays the result, as shown in Figure 43.13b.

36

 (a) (b)
Figure 43.13
The program displays addition questions in (a) and answers in (b).

43.15**
(Subtraction quiz) Write a JSP program that generates subtraction
quizzes randomly, as shown in Figure 43.14a. The first number must
always be greater than or equal to the second number. After the user
answers all questions, the JSP displays the result, as shown in Figure
43.14b.

 (a) (b)
Figure 43.14
The program displays subtraction questions in (a) and answers in
(b).

43.16**
(Guess birthday) Listing 3.3, GuessBirthDay.java, gives a program for
guessing a birthday. Write a JSP program that displays five sets of
numbers, as shown in Figure 43.15a. After the user checks the
appropriate boxes and clicks the Find Date button, the program displays
the date, as shown in Figure 43.15b.

 (a) (b)

Figure 43.15
(a) The program displays five sets of numbers for the user to
check the boxes. (b) The program displays the date.

43.17**

37

(Guess capitals) Write a JSP that prompts the user to enter a capital
for a state, as shown in Figure 43.16a. Upon receiving the user input,
the program reports whether the answer is correct, as shown in Figure
43.16b. You can click the Next button to display another question. You
can use a two-dimensional array to store the states and capitals, as
proposed in Exercise 9.22. Create a list from the array and apply the
shuffle method to reorder the list so the questions will appear in
random order.

 (a) (b)

Figure 43.16
(a) The program displays a question. (b) The program displays the
answer to the question.

43.18*
(Large factorial) Rewrite Listing 43.11 to handle large factorial. Use
the BigInteger class introduced in §14.12.

43.19**
(Access and update a Staff table) Write a JSP for Exercise 33.1, as
shown in Figure 43.17.

Figure 43.17
The JSP page lets you view, insert, and update staff information.

43.20*
(Guess number) Write a JSP page that generates a random number between 1
and 1000 and let the user enter a guess. When the user enters a guess,
the program should tell the user whether the guess is correct, too high,
or too low.

1

***This is a bonus Web chapter

CHAPTER 44

JavaServer Faces

Objectives

To explain what JSF is (§44.1).
To create a JSF page using NetBeans (§44.2).
To create a JSF managed bean (§44.2).
To use JSF expressions in a facelet (§44.2).
To use JSF GUI components (§44.3).
To obtain and process input from a form (§44.4).
To track sessions in application, session, view, and request
scope (§44.5).
To validate input using the JSF validators (§44.6).
To bind database with facelets (§44.7).

2

44.1 Introduction
<margin note: servlets>
<margin note: JSP>
<margin note: JSF>
The use of servlets, introduced in Chapter 42, is the foundation of the
Java Web technology. It is a primitive way to write server-side
applications. JSP, introduced in Chapter 43, provides a scripting
capability and allows you to embed Java code in XHTML. It is easier to
develop Web programs using JSP than servlets. However, JSP has some
problems. First, it can be very messy, because it mixes Java code with
HTML. Second, using JSP to develop user interface is tedious. JavaServer
Faces (JSF) comes to rescue. JSF enables you to completely separate Java
code from HTML. You can quickly build web applications by assembling
reusable UI components in a page, connecting these components to Java
programs, and wiring client-generated events to server-side event
handlers. The application developed using JSF is easy to debug and
maintain.

<margin note: JSF 2>
<margin note: XHTML>
<margin note: CSS>

NOTE: This chapter introduces JSF 2, the latest standard
for JavaServer Faces. You need to know XHTML (eXtensible
HyperText Markup Language) and CSS (Cascading Style
Sheet) to start this chapter. For information on XHTML
and CSS, see Supplements Part V.A and Part V.B on the
companion Website.

44.2 Getting Started with JSF
A simple example will illustrate the basics of developing JSF projects
using NetBeans. The example is to display the date and time on the
server, as shown in Figure 44.1.

Figure 44.1
The application displays the date and time on the server.

44.2.1 Creating a JSF Project

Here are the steps to create the application.

<margin note: create a project>
Choose File › New Project to display the New Project dialog box. In this
box, choose Java Web in the Categories pane and Web Application in the
Projects pane. Click Next to display the New Web Application dialog box.
In the New Web Application dialog box, enter and select the following
fields, as shown in Figure 44.2a:
Project Name: jsf2demo
Project Location: c:\book
Check Set as Main Project

3

Click Next to display the dialog box for choosing servers and settings.
Select the following fields as shown in Figure 44.2b. (Note: You can use
any server such as GlassFish 3.x that supports Java EE 6.)
Server: Apache Tomcat 7.0.11
Java EE Version: Java EE 6 Web

Click Next to display the dialog box for choosing frameworks, as shown
in Figure 44.3. Check JavaServer Faces and JSF 2.0 as Registered
Libraries. Click Finish to create the project, as shown in Figure 44.4.

 (a) (b)
Figure 44.2

The New Web Application dialog box enables you to create a new Web
project.

Figure 44.3

Check JavaServer Faces and JSF 2.0 to create the Web project.

4

Figure 44.4
A default JSF page is created in a new Web project.

44.2.2 A Basic JSF Page

<margin note: facelet>
A new project was just created with a default page named index.xhtml, as
shown in Figure 44.4. This page is known as a facelet, which mixes JSF
tags with XHTML tags. Listing 44.1 lists the contents of index.xhtml.

Listing 44.1 index.xhtml

PD: Please add line numbers in the following code
***Layout: Please layout exactly. Don’t skip the space. This is true for
all source code in the book. Thanks, AU.
<margin note line 1: xml version>
<margin note line 2: comment>
<margin note line 3: DOCTYPE>
<margin note line 5: default namespace>
<margin note line 6: JSF namespace>
<margin note line 7: h:head>
<margin note line 10: h:body>

<?xml version='1.0' encoding='UTF-8' ?>
<!-- index.xhtml -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Facelet Title</title>
 </h:head>
 <h:body>
 Hello from Facelets
 </h:body>
</html>

<margin note: XML declaration>
Line 1 is an XML declaration to state that the document conforms to the
XML version 1.0 and uses the UTF-8 encoding. The declaration is
optional, but it is a good practice to use it. Otherwise, a document
without the declaration may be assumed of a different version, which may
lead to errors. If an XML declaration is present, it must be the first
item to appear in the document. This is because an XML processor looks

5

for the first line to obtain information about the document so that it
can be processed correctly.

<margin note: XML comment>
Line 2 is a comment for documenting the contents in the file. XML
comment always begins with <!-- and end with -->.

<margin note: DOCTYPE>
Lines 3-4 specifies the version of XHTML used in the document. This can
be used by the Web browser to validate the syntax of the document.

<margin note: element>
<margin note: tag>
An XML document consists of elements described by tags. An element is
enclosed between a start tag and an end tag. XML elements are organized
in a tree-like hierarchy. Elements may contain subelements, but there is
only one root element in an XML document. All the elements must be
enclosed inside the root tag. The root element in XHTML is defined using
the html tag (line 5).

Each tag in XML must be used in a pair of the start tag and the end tag.
A starting begins with < followed by the tag name, and ends with >. An
end tag is the same as its starting except it begins with </. The start
tag and end tag for html are <html> and </html>.

<margin note: html tag>
The html element is the root element that contains all other elements in
an XHTML page. The starting <html> tag (lines 5-6) may contain one or
more xmlns (XML namespace) attributes to specify the namespace for the
elements used in the document. Namespaces are like Java packages. Java
packages are used to organize classes and to avoid naming conflict.
XHMTL namespaces are used to organize tags and resolve naming conflict.
If an element with the same name is defined in two namespaces, the fully
qualified tag names can be used to differentiate them.

<margin note: xmlns>
Each xmlns attribute has a name and a value separated by an equal sign
(=). The following declaration (line 5)

xmlns="http://www.w3.org/1999/xhtml"

specifies that any unqualified tag names are defined in the default
standard xhtml namespace.

The following declaration (line 6)

xmlns:h="http://java.sun.com/jsf/html"

allows the tags defined in the JSF tag library to be used in the
document. These tags must have a prefix h.

<margin note: h:head>
An html element contains a head and body. The h:head element (lines 7-9)
defines an HTML title element. The title is usually displayed in the
browser window’s title bar.

<margin note: h:body>
A h:body element defines the page’s content. In this simple example, it
contains a string to be displayed in the Web browser.

6

NOTE: The XML tag names are case-sensitive, whereas HTML
tags are not. So, <html> is different from <HTML> in XML.
Every start tag in XML must have a matching end tag;
whereas some tags in HTML does not need end tags.

You can now display the JSP page in index.xhtml by right-clicking on
index.xhtml in the projects pane. The page is displayed in a browser, as
shown in Figure 44.5.

Figure 44.5
The index.xhtml is displayed in the browser.

44.2.3 Managed JavaBeans for JSF

JSF applications are developed using the Model-View-Controller (MVC)
architecture, which separates the application’s data (contained in the
model) from the graphical presentation (the view). The controller is the
JSF framework that is responsible for coordinating interactions between
view and the model.

In JSF, the facelets are the view for presenting data. Data are obtained
from Java objects. Objects are defined using Java classes. In JSF, the
objects that are accessed from a facelet are JavaBeans objects. If you
are not familiar with JavaBeans, please read Chapter 36, “JavaBeans.”

Our example in this section is to develop a JSF facelet to display
current time. We will create JavaBean with a getTime() method that
returns the current time as a string. The facelet will invoke this
method to obtain current time.

Here are the steps to create a JavaBean named TimeBean.

Step 1. Right-click the project node jsf2demo to display a context menu
as shown in Figure 44.6. Choose New, JSF Managed Bean to display the New
JSF Managed Bean dialog box, as shown in Figure 44.7. (Note: if you
don’t see JSF Managed Bean in the menu, choose Other to locate JSF
Managed Bean.)

Step 2. Enter and select the following fields, as shown in Figure 44.8:
Class Name: TimeBean
Package: jsf2demo
Name: timeBean
Scope: request
Click Finish to create TimeBean.java, as shown in Figure 44.9.

Step 3. Add the getTime() method to return the current time, as shown in
Listing 44.2.

7

Figure 44.6
Choose JSF Managed Bean to create a JavaBean for JSF.

Figure 44.7
Specify the name, location, scope for the bean.

8

Figure 44.8
A JavaBean for JSF was created.

Listing 44.2 TimeBean.java

<margin note line 6: @ManagedBean>
<margin note line 7: @RequestScoped>
<margin note line 9: time property>

package jsf2demo;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped
public class TimeBean {
 public String getTime() {
 return new java.util.Date().toString();
 }
}

<margin note: @ManagedBean>
TimeBean is a JavaBeans with the @ManagedBean annotation, which
indicates that the JSF framework will create and manage the TimeBean
objects used in the application. You have learned to use the @Override
annotation in Chapter 15. The @Override annotation tells the compiler
that the annotated method is required to override a method in a
superclass. The @ManagedBean annotation tells the compiler to generate
the code to enable the bean to be used by JSF facelets.

<margin note: @RequestScope>
The @RequestScope annotation specifies the scope of the JavaBeans object
is within a request. The JSP scopes were introduced in the preceding
chapter. You can also use @SessionScope or @ApplicationScope to specify
the scope for a session or for the entire application.

44.2.4 JSF Expressions

Recall that we used JSP scripting to enter Java code in an HTML file to
return the current time in the preceding chapter. But JSP scripting will
not work with JSF. How can you display the current time from a JSF page?

9

You can display current time by invoking the getTime() method in a
TimeBean object using a JSF expression.

To keep index.xhtml intact, we create a new JSF page named
CurrentTime.xhtml as follows:

Step 1. Right-click the jsf2demo node in the project pane to display a
context menu and choose New, JSF Page to display the New JSF File dialog
box, as shown in Figure 44.9.

Step 2. Enter CurrentTime in the File Name field, choose Facelets and
click Finish to generate CurrentTime.xhmtl, as shown in Figure 44.10.

Step 3. Add a JSF expression to obtain the current time, as shown in
Listing 44.3.

Figure 44.9
The New JSF File dialog is used to create a JSF page.

Figure 44.10
A New JSF page CurrentTime was created.

Listing 44.3 CurrentTime.xhtml

<margin note line 8: refresh page>
<margin note line 11: JSF expression>

<?xml version='1.0' encoding='UTF-8' ?>

10

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Display Current Time</title>
 <meta http-equiv="refresh" content ="60" />
 </h:head>
 <h:body>
 The current time is #{timeBean.time}
 </h:body>
</html>

Line 8 defines a meta tag inside the h:head tag to tell the browser to
refresh every 60 seconds. This line can also be written as

<meta http-equiv="refresh" content ="60"></ meta>

<margin note: empty element>
An element is called an empty element if there are no contents between
the start tag and end tag. In an empty element, data is typically
specified as attributes in the start tag. You can close an empty element
by placing a slash immediately preceding the start tag’s right angle
bracket, as shown in line 8, for brevity.

Line 8 uses a JSF expression #{timeBean.time} to obtain the current
time. timeBean is an object of the TimeBean class. The object name can
be changed in the @ManagedBean annotation (line 6 in Listing 44.2) using
the following syntax:

@ManagedBean(name="anyObjectName")

By default the object name is the class name with the first letter in
lowercase.

Note that time is a JavaBeans property, because the getTime() method is
defined in TimeBeans. The JSF expression can either use the property
name or invoke the method to obtain the current time. So the following
two expressions are both fine.

#{timeBean.time}
#{timeBean.getTime()}

The syntax of a JSF expression is

#{expression}

JSF expressions bind JavaBeans objects with facelets. You will see more
use of JSF expressions in the upcoming examples in this chapter.

44.3 JSF GUI Components
JSF provides many elements for displaying GUI components. Table 44.1
lists some of the commonly used elements. The tags with the h prefix are
in the JSF HTML Tag library. The tags with the f prefix are in the JSF
Core Tag library.

Table 44.1
JSF GUI Form Elements

11

JSF Tag Description

h:form inserts an XHTML form into a page.

h:panelGroup similar to a Java flow layout container.

h:panelGrid similar to a Java grid layout container.

h:inputText displays a textbox for entering input.

h:outputText displays a textbox for displaying output.

h:inputTextArea displays a textarea for entering input.

h:inputSecret displays a textbox for entering password.

h:outputLabel displays a label.

h:outputLink displays a hypertext link.

h:selectOneMenu displays a combo box for selecting one item.

h:selectOneRadio displays a set of radio button.

h:selectBooleanCheckbox displays a checkbox.

h:selectOneListbox displays a list for selecting one item.

h:selectManyListbox displays a list for selecting multiple items.

f:selectItem specifies an item in an h:selectOneMenu,

 h:selectOneRadio, or h:selectManyListbox.

h:message displays a message for validating input.

h:dataTable displays a data table.

h:column specifies a column in a data table.

h:graphicImage displays an image.

Listing 44.4 is an example that uses some of these elements to display a
student registration form, as shown in Figure 44.11.

Figure 44.11
A student registration form is displayed using JSF elements.

Listing 44.4 StudentRegistrationForm.xhtml

<margin note line 6: jsf core namespace>

12

<margin note line 14: graphicImage>
<margin note line 18: h:panelGrid>
<margin note line 19: h:outputLabel>
<margin note line 20: h:inputText>
<margin note line 30: h:selectOneRadio>
<margin note line 31: f:selectItem>
<margin note line 41: h:selectOneMenu>
<margin note line 46: h:selectManyListBox>
<margin note line 56: h:selectManyCheckbox>
<margin note line 66: h:inputTextarea>
<margin note line 71: h:commandButton>

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
 <h:head>
 <title>Student Registration Form</title>
 </h:head>
 <h:body>
 <h:form>
 <!-- Use h:graphicImage -->
 <h3>Student Registration Form
 <h:graphicImage name="usIcon.gif" library="image"/>
 </h3>

 <!-- Use h:panelGrid -->
 <h:panelGrid columns="6" style="color:green">
 <h:outputLabel value="Last Name"/>
 <h:inputText id="lastNameInputText" />
 <h:outputLabel value="First Name" />
 <h:inputText id="firstNameInputText" />
 <h:outputLabel value="MI" />
 <h:inputText id="miInputText" size="1" />
 </h:panelGrid>

 <!-- Use radio buttons -->
 <h:panelGrid columns="2">
 <h:outputLabel>Gender </h:outputLabel>
 <h:selectOneRadio id="genderSelectOneRadio">
 <f:selectItem itemValue="Male"
 itemLabel="Male"/>
 <f:selectItem itemValue="Female"
 itemLabel="Female"/>
 </h:selectOneRadio>
 </h:panelGrid>

 <!-- Use combo box and list -->
 <h:panelGrid columns="4">
 <h:outputLabel value="Major "/>
 <h:selectOneMenu id="majorSelectOneMenu">
 <f:selectItem itemValue="Computer Science"/>
 <f:selectItem itemValue="Mathematics"/>
 </h:selectOneMenu>
 <h:outputLabel value="Minor "/>
 <h:selectManyListbox id="minorSelectManyListbox">
 <f:selectItem itemValue="Computer Science"/>
 <f:selectItem itemValue="Mathematics"/>

13

 <f:selectItem itemValue="English"/>
 </h:selectManyListbox>
 </h:panelGrid>

 <!-- Use check boxes -->
 <h:panelGrid columns="4">
 <h:outputLabel value="Hobby: "/>
 <h:selectManyCheckbox id="hobbySelectManyCheckbox">
 <f:selectItem itemValue="Tennis"/>
 <f:selectItem itemValue="Golf"/>
 <f:selectItem itemValue="Ping Pong"/>
 </h:selectManyCheckbox>
 </h:panelGrid>

 <!-- Use text area -->
 <h:panelGrid columns="1">
 <h:outputLabel>Remarks:</h:outputLabel>
 <h:inputTextarea id="remarksInputTextarea"
 style="width:400px; height:50px;" />
 </h:panelGrid>

 <!-- Use command button -->
 <h:commandButton value="Register" />
 </h:form>
 </h:body>
</html>

<margin note: jsf core xmlns>
The tags with prefix f are in the JSF core tag library. Line 6

xmlns:f="http://java.sun.com/jsf/core">

locates the library for these tags.

<margin note: h:graphicImage>
The h:graphicImage tag displays an image in the file usIcon.gif (line
14). The file is located in the /resources/image folder. In JSF 2.0, all
resources (image files, audio files, CCS files) should be placed under
the resources folder under the Web Pages node. You can create these
folders as follows:

Step 1: Right-click the Web Pages node in the project pane to display a
context menu and choose New, Folder to display the New Folder dialog
box. (If Folder is not in the context menu, choose Other to locate it.)
Step 2: Enter resources as the Folder Name and click Finish to create
the resources folder, as shown in Figure 44.12.
Step 3: Right-click the resources node in the project pane to create the
image folder under resources. You can now place usImage.gif under the
image folder.

14

Figure 44.12
The resources folder was created.

<margin note: h:panelGrid>
JSF provides h:panelGrid and h:panelGroup elements to contain and layout
subelements. h:panelGrid places the elements in a grid like the Java
grid layout manager. h:panelGrid places the elements like a Java GUI
flow layout manager. Lines 18-25 places six elements (labels and input
texts) are in a h:panelGrid. The columns attribute specifies that each
row in the grid has 6 columns. The elements are placed into a row from
left to right in the order they appear in the facelet. When a row is
full, a new row is created to hold the elements. We used h:panelGrid in
this example. You may replace it with h:panelGroup to see how the
elements would be arranged.

<margin note: the style attribute>
You may use the style attribute with a JSF html tag to specify the CSS
style for the element and its subelements. The style attribute in line 8
specifies color green for all elements in this h:panelGrid element.

<margin note: h:outputLabel>
The h:outputLabel element is for displaying a label (line 19). You can
use the value attribute to specify the lable’s text.

<margin note: h:inputText>
The h:inputText element is for displaying a text input box for the user
to enter a text (line 20). The id attribute is useful for other elements
or the server program to reference this element.

<margin note: h:selectOneRadio>
The h:selectOneRadio element is for displaying a group of radio buttons
(line 30). Each radio button is defined using an f:selectItem element
(lines 31-34).

<margin note: h:selectOneMenu>
The h:selectOneMenu element is for displaying a combo box (line 41).
Each item in the combo box is defined using an f:selectItem element
(lines 42-43).

<margin note: h:selectManyListbox>
The h:selectManyListbox element is for displaying a list for the user to
choose multiple items in a list (line 46). Each item in the list is
defined using an f:selectItem element (lines 47-49).

<margin note: h:selectManyCheckbox>

15

The h:selectManyCheckbox element is for displaying a group of check
boxes (line 56). Each item in the check box is defined using an
f:selectItem element (lines 57-59).

<margin note: h:selectTextarea>
The h:selectTextarea element is for displaying a text area for multiple
lines of input (line 66). You can use the style attribute to specify the
width and height of the text area (line 67).

<margin note: h:selectTextarea>
The h:selectTextarea element is for displaying a text area for multiple
lines of input (line 66). The style attribute is used to specify the
width and height of the text area (line 67).

<margin note: h:commandButton>
The h:commandButton element is for displaying a button. When the button
is clicked, an action is performed. The default action is to request the
same page from the server. The next section shows how to process the
form.

44.4 Processing the Form
The preceding section introduced how to display a form using common JSF
elements. This section shows how to obtain and process the input.

To obtain input from the form, simply bind each input element with a
property in a managed bean. We now define a managed bean named
Registration as shown in Listing 44.5.

Listing 44.5 Registration.java

<margin note line 6: managed bean>
<margin note line 7: request scope>
<margin note line 9: property lastName>
<margin note line 82: getResponse()>

package jsf2demo;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped
public class Registration {
 private String lastName;
 private String firstName;
 private String mi;
 private String gender;
 private String major;
 private String[] minor;
 private String[] hobby;
 private String remarks;

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

16

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getMi() {
 return mi;
 }

 public void setMi(String mi) {
 this.mi = mi;
 }

 public String getGender() {
 return gender;
 }

 public void setGender(String gender) {
 this.gender = gender;
 }

 public String getMajor() {
 return major;
 }

 public void setMajor(String major) {
 this.major = major;
 }

 public String[] getMinor() {
 return minor;
 }

 public void setMinor(String[] minor) {
 this.minor = minor;
 }

 public String[] getHobby() {
 return hobby;
 }

 public void setHobby(String[] hobby) {
 this.hobby = hobby;
 }

 public String getRemarks() {
 return remarks;
 }

 public void setRemarks(String remarks) {
 this.remarks = remarks;
 }

 public String getResponse() {
 if (lastName == null)
 return ""; // Request has not been made
 else {
 String allMinor = "";

17

 for (String s: minor) {
 allMinor += s + " ";
 }

 String allHobby = "";
 for (String s: hobby) {
 allHobby += s + " ";
 }

 return "<p style=\"color:red\">You entered
" +
 "Last Name: " + lastName + "
" +
 "First Name: " + firstName + "
" +
 "MI: " + mi + "
" +
 "Gender: " + gender + "
" +
 "Major: " + major + "
" +
 "Minor: " + allMinor + "
" +
 "Hobby: " + allHobby + "
" +
 "Remarks: " + remarks + "</p>";
 }
 }
}

<margin note: bean properties>
The Registration class is a managed bean that defines the properties
lastName, firstName, mi, gender, major, minor, and remarks, which will
be bound to the elements in the JSF registration form.

The registration form can now be redefined as shown in Listing 44.6.
Figure 44.13 shows that new JSF page displays the user input upon
clicking the Register button.

Listing 44.6 ProcessStudentRegistrationForm.xhtml

<margin note line 6: jsf core namespace>
<margin note line 21: bind lastName>
<margin note line 24: bind firstName>
<margin note line 27: bind mi>
<margin note line 34: bind gender>
<margin note line 46: bind major>
<margin note line 52: bind minor>
<margin note line 63: bind hobby>
<margin note line 75: bind remarks>
<margin note line 82: bind response>

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
 <h:head>
 <title>Student Registration Form</title>
 </h:head>
 <h:body>
 <h:form>
 <!-- Use h:graphicImage -->
 <h3>Student Registration Form
 <h:graphicImage name="usIcon.gif" library="image"/>
 </h3>

18

 <!-- Use h:panelGrid -->
 <h:panelGrid columns="6" style="color:green">
 <h:outputLabel value="Last Name"/>
 <h:inputText id="lastNameInputText"
 value="#{registration.lastName}"/>
 <h:outputLabel value="First Name" />
 <h:inputText id="firstNameInputText"
 value="#{registration.firstName}"/>
 <h:outputLabel value="MI" />
 <h:inputText id="miInputText" size="1"
 value="#{registration.mi}"/>
 </h:panelGrid>

 <!-- Use radio buttons -->
 <h:panelGrid columns="2">
 <h:outputLabel>Gender </h:outputLabel>
 <h:selectOneRadio id="genderSelectOneRadio"
 value="#{registration.gender}">
 <f:selectItem itemValue="Male"
 itemLabel="Male"/>
 <f:selectItem itemValue="Female"
 itemLabel="Female"/>
 </h:selectOneRadio>
 </h:panelGrid>

 <!-- Use combo box and list -->
 <h:panelGrid columns="4">
 <h:outputLabel value="Major "/>
 <h:selectOneMenu id="majorSelectOneMenu"
 value="#{registration.major}">
 <f:selectItem itemValue="Computer Science"/>
 <f:selectItem itemValue="Mathematics"/>
 </h:selectOneMenu>
 <h:outputLabel value="Minor "/>
 <h:selectManyListbox id="minorSelectManyListbox"
 value="#{registration.minor}">
 <f:selectItem itemValue="Computer Science"/>
 <f:selectItem itemValue="Mathematics"/>
 <f:selectItem itemValue="English"/>
 </h:selectManyListbox>
 </h:panelGrid>

 <!-- Use check boxes -->
 <h:panelGrid columns="4">
 <h:outputLabel value="Hobby: "/>
 <h:selectManyCheckbox id="hobbySelectManyCheckbox"
 value="#{registration.hobby}">
 <f:selectItem itemValue="Tennis"/>
 <f:selectItem itemValue="Golf"/>
 <f:selectItem itemValue="Ping Pong"/>
 </h:selectManyCheckbox>
 </h:panelGrid>

 <!-- Use text area -->
 <h:panelGrid columns="1">
 <h:outputLabel>Remarks:</h:outputLabel>
 <h:inputTextarea id="remarksInputTextarea"
 style="width:400px; height:50px;"
 value="#{registration.remarks}"/>
 </h:panelGrid>

19

 <!-- Use command button -->
 <h:commandButton value="Register" />

 <h:outputText escape="false" style="color:red"
 value="#{registration.response}" />
 </h:form>
 </h:body>
</html>

Figure 44.13
The user input is collected and displayed after clicking the
Register button.

<margin note: binding input texts>
The new JSF form in this listing binds the h:inputText element for last
name, first name, and mi with the properties lastName, firstName, and mi
in the managed bean (lines 22, 24, 27). When the Register button is
clicked, the page is sent to the server, which invokes the set methods
to set the properties in the managed bean.

<margin note: binding radio buttons>
The h:selectOneRadio element is bound to the gender property (line 34).
Each radio button has an itemValue. The selected radio button’s
itemValue is set to the gender property in the bean when the page is
sent to the server.

<margin note: binding combo box>
The h:selectOneMenu element is bound to the major property (line 46).
When the page is sent to the server, the selected item is returned as a
string and is set to the major property.

20

<margin note: binding list box>
The h:selectManyListbox element is bound to the minor property (line
52). When the page is sent to the server, the selected items are
returned as an array of strings and set to the minor property.

<margin note: binding check boxes>
The h:selectManyCheckbox element is bound to the hobby property (line
63). When the page is sent to the server, the checked boxes are returned
as an array of itemValues and set to the hobby property.

<margin note: binding text area>
The h:selectTextarea element is bound to the remarks property (line 75).
When the page is sent to the server, the content in the text area is
returned as a string and set to the remarks property.

<margin note: binding response>
The h:outputText element is bound to the response property (line 82).
This is a read-only property in the bean. It is "" if lastName is null
(lines 83-84 in Listing 44.5). When the page is returned to the client,
the response property value is displayed in the output text element
(line 82).

<margin note: escape attribute>
The h:outputText element’s escape attribute is set to false (line 81) to
enable the contents to be displayed in HTML. By default, the escape
attribute is true, which indicates the contents are considered as
regular text.

44.5 Case Study: Calculator
This section uses JSF to develop a calculator to perform addition,
subtraction, multiplication, and division, as shown in Figure 44.21.

Figure 44.21
This JSF application enables you to perform addition, subtraction,
multiplication, and division.

Here are the steps to develop this project:

<margin note: create managed bean>
Step 1. Create a new managed bean named Calculator with the request
scope as shown in Listing 44.7, Calculator.java.
<margin note: create JSF facelet>
Step 2. Create a JSP facelet named Calculator as shown in Listing 44.8,
Calculator.xhtml.

Listing 44.7 Calculator.java

<margin note line 9: property number1>

21

<margin note line 10: property number2>
<margin note line 11: property result>
<margin note line 40: add>
<margin note line 44: subtract>
<margin note line 48: divide>
<margin note line 52: multiply>

package jsf2demo;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped
public class Calculator {
 private Double number1;
 private Double number2;
 private Double result;

 public Calculator() {
 }

 public Double getNumber1() {
 return number1;
 }

 public Double getNumber2() {
 return number2;
 }

 public Double getResult() {
 return result;
 }

 public void setNumber1(Double number1) {
 this.number1 = number1;
 }

 public void setNumber2(Double number2) {
 this.number2 = number2;
 }

 public void setResult(Double result) {
 this.result = result;
 }

 public void add() {
 result = number1 + number2;
 }

 public void subtract() {
 result = number1 - number2;
 }

 public void divide() {
 result = number1 / number2;
 }

 public void multiply() {
 result = number1 * number2;

22

 }
}

The managed bean has three properties number1, number2, and result
(lines 9-38). The methods add(), subtract(), divide(), and multiply()
add, subtract, multiply, and divide number1 with number2 and assigns the
result to result (lines 40-54).

Listing 44.8 Calculator.xhtml

<margin note line 14: right align>
<margin note line 15: bind text input>
<margin note line 28: action>

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Calculator</title>
 </h:head>
 <h:body>
 <h:form>
 <h:panelGrid columns="6">
 <h:outputLabel value="Number 1"/>
 <h:inputText id="number1InputText" size ="4"
 style="text-align: right"
 value="#{calculator.number1}"/>
 <h:outputLabel value="Number 2" />
 <h:inputText id="number2InputText" size ="4"
 style="text-align: right"
 value="#{calculator.number2}"/>
 <h:outputLabel value="Result" />
 <h:inputText id="resultInputText" size ="4"
 style="text-align: right"
 value="#{calculator.result}"/>
 </h:panelGrid>

 <h:panelGrid columns="4">
 <h:commandButton value="Add"
 action ="#{calculator.add}"/>
 <h:commandButton value="Subtract"
 action ="#{calculator.subtract}"/>
 <h:commandButton value="Multiply"
 action ="#{calculator.multiply}"/>
 <h:commandButton value="Divide"
 action ="#{calculator.divide}"/>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

Three text input components along with their labels are placed in the
grid panel (lines 11-24). Four button components are placed in the grid
panel (lines 26-35).

The bean property number1 is bound to the text input for Number 1 (line
15). The CSS style text-align: right (line 14) specifies that the text
is right-aligned in the input box.

23

The action attribute for the Add button is set to the add method in the
calculator bean (line 28). When the Add button is clicked, the add
method in the bean is invoked to add number1 with number2 and assign the
result to result. Since the result property is bound the Result input
text, the new result is now displayed in the text input field.

44.6 Session Tracking
Chapter 43, “JSP,” introduced session tracking using JavaBeans by
sharing the JavaBeans objects among different pages. You can specify the
JavaBeans objects at the application scope, session scope, page scope,
or request scope. JSF supports session tracking using JavaBeans at the
application scope, session scope, and request scope. Additionally, JSF
2.0 supports the view scope, which keeps the bean alive as long as you
stay on the view. The view scope is between session and request scopes.

Consider the following example that prompts the user to guess a number.
When the page starts, the program randomly generates a number between 0
and 99. This number is stored in the session. When the user enters a
guess, the program checks the guess with the random number in the
session and tells the user whether the guess is too high, too low, or
just right, as shown in Figure 44.14.

Figure 44.14
The user enters a guess and the program displays the result.

Here are the steps to develop this project:

<margin note: create managed bean>
Step 1. Create a new managed bean named GuessNumber with the view scope
as shown in Listing 44.9, GuessNumber.java.

24

<margin note: create JSF facelet>
Step 2. Create a JSP facelet named GuessNumber as shown in Listing
44.10, GuessNumber.xhtml.

Listing 44.9 GuessNumber.java

<margin note line 7: view scope>
<margin note line 9: random number>
<margin note line 10: guess by user>
<margin note line 13: create random number>
<margin note line 16: get method>
<margin note line 20: set method>
<margin note line 24: get response>
<margin note line 28: check guess>

package jsf2demo;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.ViewScoped;

@ManagedBean
@ViewScoped
public class GuessNumber {
 private int number;
 private String guessString;

 public GuessNumber() {
 number = (int)(Math.random() * 100);
 }

 public String getGuessString() {
 return guessString;
 }

 public void setGuessString(String guessString) {
 this.guessString = guessString;
 }

 public String getResponse() {
 if (guessString == null)
 return ""; // No user input yet

 int guess = Integer.parseInt(guessString);
 if (guess < number)
 return "Too low";
 else if (guess == number)
 return "You got it";
 else
 return "Too high";
 }
}

The managed bean uses the @ViewScope annotation (line 5) to set up the
view scope for the bean. The view scope is most appropriate for this
project. The bean is alive as long as the view is not changed. The bean
is created when the page is displayed for the first time. A random
number between 0 and 99 is assigned to number (line 13) when the bean is
created. This number will not change as long as the bean is alive.

25

The getResponse method converts guessString from the user input to an
integer (line 28) and determines if the guess is too low (line 30), too
high (line 34), and just right (line 32).

Listing 44.10 GuessNumber.xhtml

<margin note line 14: bind text input>
<margin note line 18: bind text output>

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Guess a number</title>
 </h:head>
 <h:body>
 <h:form>
 <h:outputLabel value="Enter you guess: "/>
 <h:inputText style="text-align: right; width: 50px"
 id="guessInputText"
 value="#{guessNumber.guessString}"/>
 <h:commandButton style="margin-left: 60px" value="Guess" />

 <h:outputText style="color: red"
 value="#{guessNumber.response}" />
 </h:form>
 </h:body>
</html>

The bean property guessString is bound to the text input (line 14). The
CSS style text-align: right (line 13) specifies that the text is right-
aligned in the input box.

The CSS style margin-left: 60px (line 15) specifies that the command
button has a left margin of 60 pixels.

The bean property response is bound to the text output (line 18). The
CSS style color: red (line 17) specifies that the text is displayed in
red in the output box.

<margin note: scope>
The project uses the view scope. What happens if the scope is changed to
the request scope? Every time the page is refreshed, JSF creates a new
bean with a new random number. What happens if the scope is changed to
the session scope? The bean will be alive as long as the browser is
alive. What happens if the scope is changed to the application scope?
The bean will be created once when the application is launched from the
server.

44.7 Validating Input
In the preceding GuessNumber page, an error would occur if you entered a
non-integer in the input box before clicking the Guess button. A simple
way to fix the problem is to check the text field before processing any
event. JSF provides several convenient and powerful ways for input
validation. You can use the standard validator tags in the JSF Core Tag
Library or create custom validators. Table 44.2 lists some JSF input
validator tags.

26

Table 44.2
JSF Input Validator Tags

JSF Tag Description

f:validateLength validates the length of the input.

f:validateDoubleRange validates whether numeric input falls within

acceptable range of double values.

f:validateLongRange validates whether numeric input falls within

acceptable range of long values.

f:validateRequired validates whether a field is not empty.

f:validateRegex validates whether the input matches a

regualar expression.

f:validateBean invokes a custom method in a bean to perform

custom validation.

Consider the following example that displays a form for collecting user
input as shown in Figure 44.15. All text fields in the form must be
filled. If not, error messages are displayed. The SSN must be formatted
corrected. If not, an error is displayed. If all input is correct,
clicking Submit displays the result in an output text, as shown in
Figure 44.16.

(a) The required messages are displayed if input is required, but
empty.

(b) Error messages are displayed if input is incorrect.

Figure 44.15
The input fields are validated.

27

Figure 44.16
The correct input values are displayed.

Here are the steps to create this project.
Step 1. Create a new page named ValidateForm, as shown in Listing 44.11.
Step 2. Create a new managed bean named ValidateForm, as shown in
Listing 44.12.

Listing 44.11 ValidateForm.xhtml

<margin note line 14: required input>
<margin note line 15: required message>
<margin note line 16: validator message>
<margin note line 18: validate length>
<margin note line 20: message element>
<margin note line 27: validate regex>
<margin note line 36: validate integer range>
<margin note line 45: validate double range>

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
 <h:head>
 <title>Validate Form</title>
 </h:head>
 <h:body>
 <h:form>
 <h:panelGrid columns="3">
 <h:outputLabel value="Name:"/>
 <h:inputText id="nameInputText" required="true"
 requiredMessage="Name is required"
 validatorMessage="Name must have 1 to 10 chars"
 value="#{validateForm.name}">
 <f:validateLength minimum="1" maximum="10" />
 </h:inputText>
 <h:message for="nameInputText" style="color:red"/>

 <h:outputLabel value="SSN:" />
 <h:inputText id="ssnInputText" required="true"
 requiredMessage="SSN is required"
 validatorMessage="Invalid SSN"
 value="#{validateForm.ssn}">
 <f:validateRegex pattern="[\d]{3}-[\d]{2}-[\d]{4}"/>
 </h:inputText>
 <h:message for="ssnInputText" style="color:red"/>

28

 <h:outputLabel value="Age:" />
 <h:inputText id="ageInputText" required="true"
 requiredMessage="Age is required"
 validatorMessage="Age must be betwen 16 and 120"
 value="#{validateForm.ageString}">
 <f:validateLongRange minimum="16" maximum="120"/>
 </h:inputText>
 <h:message for="ageInputText" style="color:red"/>

 <h:outputLabel value="Heihgt:" />
 <h:inputText id="heightInputText" required="true"
 requiredMessage="Heihgt is required"
 validatorMessage="Heihgt must be betwen 3.5 and 9.5"
 value="#{validateForm.heightString}">
 <f:validateDoubleRange minimum="3.5" maximum="9.5"/>
 </h:inputText>
 <h:message for="heightInputText" style="color:red"/>
 </h:panelGrid>

 <h:commandButton value="Submit" />

 <h:outputText style="color:red"
 value="#{validateForm.response}" />
 </h:form>
 </h:body>
</html>

<margin note: required attribute>
<margin note: requiredMessage>
For each input text field, set its required attribute true (line 14) to
indicate that an input value is required for the field. When a required
input field is empty, the requiredMessage is displayed (line 15).

<margin note: validatorMessage>
<margin note: f:validateLength>
The validatorMessage attribute specifies a message to be displayed if
the input field is invalid (line 16). The f:validateLength tag specifies
the minimum or maximum length of the input (line 18). JSF will determine
whether the input length is valid.

<margin note: h:message>
The h:message element displays the validatorMessage if the input is
invalid. The element’s for attribute specifies the id of the element for
which the message will be displayed (line 20).

<margin note: f:validateRegex>
The f:validateRegex tag specifies a regular expression for validating
the input (line 27). For information on regular expression, see
Supplement III.H.

<margin note: f:validateLongRange>
The f:validateLongRange tag specifies a range for an integer input using
the minimum and maximum attribute (line 36). In this project, a valid
age value is between 16 and 120.

<margin note: f:validateDoubleRange>
The f:validateDoubleRange tag specifies a range for a double input using
the minimum and maximum attribute (line 36). In this project, a valid
height value is between 3.5 and 9.5.

29

Listing 44.12 ValidateForm.java

<margin note line 49: some input not set>

package jsf2demo;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped
public class ValidateForm {
 private String name;
 private String ssn;
 private String ageString;
 private String heightString;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getSsn() {
 return ssn;
 }

 public void setSsn(String ssn) {
 this.ssn = ssn;
 }

 public String getAgeString() {
 return ageString;
 }

 public void setAgeString(String ageString) {
 this.ageString = ageString;
 }

 public String getHeightString() {
 return heightString;
 }

 public void setHeightString(String heightString) {
 this.heightString = heightString;
 }

 public String getResponse() {
 if (name == null || ssn == null || ageString == null
 || heightString == null) {
 return "";
 }
 else {
 return "You entered " +
 " Name: " + name +
 " SSN: " + ssn +
 " Age: " + ageString +
 " Heihgt: " + heightString;
 }

30

 }
}

If an input is invalid, its value is not set to the bean. So only when
all input are correct, the getResponse() method will return all input
values (lines 46-58)

41.8 Binding Database with Facelets
Often you need to access database from a Web page. This section gives
examples of building Web applications using databases.

Consider the following example that lets the user choose a course, as
shown in Figure 44.17. After a course is selected in the drop down list,
the students enrolled in the course are displayed in the table, as shown
in Figure 41.18. In this example, all the course titles in the Course
table are bound to the combo box and the query result for the students
enrolled in the course is bound to the table.

Figure 44.17
You need to choose a course and display the students enrolled in
the course.

Figure 44.18
The table displays the students enrolled in the course.

Here are the steps to create this project:

<margin note: Managed bean>
Step 1. Create a managed bean named CourseName with application scope,
as shown in Listing 44.13.
<margin note: JSF page>
Step 2. Create a JSP page named DisplayStudent, as shown in Listing
44.14.

31

<margin note: style sheet>
Step 3. Create a cascading style sheet for formatting the table as
follows:

Step 3.1. Right-click the resources node to choose New, Others to
display the New File dialog box, as shown in Figure 44.19.
Step 3.2. Choose Other in the Categories section and Cascading Style
Sheet in the File Types section to display the New Cascading Style Sheet
dialog box, as shown in Figure 44.20.
Step 3.3. Enter tablestyle as the File Name and click Finish to create
tablestyle.css under the resources node.
Step 3.4. Define the CSS style as shown in Listing 44.15.

Figure 44.19
You can create CSS files for Web project in NetBenas.

Figure 44.20
The New Cascading Style Sheet dialog box creates a new style sheet
file.

Listing 44.13 CourseName.java

<margin note line 9: application scope>
<margin note line 18: initialize JDBC>
<margin note line 27: connect to database>
<margin note line 32: get course titles>

32

<margin note line 34: execute SQL>
<margin note line 39: titles array>
<margin note line 72: get student>
<margin note line 77: set a course>
<margin note line 83: get rowset>

package jsf2demo;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.ApplicationScoped;
import java.sql.*;
import javax.sql.rowset.CachedRowSet;

@ManagedBean
@ApplicationScoped
public class CourseName {
 private PreparedStatement studentStatement = null;
 private CachedRowSet rowSet; // For course titles
 private String choice; // Selected course
 private String[] titles; // Course titles

 /** Creates a new instance of CourseName */
 public CourseName() {
 initializeJdbc();
 }

 /** Initialize database connection */
 private void initializeJdbc() {
 try {
 Class.forName("com.mysql.jdbc.Driver");

 // Connect to the sample database
 Connection connection = DriverManager.getConnection(
 "jdbc:mysql://localhost/javabook", "scott", "tiger");

 // Get course titles
 PreparedStatement statement = connection.prepareStatement(
 "select title from course");
 rowSet = new com.sun.rowset.CachedRowSetImpl();
 rowSet.populate(statement.executeQuery());
 titles = new String[rowSet.size()];
 int i = 0;
 try {
 while (rowSet.next()) {
 titles[i++] = rowSet.getString(1);
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 }

 // Define a SQL statement for getting students
 studentStatement = connection.prepareStatement(
 "select Student.ssn, "
 + "student.firstName, Student.mi, Student.lastName, "
 + "Student.phone, Student.birthDate, Student.street, "
 + "Student.zipCode, Student.deptId "
 + "from Student, Enrollment, Course "
 + "where Course.title = ? "
 + "and Student.ssn = Enrollment.ssn "
 + "and Enrollment.courseId = Course.courseId;");
 } catch (Exception ex) {

33

 ex.printStackTrace();
 }
 }

 public String[] getTitles() {
 return titles;
 }

 public String getChoice() {
 return choice;
 }

 public void setChoice(String choice) {
 this.choice = choice;
 }

 public ResultSet getStudents() throws SQLException {
 if (choice == null) {
 if (titles == null)
 return null;
 else
 studentStatement.setString(1, titles[0]);
 } else {
 studentStatement.setString(1, choice); // Set course title
 }

 // Get students for the specified course
 CachedRowSet rowSet = new com.sun.rowset.CachedRowSetImpl();
 rowSet.populate(studentStatement.executeQuery());
 return rowSet;
 }
}

We use the same MySQL database javabook created in Chapter 33, “Java
Database Programming.” The scope for this managed bean is application.
The bean is created when the project is launched from the server. The
database connection is created once in the bean’s constructor (lines 17-
19). The initializeJdbc method loads the JDBC driver for MySQL (line
24), connects to the MySQL database (lines 25-26), creates statement for
obtaining course titles (lines 29-30), and creates a statement for
obtaining the student information for the specified course (lines 44-
52). Lines 31-41 execute the statement for obtaining course titles and
store them in array titles.

The getStudents() method returns a ResultSet that consists of all
students enrolled in the specified course (lines 70-84). The choice for
the title is set in the statement to obtain the student for the
specified title (line 77). If choice is null, the first title in the
titles array is set in the statement (line 77). If titles is null,
getStudents() returns null (line 73).

Listing 44.14 DisplayStudent.xhtml

<margin note line 9: style sheet>
<margin note line 14: bind choice>
<margin note line 15: titles>
<margin note line 18: display button>
<margin note line 22: bind result set>
<margin note line 23: rowClasses>
<margin note line 24: headerClass>

34

<margin note line 25: styleClass>
<margin note line 28: ssn column>
<margin note line 33: firstName column>
<margin note line 38: mi column>
<margin note line 43: lastName column>
<margin note line 48: phone column>
<margin note line 53: birthDate column>
<margin note line 58: deptId column>

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
 <h:head>
 <title>Display Student</title>
 <h:outputStylesheet name="tablestyle.css"/>
 </h:head>
 <h:body>
 <h:form>
 <h:outputLabel value="Choose a Course: " />
 <h:selectOneMenu value="#{courseName.choice}">
 <f:selectItems value="#{courseName.titles}" />
 </h:selectOneMenu>

 <h:commandButton style="margin-left: 20px"
 value="Display Students" />

 <h:dataTable value="#{courseName.students}" var="student"
 rowClasses="oddTableRow, evenTableRow"
 headerClass="tableHeader"
 styleClass="table">
 <h:column>
 <f:facet name="header">SSN</f:facet>
 #{student.ssn}
 </h:column>

 <h:column>
 <f:facet name="header">First Name</f:facet>
 #{student.firstName}
 </h:column>

 <h:column>
 <f:facet name="header">MI</f:facet>
 #{student.mi}
 </h:column>

 <h:column>
 <f:facet name="header">Last Name</f:facet>
 #{student.lastName}
 </h:column>

 <h:column>
 <f:facet name="header">Phone</f:facet>
 #{student.phone}
 </h:column>

 <h:column>

35

 <f:facet name="header">Birth Date</f:facet>
 #{student.birthDate}
 </h:column>

 <h:column>
 <f:facet name="header">Dept</f:facet>
 #{student.deptId}
 </h:column>
 </h:dataTable>
 </h:form>
 </h:body>
</html>

Line 9 specifies that the style sheet tablestyle.css created in Step 3
is used in this XMTHL file. The rowClasses = "oddTableRow, evenTableRow"
attribute specifies the style applied to the rows alternately using
oddTableRow and evenTableRow (line 23). The headerClasses =
"tableHeader" attribute specifies that the tableHeader class is used for
header style (line 24). The styleClasses = "table" attribute specifies
that the table class is used for the style of all other elements in the
table (line 25).

Line 14 binds the choice property in the courseName bean with the combo
box. The selection values in the combo box are bound with the titles
array property (line 15).

Line 22 binds the table value with a database result set using the
attribute value="#{courseName.students}". The var="student" attribute
associates a row in the result set with student. Lines 26-59 specify the
column values using student.ssn (line 28), student.firstName (line 33),
student.mi (line 38), student.lastName (line 33), student.phone (line
48), student.birthDate (line 53), and student.deptId (line 58).

Listing 44.15 tablestyle.css

<margin note line 2: tableHeader>
<margin note line 14: oddTableRow>
<margin note line 18: evenTableRow>
<margin note line 28: table>

/* Style for table */
.tableHeader {
 font-family:"Trebuchet MS", Arial, Helvetica, sans-serif;
 border-collapse:collapse;
 font-size:1.1em;
 text-align:left;
 padding-top:5px;
 padding-bottom:4px;
 background-color:#A7C942;
 color:white;
 border:1px solid #98bf21;
}

.oddTableRow {
 border:1px solid #98bf21;
}

.evenTableRow {
 background-color: #eeeeee;

36

 font-size:1em;

 padding:3px 7px 2px 7px;

 color:#000000;
 background-color:#EAF2D3;
}

.table {
 border:1px solid green;
}

The style sheet file defines the style classes tableHeader (line 2) for
table header style, oddTableRow for odd table rows (line 14),
evenTableRow for even table rows (line 18), and table for all other
table elements (line 28).

41.9 Opening New JSF Pages
All the examples you have seen so far use only one JSF page in a
project. Suppose you want to register student information to the
database. The application first displays the page as shown in Figure
44.21 to collection student information. After the user enters the
information and clicks the Submit button, a new page is displayed to ask
the user to confirm the input, as shown in Figure 44.22. If the user
clicks the Confirm button, the data is stored into the database and the
status page is displayed, as shown in Figure 44.23. If the user clicks
the Go Back button, it goes back to the first page.

Figure 44.21
This page lets the user enter input.

37

Figure 44.22
This page lets the user confirm the input.

Figure 44.23
This page displays the status of the user input.

For this project, you need to create three JSP pages named
AddressRegistration.xhtml, ConfirmAddress.xhtml,
AddressStoredStatus.xhtml in Listings 44.16, 44.17, and 44.18. The
project starts with AddressRegistration.xhtml. When clicking the Submit
button, the action for the button returns "ConfirmAddress" if the last
name and first name are not empty, which causes ConfirmAddress.xhtml to
be displayed. When clicking the Confirm button, the status page
AddressStoredStatus is displayed. When clicking the Go Back button, the
first page AddressRegistration is now displayed.

Listing 44.16 AddressRegistration.xhmtl

<margin note line 6: jsf core namespace>
<margin note line 22: bind lastName>
<margin note line 25: bind firstName>
<margin note line 28: bind mi>
<margin note line 34: bind telephone>
<margin note line 37: bind email>
<margin note line 43: bind street>
<margin note line 49: bind city>
<margin note line 52: bind state>
<margin note line 59: bind zip>
<margin note line 64: process register>

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"

38

 xmlns:f="http://java.sun.com/jsf/core">
 <h:head>
 <title>Student Registration Form</title>
 </h:head>
 <h:body>
 <h:form>
 <!-- Use h:graphicImage -->
 <h3>Student Registration Form
 <h:graphicImage name="usIcon.gif" library="image"/>
 </h3>

 Please register to your instructor's student address book.
 <!-- Use h:panelGrid -->
 <h:panelGrid columns="6">
 <h:outputLabel value="Last Name" style="color:red"/>
 <h:inputText id="lastNameInputText"
 value="#{addressRegistration.lastName}"/>
 <h:outputLabel value="First Name" style="color:red"/>
 <h:inputText id="firstNameInputText"
 value="#{addressRegistration.firstName}"/>
 <h:outputLabel value="MI" />
 <h:inputText id="miInputText" size="1"
 value="#{addressRegistration.mi}"/>
 </h:panelGrid>

 <h:panelGrid columns="4">
 <h:outputLabel value="Telephone"/>
 <h:inputText id="telephoneInputText"
 value="#{addressRegistration.telephone}"/>
 <h:outputLabel value="Email"/>
 <h:inputText id="emailInputText"
 value="#{addressRegistration.email}"/>
 </h:panelGrid>

 <h:panelGrid columns="4">
 <h:outputLabel value="Street"/>
 <h:inputText id="streetInputText"
 value="#{addressRegistration.street}"/>
 </h:panelGrid>

 <h:panelGrid columns="6">
 <h:outputLabel value="City"/>
 <h:inputText id="cityInputText"
 value="#{addressRegistration.city}"/>
 <h:outputLabel value="State"/>
 <h:selectOneMenu id="stateSelectOneMenu"
 value="#{addressRegistration.state}">
 <f:selectItem itemLabel="Georgia-GA" itemValue="GA" />
 <f:selectItem itemLabel="Oklahoma-OK" itemValue="OK" />
 <f:selectItem itemLabel="Indiana-IN" itemValue="IN"/>
 </h:selectOneMenu>
 <h:outputLabel value="Zip"/>
 <h:inputText id="zipInputText"
 value="#{addressRegistration.zip}"/>
 </h:panelGrid>

 <!-- Use command button -->
 <h:commandButton value="Register"
 action="#{addressRegistration.processSubmit()}"/>

 <h:outputText escape="false" style="color:red"

39

 value="#{addressRegistration.requiredFields}" />
 </h:form>
 </h:body>
</html>

Listing 44.17 ConfirmAddress.xhmtl

<margin note line 15: process confirm>
<margin note line 17: go to AddressRegistration page>

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Confirm Student Registration</title>
 </h:head>
 <h:body>
 <h:form>
 <h:outputText escape="false" style="color:red"
 value="#{registration1.input}" />
 <h:panelGrid columns="2">
 <h:commandButton value="Confirm"
 action = "#{registration1.storeStudent()}"/>
 <h:commandButton value="Go Back"
 action = "StudentRegistration"/>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

Listing 44.18 AddressStoredStatus.xhmtl

PD: Please add line numbers in the following code
***Layout: Please layout exactly. Don’t skip the space. This is true for
all source code in the book. Thanks, AU.
<margin note line 12: display status>

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Address Stored?</title>
 </h:head>
 <h:body>
 <h:form>
 <h:outputText escape="false" style="color:green"
 value="#{registration1.status}" />
 </h:form>
 </h:body>
</html>

Listing 44.19 AddressRegistration.java

40

<margin note line 7: managed bean>
<margin note line 8: session scope>
<margin note line 10: property lastName>
<margin note line 24: initialize database>
<margin note line 107: go to a new page>
<margin note line 113: check required fields>
<margin note line 121: get input>
<margin note line 157: store address>
<margin note line 169: update status>
<margin note line 175: go to a new page>

package jsf2demo;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import java.sql.*;

@ManagedBean
@SessionScoped
public class AddressRegistration {
 private String lastName;
 private String firstName;
 private String mi;
 private String telephone;
 private String email;
 private String street;
 private String city;
 private String state;
 private String zip;
 private String status = "Nothing stored";
 // Use a prepared statement to store a student into the database
 private PreparedStatement pstmt;

 public AddressRegistration() {
 initializeJdbc();
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getMi() {
 return mi;
 }

 public void setMi(String mi) {
 this.mi = mi;
 }

41

 public String getTelephone() {
 return telephone;
 }

 public void setTelephone(String telephone) {
 this.telephone = telephone;
 }

 public String getEmail() {
 return email;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getState() {
 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public String getZip() {
 return zip;
 }

 public void setZip(String zip) {
 this.zip = zip;
 }

 private boolean isRquiredFieldsFilled() {
 return !(lastName == null || firstName == null
 || lastName.trim().length() == 0
 || firstName.trim().length() == 0);
 }

 public String processSubmit() {
 if (isRquiredFieldsFilled()) {
 return "ConfirmAddress";
 } else {
 return "";
 }

42

 }

 public String getRequiredFields() {
 if (isRquiredFieldsFilled()) {
 return "";
 } else {
 return "Last Name and First Name are required";
 }
 }

 public String getInput() {
 return "<p style=\"color:red\">You entered
"
 + "Last Name: " + lastName + "
"
 + "First Name: " + firstName + "
"
 + "MI: " + mi + "
"
 + "Telephone: " + telephone + "
"
 + "Email: " + email + "
"
 + "Street: " + street + "
"
 + "City: " + city + "
"
 + "Street: " + street + "
"
 + "City: " + city + "
"
 + "State: " + state + "
"
 + "Zip: " + zip + "</p>";
 }

 /** Initialize database connection */
 private void initializeJdbc() {
 try {
 // Explicitly load a MySQL driver
 Class.forName("com.mysql.jdbc.Driver");
 System.out.println("Driver loaded");

 // Establish a connection
 Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost/javabook", "scott", "tiger");

 // Create a Statement
 pstmt = conn.prepareStatement("insert into Address (lastName,"
 + " firstName, mi, telephone, email, street, city, "
 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
 } catch (Exception ex) {
 System.out.println(ex);
 }
 }

 /** Store an address to the database */
 public String storeStudent() {
 try {
 pstmt.setString(1, lastName);
 pstmt.setString(2, firstName);
 pstmt.setString(3, mi);
 pstmt.setString(4, telephone);
 pstmt.setString(5, email);
 pstmt.setString(6, street);
 pstmt.setString(7, city);
 pstmt.setString(8, state);
 pstmt.setString(9, zip);
 pstmt.executeUpdate();
 status = firstName + " " + lastName
 + " is now registered in the database.";
 } catch (Exception ex) {

43

 status = ex.getMessage();
 }

 return "AddressStoredStatus";
 }

 public String getStatus() {
 return status;
 }
}

The action for the Register button in the AddressRegistration JSF page
is processSubmit() (line 64 in AddressRegistration.xhtml). This method
checks if last name and first name are not empty (lines 105-111 in
AddressRegistration.java). If so, it returns a string "ConfirmAddress",
which causes the ConfirmAddress JSF page to be displayed.

The ConfirmAddress JSF page displays the data entered from the user
(line 12 in ConfirmAddress.xhtml). The getInput() method (lines 121-134
in AddressRegistration.java) collects the input.

The action for the Confirm button in the ConfirmAddress JSF page is
storeStudent() (line 15 in ConfirmAddress.xhtml). This method stores the
address in the database (lines 157-176 in AddressRegistration.java) and
returns a string "AddressStoredStatus", which causes the
AddressStoredStatus page to be displayed. The status message is
displayed in this page (line 12 in AddressStoredStatus.xhtml).

The action for the Go Back button in the ConfirmAddress page is
"AddressRegistration" (line 17 in ConfirmAddress.xhtml). This causes the
AddressRegistration page to be displayed for the user to reenter the
input.

The scope of the managed bean is session (line 8
AddressRegistration.java) so the multiple pages can share the same bean.

Note that this program loads the database driver explicitly (line 140
AddressRegistration.java). Sometimes, an IDE such as NetBeans is not
able to find a suitable driver. Loading a driver explicitly can avoid
this problem.

Chapter Summary
1. JSF enables you to completely separate Java code from

HTML.
2. A facelet is an XHTML page that mixes JSF tags with

XHTML tags.
3. JSF applications are developed using the Model-View-

Controller (MVC) architecture, which separates the
application’s data (contained in the model) from the
graphical presentation (the view).

4. The controller is the JSF framework that is responsible
for coordinating interactions between view and the
model.

5. In JSF, the facelets are the view for presenting data.
Data are obtained from Java objects. Objects are
defined using Java classes.

44

6. In JSF, the objects that are accessed from a facelet
are JavaBeans objects.

7. The JSF expression can either use the property name or
invoke the method to obtain the current time.

8. JSF provides many elements for displaying GUI
components. The tags with the h prefix are in the JSF
HTML Tag library. The tags with the f prefix are in the
JSF Core Tag library.

9. You can specify the JavaBeans objects at the
application scope, session scope, page scope, view
scope, or request scope.

10. The view scope keeps the bean alive as long as you
stay on the view. The view scope is between session and
request scopes.

11. JSF provides several convenient and powerful ways
for input validation. You can use the standard
validator tags in the JSF Core Tag Library or create
custom validators.

Test Questions

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions
Section 44.2
44.1 What is JSF?

44.2 How do you create a JSF project in NetBeans?

44.3 How do you create a JSF page in a JSF project?

44.4 What is a facelet?

44.5 What is the file extension name for a facelet?

44.6 What is a managed bean?

44.7 What is the @ManagedBean annotation for?

44.8 What is the @RequestScope annotation for?

44.9 What is the name space for JSF tags with prefix h and prefix f?

Sections 44.3-44.5

44.10 Describe the use of the following tags?

h:form, h:panelGroup, h:panelGrid, h:inputText, h:outputText,
h:inputTextArea, h:inputSecret, h:outputLabel, h:outputLink,
h:selectOneMenu, h:selectOneRadio, h:selectBooleanCheckbox,
h:selectOneListbox, h:selectManyListbox, h:selectItem, h:message,
h:dataTable, h:columm, h:graphicImage

44.11 In the h:outputText tag, what is the escape attribute for?

44.12 Does every GUI component tag in JSF have the style attribute?

45

Section 44.6

44.13 What is a JSF session scope?

44.14 How do you set a session scope in a managed bean?

44.15 Describe the four session scopes.

44.16 What is the default session scope?

Section 44.7

44.17 Write a tag that validates an input text with minimal length of 2
and maximum 12.

44.18 Write a tag that validates an input text for SSN using a regular
expression.

44.19 Write a tag that validates an input text for a double value with
minimal 4.5 and maximum 19.9.

44.20 Write a tag that validates an input text for an integer value with
minimal 4 and maximum 20.

44.21 Write a tag that make an input text required.

Programming Exercises

44.1*

(Factorial table in JSF) Write a JSF page that displays a factorial page
as shown in Figure 44.24a. Display the table in an h:outputText
component. Set its escape property to false to display it as HTML
contents.

 (a) (b)

Figure 44.24

46

(a) The JSF page displays factorials for the numbers from 0 to 10
in a table. (b) The JSF page displays the multiplication table.

44.2*

(Multiplication table) Write a JSF page that displays a multiplication
table as shown in Figure 44.24b.

44.3*

 (Calculate tax) Write a JSF page to let the user to enter taxable
income and filing status, as shown in Figure 44.25a. Clicking the
Compute Tax button invokes a servlet to compute and display the tax, as
shown in Figure 44.25b. Use the computeTax method introduced in Listing
3.7, ComputeTax.java, to compute tax.

 (a) (b)

Figure 44.25

The JSF page computes the tax.

44.4*

(Calculate loan) Write a JSF page that lets the user enter loan amount,
interest rate, and number of years, as shown in Figure 44.26a. Clicking
the Compute Loan Payment button to compute and display the monthly and
total loan payments, as shown in Figure 44.26b. Use the Loan class given
in Listing 10.2, Loan.java, to compute the monthly and total payments.

 (a) (b)

Figure 44.26

The JSF page computes the loan payment.

47

44.5*

(Addition quiz) Write a JSF program that generates addition quizzes
randomly, as shown in Figure 44.27a. After the user answers all
questions, the JSP displays the result, as shown in Figure 44.27b.

(a) (b)

Figure 44.27

The program displays addition questions in (a) and answers in (b).

43.18*

(Large factorial) Rewrite Exercise 44.1 to handle large factorial. Use
the BigInteger class introduced in §15.11.

44.7*

(Guess birthday) Listing 3.3, GuessBirthDay.java, gives a program for
guessing a birthday. Write a JSP program that displays five sets of
numbers, as shown in Figure 44.28a. After the user checks the
appropriate boxes and clicks the Find Date button, the program
displays the date, as shown in Figure 44.28b.

 (a) (b)

Figure 44.28

48

(a) The program displays five sets of numbers for the user to
check the boxes. (b) The program displays the date.

44.8*

(Guess capitals) Write a JSF that prompts the user to enter a capital
for a state, as shown in Figure 44.29a. Upon receiving the user input,
the program reports whether the answer is correct, as shown in Figure
44.29b. You can click the Next button to display another question. You
can use a two-dimensional array to store the states and capitals, as
proposed in Exercise 9.22. Create a list from the array and apply the
shuffle method to reorder the list so the questions will appear in
random order.

 (a)

 (b)

Figure 44.29

(a) The program displays a question. (b) The program displays the
answer to the question.

44.9*

(Access and update a Staff table) Write a JSF program that views,
inserts, and updates staff information stored in a database, as shown
in Figure 44.30a. The view button displays a record with a specified
ID. The Staff table is created as follows:

create table Staff (
 id char(9) not null,
 lastName varchar(15),
 firstName varchar(15),
 mi char(1),
 address varchar(20),
 city varchar(20),
 state char(2),
 telephone char(10),
 email varchar(40),
primary key (id)

);

49

Figure 44.30

The web page lets you view, insert, and update staff information.

44.10*

(Random cards) Write a JSF that displays four random cards from a
deck of 52 cards, as shown in Figure 44.22. When the user clicks the
Refresh button, four new random cards are displayed.

Figure 44.22
This JSF application displays four random cards.

44.11***

(Game: the 24-point card game) Rewrite Exercise 25.11 using JSF, as
shown in Figure 44.23. Upon clicking the Refresh button, the program

50

displays four random cards and displays an expression if a 24-point
solution exists. Otherwise, it displays No solution.

Figure 44.23
The JSF application solves a 24-Point card game.

44.12***

(Game: the 24-point card game) Rewrite Exercise 25.10 using JSF, as
shown in Figure 44.24. The program lets the user enter four card
values and finds a solution upon clicking the Find a Solution button.

Figure 44.24
The user enters four numbers and the program finds a solution.

1

***This is a bonus Web chapter

CHAPTER 45

Web Services

Objectives

To describe what a Web service is (§45.1).
To create a Web service class (§45.2).
To publish and test a Web service (§45.3).
To create a Web service client reference (§45.4).
To explain the role of WSDL (§45.4).
To pass arguments of object type in a Web service (§45.5).
To discover how a client communicates with a Web service
(§45.5).
To describe what SOAP requests and SOAP responses are (§45.5).
To track a session in Web services (§45.6).

2

45.1 Introduction

<Side Remark: platform independent>
<Side Remark: language independent>

Web service is a technology that enables programs to communicate
through HTTP on the Internet. Web services enable a program on one
system to invoke a method in an object on another system. You can
develop and use Web services using any languages on any platform.
Web services are simple and easy to develop.

<Side Remark: SOAP>
<Side Remark: publishing Web services>
<Side Remark: consuming Web services>

Web services run on the Web using HTTP. There are several APIs for
Web services. A popular standard is the Simple Object Access
Protocol (SOAP), which is based on XML. The computer on which a
Web service resides is referred to as a server. The server needs
to make the service available to the client, known as publishing a
Web service. Using a Web service from a client is known as
consuming a Web service.

<Side Remark: proxy object>
A client interacts with a Web service through a proxy object. The
proxy object facilitates the communication between the client and
the Web service. The client passes arguments to invoke methods on
the proxy object. The proxy object sends the request to the server
and receives the result back from the server, as shown in Figure
45.1.

Client

Web
service
proxy
object

Server

Web
serviceInternet

Figure 45.1
A proxy object serves as a facilitator between a client and a Web
service.

45.2 Creating Web Services

<Side Remark: Web service tool>
There are many tools for creating Web services. This book
demonstrates creating Web services using NetBeans.

<Side Remark: install GlashFish 3>
NOTE:
Apache Tomcat Server does not work well with Web services. To
develop and deploy Web services using NetBeans, you need to
install GlassFish 3. For information on how to install GlassFish 3
on NetBeans 7, see Supplement II.I.

***END NOTE

We now create a Web service for obtaining student scores. A Web
service is a class that contains the methods for the client to
invoke. Name the class ScoreService with a method named
findScore(String name) that returns the score for a student.

<Side Remark: NetBeans Web project>
First you need to create a Web project using the following steps:

Choose File › New Project to display the New Project dialog box.

3

In the New Project dialog box, choose Java Web in the Categories
pane and choose Web Application in the Projects pane. Click Next
to display the New Web Application dialog box.
Enter WebServiceProject as the project name, specify the location
where you want the project to be stored, and click Next to display
the Server and Setting dialog.
Select GlassFish 3 as the server and Java EE 6 Web as the Java EE
version. Click Finish to create the project.

<Side Remark: create Web service class>
Now you can create the ScoreService class in the project as
follows:

Right-click the WebServiceProject in the Project pane to display a
context menu. Choose New › Web Service to display the New Web
Service dialog box.
Enter ScoreService in the Web Service Name field and enter
chapter45 in the Package field. Click Finish to create
ScoreService.
Complete the source code as shown in Listing 45.1.

Listing 45.1 ScoreService.java

<Side Remark line 4: import for @WebService>
<Side Remark line 5: import for @WebMethod>
<Side Remark line 7: define WebService>
<Side Remark line 19: define WebMethod>

package chapter45;

import java.util.HashMap;
import javax.jws.WebService; // For annotation @WebService
import javax.jws.WebMethod; // For annotation @WebMethod

@WebService(name = "ScoreService", serviceName = "ScoreWebService")
public class ScoreService {
 // Stores scores in a map indexed by name
 private HashMap<String, Double> scores =
 new HashMap<String, Double>();

 public ScoreService() {
 scores.put("John", 90.5);
 scores.put("Michael", 100.0);
 scores.put("Michelle", 98.5);
 }

 @WebMethod(operationName = "findScore")
 public double findScore(String name) {
 Double d = scores.get(name);

 if (d == null) {
 System.out.println("Student " + name + " is not found ");
 return -1;
 }
 else {
 System.out.println("Student " + name + "\'s score is "
 + d.doubleValue());
 return d.doubleValue();
 }
 }

4

}

<Side Remark: what is annotation?>
<Side Remark: boilerplate code>

Lines 4-5 import the annotations used in the program in lines 7
and 19. Annotation is a new feature in Java, which enables you to
simplify coding. The compiler will automatically generate the code
for the annotated directives. So, it frees the programmer from
writing the detailed boilerplate code that could be generated
mechanically. The annotation (line 7)

@WebService(name = "ScoreService", serviceName = "ScoreWebService")

tells the compiler that the class ScoreService is associated with
the Web service named ScoreWebService.

The annotation (line 19)

 @WebMethod(operationName = "findScore")

indicates that findScore is a method that can be invoked from a
client.

The findScore method returns a score if the name is in the hash
map. Otherwise, it returns -1.0.

You can manually type the code for the service, or create it from
the Design tab, as shown in Figure 45.2.

Figure 45.2
The services can also be created from the Design pane.

45.3 Deploying and Testing Web Services

<Side Remark: publishing Web services>
After a Web service is created, you need to deploy it for clients
to use. Deploying Web services is also known as publishing Web
services. To deploy it, right-click the WebServiceProject in the
Project to display a context menu and choose Deploy. This command
will first undeploy the service if it was deployed and then
redeploy it.

Now you can test the Web service by entering the follow URL in a
browser, as shown in Figure 45.3.

5

http://localhost:8080/WebServiceProject/ScoreWebService?Tester

Figure 45.3
The test page enables you to test Web services.

Note that ScoreWebService is the name you specified in line 7 in
Listing 45.1. This Web service has only one remote method named
findScore. You can define an unlimited number of remote methods in
a Web service class. If so, all these methods will be displayed in
the test page.

To test the findScore method, enter Michael and click findScore.
You will see that the method returns 100.0, as shown in Figure
45.4.

Figure 45.4
The method returns a test value.

<Side Remark: testing from another machine>
NOTE: If your computer is connected to the Internet, you
can test Web services from another computer by entering
the following URL:

http://host:8080/WebServiceProject/ScoreWebService?Tester

<Side Remark: ipconfig>

6

Where host is the host name or IP address of the server
on which the Web service is running. On Windows, you can
find your IP address by typing the command ipconfig.

***END NOTE

<Side Remark: Windows firewall>
NOTE: If you are running the server on Windows, the
firewall may prevent remote clients from accessing the
service. To enable it, do the following:

1. In the Windows control panel, click Windows Firewall
to display the Windows Firewall dialog box.

2. In the Advanced tab, double-click Local Area
Connection to display the Advanced Settings dialog
box. Check Web Server(HTTP) to enable HTTP access to
the server.

3. Click OK to close the dialog box.
***END NOTE

45.4 Consuming Web Services

<Side Remark: consuming Web services>
After a Web service is published, you can write a client program
to use it. A client can be any program (standalone application,
applet, servlet/JSP/JSF application, or another Web service) and
written in any language.

We will use NetBeans to create a Web service client. Our client is
a Java applet with a main method, so you can also run it
standalone. The applet simply lets the user enter a name and
displays the score, as shown in Figure 45.5.

Figure 45.5
The applet client uses the Web service to find scores.

Let us create a project for the client. The project named
ScoreWebServiceClientProject can be created as follows:

Choose File › New Project to display the New Project dialog box.
In the New Project dialog box, choose Java in the Categories pane
and choose Java Application in the Projects pane. Click Next to
display the New Java Application dialog box.
Enter ScoreWebServiceClientProject as the project name, specify
the location where you want the project to be stored, and uncheck
the Create Main Class check box. Click Finish to create the
project.

<Side Remark: Web service reference>
You need to create a Web service reference to this project. The
reference will enable you to create a proxy object to interact
with the Web service. Here are the steps to create a Web service
reference:

7

Right-click the ScoreWebServiceClientProject in the Project pane
to display a context menu. Choose New › Web Service Client to
display the New Web Service Client dialog box, as shown in Figure
45.6.

Check the WSDL URL radio button and enter
http://localhost:8080/WebServiceProject/ScoreWebService?WSDL

in the WSDL URL field.

Enter myWebservice in the package name field and choose JAX-WS as
the JAX version. Click Finish to generate the Web service
reference.

Figure 45.6
The New Web Service Client dialog box creates a Web service
reference.

Now you will see ScoreWebService created in the Web Service
References folder in the Projects tab. The IDE has generated many
supporting files for the reference. You can view all the generated
.java files from the Files tab in the project pane, as shown in
Figure 45.7. These files will be used by the proxy object to
interact with the Web service.

Figure 45.7
You can see the automatically generated boilerplate code for Web
services in the Generated Sources folder in the client’s project.

8

<Side Remark: what is WSDL?>
NOTE: When you created a Web service reference, you entered a WSDL
URL, as shown in Figure 45.6. This creates a .wsdl file. In this
case, it is named ScoreWebService.wsdl under the Web Service
References folder, as shown in Figure 45.8. So what is WSDL? WSDL
stands for Web Service Description Language. A .wsdl file is an
XML file that describes the available Web service to the client—
i.e., the remote methods, their parameters and return value types,
and so on.

Figure 45.8
The .wsdl file describes Web services to clients.

<Side Remark: refresh reference>
NOTE: If the Web service is modified, you need to refresh the
reference for the client. To do so, right-click the Web service
node under Web Service References to display a context menu and
choose Refresh Client.

Now you are ready to create an applet client for the Web service.
Right-click the ScoreWebServiceClientProject node in the Project
pane to display a context menu, and choose New › JApplet to create
a Java applet named FindScoreApplet in package chapter45, as shown
in Listing 45.2.

Listing 45.2 FindScoreApplet.java

<Side Remark line 11: create a service object>
<Side Remark line 12: create a proxy object>
<Side Remark line 39: invoke remote method>
<Side Remark line 51: main method omitted>

package chapter45;

import myWebservice.ScoreWebService;
import myWebservice.ScoreService;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class FindScoreApplet extends JApplet {
 // Declare a service object and a proxy object
 private ScoreWebService scoreWebService = new ScoreWebService();
 private ScoreService proxy = scoreWebService.getScoreServicePort();

 private JButton jbtGetScore = new JButton("Get Score");

9

 private JTextField jtfName = new JTextField();
 private JTextField jtfScore = new JTextField();

 public void init() {
 JPanel jPanel1 = new JPanel();
 jPanel1.setLayout(new GridLayout(2, 2));
 jPanel1.add(new JLabel("Name"));
 jPanel1.add(jtfName);
 jPanel1.add(new JLabel("Score"));
 jPanel1.add(jtfScore);

 add(jbtGetScore, BorderLayout.SOUTH);
 add(jPanel1, BorderLayout.CENTER);

 jbtGetScore.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 getScore();
 }
 });
 }

 private void getScore() {
 try {
 // Get student score
 double score = proxy.findScore(jtfName.getText().trim());

 // Display the result
 if (score < 0)
 jtfScore.setText("Not found");
 else
 jtfScore.setText(new Double(score).toString());
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

The program creates a Web service object (line 11) and creates a
proxy object (line 12) to interact with the Web service.

To find a score for a student, the program invokes the remote
method findScore on the proxy object (line 39).

45.5 Passing and Returning Arguments

<Side Remark: SOAP>
In the preceding example, a Web service client that you created
invokes the findScore method with a string argument, and the Web
service executes the method and returns a score as a double value.
How does this work? It is the Simple Object Access Protocol (SOAP)
that facilitates communications between the client and server.

<Side Remark: SOAP request>
<Side Remark: SOAP response>

SOAP is based on XML. The message between the client and server is
described in XML. Figure 45.9 shows the SOAP request and SOAP
response for the findScore method.

10

Figure 45.9
The client request and server response are described in XML.

When invoking the findScore method, a SOAP request is sent to the
server. The request contains the information about the method and
the argument. As shown in Figure 45.9, the XML text

<ns1:findScore>
 <arg0>Michael</arg0>
</ns1:findScore>

specifies that the method findScore is called with argument
Michael.

Upon receiving the SOAP request, the Web service parses it. After
parsing it, the Web service invokes an appropriate method with

11

specified arguments (if any) and sends the response back in a SOAP
response. As shown in Figure 45.9, the XML text

<ns1:findScoreResponse>
 <return>100.0</return>
</ns1:findScoreResponse>

specifies that the method returns 100.0.

The proxy object receives the SOAP response from the Web service
and parses it. This process is illustrated in Figure 45.10.

Client

Web
service
proxy
object

Server

Web
service

SOAP Response

SOAP Request

Figure 45.10
A proxy object sends SOAP requests and receives SOAP responses.

<Side Remark: XML serialization>
<Side Remark: XML deserialization>

Can you pass an argument of any type between a client and a Web
service? No. SOAP supports only primitive types, wrapper types,
arrays, String, Date, Time, List, and several other types. It also
supports certain custom classes. An object that is sent to or from
a server is serialized into XML. The process of
serializing/deserializing objects, called XML
serialization/deserialization, is performed automatically. For a
custom class to be used with Web methods, the class must meet the
following requirements:

<Side Remark: no-arg constructor>
The class must have a no-arg constructor.

<Side Remark: get and set methods>
Instance variables that should be serialized must have public get
and set methods. The classes of these variables must be supported
by SOAP.

To demonstrate how to pass an object argument of a custom class,
Listing 45.3 defines a Web service class named AddressService with
two remote methods:

getAddress(String firstName, String lastName) that returns an
Address object for the specified firstName and lastName.
storeAddress(Address address) that stores a Student object to the
database.

Address information is stored in a table named Address in the
database. The Address class was defined in Listing 42.12,
Address.java. An Address object can be passed to or returned from
a remote method, since the Address class has a no-arg constructor
with get and set methods for all its properties.

Here are the steps to create a Web service named AddressService
and the Address class in the project.

Right-click the WebServiceProject node in the project pane to
display a context menu. Choose New › Web Service to display the
New Web Service dialog box.
In the Web Service Name field, enter AddressService. In the
Package field, enter chapter45. Click Finish to create the service
class.

12

Right-click the WebServiceProject node in the project pane to
display a context menu. Choose New › Java Class to display the New
Java Class dialog box.
In the Class Name field, enter Address. In the Package field,
enter chapter42. Click Finish to create the class.

The Address class is the same as shown in Listing 42.12. Complete
the AddressService class as shown in Listing 45.3.

Listing 45.3 AddressService.java

<Side Remark line 8: define service name>
<Side Remark line 12: prepared statement>
<Side Remark line 15: prepared statement>
<Side Remark line 18: initialize database>
<Side Remark line 21: define remote method>
<Side Remark line 22: getAddress>
<Side Remark line 49: define remote method>
<Side Remark line 50: storeAddress>
<Side Remark line 68: initialize database>

package chapter45;

import chapter42.Address;
import java.sql.*;
import javax.jws.WebMethod;
import javax.jws.WebService;

@WebService(name = "AddressService",
 serviceName = "AddressWebService")
public class AddressService {
 // statement1 for retrieving an address and statement2 for storing
 private PreparedStatement statement1;

 // statement2 for storing an address
 private PreparedStatement statement2;

 public AddressService() {
 initializeJdbc();
 }

 @WebMethod(operationName = "getAddress")
 public Address getAddress(String firstName, String lastName) {
 try {
 statement1.setString(1, firstName);
 statement1.setString(2, lastName);
 ResultSet resultSet = statement1.executeQuery();

 if (resultSet.next()) {
 Address address = new Address();
 address.setFirstName(resultSet.getString("firstName"));
 address.setLastName(resultSet.getString("lastName"));
 address.setMi(resultSet.getString("mi"));
 address.setTelephone(resultSet.getString("telephone"));
 address.setFirstName(resultSet.getString("email"));
 address.setCity(resultSet.getString("telephone"));
 address.setState(resultSet.getString("state"));
 address.setZip(resultSet.getString("zip"));

13

 return address;
 }
 else
 return null;
 } catch (SQLException ex) {
 ex.printStackTrace();
 }

 return null;
 }

 @WebMethod(operationName = "storeAddress")
 public void storeAddress(Address address) {
 try {
 statement2.setString(1, address.getLastName());
 statement2.setString(2, address.getFirstName());
 statement2.setString(3, address.getMi());
 statement2.setString(4, address.getTelephone());
 statement2.setString(5, address.getEmail());
 statement2.setString(6, address.getStreet());
 statement2.setString(7, address.getCity());
 statement2.setString(8, address.getState());
 statement2.setString(9, address.getZip());
 statement2.executeUpdate();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }

 /** Initialize database connection */
 public void initializeJdbc() {
 try {
 Class.forName("com.mysql.jdbc.Driver");

 // Connect to the sample database
 Connection connection = DriverManager.getConnection(
 "jdbc:mysql://localhost/javabook", "scott", "tiger");

 statement1 = connection.prepareStatement(
 "select * from Address where firstName = ? and lastName = ?");
 statement2 = connection.prepareStatement(
 "insert into Address " +
 "(lastName, firstName, mi, telephone, email, street, city, "
 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

The new Web service is named AddressWebService (line 9) for the
AddressService class.

When the service is deployed, the constructor (lines 17-19) of
AddressWebService is invoked to initialize a database connection
and create prepared statement1 and statement2 (lines 68-85).

14

The findAddress method searches the address in the Address table
for the specified firstName and lastName. If found, the address
information is returned in an Address object (lines 29-38).
Otherwise, the method returns null (line 41).

The storeAddress method stores the address information from the
Address object into the database (lines 52-61).

NOTE:
<Side Remark: database driver>

Don’t forget that you have to add the MySQL library to
the WebServiceProject for this example to run.

Before you can use the service, deploy it. Right-click the
WebServiceProject node in the Project to display a context menu
and choose Deploy.

Now you are ready to develop a Web client that uses the
AddressWebService. The client is a JSP program, as shown in Figure
45.11. The program has two functions. First, the user can enter
the last name and first name and click the Search button to search
for a record, as shown in Figure 45.12. Second, the user can enter
the complete address information and click the Store button to
store the information to the database, as shown in Figure 45.13.

Figure 45.11
The TestAddressWebService page allows the user to search and
store addresses.

Figure 45.12
The Search button finds and displays an address.

15

Figure 45.13
The Store button stores the address to the database.

Let us create a project for the client. The project named
AddressWebServiceClientProject can be created as follows:

Choose File › New Project to display the New Web Application
dialog box.
In the New Web Application dialog box, choose Java Web in the
Categories pane and choose Web Application in the Projects pane.
Click Next to display the Name and Location dialog box.
Enter AddressWebServiceClientProject as the project name, specify
the location where you want the project to be stored, and uncheck
the Set as Main Project check box. Click Next to display the
Server and Settings dialog box.
Choose GlassFish Server 3 in the Server field, and Java EE 6 Web
as in the Java EE Version field, and click Finish to create the
project.

<Side Remark: Web service reference>
You need to create a Web service reference to this project. The
reference will enable you to create a proxy object to interact
with the Web service. Here are the steps to create a Web service
reference:

Right-click the AddressWebServiceClientProject node in the Project
pane to display a context menu. Choose New › Web Service Client to
display the New Web Service Client dialog box.
Check the WSDL URL radio button and enter

http://localhost:8080/WebServiceProject/AddressWebService?WSDL

in the WSDL URL field.

3. Enter myWebservice in the package name field and choose JAX-WS
as the JAX version. Click Finish to generate the Web service
reference.

Now a reference to AddressWebService is created. Note that this
process also copies Address.java to the client project, as shown
in Figure 45.14.

16

Figure 45.14
The Address.java is automatically copied to the Web service
client reference package.

Create a JSP named TestAddressWebService in the
AddressWebServiceClientProject project, as shown in Listing 45.4.

Listing 45.4 TestAddressWebService.jsp

<Side Remark line 2: import Address>
<Side Remark line 3: import AddressWebServices>
<Side Remark line 4: import AddressServices>
<Side Remark line 14: invoke the same page>
<Side Remark line 82: create Web service>
<Side Remark line 83: get proxy object>
<Side Remark line 85: process Store button>
<Side Remark line 86: invoke remote method>
<Side Remark line 90: process Search button>
<Side Remark line 91: invoke remote method>

<!-- TestAddressWebService.jsp -->
<%@ page import = "myWebservice.Address" %>
<%@ page import = "myWebservice.AddressWebService" %>
<%@ page import = "myWebservice.AddressService" %>
<jsp:useBean id = "addressId"
class = "myWebservice.Address" scope = "session"></jsp:useBean>

<jsp:setProperty name = "addressId" property = "*" />

<html>
<head>
<title>Address Information</title>

</head>
<body>
 <form method = "post" action = "TestAddressWebService.jsp">

17

 Last Name *
<input type = "text" name = "lastName"
<%if (addressId.getLastName() != null) {

 out.print("value = \"" + addressId.getLastName() + "\"");}%>
size = "20" />

 First Name *
<input type = "text" name = "firstName"
<%if (addressId.getFirstName() != null) {

 out.print("value = \"" + addressId.getFirstName() + "\"");}%>
size = "20" />

 MI
<input type = "text" name = "mi"
<%if (addressId.getMi() != null) {

 out.print("value = \"" + addressId.getMi() + "\" "); } %>
size = "3" />

<p>Telephone
<input type = "text" name = "telephone"
<%if (addressId.getTelephone() != null) {

 out.print("value = \"" + addressId.getTelephone() + "\" ");}%>
size = "20" />

 Email
<input type = "text" name = "email"
<%if (addressId.getEmail() != null) {

 out.print("value = \"" + addressId.getEmail() + "\" ");}%>
size = "28" />
</p>

 <p>Street
<input type = "text" name = "street"
<%if (addressId.getStreet() != null) {

 out.print("value = \"" + addressId.getStreet() + "\" ");}%>
size = "50" />
</p>

<p>City
<input type = "text" name = "city"
<%if (addressId.getCity() != null) {

 out.print("value = \"" + addressId.getCity() + "\" ");}%>
size = "23" />

 State
<select size = "1" name = "state">
<option value = "GA">Georgia-GA</option>
<option value = "OK">Oklahoma-OK</option>
<option value = "IN">Indiana-IN</option>

</select>

 Zip
<input type = "text" name = "zip"
<%if (addressId.getZip() != null) {

 out.print("value = \"" + addressId.getZip() + "\" "); } %>
size = "9" />

18

 </p>

<p><input type = "submit" name = "Submit" value = "Search">
<input type = "submit" name = "Submit" value = "Store">
<input type = "reset" value = "Reset">

</p>
 </form>
 <p>* required fields</p>

<%
 if (request.getParameter("Submit") != null) {
 AddressWebService addressWebService = new AddressWebService();
 AddressService proxy = addressWebService.getAddressServicePort();

if (request.getParameter("Submit").equals("Store")) {
 proxy.storeAddress(addressId);
 out.println(addressId.getFirstName() + " " +
 addressId.getLastName() + " has been added to the database");
 }

else if (request.getParameter("Submit").equals("Search")) {
 Address address = proxy.getAddress(addressId.getFirstName(),
 addressId.getLastName());

if (address == null)
 out.print(addressId.getFirstName() + " " +
 addressId.getLastName() + " is not in the database");

else
 addressId = address;
 }
 }
 %>
</body>
</html>

Lines 2-4 import the classes for the JSP page. The Address class
(line 2) was created in the WebServiceProject and was
automatically copied to the AddressWebServiceClientProjec project
when a Web service reference for AddressWebService was created. A
JavaBeans object for Address was created and associated with input
parameters in lines 5-7.

The UI interface was laid in the form (lines 14-77). The action
for the two buttons Search and Store invokes the same page
TestAddressWebService.jsp (line 14).

When a button is clicked, a proxy object for AddressWebService is
obtained (lines 82-83). For the Store button, the proxy object
invokes the storeAddress method to add an address to the database
(line 86). For the Search button, the proxy object invokes the
getAddress method to return an address (lines 91-92). If no
address is found for the specified first and last names, the
returned address is null (line 93).

45.6 Web Service Session Tracking

<Side Remark: HttpSession>
§42.8.3, “Session Tracking Using the Servlet API,” introduced
session tracking for servlets using the
javax.servlet.http.HttpSession interface. You can use HttpSession
to implement session tracking for Web services. To demonstrate
this, consider an example that generates random True/False

19

questions for the client and grades the answers on these questions
for the client.

The Web client consists of two JSP pages: DisplayQuiz.jsp and
GradeQuiz.jsp. The DisplayQuiz page invokes the service method
getQuestion() to display the questions, as shown in Figure 45.15.
When you click the Submit button, the program invokes the service
method gradeQuiz to grade the answers. The result is displayed in
the GradeQuiz page, as shown in Figure 45.16.

Figure 45.15
The Submit button submits the answers for grading.

Figure 45.16
The answers are graded and displayed.

Why is session tracking needed for this project? Each time a
client displays a quiz, it creates a randomly reorder the quiz for
the client. Each client gets a different quiz every time the
DisplayQuiz page is refreshed. When the client submits the answer,
the Web service checks the answer against the previously generated
quiz. So the quiz has to be stored in the session.

For convenience, let us create the Web service class named
QuizService in the WebServiceProject in package chapter45. Listing
45.5 gives the program.

Listing 45.5 QuizService.java

<Side Remark line 9: enable session tracking>
<Side Remark line 10: define service name>
<Side Remark line 12: quiz>
<Side Remark line 16: initialize quiz>
<Side Remark line 28: shuffle>
<Side Remark line 31: define service method>
<Side Remark line 32: getQuestions>
<Side Remark line 42: define service method>
<Side Remark line 43: gradeQuiz>
<Side Remark line 46: check answers>

package chapter45;

import javax.jws.WebMethod;
import javax.jws.WebService;

20

import java.util.List;
import java.util.ArrayList;
import com.sun.xml.ws.developer.servlet.HttpSessionScope;

@HttpSessionScope
@WebService(name = "QuizService", serviceName = "QuizWebService")
public class QuizService {
 private ArrayList<Object[]> quiz = new ArrayList<Object[]>();

 public QuizService() {
 // Initialize questions and answers
 quiz.add(new Object[]{
 "Is Atlanta the capital of Georgia?", true});
 quiz.add(new Object[]{
 "Is Columbia the capital of South Carolina?", true});
 quiz.add(new Object[]{
 "Is Fort Wayne the capital of Indiana?", false});
 quiz.add(new Object[]{
 "Is New Orleans the capital of Louisiana?", false});
 quiz.add(new Object[]{
 "Is Chicago the capital of Illinois?", false});

 // Shuffle to generate a random quiz for a client
 java.util.Collections.shuffle(quiz);
 }

 @WebMethod(operationName = "getQuestions")
 public java.util.List<String> getQuestions() {
 // Extract questions from quiz
 List<String> questions = new ArrayList<String>();
 for (int i = 0; i < quiz.size(); i++) {
 questions.add((String)(quiz.get(i)[0]));
 }

 return questions; // Return questions in the quiz
 }

 @WebMethod(operationName = "gradeQuiz")
 public List<Boolean> gradeQuiz(List<Boolean> answers) {
 List<Boolean> result = new ArrayList<Boolean>();
 for (int i = 0; i < quiz.size(); i++)
 result.add(quiz.get(i)[1] == answers.get(i));

 return result;
 }
}

The Web service class named QuizService contains two methods
getQuestions and gradeQuiz. The new Web service is named
QuizWebService (line 10).

The annotation @HttpSessionScope (line 9) is new in JAX-WS 2.2,
which enables the Web service automatically maintains a separate
instance for each client session. To use this annotation, you have
add JAX-WS 2.2 into your project’s library. This can be done by
clicking the Library node in the project and select Add Library.

<Side Remark: creating a quiz>

21

Assume that five True/False questions are available from the
service. The quiz is stored in an ArrayList (lines 16-25).
Each element in the list is an array with two values. The first
value is a string that describes the question and the second is a
Boolean value indicating whether the answer should be true or
false.

<Side Remark: randomly shuffling>
A new quiz is generated in the constructor and the quiz is
shuffled using the shuffle method in the Collections class (line
28).

<Side Remark: getQuestions>
The getQuestions method (lines 31-40) returns questions in a list.
The questions are extracted from the quiz (lines 34-37) and are
returned (line 39).

<Side Remark: gradeQuiz>
The gradeQuiz method (lines 42-49) checks the answers from the
client with the answers in the quiz. The client’s answers are
compared with the key, and the result of the grading is stored in
a list. Each element in the list is a boolean value that indicates
whether the answer is correct or incorrect (lines 44-46).

<Side Remark: create Web service client>
After creating and publishing the Web service, let us create a
project for the client. The project named
QuizWebServiceClientProject can be created as follows:

Choose File › New Project to display the New Web Application
dialog box.
In the New Web Application dialog box, choose Java Web in the
Categories pane and choose Web Application in the Projects pane.
Click Next to display the Name and Location dialog box.
Enter QuizWebServiceClientProject as the project name, specify the
location where you want the project to be stored, and uncheck the
Set as Main Project check box. Click Next to display the Server
and Settings dialog box.
Choose GlassFish Server 3 in the Server field, and Java EE 6 Web
as in the Java EE Version field, and click Finish to create the
project.

<Side Remark: Web service reference>
To use QuizWebService, you need to create a Web service client as
follows:

Right-click the QuizWebServiceClientProject project in the Project
pane to display a context menu. Choose New › Web Service Client to
display the New Web Service Client dialog box.
Check the WSDL URL radio button and enter

http://localhost:8080/WebServiceProject/QuizWebService?WSDL

in the WSDL URL field.

Enter myWebservice in the Package field.

Click Finish to create the reference for QuizWebService.

Now a reference to QuizWebService is created. You can create a
proxy object to access the remote methods in QuizService. Listings
45.6 and 45.7 show DisplayQuiz.jsp and GradeQuiz.jsp.

Listing 45.6 DisplayQuiz.jsp

<Side Remark line 2: import QuizWebService>
<Side Remark line 3: import QuizServices>

22

<Side Remark line 4: create QuizWebServices>
<Side Remark line 11: get proxy object>
<Side Remark line 12: get questions>
<Side Remark line 20: display questions>

<!-- DisplayQuiz.jsp -->
<%@ page import = "myWebservice.QuizWebService" %>
<%@ page import = "myWebservice.QuizService" %>
<jsp:useBean id = "quizWebService" scope = "session"
class = "myWebservice.QuizWebService">

</jsp:useBean>

<html>
<body>
 <%
 QuizService proxy = quizWebService.getQuizServicePort();
 java.util.List<String> questions =
 (java.util.ArrayList<String>)(proxy.getQuestions());
 %>
<form method = "post" action = "GradeQuiz.jsp">
<table>
<% for (int i = 0; i < questions.size(); i++) {%>

 <tr>
 <td>
 <label><%= questions.get(i) %></label>
 </td>
 <td>

<input type = "radio" name = <%= "question" + i%>
value = "True" /> True

 </td>
 <td>

<input type = "radio" name = <%= "question" + i%>
value = "False" /> False

 </td>
 </tr>
 <%}%>
 </table>
<p><input type = "submit" name = "Submit" value = "Submit">
<input type = "reset" value = "Reset">

 </p>
 </form>
</body>
</html>

This page generates a quiz by invoking the getQuestions() in lines
12-13. The questions are displayed in a table with radio buttons
(lines 16-32). Clicking Submit invokes GradeQuiz.jsp.

Listing 45.7 GradeQuiz.jsp

<Side Remark line 2: import QuizWebService>
<Side Remark line 3: import QuizServices>
<Side Remark line 4: create QuizWebServices>
<Side Remark line 11: get proxy object>
<Side Remark line 12: get questions>
<Side Remark line 15: get client’s answers>
<Side Remark line 25: grade answers>

23

<Side Remark line 28: analyze result>

<!-- GradeQuiz.jsp -->
<%@ page import = "myWebservice.QuizWebService" %>
<%@ page import = "myWebservice.QuizService" %>
<jsp:useBean id = "quizWebService" scope = "session"
class = "myWebservice.QuizWebService">

</jsp:useBean>

<html>
<body>
<%
QuizService proxy = quizWebService.getQuizServicePort();
java.util.List<String> quiz = proxy.getQuestions();

// Get the answer from the DisplayQuiz page
java.util.List<Boolean> answers = new java.util.ArrayList<Boolean>();
for (int i = 0; i < quiz.size(); i++) {
 String trueOrFalse = request.getParameter("question" + i);
if (trueOrFalse.equals("True"))

 answers.add(true); // Answered true
else if (trueOrFalse.equals("False"))

 answers.add(false); // Answered false
}

// Grade answers
java.util.List<Boolean> result = proxy.gradeQuiz(answers);

// Find the correct count
int correctCount = 0;
for (int i = 0; i < result.size(); i++) {
if (result.get(i))

 correctCount++;
}
%>

Out of <%= result.size() %> questions, <%= correctCount %> correct.
</body>
</html>

This page collects the answers passed from the HTML form from the
DisplayQuiz page (lines 15-21), invokes the gradeQuiz method to
grade the quiz (line 25), finds the correct count (lines 28-31),
and displays the result (line 35).

NOTE:
You need to answer all five questions before clicking the Submit
button. A runtime error will occur if a radio button is not
checked. You can fix this problem in Exercise 45.5.

Key Terms

@WebService
@WebMethod
consuming a Web service
proxy object
publishing a Web service

24

Web service
Web service client reference
WSDL

Chapter Summary

1. Web services enable a Java program on one system to invoke a
method in an object on another system.

2. Web services are platform and language independent. You can
develop and use Web services using any language.

3. Web services run on the Web using HTTP. SOAP is a popular protocol
for implementing Web services.

4. The server needs to make the service available to the client,
known as publishing a Web service. Using a Web service from a
client is known as consuming a Web service.

5. A client interacts with a Web service through a proxy object. The
proxy object facilitates the communication between the client and
the Web service.

6. You need to use Java annotation @WebService to annotate a Web
service and use annotation @WebMethod to annotate a remote
method.

7. A Web service class may have an unlimited number of remote
methods.

8. After a Web service is published, you can write a client program
to use it. You have to first create a Web client reference. From
the reference, you create a proxy object for facilitating
communication between a server and a client.

9. WSDL stands for Web Service Description Language. A .wsdl file is
an XML file that describes the available Web service to the
client—i.e., the remote methods, their parameters and return value
types, and so on.

10. The message between the client and server is described in
XML. A SOAP request describes the information that is sent to the
Web service and a SOAP response describes the information that is
received from the Web service.

11. The objects passed between client and Web service are
serialized in XML. Not all object types are supported by SOAP.

12. You can track sessions in Web services using the HttpSession
in the same way as in servlets.

Test Questions

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions
Section 45.1
45.1 What is a Web service?

45.2 Can you invoke a Web service from a language other than Java?

45.3 Do Web services support callback? That is, can a Web service call
a method from a client’s program?

45.4 What is SOAP? What is it to publish a Web service? What is it to
consume a Web service? What is the role of a proxy object?

Sections 45.2-45.6
45.5 What is the annotation to specify a Web service? What is the
annotation to specify a Web method?

45.6 How do you deploy a Web service in NetBeans?

25

45.7 Can you test a Web service from a client?

45.8 How do you create a Web service reference for a client?

45.9 What is WSDL? What is SOAP? What is a SOAP request? What is a SOAP
response?

45.10 Can you pass primitive type arguments to a remote method? Can you
pass any object type to a remote method? Can you pass an argument of a
custom type to a remote method?

45.11 How do you obtain an HttpSession object for tracking a Web
session?

45.12 Can you create two Web service references in one package in the
same project in NetBeans?

45.13 What happens if you don’t clone the quiz in lines 40-41 in
Listing 45.5, QuizService.java?

Programming Exercises

45.1*
(Get a score from a database table) Suppose that the scores are stored
in the Scores table. The table was created as follows:

create table Scores (name varchar(20),
 score number, permission boolean);

insert into Scores values ('John', 90.5, 1);
insert into Scores values ('Michael', 100, 1);
insert into Scores values ('Michelle', 100, 0);

Revise the findScore method in Listing 45.1, ScoreService.java, to
obtain a score for the specified name. Note that your program does not
need the permission column; ignore it. The next exercise will need the
permission column.

45.2*
(Permission to find scores) Revise the preceding exercise so that the
findScore method returns -1 if permission is false. Add a another
method named getPermission(String name) that returns 1, 0, or -1. The
method returns 1 if the student is in the Scores table and permission
is true, 0 if the student is in the Scores table and permission is
false, and -1 if the student is not in the Scores table.

45.3*
(Compute loan) You can compute a loan payment for a loan with the
specified amount, number of years, and annual interest rate. Write a
Web service with two remote methods for computing monthly payment and
total payment. Write a client program that prompts the user to enter
loan amount, number of years, and annual interest rate.

45.4*
(Web service visit count) Write a Web service with a method named
getCount() that returns the number of the times this method has been
invoked from a client. Use a session to store the count variable.

26

45.5*
(Quiz) The user needs to answer all five questions before clicking the
Submit button in the Quiz application in §45.6, Web Service Session
Tracking. A runtime error will occur if a radio button is not checked.
Fix this problem.

1

***This is a bonus Web chapter

CHAPTER 46

Remote Method Invocation

Objectives

To explain how RMI works (§46.2).
To describe the process of developing RMI applications (§46.3).
To distinguish between RMI and socket-level programming (§46.4).
To develop three-tier applications using RMI (§46.5).
To use callbacks to develop interactive applications (§46.6).

2

46.1 Introduction
Remote Method Invocation (RMI) provides a framework for building
distributed Java systems. Using RMI, a Java object on one system
can invoke a method in an object on another system on the
network. A distributed Java system can be defined as a collection
of cooperative distributed objects on the network. In this
chapter, you will learn how to use RMI to create useful
distributed applications.

46.2 RMI Basics
RMI is the Java Distributed Object Model for facilitating
communications among distributed objects. RMI is a higher-level
API built on top of sockets. Socket-level programming allows you
to pass data through sockets among computers. RMI enables you
also to invoke methods in a remote object. Remote objects can be
manipulated as if they were residing on the local host. The
transmission of data among different machines is handled by the
JVM transparently.

<Side Remark: client>
<Side Remark: server>

In many ways, RMI is an evolution of the client/server
architecture. A client is a component that issues requests for
services, and a server is a component that delivers the requested
services. Like the client/server architecture, RMI maintains the
notion of clients and servers, but the RMI approach is more
flexible.

An RMI component can act as both a client and a server,
depending on the scenario in question.
An RMI system can pass functionality from a server to a
client, and vice versa. Typically a client/server system
only passes data back and forth between server and client.

46.2.1 How Does RMI Work?
<Side Remark: local object>
<Side Remark: remote object>

All the objects you have used before this chapter are called
local objects. Local objects are accessible only within the local
host. Objects that are accessible from a remote host are called
remote objects. For an object to be invoked remotely, it must be
defined in a Java interface accessible to both the server and the
client. Furthermore, the interface must extend the
java.rmi.Remote interface. Like the java.io.Serializable
interface, java.rmi.Remote is a marker interface that contains no
constants or methods. It is used only to identify remote objects.
The key components of the RMI architecture are listed below (see
Figure 46.1):

Server object interface: A subinterface of java.rmi.Remote
that defines the methods for the server object.
Server class: A class that implements the remote object
interface.
Server object: An instance of the server class.
RMI registry: A utility that registers remote objects and
provides naming services for locating objects.
Client program: A program that invokes the methods in the
remote server object.

3

Server stub: An object that resides on the client host and
serves as a surrogate for the remote server object.
Server skeleton: An object that resides on the server host
and communicates with the stub and the actual server
object.

Client Host

Server
Stub Client

Program

RMI Registry Host

RMI
Registry

Server Host

Server
Skeleton Server

Object

(1) Register Server Object

(2) Look for Server Object

(3) Return
Server Stub

(4) Data
Communication

Server Object
Interface

Server Object
Interface

Figure 46.1
Java RMI uses a registry to provide naming services for remote objects,
and uses the stub and the skeleton to facilitate communications between
client and server.

RMI works as follows:
(1) A server object is registered with the RMI registry.
(2) A client looks through the RMI registry for the remote

object.
(3) Once the remote object is located, its stub is returned in

the client.
(4) The remote object can be used in the same way as a local

object. Communication between the client and the server is
handled through the stub and the skeleton.

<Side Remark: stub>
<Side Remark: skeleton>

The implementation of the RMI architecture is complex, but the
good news is that RMI provides a mechanism that liberates you
from writing the tedious code for handling parameter passing and
invoking remote methods. The basic idea is to use two helper
classes known as the stub and the skeleton for handling
communications between client and server.

The stub and the skeleton are automatically generated. The stub
resides on the client machine. It contains all the reference
information the client needs to know about the server object.
When a client invokes a method on a server object, it actually
invokes a method that is encapsulated in the stub. The stub is
responsible for sending parameters to the server and for
receiving the result from the server and returning it to the
client.

The skeleton communicates with the stub on the server side. The
skeleton receives parameters from the client, passes them to the
server for execution, and returns the result to the stub.

46.2.2 Passing Parameters

4

When a client invokes a remote method with parameters, passing
the parameters is handled by the stub and the skeleton.
Obviously, invoking methods in a remote object on a server is
very different from invoking methods in a local object on a
client, since the remote object is in a different address space
on a separate machine. Let us consider three types of parameters:

<Side Remark: primitive type>
Primitive data types, such as char, int, double, or boolean,
are passed by value like a local call.

<Side Remark: local object>
Local object types, such as java.lang.String, are also passed
by value, but this is completely different from passing an
object parameter in a local call. In a local call, an object
parameter’s reference is passed, which corresponds to the
memory address of the object. In a remote call, there is no
way to pass the object reference, because the address on one
machine is meaningless to a different JVM. Any object can be
used as a parameter in a remote call as long as it is
serializable. The stub serializes the object parameter and
sends it in a stream across the network. The skeleton
deserializes the stream into an object.

<Side Remark: remote object>
Remote object types are passed differently from local objects.
When a client invokes a remote method with a parameter of a
remote object type, the stub of the remote object is passed.
The server receives the stub and manipulates the parameter
through it. Passing remote objects will be discussed in §46.6,
“RMI Callbacks.”

46.2.3 RMI Registry
How does a client locate the remote object? The RMI registry
provides the registry services for the server to register the
object and for the client to locate the object.

You can use several overloaded static getRegistry() methods in
the LocateRegistry class to return a reference to a Registry, as
shown in Figure 46.2. Once a Registry is obtained, you can bind
an object with a unique name in the registry using the bind or
rebind method or locate an object using the lookup method, as
shown in Figure 46.3.

java.rmi.registry.LocateRegistry
+getRegistry(): Registry

+getRegistry(port: int): Registry

+getRegistry(host: String): Registry

+getRegistry(host:String, port: int): Registry

Returns a reference to the remote object Registry for the
local host on the default registry port of 1099.

Returns a reference to the remote object Registry for the
local host on the specified port.

Returns a reference to the remote object Registry on the
specified host on the default registry port of 1099.

 Returns a reference to the remote object Registry on the
specified host and port.

Figure 46.2
The LocateRegistry class provides the methods for obtaining a registry
on a host.

5

java.rmi.registry.Registry
+bind(name: String, obj: Remote): void
+rebind(name: String, obj: Remote): void

+unbind(name: String): void

+list(name: String): String[]
+lookup(name: String): Remote

Binds the specified name with the remote object.
Binds the specified name with the remote object. Any

existing binding for the name is replaced.
Destroys the binding for the specified name that is

associated with a remote object.
Returns an array of the names bound in the registry.
Returns a reference, a stub, for the remote object

associated with the specified name.

Figure 46.3
The Registry class provides the methods for binding and obtaining
references to remote objects in a remote object registry.

46.3 Developing RMI Applications
Now that you have a basic understanding of RMI, you are ready to
write simple RMI applications. The steps in developing an RMI
application are shown in Figure 46.4 and listed below.

Develop Client
Program

4 Define Server
Implementation Class

2

Define Server
Object Interface

1

Create and Register
Server Object

3

Figure 46.4
The steps in developing an RMI application.

1. Define a server object interface that serves as the contract
between the server and its clients, as shown in the following
outline:

public interface ServerInterface extends Remote {
public void service1(...) throws RemoteException;
// Other methods

}

A server object interface must extend the java.rmi.Remote
interface.

2. Define a class that implements the server object interface, as
shown in the following outline:

public class ServerInterfaceImpl extends UnicastRemoteObject
implements ServerInterface {

public void service1(...) throws RemoteException {
// Implement it

 }
// Implement other methods

}

The server implementation class must extend the
java.rmi.server.UnicastRemoteObject class. The
UnicastRemoteObject class provides support for point-to-point
active object references using TCP streams.

3. Create a server object from the server implementation class
and register it with an RMI registry:

6

ServerInterface server = new ServerInterfaceImpl(...);
Registry registry = LocateRegistry.getRegistry();
registry.rebind("RemoteObjectName", server);

4. Develop a client that locates a remote object and invokes its
methods, as shown in the following outline:

Registry registry = LocateRegistry.getRegistry(host);
ServerInterface server = (ServerInterfaceImpl)
 registry.lookup("RemoteObjectName");
server.service1(...);

The example that follows demonstrates the development of an RMI
application through these steps.

46.3.1 Example: Retrieving Student Scores from an RMI Server

This example creates a client that retrieves student scores from
an RMI server. The client, shown in Figure 46.5, displays the
score for the specified name.

(a) Running as applet. (b) Running as application.
Figure 46.5
You can get the score by entering a student name and clicking the
Get Score button.

1. Create a server interface named StudentServerInterface in
Listing 46.1. The interface tells the client how to invoke the
server's findScore method to retrieve a student score.

Listing 46.1 StudentServerInterface.java
<Side Remark line 3: subinterface>
<Side Remark line 9: server method>

import java.rmi.*;

public interface StudentServerInterface extends Remote {
 /**
 * Return the score for the specified name
 * @param name the student name
 * @return a double score or –1 if the student is not found
 */
 public double findScore(String name) throws RemoteException;
}

Any object that can be used remotely must be defined in an
interface that extends the java.rmi.Remote interface (line 3).
StudentServerInterface, extending Remote, defines the findScore
method that can be remotely invoked by a client to find a
student's score. Each method in this interface must declare that
it may throw a java.rmi.RemoteException (line 9). Therefore your
client code that invokes this method must be prepared to catch
this exception in a try-catch block.

7

2. Create a server implementation named
StudentServerInterfaceImpl (Listing 46.2) that implements
StudentServerInterface. The findScore method returns the score
for a specified student. It returns -1 if the score is not found.

Listing 46.2 StudentServerInterfaceImpl.java
<Side Remark line 8: hash map>
<Side Remark line 17: store score>
<Side Remark line 24: get score>

import java.rmi.*;
import java.rmi.server.*;
import java.util.*;

public class StudentServerInterfaceImpl
 extends UnicastRemoteObject
 implements StudentServerInterface {
 // Stores scores in a map indexed by name
 private HashMap<String, Double> scores =
 new HashMap<String, Double>();

 public StudentServerInterfaceImpl() throws RemoteException {
 initializeStudent();
 }

 /** Initialize student information */
 protected void initializeStudent() {
 scores.put("John", new Double(90.5));
 scores.put("Michael", new Double(100));
 scores.put("Michelle", new Double(98.5));
 }

 /** Implement the findScore method from the
 * Student interface */
 public double findScore(String name) throws RemoteException {
 Double d = (Double)scores.get(name);

 if (d == null) {
 System.out.println("Student " + name + " is not found ");
 return -1;
 }
 else {
 System.out.println("Student " + name + "\'s score is "
 + d.doubleValue());
 return d.doubleValue();
 }
 }
}

The StudentServerInterfaceImpl class implements
StudentServerInterface. This class must also extend the
java.rmi.server.RemoteServer class or its subclass. RemoteServer
is an abstract class that defines the methods needed to create
and export remote objects. Often its subclass
java.rmi.server.UnicastRemoteObject is used (line 6). This
subclass implements all the abstract methods defined in
RemoteServer.

8

StudentServerInterfaceImpl implements the findScore method (lines
25-37) defined in StudentServerInterface. For simplicity, three
students, John, Michael, and Michelle, and their corresponding
scores are stored in an instance of java.util.HashMap named
scores. HashMap is a concrete class of the Map interface in the
Java Collections Framework, which makes it possible to search and
retrieve a value using a key. Both values and keys are of Object
type. The findScore method returns the score if the name is in
the hash map, and returns -1 if the name is not found.

3. Create a server object from the server implementation and register
it with the RMI server (Listing 46.3).

Listing 46.3 RegisterWithRMIServer.java
<Side Remark line 7: server object>
<Side Remark line 8: registry reference>
<Side Remark line 9: register>

import java.rmi.registry.*;

public class RegisterWithRMIServer {
 /** Main method */
 public static void main(String[] args) {
 try {
 StudentServerInterface obj =
 new StudentServerInterfaceImpl();
 Registry registry = LocateRegistry.getRegistry();
 registry.rebind("StudentServerInterfaceImpl", obj);
 System.out.println("Student server " + obj + " registered");
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

RegisterWithRMIServer contains a main method, which is
responsible for starting the server. It performs the following
tasks: (1) create a server object (line 8); (2) obtain a
reference to the RMI registry (line 9), and (3) register the
object in the registry (line 10).

4. Create a client as an applet named StudentServerInterfaceClient in
Listing 46.4. The client locates the server object from the RMI
registry and uses it to find the scores.

Listing 46.4 StudentServerInterfaceClient.java
<Side Remark line 9: remote object>
<Side Remark line 11: standalone?>
<Side Remark line 19: initialize RMI>
<Side Remark line 31: register listener>
<Side Remark line 33: get score>
<Side Remark line 61: locate student>
<Side Remark line 71: main method>
<Side Remark line 74: standalone>

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.rmi.registry.LocateRegistry;

9

import java.rmi.registry.Registry;

public class StudentServerInterfaceClient extends JApplet {
 // Declare a Student instance
 private StudentServerInterface student;

 private boolean isStandalone; // Is applet or application

 private JButton jbtGetScore = new JButton("Get Score");
 private JTextField jtfName = new JTextField();
 private JTextField jtfScore = new JTextField();

 public void init() {
 // Initialize RMI
 initializeRMI();

 JPanel jPanel1 = new JPanel();
 jPanel1.setLayout(new GridLayout(2, 2));
 jPanel1.add(new JLabel("Name"));
 jPanel1.add(jtfName);
 jPanel1.add(new JLabel("Score"));
 jPanel1.add(jtfScore);

 add(jbtGetScore, BorderLayout.SOUTH);
 add(jPanel1, BorderLayout.CENTER);

 jbtGetScore.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 getScore();
 }
 });
 }

 private void getScore() {
 try {
 // Get student score
 double score = student.findScore(jtfName.getText().trim());

 // Display the result
 if (score < 0)
 jtfScore.setText("Not found");
 else
 jtfScore.setText(new Double(score).toString());
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 /** Initialize RMI */
 protected void initializeRMI() {
 String host = "";
 if (!isStandalone) host = getCodeBase().getHost();

 try {
 Registry registry = LocateRegistry.getRegistry(host);

10

 student = (StudentServerInterface)
 registry.lookup("StudentServerInterfaceImpl");
 System.out.println("Server object " + student + " found");
 }
 catch(Exception ex) {
 System.out.println(ex);
 }
 }

 /** Main method */
 public static void main(String[] args) {
 StudentServerInterfaceClient applet =
 new StudentServerInterfaceClient();
 applet.isStandalone = true;
 JFrame frame = new JFrame();
 frame.setTitle("StudentServerInterfaceClient");
 frame.add(applet, BorderLayout.CENTER);
 frame.setSize(250, 150);
 applet.init();
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);
 frame.setDefaultCloseOperation(3);
 }
}

StudentServerInterfaceClient invokes the findScore method on the
server to find the score for a specified student. The key method
in StudentServerInterfaceClient is the initializeRMI method
(lines 55-68), which is responsible for locating the server stub.

The initializeRMI() method treats standalone applications
differently from applets. The host name should be the name where
the applet is downloaded. It can be obtained using the Applet's
getCodeBase().getHost() (line 52). For standalone applications,
the host name should be specified explicitly.

The lookup(String name) method (line 62) returns the remote
object with the specified name. Once a remote object is found, it
can be used just like a local object. The stub and the skeleton
are used behind the scenes to make the remote method invocation
work.

5. Follow the steps below to run this example.

5.1. Start the RMI Registry by typing "start rmiregistry" at a DOS
prompt from the book directory. By default, the port number 1099 is
used by rmiregistry. To use a different port number, simply type the
command "start rmiregistry portnumber" at a DOS prompt.

5.2. Start the server RegisterWithRMIServer using the following command
at C:\book directory:

C:\book>java RegisterWithRMIServer

5.3. Run the client StudentServerInterfaceClient as an application. A
sample run of the application is shown in Figure 46.5(b).

11

5.4. Run the client StudentServerInterfaceClient.html from the
appletviewer. A sample run is shown in Figure 46.5(a).

NOTE: You must start rmiregistry from the directory where
you will run the RMI server, as shown in Figure 46.6.
Otherwise, you will receive the error
ClassNotFoundException on
StudentServerInterfaceImpl_Stub.

Figure 46.6
To run an RMI program, first start the RMIRegistry, then register
the server object with the registry. The client locates it from
the registry.

NOTE: Server, registry, and client can be on three
different machines. If you run the client and the server
on separate machines, you need to place
StudentServerInterface on both machines. If you deploy
the client as an applet, place all client files on the
registry host.

CAUTION: If you modify the remote object implementation
class, you need to restart the server class to reload the
object to the RMI registry. In some old versions of
rmiregistry, you may have to restart rmiregistry.

46.4 RMI vs. Socket-Level Programming
RMI enables you to program at a higher level of abstraction. It
hides the details of socket server, socket, connection, and
sending or receiving data. It even implements a multithreading
server under the hood, whereas with socket-level programming you
have to explicitly implement threads for handling multiple
clients.

RMI applications are scalable and easy to maintain. You can
change the RMI server or move it to another machine without
modifying the client program except for resetting the URL to
locate the server. (To avoid resetting the URL, you can modify
the client to pass the URL as a command-line parameter.) In
socket-level programming, a client operation to send data
requires a server operation to read it. The implementation of
client and server at the socket level is tightly synchronized.

RMI registry

Start RMI registry

Start RMI server

Run RMI client

12

RMI clients can directly invoke the server method, whereas
socket-level programming is limited to passing values. Socket-level
programming is very primitive. Avoid using it to develop client/server
applications. As an analogy, socket-level programming is like
programming in assembly language, while RMI programming is like
programming in a high-level language.

46.5 Developing Three-Tier Applications Using RMI
Three-tier applications have gained considerable attention in
recent years, largely because of the demand for more scalable and
load-balanced systems to replace traditional two-tier
client/server database systems. A centralized database system
does not just handle data access, it also processes the business
rules on data. Thus, a centralized database is usually heavily
loaded, because it requires extensive data manipulation and
processing. In some situations, data processing is handled by the
client and business rules are stored on the client side. It is
preferable to use a middle tier as a buffer between client and
database. The middle tier can be used to apply business logic and
rules, and to process data to reduce the load on the database.

A three-tier architecture does more than just reduce the
processing load on the server. It also provides access to
multiple network sites. This is especially useful to Java applets
that need to access multiple databases on different servers,
since an applet can connect only with the server from which it is
downloaded.

To demonstrate, let us rewrite the example in §46.3.1, “Example:
Retrieving Student Scores from an RMI Server,” to find scores
stored in a database rather than a hash map. In addition, the
system is capable of blocking a client from accessing a student
who has not given the university permission to publish his/her
score. An RMI component is developed to serve as a middle tier
between client and database; it sends a search request to the
database, processes the result, and returns an appropriate value
to the client.

For simplicity, this example reuses the StudentServerInterface
interface and StudentServerInterfaceClient class from §46.3.1
with no modifications. All you have to do is to provide a new
implementation for the server interface and create a program to
register the server with the RMI. Here are the steps to complete
the program:

1. Store the scores in a database table named Score that
contains three columns: name, score, and permission. The
permission value is 1 or 0, which indicates whether the
student has given the university permission to release
his/her grade. The following is the statement to create the
table and insert three records:

create table Scores (name varchar(20),
 score number, permission number);

insert into Scores values ('John', 90.5, 1);
insert into Scores values ('Michael', 100, 1);
insert into Scores values ('Michelle', 100, 0);

13

2. Create a new server implementation named Student3TierImpl
in Listing 46.5. The server retrieves a record from the
Scores table, processes the retrieved information, and
sends the result back to the client.

Listing 46.5 Student3TierImpl.java
<Side Remark line 14: initialize db>
<Side Remark line 31: load driver>
<Side Remark line 39: connect db>
<Side Remark line 43: prepare statement>
<Side Remark line 58: set name>
<Side Remark line 61: execute SQL>
<Side Remark line 66: get score>

import java.rmi.*;
import java.rmi.server.*;
import java.sql.*;

public class Student3TierImpl extends UnicastRemoteObject
 implements StudentServerInterface {
 // Use prepared statement for querying DB
 private PreparedStatement pstmt;

 /** Constructs Student3TierImpl object and exports it on
 * default port.
 */
 public Student3TierImpl() throws RemoteException {
 initializeDB();
 }

 /** Constructs Student3TierImpl object and exports it on
 * specified port.
 * @param port The port for exporting
 */
 public Student3TierImpl(int port) throws RemoteException {
 super(port);
 initializeDB();
 }

 /** Load JDBC driver, establish connection and
 * create statement */
 protected void initializeDB() {
 try {
 // Load the JDBC driver
 // Class.forName("oracle.jdbc.driver.OracleDriver");
 Class.forName("com.mysql.jdbc.Driver ");

 System.out.println("Driver registered");

 // Establish connection
 /*Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@drake.armstrong.edu:1521:orcl",
 "scott", "tiger"); */
 Connection conn = DriverManager.getConnection
 "jdbc:mysql://localhost/javabook" , "scott", "tiger");
 System.out.println("Database connected");

 // Create a prepared statement for querying DB
 pstmt = conn.prepareStatement(
 "select * from Scores where name = ?");

14

 }
 catch (Exception ex) {
 System.out.println(ex);
 }
 }

 /** Return the score for specified the name
 * Return -1 if score is not found.
 */
 public double findScore(String name) throws RemoteException {
 double score = -1;
 try {
 // Set the specified name in the prepared statement
 pstmt.setString(1, name);

 // Execute the prepared statement
 ResultSet rs = pstmt.executeQuery();

 // Retrieve the score
 if (rs.next()) {
 if (rs.getBoolean(3))
 score = rs.getDouble(2);
 }
 }
 catch (SQLException ex) {
 System.out.println(ex);
 }

 System.out.println(name + "\'s score is " + score);
 return score;
 }
}

Student3TierImpl is similar to StudentServerInterfaceImpl in
§46.3.1 except that the Student3TierImpl class finds the score
from a JDBC data source instead from a hash map.

The table named Scores consists of three columns, name, score,
and permission, where the latter indicates whether the student
has given permission to show his/her score. Since SQL does not
support a boolean type, permission is defined as a number whose
value of 1 indicates true and of 0 indicates false.

The initializeDB() method (lines 28-42) establishes connections
with the database and creates a prepared statement for processing
the query.

The findScore method (lines 47-68) sets the name in the prepared
statement, executes the statement, processes the result, and
returns the score for a student whose permission is true.

3. Write a main method in the class RegisterStudent3TierServer
(Listing 46.6) that registers the server object using
StudentServerInterfaceImpl, the same name as in Listing
46.2, so that you can use StudentServerInterfaceClient,
created in §46.3.1, to test the server.

Listing 46.6 RegisterStudent3TierServer.java
<Side Remark line 7: registry on localhost>

15

<Side Remark line 8: register server object>
import java.rmi.registry.*;

public class RegisterStudent3TierServer {
 public static void main(String[] args) {
 try {
 StudentServerInterface obj = new Student3TierImpl();
 Registry registry = LocateRegistry.getRegistry();
 registry.rebind("StudentServerInterfaceImpl", obj);
 System.out.println("Student server " + obj + " registered");
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

4. Follow the steps below to run this example.
4.1. Start RMI Registry by typing "start rmiregistry" at a DOS prompt
from the book directory.

4.2. Start the server RegisterStudent3TierServer using the following
command at the C:\book directory:

C:\book>java RegisterStudent3TierServer

4.3. Run the client StudentServerInterfaceClient as an application or
applet. A sample run is shown in Figure 46.6.

46.6 RMI Callbacks

In a traditional client/server system, a client sends a request
to a server, and the server processes the request and returns the
result to the client. The server cannot invoke the methods on a
client. One important benefit of RMI is that it supports
callbacks, which enable the server to invoke methods on the
client. With the RMI callback feature, you can develop
interactive distributed applications.

In §30.9, “Case Studies: Distributed TicTacToe Games,” you
developed a distributed TicTacToe game using stream socket
programming. The example that follows demonstrates the use of the
RMI callback feature to develop an interactive TicTacToe game.

All the examples you have seen so far in this chapter have simple
behaviors that are easy to model with classes. The behavior of
the TicTacToe game is somewhat complex. To create the classes to
model the game, you need to study and understand it and
distribute the process appropriately between client and server.

Clearly the client should be responsible for handling user
interactions, and the server should coordinate with the client.
Specifically, the client should register with the server, and the
server can take two and only two players. Once a client makes a
move, it should notify the server; the server then notifies the
move to the other player. The server should determine the status
of the game—that is, whether it has been won or drawn—and notify
the players. The server should also coordinate the turns—that is,
which client has the turn at a given time. The ideal approach for

16

notifying a player is to invoke a method in the client that sets
appropriate properties in the client or sends messages to a
player. Figure 46.7 illustrates the relationship between clients
and server.

Figure 46.7
The server coordinates the activities with the clients.

All the calls a client makes can be encapsulated in one remote
interface named TicTacToe (Listing 46.7), and all the calls the
server invokes can be defined in another interface named CallBack
(Listing 46.8). These two interfaces are defined as follows:

Listing 46.7 TicTacToeInterface.java

<Side Remark line 3: subinterface>
<Side Remark line 9: server method>
<Side Remark line 12: server method>

import java.rmi.*;

public interface TicTacToeInterface extends Remote {
 /**
 * Connect to the TicTacToe server and return the token.
 * If the returned token is ' ', the client is not connected to
 * the server
 */
 public char connect(CallBack client) throws RemoteException;

 /** A client invokes this method to notify the server of its move*/
 public void myMove(int row, int column, char token)
 throws RemoteException;
}

Listing 46.8 CallBack.java

<Side Remark line 3: subinterface>
<Side Remark line 5: server method>
<Side Remark line 8: server method>
<Side Remark line 12: server method>

import java.rmi.*;

17

public interface CallBack extends Remote {
 /** The server notifies the client for taking a turn */
 public void takeTurn(boolean turn) throws RemoteException;

 /** The server sends a message to be displayed by the client */
 public void notify(java.lang.String message)
 throws RemoteException;

 /** The server notifies a client of the other player's move */
 public void mark(int row, int column, char token)
 throws RemoteException;
}

What does a client need to do? The client interacts with the
player. Assume that all the cells are initially empty, and that
the first player takes the X token and the second player the O
token. To mark a cell, the player points the mouse to the cell
and clicks it. If the cell is empty, the token (X or O) is
displayed. If the cell is already filled, the player's action is
ignored.

From the preceding description, it is obvious that a cell is a
GUI object that handles mouse-click events and displays tokens.
The candidate for such an object could be a button or a panel.
Panels are more flexible than buttons. The token (X or O) can be
drawn on a panel in any size, but it can be displayed only as a
label on a button.

Let Cell be a subclass of JPanel. You can declare a 3 3 grid to
be an array Cell[][] cell = new Cell[3][3] for modeling the game.
How do you know the state of a cell (marked or not)? You can use
a property named marked of the boolean type in the Cell class.
How do you know whether the player has a turn? You can use a
property named myTurn of boolean. This property (initially false)
can be set by the server through a callback.

The Cell class is responsible for drawing the token when an empty
cell is clicked, so you need to write the code for listening to
the MouseEvent and for painting the shape for tokens X and O. To
determine which shape to draw, introduce a variable named marker
of the char type. Since this variable is shared by all the cells
in a client, it is preferable to declare it in the client and to
declare the Cell class as an inner class of the client so that
this variable will be accessible to all the cells.

Now let us turn our attention to the server side. What does the
server need to do? The server needs to implement
TicTacToeInterface and notify the clients of the game status. The
server has to record the moves in the cells and check the status
every time a player makes a move. The status information can be
kept in a 3 3 array of char. You can implement a method named
isFull() to check whether the board is full and a method named
isWon(token) to check whether a specific player has won.

Once a client is connected to the server, the server notifies the
client which token to use—that is, X for the first client and O
for the second. Once a client notifies the server of its move,
the server checks the game status and notifies the clients.

18

Now the most critical question is how the server notifies a
client. You know that a client invokes a server method by
creating a server stub on the client side. A server cannot
directly invoke a client, because the client is not declared as a
remote object. The CallBack interface was created to facilitate
the server's callback to the client. In the implementation of
CallBack, an instance of the client is passed as a parameter in
the constructor of CallBack. The client creates an instance of
CallBack and passes its stub to the server, using a remote method
named connect() defined in the server. The server then invokes
the client's method through a CallBack instance. The triangular
relationship of client, CallBack implementation, and server is
shown in Figure 46.8.

Figure 46.8
The server receives a CallBack stub from the client and invokes
the remote methods defined in the CallBack interface, which can
invoke the methods defined in the client.

Here are the steps to complete the example.

1. Create TicTacToeImpl.java (Listing 46.9) to implement
TicTacToeInterface. Add a main method in the program to
register the server with the RMI.

Listing 46.9 TicTacToeImpl.java
<Side Remark line 9: call back objects>
<Side Remark line 34: implement connect>
<Side Remark line 58: implement myMove>
<Side Remark line 101: isWon>
<Side Remark line 124: isFull>
<Side Remark line 137: register object>

import java.rmi.*;

19

import java.rmi.server.*;
import java.rmi.registry.*;
import java.rmi.registry.*;

public class TicTacToeImpl extends UnicastRemoteObject
 implements TicTacToeInterface {
 // Declare two players, used to call players back
 private CallBack player1 = null;
 private CallBack player2 = null;

 // board records players' moves
 private char[][] board = new char[3][3];

 /** Constructs TicTacToeImpl object and exports it on default port.
 */
 public TicTacToeImpl() throws RemoteException {
 super();
 }

 /** Constructs TicTacToeImpl object and exports it on specified
 * port.
 * @param port The port for exporting
 */
 public TicTacToeImpl(int port) throws RemoteException {
 super(port);
 }

 /**
 * Connect to the TicTacToe server and return the token.
 * If the returned token is ' ', the client is not connected to
 * the server
 */
 public char connect(CallBack client) throws RemoteException {
 if (player1 == null) {
 // player1 (first player) registered
 player1 = client;
 player1.notify("Wait for a second player to join");
 return 'X';
 }
 else if (player2 == null) {
 // player2 (second player) registered
 player2 = client;
 player2.notify("Wait for the first player to move");
 player2.takeTurn(false);
 player1.notify("It is my turn (X token)");
 player1.takeTurn(true);
 return 'O';
 }
 else {
 // Already two players
 client.notify("Two players are already in the game");
 return ' ';
 }
 }

 /** A client invokes this method to notify the server of its move*/
 public void myMove(int row, int column, char token)
 throws RemoteException {
 // Set token to the specified cell

20

 board[row][column] = token;

 // Notify the other player of the move
 if (token == 'X')
 player2.mark(row, column, 'X');
 else
 player1.mark(row, column, 'O');

 // Check if the player with this token wins
 if (isWon(token)) {
 if (token == 'X') {
 player1.notify("I won!");
 player2.notify("I lost!");
 player1.takeTurn(false);
 }
 else {
 player2.notify("I won!");
 player1.notify("I lost!");
 player2.takeTurn(false);
 }
 }
 else if (isFull()) {
 player1.notify("Draw!");
 player2.notify("Draw!");
 }
 else if (token == 'X') {
 player1.notify("Wait for the second player to move");
 player1.takeTurn(false);
 player2.notify("It is my turn, (O token)");
 player2.takeTurn(true);
 }
 else if (token == 'O') {
 player2.notify("Wait for the first player to move");
 player2.takeTurn(false);
 player1.notify("It is my turn, (X token)");
 player1.takeTurn(true);
 }
 }

 /** Check if a player with the specified token wins */
 public boolean isWon(char token) {
 for (int i = 0; i < 3; i++)
 if ((board[i][0] == token) && (board[i][1] == token)
 && (board[i][2] == token))
 return true;

 for (int j = 0; j < 3; j++)
 if ((board[0][j] == token) && (board[1][j] == token)
 && (board[2][j] == token))
 return true;

 if ((board[0][0] == token) && (board[1][1] == token)
 && (board[2][2] == token))
 return true;

 if ((board[0][2] == token) && (board[1][1] == token)
 && (board[2][0] == token))
 return true;

21

 return false;
 }

 /** Check if the board is full */
 public boolean isFull() {
 for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 if (board[i][j] == '\u0000')
 return false;

 return true;
 }

 public static void main(String[] args) {
 try {
 TicTacToeInterface obj = new TicTacToeImpl();
 Registry registry = LocateRegistry.getRegistry();
 registry.rebind("TicTacToeImpl", obj);
 System.out.println("Server " + obj + " registered");
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

2. Create CallBackImpl.java (Listing 46.10) to implement the
CallBack interface.

Listing 46.10 CallBackImpl.java

<Side Remark line 15: implement>
<Side Remark line 20: implement>
<Side Remark line 25: implement>

import java.rmi.*;
import java.rmi.server.*;

public class CallBackImpl extends UnicastRemoteObject
 implements CallBack {
 // The client will be called by the server through callback
 private TicTacToeClientRMI thisClient;

 /** Constructor */
 public CallBackImpl(Object client) throws RemoteException {
 thisClient = (TicTacToeClientRMI)client;
 }

 /** The server notifies the client for taking a turn */
 public void takeTurn(boolean turn) throws RemoteException {
 thisClient.setMyTurn(turn);
 }

 /** The server sends a message to be displayed by the client */
 public void notify(String message) throws RemoteException {
 thisClient.setMessage(message);
 }

 /** The server notifies a client of the other player's move */

22

 public void mark(int row, int column, char token)
 throws RemoteException {
 thisClient.mark(row, column, token);
 }
}

3. Create an applet TicTacToeClientRMI (Listing 46.11) for
interacting with a player and communicating with the server.
Enable it to run standalone.

Listing 46.11 TicTacToeClientRMI.java

<Side Remark line 20: server object>
<Side Remark line 33: create UI>
<Side Remark line 58: registry host>
<Side Remark line 62: server object>
<Side Remark line 70: call back>
<Side Remark line 115: register listener>
<Side Remark line 165: standalone>

import java.rmi.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import java.rmi.registry.Registry;
import java.rmi.registry.LocateRegistry;

public class TicTacToeClientRMI extends JApplet {
 // marker is used to indicate the token type
 private char marker;

 // myTurn indicates whether the player can move now
 private boolean myTurn = false;

 // Each cell can be empty or marked as 'O' or 'X'
 private Cell[][] cell;

 // ticTacToe is the game server for coordinating with the players
 private TicTacToeInterface ticTacToe;

 // Border for cells and panel
 private Border lineBorder =
 BorderFactory.createLineBorder(Color.yellow, 1);

 private JLabel jlblStatus = new JLabel("jLabel1");
 private JLabel jlblIdentification = new JLabel();

 boolean isStandalone = false;

 /** Initialize the applet */
 public void init() {
 JPanel jPanel1 = new JPanel();
 jPanel1.setBorder(lineBorder);
 jPanel1.setLayout(new GridLayout(3, 3, 1, 1));

 add(jlblStatus, BorderLayout.SOUTH);
 add(jPanel1, BorderLayout.CENTER);
 add(jlblIdentification, BorderLayout.NORTH);

23

 // Create cells and place cells in the panel
 cell = new Cell[3][3];
 for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 jPanel1.add(cell[i][j] = new Cell(i, j));

 try {
 initializeRMI();
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 /** Initialize RMI */
 protected boolean initializeRMI() throws Exception {
 String host = "";
 if (!isStandalone) host = getCodeBase().getHost();

 try {
 Registry registry = LocateRegistry.getRegistry(host);
 ticTacToe = (TicTacToeInterface) registry.lookup("TicTacToeImpl");
 System.out.println("Server object " + ticTacToe + " found");
 }
 catch (Exception ex) {
 System.out.println(ex);
 }

 // Create callback for use by the server to control the client
 CallBackImpl callBackControl = new CallBackImpl(this);

 if (
 (marker = ticTacToe.connect((CallBack)callBackControl)) != ' ')
 {
 System.out.println("connected as " + marker + " player.");
 jlblIdentification.setText("You are player " + marker);
 return true;
 }
 else {
 System.out.println("already two players connected as ");
 return false;
 }
 }

 /** Set variable myTurn to true or false */
 public void setMyTurn(boolean myTurn) {
 this.myTurn = myTurn;
 }

 /** Set message on the status label */
 public void setMessage(String message) {
 jlblStatus.setText(message);
 }

 /** Mark the specified cell using the token */
 public void mark(int row, int column, char token) {
 cell[row][column].setToken(token);

24

 }

 /** Inner class Cell for modeling a cell on the TicTacToe board */
 private class Cell extends JPanel {
 // marked indicates whether the cell has been used
 private boolean marked = false;

 // row and column indicate where the cell appears on the board
 int row, column;

 // The token for the cell
 private char token;

 /** Construct a cell */
 public Cell(final int row, final int column) {
 this.row = row;
 this.column = column;
 addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 if (myTurn && !marked) {
 // Mark the cell
 setToken(marker);

 // Notify the server of the move
 try {
 ticTacToe.myMove(row, column, marker);
 }
 catch (RemoteException ex) {
 System.out.println(ex);
 }
 }
 }
 });

 setBorder(lineBorder);
 }

 /** Set token on a cell (mark a cell) */
 public void setToken(char c) {
 token = c;
 marked = true;
 repaint();
 }

 /** Paint the cell to draw a shape for the token */
 protected void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Draw the border
 g.drawRect(0, 0, getSize().width, getSize().height);

 if (token == 'X') {
 g.drawLine(10, 10, getSize().width - 10,
 getSize().height - 10);
 g.drawLine(getSize().width - 10, 10, 10,
 getSize().height - 10);
 }
 else if (token == 'O') {
 g.drawOval(10, 10, getSize().width - 20,

25

 getSize().height - 20);
 }
 }
 }

 /** Main method */
 public static void main(String[] args) {
 TicTacToeClientRMI applet = new TicTacToeClientRMI();
 applet.isStandalone = true;
 applet.init();
 applet.start();
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setTitle("TicTacToeClientRMI");
 frame.add(applet, BorderLayout.CENTER);
 frame.setSize(400, 320);
 frame.setVisible(true);
 }
}

4. Follow the steps below to run this example.
4.1. Start RMI Registry by typing "start rmiregistry" at a DOS prompt
from the book directory.
4.2. Start the server TicTacToeImpl using the following command at the
C:\book directory:

C:\book>java TicTacToeImpl

Run the client TicTacToeClientRMI as an application or an applet. A
sample run is shown in Figure 46.9.

Figure 46.9
Two players play each other through the RMI server.

TicTacToeInterface defines two remote methods, connect(CallBack
client) and myMove(int row, int column, char token). The connect
method plays two roles: one is to pass a CallBack stub to the
server, and the other is to let the server assign a token for the
player. The myMove method notifies the server that the player has
made a specific move.

The CallBack interface defines three remote methods,
takeTurn(boolean turn), notify(String message), and mark(int row,
int column, char token). The takeTurn method sets the client's
myTurn property to true or false. The notify method displays a
message on the client's status label. The mark method marks the
client's cell with the token at the specified location.

26

TicTacToeImpl is a server implementation for coordinating with
the clients and managing the game. The variables player1 and
player2 are instances of CallBack, each of which corresponds to a
client, passed from a client when the client invokes the connect
method. The variable board records the moves by the two players.
This information is needed to determine the game status. When a
client invokes the connect method, the server assigns a token X
for the first player and O for the second player, and accepts
only two players. You can modify the program to accept additional
clients as observers. See Exercise 46.7 for more details.

Once two players are in the game, the server coordinates the
turns between them. When a client invokes the myMove method, the
server records the move and notifies the other player by marking
the other player's cell. It then checks to see whether the player
wins or whether the board is full. If neither condition applies
and therefore the game continues, the server gives a turn to the
other player.

The CallBackImpl implements the CallBack interface. It creates an
instance of TicTacToeClientRMI through its constructor. The
CallBackImpl relays the server request to the client by invoking
the client's methods. When the server invokes the takeTurn
method, CallBackImpl invokes the client's setMyTurn() method to
set the property myTurn in the client. When the server invokes
the notify() method, CallBackImpl invokes the client's
setMessage() method to set the message on the client's status
label. When the server invokes the mark method, CallBackImpl
invokes the client's mark method to mark the specified cell.

TicTacToeClientRMI can run as a standalone application or as an
applet. The initializeRMI method is responsible for creating the
URL for running as a standalone application or as an applet, for
locating the TicTacToeImpl server stub, for creating the CallBack
server object, and for connecting the client with the server.

Interestingly, obtaining the TicTacToeImpl stub for the client is
different from obtaining the CallBack stub for the server. The
TicTacToeImpl stub is obtained by invoking the lookup() method
through the RMI registry, and the CallBack stub is passed to the
server through the connect method in the TicTacToeImpl stub. It
is a common practice to obtain the first stub with the lookup
method, but to pass the subsequent stubs as parameters through
remote method invocations.

Since the variables myTurn and marker are defined in
TicTacToeClientRMI, the Cell class is defined as an inner class
within TicTacToeClientRMI in order to enable all the cells in the
client to access them. Exercise 46.8 suggests alternative
approaches that implement the Cell as a noninner class.

Key Terms

callback
RMI registry
skeleton
stub

27

Chapter Summary

1. RMI is a high-level Java API for building distributed
applications using distributed objects.

2. The key idea of RMI is its use of stubs and skeletons to
facilitate communications between objects. The stub and skeleton
are automatically generated, which relieves programmers of
tedious socket-level network programming.

3. For an object to be used remotely, it must be defined in an
interface that extends the java.rmi.Remote interface.

4. In an RMI application, the initial remote object must be
registered with the RMI registry on the server side and be
obtained using the lookup method through the registry on the
client side. Subsequent uses of stubs of other remote objects may
be passed as parameters through remote method invocations.

5. RMI is especially useful for developing scalable and load-
balanced multitier distributed applications.

Test Questions

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions

Sections 46.2-46.3
46.1 How do you define an interface for a remote object?
46.2 Describe the roles of the stub and the skeleton.
46.3 What is java.rmi.Remote? How do you define a server class?
46.4 What is an RMI registry for? How do you create an RMI registry?
46.5 What is the command to start an RMI Registry?
46.6 How do you register a remote object with the RMI registry?
46.7 What is the command to start a custom RMI server?
46.8 How does a client locate a remote object stub through an RMI
registry?
46.9 How do you obtain a registry? How do you register a remote object?
How do you locate remote object?

Sections 46.4-46.6
46.10 What are the advantages of RMI over socket-level programming?
46.11 Describe how parameters are passed in RMI.
46.12 What is the problem if the connect method in the
TicTacToeInterface is defined as

public boolean connect(CallBack client, char token)
throws RemoteException;

or as

public boolean connect(CallBack client, Character token)
throws RemoteException;

46.13 What is callback? How does callback work in RMI?

Programming Exercises

Section 46.3
46.1*

28

(Limit the number of clients) Modify the example in §46.3.1, “Example:
Retrieving Student Scores from an RMI Server,” to limit the number of
concurrent clients to ten.

46.2*
(Compute loan) Rewrite Exercise 30.1 using RMI. You need to define a
remote interface for computing monthly payment and total payment.

46.3**
(Web visit count) Rewrite Exercise 30.4 using RMI. You need to define a
remote interface for obtaining and increasing the count.

46.4**
(Display and add addresses) Rewrite Exercise 34.6 using RMI. You need
to define a remote interface for adding addresses and retrieving
address information.

Section 46.5
46.5**
(Address in a database table) Rewrite Exercise 46.4. Assume that the
address is stored in a table.

46.6**
(Three-tier application) Use the three-tier approach to modify Exercise
46.4, as follows:

Create an applet client to manipulate student information, as
shown in Figure 30.23(a).
Create a remote object interface with methods for retrieving,
inserting, and updating student information, and an object
implementation for the interface.

Section 46.6
46.7**
(Chat) Rewrite Exercise 30.13 using RMI. You need to define a remote
interface for sending and receiving a message.

46.8**
(Improve TicTacToe) Modify the TicTacToe example in §46.6, “RMI
Callbacks,” as follows:

Allow a client to connect to the server as an observer to watch
the game.
Rewrite the Cell class as a noninner class.

1

***This is a bonus Web chapter

CHAPTER 47

2-4 Trees and B-Trees

Objectives
To know what a 2-4 tree is (§47.1).
To design the Tree24 class that implements the Tree interface
(§47.2).
To search an element in a 2-4 tree (§47.3).
To insert an element in a 2-4 tree and know how to split a node
(§47.4).
To delete an element from a 2-4 tree and know how to perform
transfer and fusion operations (§47.5).
To traverse elements in a 2-4 tree (§47.6).
To implement and test the Tree24 class (§§47.7-47.8).
To analyze the complexity of the 2-4 tree (§47.9).
To use B-trees for indexing large amount of data (§47.10).

2

47.1 Introduction
<margin note: completely balanced tree>
<margin note: 2-node>
<margin note: 3-node>
<margin note: 4-node>
A 2-4 tree, also known as a 2-3-4 tree, is a completely balanced search
tree with all leaf nodes appearing on the same level. In a 2-4 tree, a
node may have one, two, or three elements. An interior 2-node contains
one element and two children. An interior 3-node contains two elements
and three children. An interior 4-node contains three elements and four
children, as shown in Figure 47.1.

e0

c0 c1

e0 e1

c0 c2c1

e0 e1 e2

c0 c2c1 c3

(a) 2-node (b) 3-node (c) 4-node

Figure 47.1
An interior node of a 2-4 tree has two, three, or four children.

<margin note: ordered>
Each child is a sub 2-4 tree, possibly empty. The root node has no
parent, and leaf nodes have no children. The elements in the tree are
distinct. The elements in a node are ordered such that

)()()()(3221100 cEecEecEecE

<margin note: E(kc)>
<margin note: left subtree>
<margin note: right subtree>

where E(kc) denote the elements in kc . Figure 47.2 shows an example of

a 2-4 tree. kc is called the left subtree of ke and 1kc is called the

right subtree of ke .

20

27 34 15

3 16 23 24 25 29 50 60 70

Figure 47.2
A 2-4 tree is a full complete search tree.

<margin note: binary vs. 2-4>
In a binary tree, each node contains one element. A 2-4 tree tends to
be shorter than a corresponding binary search tree, since a 2-4 tree
node may contain two or three elements.

Pedagogical NOTE

3

<side remark: 2-4 tree animation>
Run from
www.cs.armstrong.edu/liang/animation/Tree24Animation.html
to see how a 2-4 tree works, as shown in Figure 47.3.

Figure 47.3
The animation tool enables you to insert, delete, and search
elements in a 2-4 tree visually.

***End NOTE

47.2 Designing Classes for 2-4 Trees

The Tree24 class can be designed by implementing the Tree interface, as
shown in Figure 47.4. The Tree interface was defined in Listing 27.3
Tree.java. The Tree24Node class defines tree nodes. The elements in the
node are stored in a list named elements and the links to the child
nodes are stored in a list named child, as shown in Figure 47.5.

4

Tree24<E>
-root: Tree24Nod e<E>
+size: int

+Tree24()
+Tree24(objects: E[])
+search(e: E): boolean
+insert(e: E): boolean
+delete(e: E): boolean

-match ed(e: E, node: TreeNode<E>): boolean
-getChildNode(e: E, node: TreeNode<E>):

Tree24Node<E>
-insert23(e: E, rightChi ldOfe: Tree24Nod e<E>, node:

Tree24Node<E>): void
-spli t(e: E, rightChi ldOfe: Tree24Nod e<E>, u:

Tree24Node<E>, v: Tree24Node<E>): E
-locate(e: E, node: Tree24Nod e<E>): int
-delete(e: E, node: Tree24Nod e<E>): void
-val idate(e: E, u: Tree24Node<E>, path :

ArrayList<Tree24 Node<E>>): void
-path(e: E): ArrayList<E>

1

m

Tree24Node<E>

elements: ArrayList<E>
child: ArrayList<Tree24Node<E>>

+Tree24()
+Tree24(o: E)

Link

0

The root of the tree.
The size of the tree.

Creates a default 2-4 tree.
Creates a 2-4 tree from an array of objects.
Returns true if the element is in the tree.
Returns true if the element is added successfully.
Returns true if the element is removed from the tree

successfully.

Returns true if element e is in the specified node.
Returns the next chi ld node to search for e.

Inserts element along with the reference to its right child
to a 2- or 3- node.

Split s a 4-node u into u and v, inserts e to u or v, and
returns the median element.

Locates the insertion point of the element in the node.
Deletes the specified element from the node.
Performs a t ransfer and fusion operation if node u is

empty.
Returns a search path that leads to element e.

Tree<E>

An array list for storing the elements.
An array list for storing the links to the child nodes.

Creates an empty tree node.
Creates a tree node wi th an initial element.

Figure 47.4
The Tree24 class implements Tree.

 elements.get(0) elements.get(1) elements.get(2) elements.get(3)
child.get(0)

child.get(1) child.get(2)
child.get(4)

child.get(3)

Figure 47.5
A 2-4 tree node stores the elements and the links to the child nodes in
array lists.

47.3 Searching an Element

Searching an element in a 2-4 tree is similar to searching an element
in a binary tree. The difference is that you have to search an element
within a node in addition to searching elements along the path. To
search an element in a 2-4 tree, you start from the root and scan down.
If an element is not in the node, move to an appropriate subtree.
Repeat the process until a match is found or you arrive at an empty
subtree. The algorithm is described in Listing 47.1.

5

Listing 47.1 Searching an Element in a 2-4 Tree
<margin note line 2: start from root>
<margin note line 6: found>
<margin note line 9: search a subtree>
<margin note line 13: not found>

boolean search(E e) {
 current = root; // Start from the root

 while (current != null) {
if (match(e, current)) { // Element is in the node
return true; // Element is found

 }
else {

 current = getChildNode(e, current); // Search in a subtree
 }
 }

 return false; // Element is not in the tree
}

The match(e, current) method checks whether element e is in the current
node. The getChildNode(e, current) method returns the root of the
subtree for further search. Initially, let current point to the root
(line 2). Repeat searching the element in the current node until
current is null (line 4) or the element matches an element in the
current node.

47.4 Inserting an Element into a 2-4 Tree

<margin note: overflow>
<margin note: split>

To insert an element e to a 2-4 tree, locate a leaf node in which the

element will be inserted. If the leaf node is a 2-node or 3-node,
simply insert the element into the node. If the node is a 4-node,
inserting a new element would cause an overflow. To resolve overflow,
perform a split operation as follows:

Let u be the leaf 4-node in which the element will be inserted
and parentOfu be the parent of u , as shown in Figure 47.6(a).

Create a new node named v ; move 2e to v .
If 1ee , insert e to u ; otherwise insert e to v . Assume that

10 eee , e is inserted into u , as shown in Figure 47.6(b).

Insert 1e along with its right child (i.e., v) to the parent
node, as shown in Figure 47.6(b).

e0 e1 e2

parentOfu

u

 p0 p1

e0 e

 p0 e1 p1

e2u v

New child link

 (a) Before inserting e (b) After inserting e

6

Figure 47.6
The splitting operation creates a new node and inserts the median
element to its parent.

The parent node is a 3-node in Figure 47.6. So, there is room to insert

e to the parent node. What happens if it is a 4-node, as shown in

Figure 47.7? This requires that the parent node be split. The process
is the same as splitting a leaf 4-node, except that you must also
insert the element along with its right child.

e0 e

 p0 p1 p2

e2u v

New child link

e1

parentOfu

e0 e

 p0 p1 p2

e2u v

e1

parentOfu Right child
of e1

 (a) The parent is a 4-node (b) Inserting 1e into the parent

Figure 47.7
Insertion process continues if the parent node is a 4-node.

The algorithm can be modified as follows:

Let u be the 4-node (leaf or nonleaf) in which the element will

be inserted and parentOfu be the parent of u , as shown in Figure
47.8(a).

Create a new node named v , move 2e and its children 2c and 3c to
v .
If 1ee , insert e along with its right child link to u ;

otherwise insert e along with its right child link to v , as shown
in Figure 47.6(b), (c), (d) for the cases 10 eee , 21 eee ,

and ee2 , respectively.

Insert 1e along with its right child (i.e., v) to the parent
node, recursively.

e0 e1 e2

parentOfu

u

 p0 p1

c0 c1 c2 c3

e0 e

 p0 e1 p1

c0 c1 c3

e2

c2rightChildOfe

 (a) Before inserting e (b) After inserting e (10 eee)

7

e0

 p0 e1 p1

c0 c1 c3

 e e2

c2 rightChi ldOfe

e0

 p0 e1 p1

c0 c1 rightChildOfe

 e2 e

c2 c3

 (c) After inserting e (21 eee) (d) After inserting e (ee2)

Figure 47.8
An interior node may be split to resolve overflow.

Listing 47.2 gives an algorithm for inserting an element.

Listing 47.2 Inserting an Element to a 2-4 Tree
<margin note line 3: create a new node>
<margin note line 5: search e>
<margin note line 6: insert e>
<margin note line 9: one element added>
<margin note line 10: element added>
<margin note line 13: insert to a node>
<margin note line 15: a 2- or 3- node>
<margin note line 20: split 4-node>
<margin note line 23: new root>
<margin note line 29: insert median to parent>

public boolean insert(E e) {
if (root == null)

 root = new Tree24Node<E>(e); // Create a new root for element
else {

 Locate leafNode for inserting e
 insert(e, null, leafNode); // The right child of e is null
 }

 size++; // Increase size
return true; // Element inserted

}

private void insert(E e, Tree24Node<E> rightChildOfe,
 Tree24Node<E> u) {
if (u is a 2- or 3- node) { // u is a 2- or 3-node

 insert23(e, rightChildOfe, u); // Insert e to node u
 }
else { // Split a 4-node u

 Tree24Node<E> v = new Tree24Node<E>(); // Create a new node
 E median = split(e, rightChildOfe, u, v); // Split u

if (u == root) { // u is the root
 root = new Tree24Node<E>(median); // New root

8

 root.child.add(u); // u is the left child of median
 root.child.add(v); // v is the right child of median
 }

else {
 Get the parent of u, parentOfu;
 insert(median, v, parentOfu); // Inserting median to parent
 }
 }
}

The insert(E e, Tree24Node<E> rightChildOfe, Tree24Node<E> u) method
inserts element e along with its right child to node u. When inserting
e to a leaf node, the right child of e is null (line 6). If the node is
a 2- or 3-node, simply insert the element to the node (lines 15–17). If
the node is a 4-node, invoke the split method to split the node (line
20). The split method returns the median element. Recursively invoke
the insert method to insert the median element to the parent node (line
29). Figure 47.9 shows the steps of inserting elements 34, 3, 50, 20,
15, 16, 25, 27, 29, and 24 into a 2-4 tree.

root in null 34 3 34 3 34 50

34

3 20 50

34

3 15 20 50

 (a) (b) (c) (d) (e) (f)

15 34

3 16 20 50

15 34

3 16 20 25 50

15 20 34

3 25 27 5016

 (g) (h) (i)

15 20 34

3 25 27 29 5016

20

27 3415

3 16 29 5024 25

 (j) (k)

Figure 47.9
The tree changes after 34, 3, 50, 20, 15, 16, 25, 27, 29, and 24 are
added into an empty tree.

47.5 Deleting an Element from a 2-4 Tree

To delete an element from a 2-4 tree, first search the element in the
tree to locate the node that contains it. If the element is not in the
tree, the method returns false. Let u be the node that contains the
element and parentOfu be the parent of u . Consider three cases:

9

Case 1: u is a leaf 3-node or 4-node. Delete e from u .

<margin note: underflow>
Case 2: u is a leaf 2-node. Delete e from u . Now u is empty. This
situation is known as underflow. To remedy an underflow, consider two
subcases:

<margin note: transfer>
Case 2.1: u ’s immediate left or right sibling is a 3- or 4-node. Let
the node be w, as shown in Figure 47.10(a) (assume that w is a left
sibling of u). Perform a transfer operation that moves an element from
parentOfu to u , as shown in Figure 47.10(b), and move an element from
w to replace the moved element in parentOfu, as shown in Figure
47.10(c).

e0 e1

 p0 p1 p2

w u

parentOfu

e0 e1

 p0 p2

p1w u

parentOfu

e0

 p0 e1 p2

p1w u

parentOfu

 (a) u is now empty (b) Move 1p to u (c) Move 1e to replace 1p

Figure 47.10
The transfer operation fills the empty node u.

<margin note: fusion>
Case 2.2: Both u ’s immediate left and right sibling are 2-node if they
exist (u may have only one sibling). Let the node be w, as shown in
Figure 47.11(a) (assume that w is a left sibling of u). Perform a
fusion operation that discards u and moves an element from parentOfu to
w, as shown in Figure 47.11(b). If parentOfu becomes empty, repeat Case
2 recursively to perform a transfer or a fusion on parentOfu.

e0

 p0 p1 p2

w u

parentOfu

e0 p1

 p0 p2

w

parentOfu

 (a) w is a 2-node (b) Move 1p to w

Figure 47.11
The fusion operation discards the empty node u.

<margin note: internal node>
Case 3: u is a nonleaf node. Find the rightmost leaf node in the left
subtree of e. Let this node be w, as shown in Figure 47.12(a). Move
the last element in w to replace e in u , as shown in Figure 47.12(b).
If w becomes empty, apply a transfer or fusion operation on w .

10

 e0 e e2u

v0 v1 w

root

….. ….. …..

….. ….. …..

 e0 v1 e2 u

v0 w

root

….. ….. …..

….. ….. …..

 (a) e is in u (b) Replace e with v1

Figure 47.12
An element in the internal node is replaced by an element in a leaf
node.

Listing 47.3 describes the algorithm for deleting an element.

Listing 47.3 Deleting an Element from a 2-4 Tree
<margin note line 3: locate the node>
<margin note line 5: delete e>
<margin note line 10: element not found>
<margin note line 14: delete e>
<margin note line 19: delete e>
<margin note line 22: check and fix underflow>
<margin note line 25: locate rightmost element>
<margin note line 34: check and fix underflow>
<margin note line 39: check and fix underflow>

/** Delete the specified element from the tree */
public boolean delete(E e) {
 Locate the node that contains the element e
 if (the node is found) {
 delete(e, node); // Delete element e from the node
 size--; // After one element deleted
 return true; // Element deleted successfully
 }

 return false; // Element not in the tree
}

/** Delete the specified element from the node */
private void delete(E e, Tree24Node<E> node) {
 if (e is in a leaf node) {
 // Get the path that leads to e from the root
 ArrayList<Tree24Node<E>> path = path(e);

 Remove e from the node;

 // Check node for underflow along the path and fix it
 validate(e, node, path); // Check underflow node
 }
 else { // e is in an internal node

11

 Locate the rightmost node in the left subtree of node u;
 Get the rightmost element from the rightmost node;

 // Get the path that leads to e from the root
 ArrayList<Tree24Node<E>> path = path(rightmostElement);

 Replace the element in the node with the rightmost element

 // Check node for underflow along the path and fix it
 validate(rightmostElement, rightmostNode, path);
 }
}

/** Perform a transfer or fusion operation if necessary */
private void validate(E e, Tree24Node<E> u,
 ArrayList<Tree24Node<E>> path) {
 for (int i = path.size() - 1; i >= 0; i--) {
 if (u is not empty)
 return; // Done, no need to perform transfer or fusion

 Tree24Node<E> parentOfu = path.get(i - 1); // Get parent of u

 // Check two siblings
 if (left sibling of u has more than one element) {
 Perform a transfer on u with its left sibling
 }
 else if (right sibling of u has more than one element) {
 Perform a transfer on u with its right sibling
 }
 else if (u has left sibling) { // Fusion with a left sibling
 Perform a fusion on u with its left sibling
 u = parentOfu; // Back to the loop to check the parent node
 }
 else { // Fusion with right sibling (right sibling must exist)
 Perform a fusion on u with its right sibling
 u = parentOfu; // Back to the loop to check the parent node
 }
 }
}

The delete(E e) method locates the node that contains the element e and
invokes the delete(E e, Tree24Node<E> node) method (line 5) to delete
the element from the node.

If the node is a leaf node, get the path that leads to e from the root
(line 17), delete e from the node (line 19), and invoke validate to
check and fix the empty node (line 22). The validate(E e, Tree24Node<E>
u, ArrayList<Tree24Node<E>> path) method performs a transfer or fusion
operation if the node is empty. Since these operations may cause the
parent of node u to become empty, a path is obtained in order to obtain
the parents along the path from the root to node u, as shown in Figure
47.13.

12

u

root

parentOfu

Figure 47.13
The nodes along the path may become empty as result of a transfer and
fusion operation.

If the node is a nonleaf node, locate the rightmost element in the left
subtree of the node (lines 25–26), get the path that leads to the
rightmost element from the root (line 29), replace e in the node with
the rightmost element (line 31), and invoke validate to fix the
rightmost node if it is empty (line 34).

The validate(E e, Tree24Node<E> u, ArrayList<Tree24Node<E>> path)
checks whether u is empty and performs a transfer or fusion operation
to fix the empty node. The validate method exits when node is not empty
(line 43). Otherwise, consider one of the following cases:

1. If u has a left sibling with more than one element, perform a
transfer on u with its left sibling (line 49).

2. Otherwise, if u has a right sibling with more than one element,
perform a transfer on u with its right sibling (line 52).

3. Otherwise, if u has a left sibling, perform a fusion on u with
its left sibling (line 55) and reset u to parentOfu (line 56).

4. Otherwise, u must have a right sibling. Perform a fusion on u
with its right sibling (line 59) and reset u to parentOfu (line
60).

Only one of the preceding cases is executed. Afterward, a new iteration
starts to perform a transfer or fusion operation on a new node u if
needed. Figure 47.14 shows the steps of deleting elements 20, 15, 3, 6,
and 34 are deleted from a 2-4 tree in Figure 47.9(k).

20

27 3415

3 16 29 5024 25

27 3415

3

16

 29 5024 25

 (a) Delete 20 (b) Replace 20 with 16

13

27 34

3 15

16

 29 5024 25

 3416

3 15

27

 29 5024 25

(c) Perform a fusion (d) Perform a transfer

 3416

3

27

 29 5024 25
15

 3416

27

 29 5024 25
3

 (e) Delete 15 (f) Delete 3

 3424

 16

27

 29 5025

 3424

27

 29 5025
 16

 (g) Perform a transfer (h) Delete 16

 34

27

 29 5024 25

27 34

 29 5024 25

 (i) Perform a fusion (j) Perform a fusion

27

 29 5024 25

34 27 29

 5024 25

27

29 5024 25

 (k) Delete 34 (l) Replace 34 with 16 (m) Perform a fusion

Figure 47.14
The tree changes after 20, 15, 3, 6, and 34 are deleted from a 2-4
tree.

47.6 Traversing Elements in a 2-4 Tree

Inorder, preorder, and postorder traversals are useful for 2-4 trees.
Inorder traversal visits the elements in increasing order. Preorder
traversal visits the elements in the root, then recursively visits the
subtrees from the left to right. Postorder traversal visits the

14

subtrees from the left to right recursively, and then the elements in
the root.

For example, in the 2-4 tree in Figure 47.9(k), the inorder traversal
is

3 15 16 20 24 25 27 29 34 50

The preorder traversal is

20 15 3 16 27 34 24 25 29 50

The postorder traversal is

3 16 1 24 25 29 50 27 34 20

47.7 Implementing the Tree24 Class

Listing 47.4 gives the complete source code for the Tree24 class.

Listing 47.4 Tree24.java
<margin note line 4: root>
<margin note line 5: size>
<margin note line 8: no-arg constructor>
<margin note line 12: constructor>
<margin note line 18: search>
<margin note line 22: found?>
<margin note line 26: next subtree>
<margin note line 34: find a match>
<margin note line 36: matched?>
<margin note line 43: next subtree>
<margin note line 44: leaf node?>
<margin note line 47: insertion point>
<margin note line 54: insert to tree>
<margin note line 55: empty tree?>
<margin note line 59: find leaf node>
<margin note line 71: insert to node>
<margin note line 79: insert to node>
<margin note line 85: no overflow>
<margin note line 90: overflow>
<margin note line 91: split>
<margin note line 93: u is root?>
<margin note line 101: insert to parentOfu>
<margin note line 110: insert to node>
<margin note line 112: insertion point>
<margin note line 119: split>
<margin note line 123: get median>
<margin note line 127: insert e>
<margin note line 133: insert rightChildOfe>
<margin note line 138: return median>
<margin note line 142: get path>
<margin note line 147: add node searched>
<margin note line 156: return path>
<margin note line 160: delete from tree>
<margin note line 162: locate the node>
<margin note line 164: found?>
<margin note line 165: delete from node>
<margin note line 177: delete from node>
<margin note line 178: leaf node?>

15

<margin note line 182: delete e>
<margin note line 184: node is root?>
<margin note line 190: validate tree>
<margin note line 192: nonleaf node>
<margin note line 194: rightmost element>
<margin note line 206: replace element>
<margin note line 209: validate tree>
<margin note line 214: validate tree>
<margin note line 222: transfer with left sibling>
<margin note line 226: transfer with right sibling>
<margin note line 233: fusion with left sibling>
<margin note line 248: fusion with right sibling>
<margin note line 262: locate insertion point>
<margin note line 273: transfer with left sibling>
<margin note line 290: transfer with right sibling>
<margin note line 305: fusion with left sibling>
<margin note line 319: fusion with right sibling>
<margin note line 338: preorder>
<margin note line 343: recursive preorder>
<margin note line 343: recursive preorder>

<margin note line 374: inner Tree24Node class>
<margin note line 376: element list>
<margin note line 378: child list>

import java.util.ArrayList;

public class Tree24<E extends Comparable<E>> implements Tree<E> {
 private Tree24Node<E> root;
 private int size;

 /** Create a default 2-4 tree */
 public Tree24() {
 }

 /** Create a 2-4 tree from an array of objects */
 public Tree24(E[] elements) {
 for (int i = 0; i < elements.length; i++)
 insert(elements[i]);
 }

 /** Search an element in the tree */
 public boolean search(E e) {
 Tree24Node<E> current = root; // Start from the root

 while (current != null) {
 if (matched(e, current)) { // Element is in the node
 return true; // Element found
 }
 else {
 current = getChildNode(e, current); // Search in a subtree
 }
 }

 return false; // Element is not in the tree
 }

16

 /** Return true if the element is found in this node */
 private boolean matched(E e, Tree24Node<E> node) {
 for (int i = 0; i < node.elements.size(); i++)
 if (node.elements.get(i).equals(e))
 return true; // Element found

 return false; // No match in this node
 }

 /** Locate a child node to search element e */
 private Tree24Node<E> getChildNode(E e, Tree24Node<E> node) {
 if (node.child.size() == 0)
 return null; // node is a leaf

 int i = locate(e, node); // Locate the insertion point for e
 return node.child.get(i); // Return the child node
 }

 /** Insert element e into the tree
 * Return true if the element is inserted successfully
 */
 public boolean insert(E e) {
 if (root == null)
 root = new Tree24Node<E>(e); // Create a new root for element
 else {
 // Locate the leaf node for inserting e
 Tree24Node<E> leafNode = null;
 Tree24Node<E> current = root;
 while (current != null)
 if (matched(e, current)) {
 return false; // Duplicate element found, nothing inserted
 }
 else {
 leafNode = current;
 current = getChildNode(e, current);
 }

 // Insert the element e into the leaf node
 insert(e, null, leafNode); // The right child of e is null
 }

 size++; // Increase size
 return true; // Element inserted
 }

 /** Insert element e into node u */
 private void insert(E e, Tree24Node<E> rightChildOfe,
 Tree24Node<E> u) {
 // Get the search path that leads to element e
 ArrayList<Tree24Node<E>> path = path(e);

 for (int i = path.size() - 1; i >= 0; i--) {
 if (u.elements.size() < 3) { // u is a 2-node or 3-node
 insert23(e, rightChildOfe, u); // Insert e to node u
 break; // No further insertion to u's parent needed
 }

17

 else {
 Tree24Node<E> v = new Tree24Node<E>(); // Create a new node
 E median = split(e, rightChildOfe, u, v); // Split u

 if (u == root) {
 root = new Tree24Node<E>(median); // New root
 root.child.add(u); // u is the left child of median
 root.child.add(v); // v is the right child of median
 break; // No further insertion to u's parent needed
 }
 else {
 // Use new values for the next iteration in the for loop
 e = median; // Element to be inserted to parent
 rightChildOfe = v; // Right child of the element
 u = path.get(i - 1); // New node to insert element
 }
 }
 }
 }

 /** Insert element to a 2- or 3- and return the insertion point */
 private void insert23(E e, Tree24Node<E> rightChildOfe,
 Tree24Node<E> node) {
 int i = this.locate(e, node); // Locate where to insert
 node.elements.add(i, e); // Insert the element into the node
 if (rightChildOfe != null)
 node.child.add(i + 1, rightChildOfe); // Insert the child link
 }

 /** Split a 4-node u into u and v and insert e to u or v */
 private E split(E e, Tree24Node<E> rightChildOfe,
 Tree24Node<E> u, Tree24Node<E> v) {
 // Move the last element in node u to node v
 v.elements.add(u.elements.remove(2));
 E median = u.elements.remove(1);

 // Split children for a nonleaf node
 // Move the last two children in node u to node v
 if (u.child.size() > 0) {
 v.child.add(u.child.remove(2));
 v.child.add(u.child.remove(2));
 }

 // Insert e into a 2- or 3- node u or v.
 if (e.compareTo(median) < 0)
 insert23(e, rightChildOfe, u);
 else
 insert23(e, rightChildOfe, v);

 return median; // Return the median element
 }

 /** Return a search path that leads to element e */
 private ArrayList<Tree24Node<E>> path(E e) {
 ArrayList<Tree24Node<E>> list = new ArrayList<Tree24Node<E>>();
 Tree24Node<E> current = root; // Start from the root

18

 while (current != null) {
 list.add(current); // Add the node to the list
 if (matched(e, current)) {
 break; // Element found
 }
 else {
 current = getChildNode(e, current);
 }
 }

 return list; // Return an array of nodes
 }

 /** Delete the specified element from the tree */
 public boolean delete(E e) {
 // Locate the node that contains the element e
 Tree24Node<E> node = root;
 while (node != null)
 if (matched(e, node)) {
 delete(e, node); // Delete element e from node
 size--; // After one element deleted
 return true; // Element deleted successfully
 }
 else {
 node = getChildNode(e, node);
 }

 return false; // Element not in the tree
 }

 /** Delete the specified element from the node */
 private void delete(E e, Tree24Node<E> node) {
 if (node.child.size() == 0) { // e is in a leaf node
 // Get the path that leads to e from the root
 ArrayList<Tree24Node<E>> path = path(e);

 node.elements.remove(e); // Remove element e

 if (node == root) { // Special case
 if (node.elements.size() == 0)
 root = null; // Empty tree
 return; // Done
 }

 validate(e, node, path); // Check underflow node
 }
 else { // e is in an internal node
 // Locate the rightmost node in the left subtree of the node
 int index = locate(e, node); // Index of e in node
 Tree24Node<E> current = node.child.get(index);
 while (current.child.size() > 0) {
 current = current.child.get(current.child.size() - 1);
 }
 E rightmostElement =
 current.elements.get(current.elements.size() - 1);

19

 // Get the path that leads to e from the root
 ArrayList<Tree24Node<E>> path = path(rightmostElement);

 // Replace the deleted element with the rightmost element
 node.elements.set(index, current.elements.remove(
 current.elements.size() - 1));

 validate(rightmostElement, current, path); // Check underflow
 }
 }

 /** Perform transfer and confusion operations if necessary */
 private void validate(E e, Tree24Node<E> u,
 ArrayList<Tree24Node<E>> path) {
 for (int i = path.size() - 1; u.elements.size() == 0; i--) {
 Tree24Node<E> parentOfu = path.get(i - 1); // Get parent of u
 int k = locate(e, parentOfu); // Index of e in the parent node

 // Check two siblings
 if (k > 0 && parentOfu.child.get(k - 1).elements.size() > 1) {
 leftSiblingTransfer(k, u, parentOfu);
 }
 else if (k + 1 < parentOfu.child.size() &&
 parentOfu.child.get(k + 1).elements.size() > 1) {
 rightSiblingTransfer(k, u, parentOfu);
 }
 else if (k - 1 >= 0) { // Fusion with a left sibling
 // Get left sibling of node u
 Tree24Node<E> leftNode = parentOfu.child.get(k - 1);

 // Perform a fusion with left sibling on node u
 leftSiblingFusion(k, leftNode, u, parentOfu);

 // Done when root becomes empty
 if (parentOfu == root && parentOfu.elements.size() == 0) {
 root = leftNode;
 break;
 }

 u = parentOfu; // Back to the loop to check the parent node
 }
 else { // Fusion with right sibling (right sibling must exist)
 // Get left sibling of node u
 Tree24Node<E> rightNode = parentOfu.child.get(k + 1);

 // Perform a fusion with right sibling on node u
 rightSiblingFusion(k, rightNode, u, parentOfu);

 // Done when root becomes empty
 if (parentOfu == root && parentOfu.elements.size() == 0) {
 root = rightNode;
 break;
 }

 u = parentOfu; // Back to the loop to check the parent node

20

 }
 }
 }

 /** Locate the insertion point of the element in the node */
 private int locate(E o, Tree24Node<E> node) {
 for (int i = 0; i < node.elements.size(); i++) {
 if (o.compareTo(node.elements.get(i)) <= 0) {
 return i;
 }
 }

 return node.elements.size();
 }

 /** Perform a transfer with a left sibling */
 private void leftSiblingTransfer(int k,
 Tree24Node<E> u, Tree24Node<E> parentOfu) {
 // Move an element from the parent to u
 u.elements.add(0, parentOfu.elements.get(k - 1));

 // Move an element from the left node to the parent
 Tree24Node<E> leftNode = parentOfu.child.get(k - 1);
 parentOfu.elements.set(k - 1,
 leftNode.elements.remove(leftNode.elements.size() - 1));

 // Move the child link from left sibling to the node
 if (leftNode.child.size() > 0)
 u.child.add(0, leftNode.child.remove(
 leftNode.child.size() - 1));
 }

 /** Perform a transfer with a right sibling */
 private void rightSiblingTransfer(int k,
 Tree24Node<E> u, Tree24Node<E> parentOfu) {
 // Transfer an element from the parent to u
 u.elements.add(parentOfu.elements.get(k));

 // Transfer an element from the right node to the parent
 Tree24Node<E> rightNode = parentOfu.child.get(k + 1);
 parentOfu.elements.set(k, rightNode.elements.remove(0));

 // Move the child link from right sibling to the node
 if (rightNode.child.size() > 0)
 u.child.add(rightNode.child.remove(0));
 }

 /** Perform a fusion with a left sibling */
 private void leftSiblingFusion(int k, Tree24Node<E> leftNode,
 Tree24Node<E> u, Tree24Node<E> parentOfu) {
 // Transfer an element from the parent to the left sibling
 leftNode.elements.add(parentOfu.elements.remove(k - 1));

 // Remove the link to the empty node
 parentOfu.child.remove(k);

21

 // Adjust child links for nonleaf node
 if (u.child.size() > 0)
 leftNode.child.add(u.child.remove(0));
 }

 /** Perform a fusion with a right sibling */
 private void rightSiblingFusion(int k, Tree24Node<E> rightNode,
 Tree24Node<E> u, Tree24Node<E> parentOfu) {
 // Transfer an element from the parent to the right sibling
 rightNode.elements.add(0, parentOfu.elements.remove(k));

 // Remove the link to the empty node
 parentOfu.child.remove(k);

 // Adjust child links for nonleaf node
 if (u.child.size() > 0)
 rightNode.child.add(0, u.child.remove(0));
 }

 /** Get the number of nodes in the tree */
 public int getSize() {
 return size;
 }

 /** Preorder traversal from the root */
 public void preorder() {
 preorder(root);
 }

 /** Preorder traversal from a subtree */
 private void preorder(Tree24Node<E> root) {
 if (root == null)return;
 for (int i = 0; i < root.elements.size(); i++)
 System.out.print(root.elements.get(i) + " ");

 for (int i = 0; i < root.child.size(); i++)
 preorder(root.child.get(i));
 }

 /** Inorder traversal from the root*/
 public void inorder() {
 // Left as exercise
 }

 /** Postorder traversal from the root */
 public void postorder() {
 // Left as exercise
 }

 /** Return true if the tree is empty */
 public boolean isEmpty() {
 return root == null;
 }

 /** Return an iterator to traverse elements in the tree */
 public java.util.Iterator iterator() {

22

 // Left as exercise
 return null;
 }

 /** Define a 2-4 tree node */
 protected static class Tree24Node<E extends Comparable<E>> {
 // elements has maximum three values
 ArrayList<E> elements = new ArrayList<E>(3);
 // Each has maximum four childres
 ArrayList<Tree24Node<E>> child
 = new ArrayList<Tree24Node<E>>(4);

 /** Create an empty Tree24 node */
 Tree24Node() {
 }

 /** Create a Tree24 node with an initial element */
 Tree24Node(E o) {
 elements.add(o);
 }
 }
}

<margin note: root>
<margin note: size>
The Tree24 class contains the data fields root and size (lines 4–5).
root references the root node and size stores the number of elements in
the tree.

<margin note: constructors>
The Tree24 class has two constructors: a no-arg constructor (lines 8–9)
that constructs an empty tree and a constructor that creates an initial
Tree24 from an array of elements (lines 12–15).

<margin note: search>
The search method (lines 18–31) searches an element in the tree. It
returns true (line 23) if the element is in the tree and returns false
if the search arrives at an empty subtree (line 30).

<margin note: matched>
The matched(e, node) method (lines 34–40) checks where the element e is
in the node.

<margin note: getChildNode>
The getChildNode(e, node) method (lines 43–49) returns the root of a
subtree where e should be searched.

<margin note: insert(e)>
The insert(E e) method inserts an element in a tree (lines 54–78). If
the tree is empty, a new root is created (line 56). The method locates
a leaf node in which the element will be inserted and invokes insert(e,
null, leafNode) to insert the element (line 71).

<margin note: insert(e, rightChildOfe, u)>
The insert(e, rightChildOfe, u) method inserts an element into node u
(lines 79–107). The method first invokes path(e) (line 82) to obtain a
search path from the root to node u. Each iteration of the for loop
considers u and its parent parentOfu (lines 84–106). If u is a 2-node

23

or 3-node, invoke insert23(e, rightChildOfe, u) to insert e and its
child link rightChildOfe into u (line 86). No split is needed (line
87). Otherwise, create a new node v (line 90) and invoke split(e,
rightChildOfe, u, v) (line 91) to split u into u and v. The split
method inserts e into either u and v and returns the median in the
original u. If u is the root, create a new root to hold median, and set
u and v as the left and right children for median (lines 95–96). If u
is not the root, insert median to parentOfu in the next iteration
(lines 101–103).

<margin note: insert23>
The insert23(e, rightChildOfe, node) method inserts e along with the
reference to its right child into the node (lines 110–116). The method
first invokes locate(e, node) (line 112) to locate an insertion point,
then insert e into the node (line 113). If rightChildOfe is not null,
it is inserted into the child list of the node (line 115).

<margin note: split>
The split(e, rightChildOfe, u, v) method splits a 4-node u (lines 119-
139). This is accomplished as follows: (1) move the last element from u
to v and remove the median element from u (lines 122–123); (2) move the
last two child links from u to v (lines 127–130) if u is a nonleaf
node; (3) if e < median, insert e into u; otherwise, insert e into v
(lines 133–136); (4) return median (line 138).

<margin note: path>
The path(e) method returns an ArrayList of nodes searched from the root
in order to locate e (lines 142–157). If e is in the tree, the last
node in the path contains e. Otherwise the last node is where e should
be inserted.

<margin note: delete(e)>
The delete(E e) method deletes an element from the tree (lines 160–
174). The method first locates the node that contains e and invokes
delete(e, node) to delete e from the node (line 165). If the element is
not in the tree, return false (line 173).

<margin note: delete(e, node)>
The delete(e, node) method deletes an element from node u (lines 177–
211). If the node is a leaf node, obtain the path that leads to e (line
180), delete e (line 182), set root to null if the tree becomes empty
(lines 184-188), and invoke validate to apply transfer and fusion
operation on empty nodes (line 190). If the node is a nonleaf node,
locate the rightmost element (lines 194–200), obtain the path that
leads to e (line 203), replace e with the rightmost element (lines 206–
207), and invoke validate to apply transfer and fusion operations on
empty nodes (line 209).

<margin note: validate>
The validate(e, u, path) method ensures that the tree is a valid 2-4
tree (lines 214–259). The for loop terminates when u is not empty (line
216). The loop body is executed to fix the empty node u by performing a
transfer or fusion operation. If a left sibling with more than one
element exists, perform a transfer on u with the left sibling (line
222). Otherwise, if a right sibling with more than one element exists,
perform a transfer on u with the left sibling (line 226). Otherwise, if
a left sibling exists, perform a fusion on u with the left sibling
(lines 230–239), and validate parentOfu in the next loop iteration
(line 241). Otherwise, perform a fusion on u with the right sibling.

24

<margin note: locate>
The locate(e, node) method locates the index of e in the node (lines
262-270).

<margin note: transfer>
<margin note: fusion>
The leftSiblingTransfer(k, u, parentOfu) method performs a transfer on
u with its left sibling (lines 273–287). The rightSiblingTransfer(k, u,
parentOfu) method performs a transfer on u with its right sibling
(lines 290–302). The leftSiblingFusion(k, leftNode, u, parentOfu)
method performs a fusion on u with its left sibling leftNode (lines
305–316). The rightSiblingFusion(k, rightNode, u, parentOfu) method
performs a fusion on u with its right sibling rightNode (lines 319–
330).

<margin note: preorder>
The preorder() method displays all the elements in the tree in preorder
(lines 338–350).

<margin note: Tree24Node>
The inner class Tree24Node defines a class for a node in the tree
(lines 374–389).

47.8 Testing the Tree24 Class

Listing 47.5 gives a test program. The program creates a 2-4 tree and
inserts elements in lines 6–20, and deletes elements in lines 22–56.

Listing 47.5 TestTree24.java
<margin note line 4: create a Tree24>
<margin note line 6: insert 34>
<margin note line 7: insert 3>
<margin note line 8: insert 50>
<margin note line 15: insert 24>
<margin note line 21: insert 70>
<margin note line 25: delete 34>

 1 public class TestTree24 {
 2 public static void main(String[] args) {
 3 // Create a 2-4 tree
 4 Tree24<Integer> tree = new Tree24<Integer>();
 5
 6 tree.insert(34);
 7 tree.insert(3);
 8 tree.insert(50);
 9 tree.insert(20);
 10 tree.insert(15);
 11 tree.insert(16);
 12 tree.insert(25);
 13 tree.insert(27);
 14 tree.insert(29);
 15 tree.insert(24);
 16 System.out.print("\nAfter inserting 24:");
 17 printTree(tree);
 18 tree.insert(23);
 19 tree.insert(22);
 20 tree.insert(60);
 21 tree.insert(70);

25

 22 System.out.print("\nAfter inserting 70:");
 23 printTree(tree);
 24
 25 tree.delete(34);
 26 System.out.print("\nAfter deleting 34:");
 27 printTree(tree);
 28
 29 tree.delete(25);
 30 System.out.print("\nAfter deleting 25:");
 31 printTree(tree);
 32
 33 tree.delete(50);
 34 System.out.print("\nAfter deleting 50:");
 35 printTree(tree);
 36
 37 tree.delete(16);
 38 System.out.print("\nAfter deleting 16:");
 39 printTree(tree);
 40
 41 tree.delete(3);
 42 System.out.print("\nAfter deleting 3:");
 43 printTree(tree);
 44
 45 tree.delete(15);
 46 System.out.print("\nAfter deleting 15:");
 47 printTree(tree);
 48 }
 49
 50 public static void printTree(Tree tree) {
 51 // Traverse tree
 52 System.out.print("\nPreorder: ");
 53 tree.preorder();
 54 System.out.print("\nThe number of nodes is " + tree.getSize());
 55 System.out.println();
 56 }
 57 }

<Output>
After inserting 24:
Preorder: 20 15 3 16 27 34 24 25 29 50
The number of nodes is 10

After inserting 70:
Preorder: 20 15 3 16 24 27 34 22 23 25 29 50 60 70
The number of nodes is 14

After deleting 34:
Preorder: 20 15 3 16 24 27 50 22 23 25 29 60 70
The number of nodes is 13

After deleting 25:
Preorder: 20 15 3 16 23 27 50 22 24 29 60 70
The number of nodes is 12

After deleting 50:
Preorder: 20 15 3 16 23 27 60 22 24 29 70
The number of nodes is 11

After deleting 16:

26

Preorder: 23 20 3 15 22 27 60 24 29 70
The number of nodes is 10

After deleting 3:
Preorder: 23 20 15 22 27 60 24 29 70
The number of nodes is 9

After deleting 15:
Preorder: 27 23 20 22 24 60 29 70
The number of nodes is 8
<End Output>

Figure 47.15 shows how the tree evolves as elements are added. After
34, 3, 50, 20, 15, 16, 25, 27, 29, and 24 are added to the tree, it is
as shown in Figure 47.15(a). After inserting 23, 22, 60, and 70, the
tree is as shown in Figure 47.15(b). After inserting 23, 22, 60, and
70, the tree is as shown in Figure 47.15(b). After deleting 34, the
tree is as shown in Figure 47.15(c). After deleting 25, the tree is as
shown in Figure 47.15(d). After deleting 50, the tree is as shown in
Figure 47.15(e). After deleting 16, the tree is as shown in Figure
47.15(f). After deleting 3, the tree is as shown in Figure 47.15(g).
After deleting 15, the tree is as shown in Figure 47.15(h).

(a) After inserting 34, 3, 50, 20, 15, 16, 25, 27, 29, and 24, in this order

3

15

16 24 25

 27 34

50

20

29

(b) After inserting 23, 22, 60, and 70

3

15

16 22 23

24 27 34

50 60 70

20

25 29

27

(c) After deleting 34

3

15

16 22 23

24 27 50

60 70

20

25 29

(d) After deleting 25

3

15

16 22

23 27 50

60 70

20

24 29

(e) After deleting 50

3

15

16 22

23 27 60

 70

20

24 29

28

(f) After deleting 16

3 15

20

22

27 60

 70

23

24 29

(g) After deleting 3

15

20

22

27 60

 70

23

24 29

(h) After deleting 15

20 22

23

24

60

 70

27

29

Figure 47.15
The tree evolves as elements are inserted and deleted.

47.9 Time-Complexity Analysis

Since a 2-4 tree is a completely balanced binary tree, its height is at
most)(lognO . The search, insert, and delete methods operate on the
nodes along a path in the tree. It takes a constant time to search an
element within a node. So, the search method takes)(lognO time. For
the insert method, the time for splitting a node takes a constant time.
So, the insert method takes)(lognO time. For the delete method, it
takes a constant time to perform a transfer and fusion operation. So,
the delete method takes)(lognO time.

47.10 B-Tree

So far we assume that the entire data set is stored in main memory.
What if the data set is too large and cannot fit in the main memory, as
in the case with most databases where data is stored on disks? Suppose
you use an AVL tree to organize a million records in a database table.
To find a record, the average number of nodes traversed is

20000,000,1log2 . This is fine if all nodes are stored in main memory.
However, for nodes stored on a disk, this means 20 disk reads. Disk I/O
is expensive, and it is thousands of times slower than memory access.
To improve performance, we need to reduce the number of disk I/Os. An
efficient data structure for performing search, insertion, and deletion

29

for data stored on secondary storage such as hard disks is the B-tree,
which is a generalization of the 2-4 tree.

A B-tree of order d is defined as follows:

1. Each node except the root contains between 12/d and 1d
keys.

2. The root may contain up to 1d keys.

3. A nonleaf node with k keys has 1k children.

4. All leaf nodes have the same depth.

Figure 47.16 shows a B-tree of order 6. For simplicity, we use integers
to represent keys. Each key is associated with a pointer that points to
the actual record in the database. For simplicity, the pointers to the
records in the database are omitted in the figure.

 3 6

 8 13

9 10 15 16

18 43

 20 26 27 31 32 35 36 37 45 46 47 49 50 75 76 77 78 79

28 33 48 53 65

59 60

 Figure 47.16
In a B-tree of order 6, each node except the root may contain between 2
and 5 keys.

Note that a B-tree is a search tree. The keys in each node are placed
in increasing order. Each key in an interior node has a left subtree
and a right subtree, as shown in Figure 47.17. All keys in the left
subtree are less than the key in the parent node, and all keys in the
right subtree are greater than the key in the parent node.

k1 k2 … ki …

left subtree right subtree

Figure 47.17
The keys in the left (right) subtree of key ki are less than (greater
than) ki.

<margin note: one block per node>
The basic unit of the IO operations on a disk is a block. When you read
data from a disk, the whole block that contains the data is read. You

30

should choose an appropriate order d so that a node can fit in a single
disk block. This will minimize the number of disk IOs.

A 2-4 tree is actually a B-tree of order 4. The techniques for
insertion and deletion in a 2-4 tree can be easily generalized for a B-
tree.

<margin note: insertion>
Inserting a key to a B-tree is similar to what was done for a 2-4 tree.
First locate the leaf node in which the key will be inserted. Insert
the key to the node. After the insertion, if the leaf node has d keys,
an overflow occurs. To resolve overflow, perform a split operation
similar to the one used in a 2-4 tree, as follows:

Let u denote the node needed to be split and let m denote the median
key in the node. Create a new node and move all keys greater than m to
this new node. Insert m to the parent node of u . Now u becomes the left
child of m and v becomes the right child of m, as shown in Figure
47.18. If inserting m into the parent node of u causes an overflow,
repeat the same split process on the parent node.

 k 1 k2 … kd

parentOfu

u

 …

 k1 … kp-1

parentOfu

u

… kp …

 kp+1 …kd
new node

Figure 47.18
(a) After inserting a new key to node u. (b) The median key kp is
inserted to parentOfu.

<margin note: deletion>
A key k can be deleted from a B-tree in the same way as in a 2-4 tree.
First locate the node u that contains the key. Consider two cases:

Case 1: If u is a leaf node, remove the key from u . After the removal,
if u has less than 12/d keys, an underflow occurs. To remedy an
underflow, perform a transfer with a sibling w of u that has more than

12/d keys if such sibling exists, as shown in Figure 47.19.
Otherwise perform a fusion with a sibling w of u , as shown in Figure
47.20.

 … j

 ... i …

w u

parentOfu

 … k … j

 .. . …

w u

parentOfu

 i … k …

 ... j…

w u

parentOfu

 i … k

(a) Before a transfer is performed (b) Key i moved to node u (c) Key j moved to parentOfu

Figure 47.19
The transfer operation transfers a key from the parentOfu to u and
transfers a key from u ’s sibling parentOfu.

 … j

 ... i …

w u

parentOfu

 … k … j i … k

 .. . …

w

parentOfu

31

(a) Before a fusion is performed (b) After a fusion is performed

Figure 47.20
The fusion operation moves key i from the parentOfu u to w and moves
all keys in u to w.

Case 2: u is a nonleaf node. Find the rightmost leaf node in the left
subtree of k . Let this node be w, as shown in Figure 47.21(a). Move
the last key in w to replace k in u , as shown in Figure 47.21(b). If
w becomes underflow, apply a transfer or fusion operation on w.

 … k … u

 … iw

root

….. …..…..

….. ….. …..

 … i … u

 …w

root

….. …..…..

….. ….. …..

 (a) Key is in u (b) Replace key k with key i

Figure 47.21
A key in the internal node is replaced by an element in a leaf node.

<margin note: B-tree performance>
The performance of a B-tree depends on the number of disk IOs (i.e.,
the number of nodes accessed). The number of nodes accessed for search,
insertion, and deletion operations depends on the height of the tree.

In the worst case, each node contains 12/d keys. So, the height of

the tree is nd 2/log , where n is the number of keys. In the best case,

each node contains 1d keys. So, the height of the tree is ndlog .

Consider a B-tree of order 12 for ten million keys. The height of the

tree is between 7000,000,10log6 and 9000,000,10log12 . So, for search,

insertion, and deletion operations, the maximum number of nodes visited
is 47. If you use an AVL tree, the maximum number of nodes visited is

24000,000,10log2 .

Key Terms

2-3-4 tree
2-4 tree
2-node
3-node
4-node
B-tree
fusion operation
split operation

32

transfer operation

Chapter Summary

1. A 2-4 tree is a completely balanced search tree. In a 2-4 tree, a
node may have one, two, or three elements.

2. Searching an element in a 2-4 tree is similar to searching an
element in a binary tree. The difference is that you have
searched an element within a node.

3. To insert an element to a 2-4 tree, locate a leaf node in which
the element will be inserted. If the leaf node is a 2- or 3-node,
simply insert the element into the node. If the node is a 4-node,
split the node.

4. The process of deleting an element from a 2-4 tree is similar to
that of deleting an element from a binary tree. The difference is
that you have to perform transfer or fusion operations for empty
nodes.

5. The height of a 2-4 tree is O(logn). So, the time complexities
for the search, insert, and delete methods are O(logn).

6. A B-tree is a generalization of the 2-4 tree. Each node in a B-

tree of order d can have between 12/d and 1d keys except

the root. 2-4 trees are flatter than AVL trees and B-trees are
flatter than 2-4 trees. B-trees are efficient for creating
indexes for data in database systems where large amounts of data
are stored on disks.

Test Questions

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions

Sections 47.1–47.2
47.1
What is a 2-4 tree? What are a 2-node, 3-node, and 4-node?

47.2
Describe the data fields in the Tree24 class and those in the
Tree24Node class.

47.3
What is the minimum number of elements in a 2-4 tree of height 5? What
is the maximum number of elements in a 2-4 tree of height 5?

Sections 47.3–47.5
47.4
How do you search an element in a 2-4 tree?

47.5
How do you insert an element into a 2-4 tree?

47.6
How do you delete an element from a 2-4 tree?

47.7

33

Show the change of a 2-4 tree when inserting 1, 2, 3, 4, 10, 9, 7, 5,
8, 6 into it, in this order.

47.8
For the tree built in the preceding question, show the change of the
tree after deleting 1, 2, 3, 4, 10, 9, 7, 5, 8, 6 from it in this
order.

47.9
Show the change of a B-tree of order 6 when inserting 1, 2, 3, 4, 10,
9, 7, 5, 8, 6, 17, 25, 18, 26, 14, 52, 63, 74, 80, 19, 27 into it, in
this order.

47.10
For the tree built in the preceding question, show the change of the
tree after deleting 1, 2, 3, 4, 10, 9, 7, 5, 8, 6 from it, in this
order.

Programming Exercises

47.1*
(Implement inorder) The inorder method in Tree24 is left as an

exercise. Implement it.

47.2
(Implement postorder) The postorder method in Tree24 is left as an

exercise. Implement it.

47.3
(Implement iterator) The iterator method in Tree24 is left as an

exercise. Implement it to iterate the elements using
inorder.

47.4*
(Display a 2-4 tree graphically) Write an applet that displays a 2-4

tree.

47.5***
(2-4 tree animation) Write a Java applet that animates the 2-4 tree

insert, delete, and search methods, as shown in Figure 47.4.

47.6**
(Parent reference for Tree24) Redefine Tree24Node to add a reference to

a node’s parent, as shown below:

Tree24Node<E>

elements: ArrayList<E>
child: ArrayList<Tree24Node<E>>
parent: Tree24Node<E>

+Tree24()
+Tree24(o: E)

An array list for storing the elements.
An array list for storing the links to the child nodes.
Refers to the parent of this node.

Creates an empty tree node.
Creates a tree node with an initial element.

Add the following two new methods in Tree24:

public Tree24Node<E> getParent(Tree24Node<E> node)

34

 Returns the parent for the specified node.

public ArrayList<Tree24Node<E>> getPath(Tree24Node<E> node)

 Returns the path from the specified node to the root in an array
list.

Write a test program that adds numbers 1, 2, ..., 100 to the tree and
displays the paths for all leaf nodes.

47.7***
(The BTree class) Design and implement a class for B-trees.

1

***This is a bonus Web chapter

CHAPTER 48

Red-Black Trees

Objectives
To know what a red-black tree is (§48.1).
To convert a red-black tree to a 2-4 tree and vice versa
(§48.2).
To design the RBTree class that extends the BinaryTree class
(§48.3).
To insert an element in a red-black tree and resolve the
double-red violation if necessary (§48.4).
To delete an element from a red-black tree and resolve the
double-black problem if necessary (§48.5).
To implement and test the RBTree class (§§48.6–48.7).
To compare the performance of AVL trees, 2-4 trees, and RBTree
(§48.8).

2

48.1 Introduction
<margin note: derived from 2-4>
<margin note: color attribute>
<margin note: external>
<margin note: black depth>
A red-black tree is a binary search tree derived from a 2-4 tree. A red-
black tree corresponds to a 2-4 tree. Each node in a red-black tree has
a color attribute red or black, as shown in Figure 48.1(a). A node is
called external if its left or right subtree is empty. Note that a leaf
node is external, but an external node is not necessarily a leaf node.
For example, node 25 is external, but it is not a leaf. The black depth
of a node is defined as the number of black nodes in a path from the
node to the root. For example, the black depth of node 25 is 2 and that
of node 27 is 2.

20

15 34

3 16 25

27

50

15 20 34

3 25 27 5016

 (a) A red-black tree (b) A 2-4 tree

Figure 48.1
A red-black tree can be represented using a 2-4 tree, and vice
versa.

NOTE: The red nodes appear in blue in the text.

A red-black tree has the following properties:

1. The root is black.
2. Two adjacent nodes cannot be both red.
3. All external nodes have the same black depth.

The red-black tree in Figure 48.1(a) satisfies all three properties. A
red-black tree can be converted to a 2-4 tree, and vice versa. Figure
48.1(b) shows an equivalent 2-4 tree for the red-black tree in Figure
48.1(a).

48.2 Conversion between Red-Black Trees and 2-4 Trees

You can design insertion and deletion algorithms for red-black trees
without having knowledge of 2-4 trees. However, the correspondence
between red-black trees and 2-4 trees provides useful intuition about
the structure of red-black trees and operations. For this reason, this
section discusses the correspondence between these two types of trees.

<margin note: red-black to 2-4>
To convert a red-black tree to a 2-4 tree, simply merge every red node
with its parent to create a 3-node or a 4-node. For example, the red
nodes 15 and 34 are merged to their parent to create a 4-node, and the

3

red node 27 is merged to its parent to create a 3-node, as shown in
Figure 48.1(b).

<margin note: 2-4 to red-black>
To convert a 2-4 tree to a red-black tree, perform the following
transformations for each node u :

<margin note: converting 2-node>
1. If u is a 2-node, color it black, as shown in Figure 48.2(a).

<margin note: converting 3-node>

2. If u is a 3-node with element values 0e and 1e , there are two

ways to convert it. Either make 0e the parent of 1e or make 1e the

parent of 0e . In any case, color the parent black and the child

red, as shown in Figure 48.2(b).
<margin note: converting 4-node>

3. If u is a 4-node with element values 0e , 1e , and 2e , make 1e the

parent of 0e and 2e . Color 1e black and 0e and 2e red, as shown in

Figure 48.2(c).

e

c0 c1

 2-3-4 Tree Equivalent red-black tree

e

c0 c1

(a) Converting
a 2-node

e0 e1

c0 c2

e0

c0

c1

(b) Converting
a 3-node

c1 e1

c2

or

e1

c0

e0

c1

c2

e0 e1 e2

c0 c3

e1

c0 c1

(c) Converting
a 4-node

c1 e2

c3

c2 e0

c2

Figure 48.2
A node in a 2-4 tree can be transformed to nodes in a red-black
tree.

<margin note: not unique>
Let us apply the transformation for the 2-4 tree in Figure 48.1(b).
After transforming the 4-node, the tree is as shown in Figure 48.3(a).
After transforming the 3-node, the tree is as shown in Figure 48.3(b).
Note that the transformation for a 3-node is not unique. Therefore, the
conversion from a 2-4 tree to a red-black tree is not unique. After
transforming the 3-node, the tree could also be as shown in Figure
48.3(c).

4

15

3 25 27 5016

20

34 15

3 25 5016

20

34

27

15

3 27 5016

16

34

25

 (a) (b) (c)

Figure 48.3
The conversion from a 2-4 tree to a red-black tree is not unique.

You can prove that the conversion results in a red-black tree that
satisfies all three properties.

<margin note: Property 1 proof>
Property 1. The root is black.
Proof: If the root of a 2-4 tree is a 2-node, the root of the red-black
tree is black. If the root of a 2-4 tree is a 3-node or 4-node, the
transformation produces a black parent at the root.

<margin note: Property 2 proof>
Property 2. Two adjacent nodes cannot be both red.
Proof: Since the parent of a red node is always black, no two adjacent
nodes can be both red.

<margin note: Property 3 proof>
Property 3. All external nodes have the same black depth.
Proof: When you covert a node in a 2-4 tree to red-black tree nodes, you
get one black node and zero, one, or two red nodes as its children,
depending on whether the original node is a 2-, 3-, or 4-node. Only a
leaf 2-4 node may produce external red-black nodes. Since a 2-4 tree is
perfectly balanced, the number of black nodes in any path from the root
to an external node is the same.

48.3 Designing Classes for Red-Black Trees

A red-black tree is a binary search tree. So, you can define the RBTree
class to extend the BinaryTree class, as shown in Figure 48.4. The
BinaryTree and TreeNode classes are defined in §26.2.5.

RBTree<E>
+RBTree()
+RBTree(objects: E[])
#createNewNode(): RBTreeNode<E>
+insert(o: E): boolean
+delete(o: E): boolean

1

mRBTreeNode<E>

-red: boolean

+RBTreeNode()
+RBTreeNode(e: E)
+isRed(): boolean
+isBlack(): boolean
+setRed(): void
+setBlack(): void

Link

0

Creates a default red-black tree.
Creates an RBTree from an array of objects.
Override this method to create an RBTreeNode.
Returns true if the element is added successfully.
Returns true if the element is removed from the

tree successfully.

BinaryTree<E> TreeNode<E>

5

Figure 48.4
The RBTree class extends BinaryTree with new implementations for the
insert and delete methods.

<margin note: RBTreeNode>
Each node in a red-black tree has a color property. Because the color is
either red or black, it is efficient to use the boolean type to denote
it. The RBTreeNode class can be defined to extend BinaryTree.TreeNode
with the color property. For convenience, we also provide the methods
for checking the color and setting a new color. Note that TreeNode is
defined as a static inner class in BinaryTree. RBTreeNode will be
defined as a static inner class in RBTree. Note that BinaryTreeNode
contains the data fields element, left, and right, which are inherited
in RBTreeNode. So, RBTreeNode contains four data fields, as pictured in
Figure 48.5.

node: RBTreeNode<E>

#element: E
-red: boolean
#left: TreeNode
#right: TreeNode

Figure 48.5
An RBTreeNode contains data fields element, red, left, and right.

<margin note: createNewNode()>
In the BinaryTree class, the createNewNode() method creates a TreeNode
object. This method is overridden in the RBTree class to create an
RBTreeNode. Note that the return type of the createNewNode() method in
the BinaryTree class is TreeNode, but the return type of the
createNewNode() method in RBTree class is RBTreeNode. This is fine,
since RBTreeNode is a subtype of TreeNode.

Searching an element in a red-black tree is the same as searching in a
regular binary search tree. So, the search method defined in the
BinaryTree class also works for RBTree.

The insert and delete methods are overridden to insert and delete an
element and perform operations for coloring and restructuring if
necessary to ensure that the three properties of the red-black tree are
satisfied.

Pedagogical NOTE
<side remark: Red-Black tree animation>

Run from
www.cs.armstrong.edu/liang/animation/RBTreeAnimation.html
to see how a red-black tree works, as shown in Figure
48.6.

6

Figure 48.6
The animation tool enables you to insert, delete, and search
elements in a red-black tree visually.

***End NOTE

48.4 Overriding the insert Method
<margin note: double red>
A new element is always inserted as a leaf node. If the new node is the
root, color it black. Otherwise, color it red. If the parent of the new
node is red, it violates Property 2 of the red-black tree. We call this
a double-red violation.

Let u denote the new node inserted, v the parent of u , w the parent
of v , and x the sibling of v . To fix the double-red violation,
consider two cases:

Case 1: x is black or x is null. There are four possible
configurations for u , v , w , and x , as shown in Figures 48.7(a),
48.8(a), 48.9(a), and 48.10(a). In this case, u , v , and w form a 4-
node in the corresponding 2-4 tree, as shown in Figures 48.7(c),
48.8(c), 48.9(c), and 48.10(c), but are represented incorrectly in the
red-black tree. To correct this error, restructure and recolor three
nodes u , v , and w , as shown in Figures 48.7(b), 48.8(b), 48.9(b), and

48.10(b). Note that x , 1y , 2y , and 3y may be null.

30

20

40

u

v

w

x

y1 y2

y3 4020

30

u

x

v

w

y1 y2 y3

20 30 40

xy1 y2 y3

 (a) (b) (c)
Figure 48.7
Case 1.1: u < v < w.

7

20

30

40

u

v

w

x

y1 y2

y3
u

4020

30

v

x

u

w

y3 y1 y2

20 30 40

xy3 y1 y2

 (a) (b) (c)

Figure 48.8
Case 1.2: v < u < w

30

40

20

u

v

w

x

y1 y2

y3 4020

30

w

y2

v

u

x y3 y1

20 30 40

y2x y3 y1

 (a) (b) (c)

Figure 48.9
Case 1.3: w < v < u

40

30

20

u

v

w

x

y1 y2

y3 4020

30

w

y3

u

v

x y1 y2

20 30 40

y3x y1 y2

 (a) (b) (c)

Figure 48.10
Case 1.4: w < u < v

Case 2: x is red. There are four possible configurations for u , v , w ,
and x , as shown in Figures 48.11(a), 48.11(b), 48.11(c), and 48.11(d).
All of these configurations correspond to an overflow situation in the
corresponding 4-node in a 2-4 tree, as shown in Figure 48.12(a). A
splitting operation is performed to fix the overflow problem in a 2-4
tree, as shown in Figure 48.12(b). We perform an equivalent recoloring
operation to fix the problem in a red-black tree. Color w and u red
and color two children of w black. Assume u is a left child of v , as
shown in Figure 48.11(a). After recoloring, the nodes are shown in
Figure 48.12(c). Now w is red, if w ’s parent is black, the double-red
violation is fixed. Otherwise, a new double-red violation occurs at node
w . We need to continue the same process to eliminate the double-red
violation at w , recursively.

8

30

25

40

u

v

w

50
x

30

35

40

u

v

w

50
x

 (a) (b)

30

45

40

u

v

w

50
x

30

55

40

u

v

w

50
x

 (c) (d)

Figure 48.11
Case 2 has four possible configurations.

30 40 50

Insert a new
element

25 30

40

v

50

x

Insert to its parent

30

25

40

u

v

w

50
x

(a) A 4-node (b) Splitting a 4-node (c) Recoloring nodes

Figure 48.12
Splitting a 4-node corresponds to recoloring the nodes in the red-black
tree.

A more detailed algorithm for inserting an element is described in
Listing 48.1.

Listing 48.1 Inserting an Element to a Red-Black Tree

<margin note line 1: insert to tree>
<margin note line 2: invoke super.insert>
<margin note line 4: duplicate element>
<margin note line 6: ensure color and depth>

<margin note line 13: ensure color and depth>
<margin note line 14: get path>
<margin note line 15: node index>
<margin note line 16: get u, v>
<margin note line 20: u is root?>
<margin note line 22: double-red violation>

<margin note line 27: fix double red>

9

<margin note line 29: get w>
<margin note line 32: get x>
<margin note line 36: Case 1>
<margin note line 38: Case 1.1>
<margin note line 41: Case 1.2>
<margin note line 44: Case 1.3>
<margin note line 47: Case 1.4>
<margin note line 50: Case 2>
<margin note line 51: recoloring>
<margin note line 54: w is root?>
<margin note line 57: propagate upward>
<margin note line 61: fix new double red>

public boolean insert(E e) {
boolean successful = super.insert(e);
if (!successful)
return false; // e is already in the tree

else {
 ensureRBTree(e);
 }

return true; // e is inserted
}

/** Ensure that the tree is a red-black tree */
private void ensureRBTree(E e) {
 Get the path that leads to element e from the root.
int i = path.size() – 1; // Index to the current node in the path

 Get u, v from the path. u is the node that contains e and v
 is the parent of u.
 Color u red;

if (u == root) // If e is inserted as the root, set root black
 u.setBlack();
else if (v.isRed())

 fixDoubleRed(u, v, path, i); // Fix double-red violation at u
}

/** Fix double-red violation at node u */
private void fixDoubleRed(RBTreeNode<E> u, RBTreeNode<E> v,
 ArrayList<TreeNode<E>> path, int i) {
 Get w from the path. w is the grandparent of u.

// Get v's sibling named x
 RBTreeNode<E> x = (w.left == v) ?
 (RBTreeNode<E>)(w.right) : (RBTreeNode<E>)(w.left);

if (x == null || x.isBlack()) {
// Case 1: v's sibling x is black
if (w.left == v && v.left == u) {
// Case 1.1: u < v < w, Restructure and recolor nodes

 }
else if (w.left == v && v.right == u) {
// Case 1.2: v < u < w, Restructure and recolor nodes

 }
else if (w.right == v && v.right == u) {

10

// Case 1.3: w < v < u, Restructure and recolor nodes
 }

else {
// Case 1.4: w < u < v, Restructure and recolor nodes

 }
 }
else { // Case 2: v's sibling x is red

 Color w and u red
 Color two children of w black.

if (w is root) {
 Set w black;
 }

else if (the parent of w is red) {
// Propagate along the path to fix new double-red violation

 u = w;
 v = parent of w;
 fixDoubleRed(u, v, path, i - 2); // i – 2 propagates upward
 }
 }
}

<margin note: insert(E, e)>
The insert(E e) method (lines 1–10) invokes the insert method in the
BinaryTree class to create a new leaf node for the element (line 2). If
the element is already in the tree, return false (line 4). Otherwise,
invoke ensureRBTree(e) (line 6) to ensure that the tree satisfies the
color and black depth property of the red-black tree.

<margin note: ensureRBTree(E, e)>
The ensureRBTree(E e) method (lines 13–24) obtains the path that leads
to e from the root (line 14), as shown in Figure 48.13. This path plays
an important role to implement the algorithm. From this path, you get
nodes u and v (lines 16–17). If u is the root, color u black (lines 20–
21). If v is red, a double-red violation occurs at node u. Invoke
fixDoubleRed to fix the problem.

u

root

v

w

path

If path.get(i) is u, path.get (i – 1) is
v and path.get(i – 2) is w.

Figure 48.13
The path consists of the nodes from u to the root.

<margin note: fixDoubleRed>
The fixDoubleRed method (lines 27–63) fixes the double-red violation. It
first obtains w (the parent of v) from the path (line 29) and x (the

11

sibling of v) (lines 32–33). If x is empty or a black node, restructure
and recolor three nodes u, v, and w to eliminate the problem (lines 35–
49). If x is a red node, recolor the nodes u, v, w and x (lines 51–52).
If w is the root, color w black (lines 54–56). If the parent of w is
red, the double-red violation reappears at w. Invoke fixDoubleRed with
new u and v to fix the problem (line 61). Note that now i – 2 points to
the new u in the path. This adjustment is necessary to locate the new
nodes w and parent of w along the path.

<margin note: insertion example>
Figure 48.14 shows the steps of inserting 34, 3, 50, 20, 15, 16, 25, and
27 into an empty red-black tree. When inserting 20 into the tree in (d),
Case 2 applies to recolor 3 and 50 to black. When inserting 15 into the
tree in (g), Case 1.4 applies to restructure and recolor nodes 15, 20,
and 3. When inserting 16 into the tree in (i), Case 2 applies to recolor
nodes 3 and 20 to black and nodes 15 and 16 to red. When inserting 27
into the tree in (l), Case 2 applies to recolor nodes 16 and 25 to black
and nodes 20 and 27 to red. Now a new double-red problem occurs at node
20. Apply Case 1.2 to restructure and recolor nodes. The new tree is
shown in (n).

root in null 34 3

34

3

34

50

3

34

50

20

 (a) (b) (c) (d) (e)

3

34

50

20

3

34

5 0

20

1 5

15

34

50

203

 (f) (g) (h)

15

34

50

203

16

15

34

50

203

16

15

34

50

203

16 25

 (i) (j) (k)

12

15

34

50

203

16 25

27

15

34

50

203

16 25

27

15

20

34

163 25

27

50

 (l) (m) (n)

Figure 48.14
Inserting into a red-black tree: (a) initial empty tree; (b) inserting
34; (c) inserting 3; (d) inserting 50; (e) inserting 20 causes a double
red; (f) after recoloring (Case 2); (g) inserting 15 causes a double
red; (h) after restructuring and recoloring (Case 1.4); (i) inserting 16
causes a double red; (j) after recoloring (Case 2); (k) inserting 25;
(l) inserting 27 causes a double red at 27; (m) a double red at 20
reappears after recoloring (Case 2); (n) after restructuring and
recoloring (Case 1.2).

48.5 Overriding the delete Method

To delete an element from a red-black tree, first search the element in
the tree to locate the node that contains the element. If the element is
not in the tree, the method returns false. Let u be the node that
contains the element. If u is an internal node with both left and right
children, find the rightmost node in the left subtree of u . Replace the
element in u with the element in the rightmost node. Now we will only
consider deleting external nodes.

Let u be an external node to be deleted. Since u is an external node,
it has at most one child, denoted by childOfu. childOfu may be null. Let
parentOfu denote the parent of u , as shown in Figure 48.15(a). Delete
u by connecting childOfu with parentOfu, as shown in Figure 48.15(b).

u

parentOfu

childOfu

u

parentOfu

childOfu

 (a) Before deleting u (b) After deleting u

Figure 48.15
u is an external node and childOfu may be null.

Consider the following case:

If u is red, we are done.

13

If u is black and childOfu is red, color childOfu black to
maintain the black height for childOfu.

<margin note: double black>
Otherwise, assign childOfu a fictitious double black, as shown in
Figure 48.16(a). We call this a double-black problem, which
indicates that the black-depth is short by 1, caused by deleting a
black node u.

u is black

parentOfu

childOfu is
black or null

u

parentOfu

 (a) (b)
Figure 48.16
(a) childOfu is denoted double black. (b) u corresponds to an empty node
in a 2-4 tree.

A double black in a red-black tree corresponds to an empty node for u
(i.e., underflow situation) in the corresponding 2-4 tree, as shown in
Figure 48.16(b). To fix the double-black problem, we will perform
equivalent transfer and fusion operations. Consider three cases:

<margin note: Case 1>
Case 1: The sibling y of childOfu is black and has a red child. This
case has four possible configurations, as shown in Figures 48.17(a),
48.18(a), 48.19(a), and 48.20(a). The dashed circle denotes that the
node is either red or black. To eliminate the double-black problem,
restructure and recolor the nodes, as shown in Figures 48.17(b),
48.18(b), 48.19(b), and 48.20(b).

parent
childOfu is
double black y

y1 y2

parent

childOfu

y

y1

y2

 (a) (b)

Figure 48.17
Case 1.1: The sibling y of childOfu is black and y1 is red.

14

parent
childOfu is
double black y

y1 y2

parent

childOfu

y2

y

y1

y2.left y2.right

 (a) (b)

Figure 48.18
Case 1.2: The sibling y of childOfu is black and y2 is red.

parent

childOfu is
double black

y

y1 y2

parent

childOfu

y1

y

y2
y1.left y1.right

 (a) (b)

Figure 48.19
Case 1.3: The sibling y of childOfu is black and y1 is red.

parent

childOfu is
double black

y

y1 y2

parent

childOfu

y

y2

y1

 (a) (b)

Figure 48.20
Case 1.4: the sibling y of childOfu is black and y2 is red.

Note

<margin note: transfer operation>
Case 1 corresponds to a transfer operation in the 2-4
tree. For example, the corresponding 2-4 tree for Figure
48.17(a) is shown in Figure 48.21(a), and it is
transformed into 48.21(b) through a transfer operation.

15

u

parent

childOfu

y1 y parent

y

childOfu

y1

 (a) (b)

Figure 48.21
Case 1 corresponds to a transfer operation in the corresponding 2-4
tree.

***END of NOTE

<margin note: Case 2>
<margin note: propagate>
Case 2: The sibling y of childOfu is black and its children are black or
null. In this case, change y’s color to red. If parent is red, change it
to black, and we are done, as shown in Figure 48.22. If parent is black,
we denote parent double black, as shown in Figure 48.23. The double-
black problem propagates to the parent node.

parent
childOfu is
double black y

y1 y2

parent

childOfu y

y1 y2

 (a) (b)

Figure 48.22
Case 2: Recoloring eliminates the double-black problem if parent is red.

parent
childOfu is
double black y

y1 y2

parent

childOfu y

y1 y2

 (a) (b)

Figure 48.23
Case 2: Recoloring propagates the double-black problem if parent is
black.

Note

16

<margin note: left childOfu>
Figures 48.22 and 48.22 show that childOfu is a right
child of parent. If childOfu is a left child of parent,
recoloring is performed identically.

Note

<margin note: fusion operation>
Case 2 corresponds to a fusion operation in the 2-4 tree.
For example, the corresponding 2-4 tree for Figure
48.22(a) is shown in Figure 48.24(a), and it is
transformed into 48.24(b) through a fusion operation.

u

parent

childOfu

y

…

childOfu

y parent

 (a) (b)

Figure 48.24
Case 2 corresponds to a fusion operation in the corresponding 2-4 tree.

***END of NOTE

<margin note: Case 3>
<margin note: adjustment>
Case 3: The sibling y of childOfu is red. In this case, perform an
adjustment operation. If y is a left child of parent, let y1 and y2 be
the left and right child of y, as shown in Figure 48.25. If y is a right
child of parent, let y1 and y2 be the left and right child of y, as
shown in Figure 48.26. In both cases, color y black and parent red.
childOfu is still a fictitious double-black node. After the adjustment,
the sibling of childOfu is now black, and either Case 1 or Case 2
applies. If Case 1 applies, a one-time restructuring and recoloring
operation eliminates the double-black problem. If Case 2 applies, the
double-black problem cannot reappear, since parent is now red.
Therefore, one-time application of Case 1 or Case 2 will complete Case
3.

parent
childOfu is
double black y

y1 y2

parent

childOfu is
double black

y

y1

y2

 (a) (b)

Figure 48.25
Case 3.1: y is a left red child of parent.

17

parent

childOfu is
double black

y

y1 y2 childOfu is
double black

parent

y

y1

y2

 (a) (b)

Figure 48.26
Case 3.2: y is a right red child of parent.

Note

<margin note: nonunique transform of 3-node>
Case 3 results from the fact that a 3-node may be
transformed in two ways to a red-black tree, as shown in
Figure 48.27.

u

y parent

childOfu

y1 y2

parent

childOfu is
double black

y

y1 y2

y

y1

y2

or

u

childOfu

childOfu is
double black

u

childOfu

(a)

(b)

(c)

parent

 Figure 48.27
A 3-node may be transformed in two ways to red-black tree nodes.

Based on the foregoing discussion, Listing 48.2 presents a more detailed
algorithm for deleting an element.

Listing 48.2 Deleting an Element from a Red-Black Tree
<margin note line 1: delete e from tree>
<margin note line 2: locate the node>
<margin note line 4: element not found>
<margin note line 6: internal element?>
<margin note line 7: rightmost node>
<margin note line 12: path to external node>
<margin note line 15: delete the node>
<margin note line 17: one element deleted>

18

<margin note line 18: deletion successful>

<margin note line 22: delete a node>
<margin note line 23: u>
<margin note line 24: parentOfu, grandparentOfu>
<margin note line 23: childOfu>
<margin note line 26: delete u>
<margin note line 30: done>
<margin note line 32: set childOfu black>
<margin note line 35: fix double black>

<margin note line 39: fix double black>
<margin note line 42: y, y1, y2>
<margin note line 47: process Case 1.1>
<margin note line 51: process Case 1.3>
<margin note line 57: process Case 1.2>
<margin note line 61: process Case 1.4>
<margin note line 66: process Case 2>
<margin note line 77: propagate double black>
<margin note line 83: process Case 3.1>
<margin note line 88: process Case 3.2>
<margin note line 95: fix double black>

public boolean delete(E e) {
 Locate the node to be deleted
 if (the node is not found)
 return false;

 if (the node is an internal node) {
 Find the rightmost node in the subtree of the node;
 Replace the element in the node with the one in rightmost;
 The rightmost node is the node to be deleted now;
 }

 Obtain the path from the root to the node to be deleted;

 // Delete the last node in the path and propagate if needed
 deleteLastNodeInPath(path);

 size--; // After one element deleted
 return true; // Element deleted
}

/** Delete the last node from the path. */
public void deleteLastNodeInPath(ArrayList<TreeNode<E>> path) {
 Get the last node u in the path;
 Get parentOfu and grandparentOfu in the path;
 Get childOfu from u;
 Delete node u. Connect childOfu with parentOfu

 // Recolor the nodes and fix double black if needed
 if (childOfu == root || u.isRed())
 return; // Done if childOfu is root or if u is red
 else if (childOfu != null && childOfu.isRed())
 childOfu.setBlack(); // Set it black, done
 else // u is black, childOfu is null or black
 // Fix double black on parentOfu

19

 fixDoubleBlack(grandparentOfu, parentOfu, childOfu, path, i);
}

/** Fix the double black problem at node parent */
private void fixDoubleBlack(
 RBTreeNode<E> grandparent, RBTreeNode<E> parent,
 RBTreeNode<E> db, ArrayList<TreeNode<E>> path, int i) {
 Obtain y, y1, and y2

 if (y.isBlack() && y1 != null && y1.isRed()) {
 if (parent.right == db) {
 // Case 1.1: y is a left black sibling and y1 is red
 Restructure and recolor parent, y, and y1 to fix the problem;
 }
 else {
 // Case 1.3: y is a right black sibling and y1 is red
 Restructure and recolor parent, y1, and y to fix the problem;
 }
 }
 else if (y.isBlack() && y2 != null && y2.isRed()) {
 if (parent.right == db) {
 // Case 1.2: y is a left black sibling and y2 is red
 Restructure and recolor parent, y2, and y to fix the problem;
 }
 else {
 // Case 1.4: y is a right black sibling and y2 is red
 Restructure and recolor parent, y, and y2 to fix the problem;
 }
 }
 else if (y.isBlack()) {
 // Case 2: y is black and y's children are black or null
 Recolor y to red;

 if (parent.isRed())
 parent.setBlack(); // Done
 else if (parent != root) {
 // Propagate double black to the parent node
 // Fix new appearance of double black recursively
 db = parent;
 parent = grandparent;
 grandparent =
 (i >= 3) ? (RBTreeNode<E>)(path.get(i - 3)) : null;
 fixDoubleBlack(grandparent, parent, db, path, i - 1);
 }
 }
 else if (y.isRed()) {
 if (parent.right == db) {
 // Case 3.1: y is a left red child of parent
 parent.left = y2;
 y.right = parent;
 }
 else {
 // Case 3.2: y is a right red child of parent
 parent.right = y.left;
 y.left = parent;
 }

20

 parent.setRed(); // Color parent red
 y.setBlack(); // Color y black
 connectNewParent(grandparent, parent, y); // y is new parent
 fixDoubleBlack(y, parent, db, path, i - 1);
 }
}

<margin note: delete(E, e)>
The delete(E e) method (lines 1–19) locates the node that contains e
(line 2). If the node does not exist, return false (lines 3–4). If the
node is an internal node, find the right most node in its left subtree
and replace the element in the node with the element in the right most
node (lines 6–9). Now the node to be deleted is an external node. Obtain
the path from the root to the node (line 12). Invoke
deleteLastNodeInPath(path) to delete the last node in the path and
ensure that the tree is still a red-black tree (line 15).

<margin note: deleteLastNodeInPath(path)>
The deleteLastNodeInPath method (lines 22–36) obtains the last node u,
parentOfu, grandparendOfu, and childOfu (lines 23–26). If childOfu is
the root or u is red, the tree is fine (lines 29–30). If childOfu is
red, color it black (lines 31–32). We are done. Otherwise, u is black
and childOfu is null or black. Invoke fixDoubleBlack to eliminate the
double-black problem (line 35).

<margin note: fixDoubleBlack>
The fixDoubleBlack method (lines 39–97) eliminates the double-black
problem. Obtain y, y1, and y2 (line 42). y is the sibling of the double-
black node. y1 and y2 are the left and right children of y. Consider
three cases:

1. If y is black and one of its children is red, the double-black
problem can be fixed by one-time restructuring and recoloring in
Case 1 (lines 44–63).

2. If y is black and its children are null or black, change y to red.
If parent of y is black, denote parent to be the new double-black
node and invoke fixDoubleBlack recursively (line 77).

3. If y is red, adjust the nodes to make parent a child of y (lines
84, 89) and color parent red and y black (lines 92–93). Make y the
new parent (line 94). Recursively invoke fixDoubleBlack on the
same double-black node with a different color for parent (line
95).

<margin note: deletion example>
Figure 48.28 shows the steps of deleting elements. To delete 50 from the
tree in Figure 48.28(a), apply Case 1.2, as shown in Figure 48.28(b).
After restructuring and recoloring, the new tree is as shown in Figure
48.28(c).

When deleting 20 in Figure 48.28(c), 20 is an internal node, and it is
replaced by 16, as shown in Figure 48.28(d). Now Case 2 applies to
deleting the rightmost node, as shown in Figure 48.28(e). Recolor the
nodes results in a new tree, as shown in Figure 48.28(f).

When deleting 15, connect node 3 with node 20 and color node 3 black, as
shown in Figure 48.28(g). We are done.

21

After deleting 25, the new tree is as shown in Figure 48.28(j). Now
delete 16. Apply Case 2, as shown in Figure 48.28(k). The new tree is
shown in Figure 48.28(l).

After deleting 34, the new tree is as shown in Figure 48.28(m).

After deleting 27, the new tree is as shown in Figure 48.28(n).

15

20

34

163 25

27

50

15

20

34

163 25

27

null

15

20

27

163 25 34

 (a) Delete 50 (b) Case 1.2 (c) Delete 20

15

16

27

163 25 34

15

16

27

null3 25 34

15

16

27

3 25 34

 (d) Copy 16 to replace 20 (e) Case 2 (f) Delete 15

3

16

27

25 34

null

16

27

25 34

16

27

34

25null

 (g) Delete 3 (h) Case 3 (i) Case 2

16

27

34

25

16

27

34

27

34null

 (i) Delete 25 (j) Delete 16 (k) Case 2

27

34

27 nullroot:

 (l) Delete 34 (m) Delete 27 (n) Empty tree

22

Figure 48.28
Delete elements from a red-black tree.

48.6 Implementing RBTree Class

Listing 48.3 gives a complete implementation for the RBTree class.

Listing 48.3 RBTree.java
<margin note line 5: no-arg constructor>
<margin note line 9: constructor>
<margin note line 14: create a new node>
<margin note line 19: insert to tree>
<margin note line 20: invoke super.insert>
<margin note line 22: duplicate element>
<margin note line 24: ensure color and depth>

<margin note line 31: ensure color and depth>
<margin note line 33: get path>
<margin note line 35: node index>
<margin note line 38: get u >
<margin note line 41: get v>

<margin note line 46: u is root?>
<margin note line 49: double-red violation>

<margin note line 53: fix double red>
<margin note line 56: get w>
<margin note line 61: get x>
<margin note line 65: Case 1>
<margin note line 66: Case 1.1>
<margin note line 73: Case 1.2>
<margin note line 81: Case 1.3>
<margin note line 87: Case 1.4>
<margin note line 96: Case 2>
<margin note line 98: recoloring>
<margin note line 103: w is root?>
<margin note line 108: propagate upward>
<margin note line 110: fix new double red>

<margin note line 116: restructure/recolor>
<margin note line 133: delete e from tree>
<margin note line 135: locate the node>
<margin note line 147: element not found>
<margin note line 153: internal element?>
<margin note line 155: rightmost node>
<margin note line 160: path to external node>
<margin note line 169: delete the node>
<margin note line 171: one element deleted>
<margin note line 172: deletion successful>

<margin note line 176: delete a node>
<margin note line 179: u>
<margin note line 180: parentOfu>
<margin note line 182: grandparentOfu>
<margin note line 185: childOfu>
<margin note line 189: delete u>
<margin note line 193: done>

23

<margin note line 195: set childOfu black>
<margin note line 198: fix double black>

<margin note line 202: fix double black>
<margin note line 206: y, y1, y2>
<margin note line 212: process Case 1.1>
<margin note line 221: process Case 1.3>
<margin note line 234: process Case 1.2>
<margin note line 245: process Case 1.4>
<margin note line 255: process Case 2>
<margin note line 263: propagate double black>
<margin note line 271: process Case 3.1>
<margin note line 276: process Case 3.2>
<margin note line 285: fix double black>

<margin note line 304: connect to grandParent>
<margin note line 318: override preorder>
<margin note line 327: RBTreeNode>

import java.util.ArrayList;

public class RBTree<E extends Comparable<E>> extends BinaryTree<E> {
 /** Create a default RB tree */
 public RBTree() {
 }

 /** Create an RB tree from an array of elements */
 public RBTree(E[] elements) {
 super(elements);
 }

 /** Override createNewNode to create an RBTreeNode */
 protected RBTreeNode<E> createNewNode(E e) {
 return new RBTreeNode<E>(e);
 }

 /** Override the insert method to balance the tree if necessary */
 public boolean insert(E e) {
 boolean successful = super.insert(e);
 if (!successful)
 return false; // e is already in the tree
 else {
 ensureRBTree(e);
 }

 return true; // e is inserted
 }

 /** Ensure that the tree is a red-black tree */
 private void ensureRBTree(E e) {
 // Get the path that leads to element e from the root
 ArrayList<TreeNode<E>> path = path(e);

 int i = path.size() - 1; // Index to the current node in the path

 // u is the last node in the path. u contains element e
 RBTreeNode<E> u = (RBTreeNode<E>)(path.get(i));

24

 // v is the parent of of u, if exists
 RBTreeNode<E> v = (u == root) ? null :
 (RBTreeNode<E>)(path.get(i - 1));

 u.setRed(); // It is OK to set u red

 if (u == root) // If e is inserted as the root, set root black
 u.setBlack();
 else if (v.isRed())
 fixDoubleRed(u, v, path, i); // Fix double-red violation at u
 }

 /** Fix double-red violation at node u */
 private void fixDoubleRed(RBTreeNode<E> u, RBTreeNode<E> v,
 ArrayList<TreeNode<E>> path, int i) {
 // w is the grandparent of u
 RBTreeNode<E> w = (RBTreeNode<E>)(path.get(i - 2));
 RBTreeNode<E> parentOfw = (w == root) ? null :
 (RBTreeNode<E>)path.get(i - 3);

 // Get v's sibling named x
 RBTreeNode<E> x = (w.left == v) ?
 (RBTreeNode<E>)(w.right) : (RBTreeNode<E>)(w.left);

 if (x == null || x.isBlack()) {
 // Case 1: v's sibling x is black
 if (w.left == v && v.left == u) {
 // Case 1.1: u < v < w, Restructure and recolor nodes
 restructureRecolor(u, v, w, w, parentOfw);

 w.left = v.right; // v.right is y3 in Figure 48.6
 v.right = w;
 }
 else if (w.left == v && v.right == u) {
 // Case 1.2: v < u < w, Restructure and recolor nodes
 restructureRecolor(v, u, w, w, parentOfw);
 v.right = u.left;
 w.left = u.right;
 u.left = v;
 u.right = w;
 }
 else if (w.right == v && v.right == u) {
 // Case 1.3: w < v < u, Restructure and recolor nodes
 restructureRecolor(w, v, u, w, parentOfw);
 w.right = v.left;
 v.left = w;
 }
 else {
 // Case 1.4: w < u < v, Restructure and recolor nodes
 restructureRecolor(w, u, v, w, parentOfw);
 w.right = u.left;
 v.left = u.right;
 u.left = w;
 u.right = v;
 }

25

 }
 else { // Case 2: v's sibling x is red
 // Recolor nodes
 w.setRed();
 u.setRed();
 ((RBTreeNode<E>)(w.left)).setBlack();
 ((RBTreeNode<E>)(w.right)).setBlack();

 if (w == root) {
 w.setBlack();
 }
 else if (((RBTreeNode<E>)parentOfw).isRed()) {
 // Propagate along the path to fix new double-red violation
 u = w;
 v = (RBTreeNode<E>)parentOfw;
 fixDoubleRed(u, v, path, i - 2); // i – 2 propagates upward
 }
 }
 }

 /** Connect b with parentOfw and recolor a, b, c for a < b < c */
 private void restructureRecolor(RBTreeNode<E> a, RBTreeNode<E> b,
 RBTreeNode<E> c, RBTreeNode<E> w, RBTreeNode<E> parentOfw) {
 if (parentOfw == null)
 root = b;
 else if (parentOfw.left == w)
 parentOfw.left = b;
 else
 parentOfw.right = b;

 b.setBlack(); // b becomes the root in the subtree
 a.setRed(); // a becomes the left child of b
 c.setRed(); // c becomes the right child of b
 }

 /** Delete an element from the RBTree.
 * Return true if the element is deleted successfully
 * Return false if the element is not in the tree */
 public boolean delete(E e) {
 // Locate the node to be deleted
 TreeNode<E> current = root;
 while (current != null) {
 if (e.compareTo(current.element) < 0) {
 current = current.left;
 }
 else if (e.compareTo(current.element) > 0) {
 current = current.right;
 }
 else
 break; // Element is in the tree pointed by current
 }

 if (current == null)
 return false; // Element is not in the tree

 java.util.ArrayList<TreeNode<E>> path;

26

 // current node is an internal node
 if (current.left != null && current.right != null) {
 // Locate the rightmost node in the left subtree of current
 TreeNode<E> rightMost = current.left;
 while (rightMost.right != null) {
 rightMost = rightMost.right; // Keep going to the right
 }

 path = path(rightMost.element); // Get path before replacement

 // Replace the element in current by the element in rightMost
 current.element = rightMost.element;
 }
 else
 path = path(e); // Get path to current node

 // Delete the last node in the path and propagate if needed
 deleteLastNodeInPath(path);

 size--; // After one element deleted
 return true; // Element deleted
 }

 /** Delete the last node from the path. */
 public void deleteLastNodeInPath(ArrayList<TreeNode<E>> path) {
 int i = path.size() - 1; // Index to the node in the path
 // u is the last node in the path
 RBTreeNode<E> u = (RBTreeNode<E>)(path.get(i));
 RBTreeNode<E> parentOfu = (u == root) ? null :
 (RBTreeNode<E>)(path.get(i - 1));
 RBTreeNode<E> grandparentOfu = (parentOfu == null ||
 parentOfu == root) ? null :
 (RBTreeNode<E>)(path.get(i - 2));
 RBTreeNode<E> childOfu = (u.left == null) ?
 (RBTreeNode<E>)(u.right) : (RBTreeNode<E>)(u.left);

 // Delete node u. Connect childOfu with parentOfu
 connectNewParent(parentOfu, u, childOfu);

 // Recolor the nodes and fix double black if needed
 if (childOfu == root || u.isRed())
 return; // Done if childOfu is root or if u is red
 else if (childOfu != null && childOfu.isRed())
 childOfu.setBlack(); // Set it black, done
 else // u is black, childOfu is null or black
 // Fix double black on parentOfu
 fixDoubleBlack(grandparentOfu, parentOfu, childOfu, path, i);
 }

 /** Fix the double-black problem at node parent */
 private void fixDoubleBlack(
 RBTreeNode<E> grandparent, RBTreeNode<E> parent,
 RBTreeNode<E> db, ArrayList<TreeNode<E>> path, int i) {
 // Obtain y, y1, and y2
 RBTreeNode<E> y = (parent.right == db) ?

27

 (RBTreeNode<E>)(parent.left) : (RBTreeNode<E>)(parent.right);
 RBTreeNode<E> y1 = (RBTreeNode<E>)(y.left);
 RBTreeNode<E> y2 = (RBTreeNode<E>)(y.right);

 if (y.isBlack() && y1 != null && y1.isRed()) {
 if (parent.right == db) {
 // Case 1.1: y is a left black sibling and y1 is red
 connectNewParent(grandparent, parent, y);
 recolor(parent, y, y1); // Adjust colors

 // Adjust child links
 parent.left = y.right;
 y.right = parent;
 }
 else {
 // Case 1.3: y is a right black sibling and y1 is red
 connectNewParent(grandparent, parent, y1);
 recolor(parent, y1, y); // Adjust colors

 // Adjust child links
 parent.right = y1.left;
 y.left = y1.right;
 y1.left = parent;
 y1.right = y;
 }
 }
 else if (y.isBlack() && y2 != null && y2.isRed()) {
 if (parent.right == db) {
 // Case 1.2: y is a left black sibling and y2 is red
 connectNewParent(grandparent, parent, y2);
 recolor(parent, y2, y); // Adjust colors

 // Adjust child links
 y.right = y2.left;
 parent.left = y2.right;
 y2.left = y;
 y2.right = parent;
 }
 else {
 // Case 1.4: y is a right black sibling and y2 is red
 connectNewParent(grandparent, parent, y);
 recolor(parent, y, y2); // Adjust colors

 // Adjust child links
 y.left = parent;
 parent.right = y1;
 }
 }
 else if (y.isBlack()) {
 // Case 2: y is black and y's children are black or null
 y.setRed(); // Change y to red
 if (parent.isRed())
 parent.setBlack(); // Done
 else if (parent != root) {
 // Propagate double black to the parent node
 // Fix new appearance of double black recursively

28

 db = parent;
 parent = grandparent;
 grandparent =
 (i >= 3) ? (RBTreeNode<E>)(path.get(i - 3)) : null;
 fixDoubleBlack(grandparent, parent, db, path, i - 1);
 }
 }
 else { // y.isRed()
 if (parent.right == db) {
 // Case 3.1: y is a left red child of parent
 parent.left = y2;
 y.right = parent;
 }
 else {
 // Case 3.2: y is a right red child of parent
 parent.right = y.left;
 y.left = parent;
 }

 parent.setRed(); // Color parent red
 y.setBlack(); // Color y black
 connectNewParent(grandparent, parent, y); // y is new parent
 fixDoubleBlack(y, parent, db, path, i - 1);
 }
 }

 /** Recolor parent, newParent, and c. Case 1 removal */
 private void recolor(RBTreeNode<E> parent,
 RBTreeNode<E> newParent, RBTreeNode<E> c) {
 // Retain the parent's color for newParent
 if (parent.isRed())
 newParent.setRed();
 else
 newParent.setBlack();

 // c and parent become the children of newParent; set them black
 parent.setBlack();
 c.setBlack();
 }

 /** Connect newParent with grandParent */
 private void connectNewParent(RBTreeNode<E> grandparent,
 RBTreeNode<E> parent, RBTreeNode<E> newParent) {
 if (parent == root) {
 root = newParent;
 if (root != null)
 newParent.setBlack();
 }
 else if (grandparent.left == parent)
 grandparent.left = newParent;
 else
 grandparent.right = newParent;
 }

 /** Preorder traversal from a subtree */
 protected void preorder(TreeNode<E> root) {

29

 if (root == null) return;
 System.out.print(root.element +
 (((RBTreeNode<E>)root).isRed() ? " (red) " : " (black) "));
 preorder(root.left);
 preorder(root.right);
 }

 /** RBTreeNode is TreeNode plus color indicator */
 protected static class RBTreeNode<E extends Comparable<E>> extends
 BinaryTree.TreeNode<E> {
 private boolean red = true; // Indicate node color

 public RBTreeNode(E e) {
 super(e);
 }

 public boolean isRed() {
 return red;
 }

 public boolean isBlack() {
 return!red;
 }

 public void setBlack() {
 red = false;
 }

 public void setRed() {
 red = true;
 }

 int blackHeight;
 }
}

<margin note: constructors>
The RBTree class extends BinaryTree. Like the BinaryTree class, the
RBTree class has a no-arg constructor that constructs an empty RBTree
(lines 5–6) and a constructor that creates an initial RBTree from an
array of elements (lines 9–11).

<margin note: createNewNode()>
The createNewNode() method defined in the BinaryTree class creates a
TreeNode. This method is overridden to return an RBTreeNode (lines 14–
16). This method is invoked in the insert method in BinaryTree to create
a node.

<margin note: insert>
The insert method in RBTree is overridden in lines 19–28. The method
first invokes the insert method in BinaryTree, then invokes
ensureRBTree(e) (line 24) to ensure that tree is still a red-black tree
after inserting a new element.

<margin note: ensureRBTree>
The ensureRBTree(E e) method first obtains the path of nodes that lead
to element e from the root (line 33). It obtains u and v (the parent of

30

u) from the path. If u is the root, color u black (lines 46–47). If v is
red, invoke fixDoubleRed to fix the double red on both u and v (lines
48–49).

<margin note: fixDoubleRed>
The fixDoubleRed(u, v, path, i) method fixes the double-red violation at
node u. The method first obtains w (the grandparent of u from the path)
(line 56), parentOfw if exists (lines 57–58), and x (the sibling of v)
(lines 61–62). If x is null or black, consider four subcases to fix the
double-red violation (lines 66–95). If x is red, color w and u red and
color w’s two children black (lines 100–103). If w is the root, color w
black (lines 103-105). Otherwise, propagate along the path to fix the
new double-red violation (lines 108–110).

<margin note: delete>
The delete(E e) method in RBTree is overridden in lines 133–173. The
method locates the node that contains e (lines 135–145). If the node is
null, no element is found (lines 147–148). The method considers two
cases:

If the node is internal, find the rightmost node in its left
subtree (lines 155–158). Obtain a path from the root to the
rightmost node (line 160), and replace the element in the node
with the element in the rightmost node (line 163).

If the node is external, obtain the path from the root to the node
(line 166).

The last node in the path is the node to be deleted. Invoke
deleteLastNodeInPath(path) to delete it and ensure the tree is a red-
black after the node is deleted (line 169).

<margin note: deleteLastNodeInPath>
The deleteLastNodeInPath(path) method first obtains u, parentOfu,
grandparendOfu, and childOfu (lines 179-186). u is the last node in the
path. Connect childOfu as a child of parentOfu (line 189). This in
effect deletes u from the tree. Consider three cases:

If childOfu is the root or childOfu is red, we are done (lines
192-193).
Otherwise, if childOfu is red, color it black (lines 194–195).
Otherwise, invoke fixDoubleBlack to fix the double-black problem
on childOfu (line 198).

<margin note: fixDoubleBlack>
The fixDoubleBlack method first obtains y, y1, and y2 (lines 206-209). y
is the sibling of the first double-black node, and y1 and y2 are the
left and right children of y. Consider three cases:

If y is black and y1 or y2 is red, fix the double-black problem
for Case 1 (lines 212–254).

Otherwise, if y is black, fix the double-black problem for Case 2
by recoloring the nodes. If parent is black and not a root,
propagate double black to parent and recursively invoke
fixDoubleBlack (lines 263–267).

31

Otherwise, y is red. In this case, adjust the nodes to make parent
the child of y (lines 271–280). Invoke fixDoubleBlack with the
adjusted nodes (line 285) to fix the double-black problem.

<margin note: preorder>
The preorder(TreeNode<E> root) method is overridden to display the node
colors (lines 318-324).

48.7 Testing the RBTree Class

Listing 48.4 gives a test program. The program creates an RBTree
initialized with an array of integers 34, 3, and 50 (lines 4–5), inserts
elements in lines 10–22, and deletes elements in lines 25–46.

Listing 48.4 TestRBTree.java
<margin note line 5: create an RBTree>
<margin note line 8: insert 20>
<margin note line 11: insert 15>
<margin note line 14: insert 16>
<margin note line 17: insert 25>
<margin note line 20: insert 27>
<margin note line 23: delete 50>
<margin note line 29: delete 15>
<margin note line 32: delete 3>
<margin note line 35: delete 25>
<margin note line 38: delete 16>
<margin note line 41: delete 34>
<margin note line 44: delete 27>

public class TestRBTree {
 public static void main(String[] args) {
 // Create an RB tree
 RBTree<Integer> tree =
 new RBTree<Integer>(new Integer[]{34, 3, 50});
 printTree(tree);

 tree.insert(20);
 printTree(tree);

 tree.insert(15);
 printTree(tree);

 tree.insert(16);
 printTree(tree);

 tree.insert(25);
 printTree(tree);

 tree.insert(27);
 printTree(tree);

 tree.delete(50);
 printTree(tree);

 tree.delete(20);
 printTree(tree);

32

 tree.delete(15);
 printTree(tree);

 tree.delete(3);
 printTree(tree);

 tree.delete(25);
 printTree(tree);

 tree.delete(16);
 printTree(tree);

 tree.delete(34);
 printTree(tree);

 tree.delete(27);
 printTree(tree);
 }

 public static void printTree(BinaryTree tree) {
 // Traverse tree
 System.out.print("\nInorder (sorted): ");
 tree.inorder();
 System.out.print("\nPostorder: ");
 tree.postorder();
 System.out.print("\nPreorder: ");
 tree.preorder();
 System.out.print("\nThe number of nodes is " + tree.getSize());
 System.out.println();
 }
}

<Output>
Inorder (sorted): 3 34 50
Postorder: 3 50 34
Preorder: 34 (black) 3 (red) 50 (red)
The number of nodes is 3

Inorder (sorted): 3 20 34 50
Postorder: 20 3 50 34
Preorder: 34 (black) 3 (black) 20 (red) 50 (black)
The number of nodes is 4

Inorder (sorted): 3 15 20 34 50
Postorder: 3 20 15 50 34
Preorder: 34 (black) 15 (black) 3 (red) 20 (red) 50 (black)
The number of nodes is 5

Inorder (sorted): 3 15 16 20 34 50
Postorder: 3 16 20 15 50 34
Preorder: 34 (black) 15 (red) 3 (black) 20 (black) 16 (red) 50 (black)
The number of nodes is 6

Inorder (sorted): 3 15 16 20 25 34 50
Postorder: 3 16 25 20 15 50 34
Preorder: 34 (black) 15 (red) 3 (black) 20 (black) 16 (red) 25 (red)

33

 50 (black)
The number of nodes is 7

Inorder (sorted): 3 15 16 20 25 27 34 50
Postorder: 3 16 15 27 25 50 34 20
Preorder: 20 (black) 15 (red) 3 (black) 16 (black) 34 (red) 25 (black)
 27 (red) 50 (black)
The number of nodes is 8

Inorder (sorted): 3 15 16 20 25 27 34
Postorder: 3 16 15 25 34 27 20
Preorder: 20 (black) 15 (red) 3 (black) 16 (black) 27 (red)
 25 (black) 34 (black)
The number of nodes is 7

Inorder (sorted): 3 15 16 25 27 34
Postorder: 3 15 25 34 27 16
Preorder: 16 (black) 15 (black) 3 (red) 27 (red) 25 (black) 34 (black)
The number of nodes is 6

Inorder (sorted): 3 16 25 27 34
Postorder: 3 25 34 27 16
Preorder: 16 (black) 3 (black) 27 (red) 25 (black) 34 (black)
The number of nodes is 5

Inorder (sorted): 16 25 27 34
Postorder: 25 16 34 27
Preorder: 27 (black) 16 (black) 25 (red) 34 (black)
The number of nodes is 4

Inorder (sorted): 16 27 34
Postorder: 16 34 27
Preorder: 27 (black) 16 (black) 34 (black)
The number of nodes is 3

Inorder (sorted): 27 34
Postorder: 34 27
Preorder: 27 (black) 34 (red)
The number of nodes is 2

Inorder (sorted): 27
Postorder: 27
Preorder: 27 (black)
The number of nodes is 1

Inorder (sorted):
Postorder:
Preorder:
The number of nodes is 0
<End Output>

Figure 48.14 shows how the tree evolves as elements are added to it, and
Figure 48.28 shows how the tree evolves as elements are deleted from it.

34

48.8 Performance of the RBTree Class

<margin note: nlog2 height>
The search, insertion, and deletion times in a red-black tree depend on
the height of the tree. A red-black tree corresponds to a 2-4 tree. When
you convert a node in a 2-4 tree to red-black tree nodes, you get one
black node and zero, one, or two red nodes as its children, depending on
whether the original node is a 2-node, 3-node, or 4-node. So, the height
of a red-black tree is at most as twice that of its corresponding 2-4
tree. Since the height of a 2-4 tree is nlog , the height of a red-black

tree is nlog2 .

<margin note: red-black vs. AVL>
A red-black tree has the same time complexity as an AVL tree, as shown
in Table 48.1. In general, a red-black is more efficient than an AVL
tree, because a red-black tree requires only one time restructuring of
the nodes for insert and delete operations.

<margin note: red-black vs. 2-4>
A red-black tree has the same time complexity as a 2-4 tree, as shown in
Table 48.1. In general, a red-black is more efficient than a 2-4 tree
for two reasons:

1. A red-black tree requires only one-time restructuring of the nodes
for insert and delete operations. However, a 2-4 tree may require
many splits for an insert operation and fusion for a delete
operation.

2. A red-black tree is a binary search tree. A binary tree can be
implemented more space efficiently than a 2-4 tree, because a node
in a 2-4 tree has at most three elements and four children. Space
is wasted for 2-nodes and 3-nodes in a 2-4 tree.

Table 48.1
Time Complexities for Methods in RBTree, AVLTree, and Tree234

Mehtods Red-Black Tree AVL Tree 2-4 Tree

search(e: E))(lognO)(lognO)(log nO
insert(e: E))(lognO)(lognO)(log nO
delete(e: E))(lognO)(lognO)(lognO
getSize())1(O)1(O)1(O
isEmpty())1(O)1(O)1(O

Listing 48.5 gives an empirical test of the performance of AVL trees, 2-
4 trees, and red-black trees.

Listing 48.5 TreePerformanceTest.java

<margin note line 6: an AVL tree>
<margin note line 11: a 2-4 tree>
<margin note line 16: a red-black tree>
<margin note line 21: start time>
<margin note line 29: shuffle>
<margin note line 33: add to tree>

35

<margin note line 35: shuffle>
<margin note line 39: remove from container>
<margin note line 41: end time>
<margin note line 42: return elapsed time>

public class TreePerformanceTest {
 public static void main(String[] args) {
 final int TEST_SIZE = 500000; // Tree size used in the test

 // Create an AVL tree
 Tree<Integer> tree1 = new AVLTree<Integer>();
 System.out.println("AVL tree time: " +
 getTime(tree1, TEST_SIZE) + " milliseconds");

 // Create a 2-4 tree
 Tree<Integer> tree2 = new Tree24<Integer>();
 System.out.println("2-4 tree time: "
 + getTime(tree2, TEST_SIZE) + " milliseconds");

 // Create a red-black tree
 Tree<Integer> tree3 = new RBTree<Integer>();
 System.out.println("RB tree time: "
 + getTime(tree3, TEST_SIZE) + " milliseconds");
 }

 public static long getTime(Tree<Integer> tree, int testSize) {
 long startTime = System.currentTimeMillis(); // Start time

 // Create a list to store distinct integers
 java.util.List<Integer> list = new java.util.ArrayList<Integer>();
 for (int i = 0; i < testSize; i++)
 list.add(i);

 java.util.Collections.shuffle(list); // Shuffle the list

 // Insert elements in the list to the tree
 for (int i = 0; i < testSize; i++)
 tree.insert(list.get(i));

 java.util.Collections.shuffle(list); // Shuffle the list

 // Delete elements in the list from the tree
 for (int i = 0; i < testSize; i++)
 tree.delete(list.get(i));

 // Return elapse time
 return System.currentTimeMillis() - startTime;
 }
}

<Output>
AVL tree time: 7609 milliseconds
2-4 tree time: 8594 milliseconds
RB tree time: 5515 milliseconds
<End Output>

The getTestTime method creates a list of distinct integers from 0 to
testSize – 1 (lines 25–27), shuffles the list (line 29), adds the

36

elements from the list to a tree (lines 32–33), shuffles the list again
(line 35), removes the elements from the tree (lines 38–39), and finally
returns the execution time (line 42).

The program creates an AVL (line 6), a 2-4 tree (line 11), and a red-
black tree (line 16). The program obtains the execution time for adding
and removing 500000 elements in the three trees.

<margin note: red-black tree best>
As you see, the red-black tree performs the best, followed by the AVL
tree.

NOTE:
<margin note: java.util.TreeSet>

The java.util.TreeSet class in the Java API is
implemented using a red-black tree. Each entry in the set
is stored in the tree. Since the search, insert, and
delete methods in a red-black tree take)(lognO time, the
get, add, remove, and contains methods in
java.util.TreeSet take)(lognO time.

NOTE:
<margin note: java.util.TreeMap>

The java.util.TreeMap class in the Java API is
implemented using a red-black tree. Each entry in the map
is stored in the tree. The order of the entries is
determined by their keys. Since the search, insert, and
delete methods in a red-black tree take)(lognO time, the
get, put, remove, and containsKey methods in
java.util.TreeMap take)(lognO time.

Key Terms

black depth
double-black violation
double-red violation
external node
red-black tree

Chapter Summary

1. A red-black tree is a binary search tree, derived from a 2-4 tree.
A red-black tree corresponds to a 2-4 tree. You can convert a red-
black tree to a 2-4 tree or vice versa.

2. In a red-black tree, each node is colored red or black. The root
is always black. Two adjacent nodes cannot be both red. All
external nodes have the same black depth.

3. Since a red-black tree is a binary search tree, the RBTree class
extends the BinaryTree class.

4. Searching an element in a red-black tree is the same as in binary
search tree, since a red-black tree is a binary search tree.

5. A new element is always inserted as a leaf node. If the new node
is the root, color it black. Otherwise, color it red. If the
parent of the new node is red, we have to fix the double-red
violation by reassigning the color and/or restructuring the tree.

6. If a node to be deleted is internal, find the rightmost node in
its left subtree. Replace the element in the node with the element
in the rightmost node. Delete the rightmost node.

37

7. If the external node to be deleted is red, simply reconnect the
parent node of the external node with the child node of the
external node.

8. If the external node to be deleted is black, you need to consider
several cases to ensure that black height for external nodes in
the tree is maintained correctly.

9. The height of a red-black tree is O(logn). So, the time
complexities for the search, insert, and delete methods are
O(logn).

Test Questions

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions

Sections 48.1–48.2
48.1
What is a red-black tree? What is an external node? What is black-depth?

48.2
Describe the properties of a red-black tree.

48.3
How do you convert a red-black tree to a 2-4 tree? Is the conversion
unique?

48.4
How do you convert a 2-4 tree to a red-black tree? Is the conversion
unique?

Sections 48.3–48.5
48.5
What are the data fields in RBTreeNode?

48.6
How do you insert an element into a red-black tree and how do you fix
the double-red violation?

48.7
How do you delete an element from a red-black tree and how do you fix
the double-black problem?

48.8
Show the change of the tree when inserting 1, 2, 3, 4, 10, 9, 7, 5, 8, 6
into it, in this order.

48.9
For the tree built in the preceding question, show the change of the
tree after deleting 1, 2, 3, 4, 10, 9, 7, 5, 8, 6 from it in this order.

Programming Exercises

48.1*
(red-black tree to 2-4 tree) Write a program that converts a red-black

tree to a 2-4 tree.

38

48.2*
(2-4 tree to red-black tree) Write a program that converts a red-black

tree to a 2-4 tree.

48.3***
(red-black tree animation) Write a Java applet that animates the red-

black tree insert, delete, and search methods, as shown in
Figure 48.6.

48.4**
(Parent reference for RBTree) Suppose that the TreeNode class defined in

BinaryTree contains a reference to the node’s parent, as
shown in Exercise 26.17. Implement the RBTree class to
support this change. Write a test program that adds numbers
1, 2, ..., 100 to the tree and displays the paths for all
leaf nodes.

1

***This is a bonus Web chapter

CHAPTER 49

Java 2D

Objectives

To obtain a Graphics2D object for rendering Java 2D shapes
(§49.2).
To use geometric models to separate modeling of shapes from
rendering (§49.3).
To know the hierarchy of shapes (§49.3).
To model lines, rectangles, ellipses, arcs using Line2D,
Rectangle2D, RoundRectangle2D, Ellipse2D, and Arc2D (§49.4).
To perform coordinate transformation using the translate, rotate,
and scale methods (§49.5).
To specify the attributes of lines using the BasicStroke class
(§49.6).
To define a varying color using GradientPaint and define an image
paint using TexturePaint (§49.7).
To model quadratic curves and cubic curves using the QuadCurve2D
and CubicCurve2D classes (§49.8).
To model an arbitrary geometric path using Path2D and to define
interior points using the WIND_EVEN_ODD and WIND_NON_ZERO rules
(§49.9).
To perform constructive area geometry using the Area class
(§49.10).

2

49.1 Introduction

Using the methods in the Graphics class, you learned how to draw lines,
rectangles, ovals, arcs, and polygons. This chapter introduces Java 2D,
which enables you to draw advanced and complex two-dimensional
graphics.

NOTE:

This chapter introduces the basic and commonly used
features in Java 2D. For a complete coverage of Java 2D,
please see Computer Graphics Using Java 2D and 3D by Hong
Zhang and Y. Daniel Liang, published by Prentice Hall.

49.2 Obtaining a Graphics2D Object

You used the drawing methods in the Graphics class in the text. The
Graphics class is primitive. The Java 2D API provides the
java.awt.Graphics2D class, which extends java.awt.Graphics with
advanced capabilities for rendering graphics. Normally, you write the
code to draw graphics in the paintComponent method in a GUI component.
The coding template for the method is as follows:

protected void paintComponent(Graphics g) {
super.paintComponent(g);

// Use the method in Graphics to draw graphics
 ...
}

The parameter passed to the paintComponent method is actually an
instance of Graphics2D. So, to obtain a Graphics2D reference, you may
simply cast the parameter g to Graphics2D as follows:

protected void paintComponent(Graphics g) {
super.paintComponent(g);

 Graphics2D g2d = (Graphics2D)g; // Get a Graphics2D object

// Use the method in Graphics2D to draw graphics
 ...
}

Since Graphics2D is a subclass of Graphics, all the methods in Graphics
can be used in Graphics2D. Additionally, you can use the methods in
Graphics2D.

49.3 Geometric Models

You have used the methods in the Graphics class to draw lines,
rectangles, arcs, ellipses, and polygons. The Java 2D API uses the
model-view controller architecture to separate rendering from modeling.
This approach enables you to create shapes and perform manipulations,
such as transforming and rotating, to combine shapes using models, and
to use Graphics2D to render shapes.

3

Java 2D provides facilities to construct basic shapes and to combine
them to form more complex shapes. Figure 49.1 shows various shapes
supported in Java 2D.

«interface»
Shape

 Line2D

 RectangularShape Rectangle2D.Double

Line2D.Double

Line2D.Float

Rectangle2D

RoundRectangule2D

 Ellipse2D

 Arc2D

Rectangle2D.Float

Rectangle

 RoundRectangle2D.Double

 Ellipse2D.Double

 Ellipse2D.Float

 Arc2D.Double

 Arc2D.Float
QuadCurve2D QuadCurve2D.Double

QuadCurve2D.Float

CubicCurve2D CubicCurve2D.Double

CubicCurve2D.Float

 Polygon

 Area

GeneralPath

 Path2D Path2D.Double

 Path2D.Float

 RoundRectangle2D.Float

Figure 49.1

Java 2D defines various shapes.

<Side remark: methods in Shape>
The Shape interface defines the common features for shapes and
provides the contains method to test whether a point or a
rectangle is inside a shape, and the intersects method to test
whether the shape overlaps with a rectangle, as shown in Figure
49.2. These methods are often useful in geometrical programming.

4

«interface»
java.awt.Shape

+contains(x: double, y: double): boolean
+contains(x: double, y: double, w:

double, h: double): boolean
+contains(p: Point2D): boolean
+contains(r: Rectangle2D): boolean
+intersects x: double, y: double, w:

double, h: double): boolean
+intersects(r: Rectangle2D): boolean
+getBounds2D(): Rectangle2D

Tests wheth er the specified coordinates are ins ide th e shape.
Tests wheth er the specified rectangle with upper-left corner

(x, y), width w and height h is inside the shape.
Tests wheth er a specified Point2D is in side the shape.
Tests wheth er a specified Rectangle2D is inside the shape.
Tests wheth er the specified rectangle with upper-left corner

(x, y), width w and height h intersects thi s shap e.
Tests wheth er a specified Rectangle2D intersects thi s shape.
Returns a bou nding rectangle that encloses the shape.

Figure 49.2

Shape is the root interface for all Java 2D shapes.

<Side remark: concrete shape classes>
Classes Line2D, Rectangle2D, RoundRectangle2D, Arc2D, Ellipse2D,
QuadCurve2D, CubicCurve2D, and Path2D are abstract classes. Each
contains two concrete static inner classes named Double and Float for
double and float coordinates, respectively. For example, Line2D.Double
refers to the static inner class Double defined in the Line2D class.
You can use either Line2D.Double or Line2D.Float to create an object
for modeling a line, depending on whether you want to use double or
float for coordinates. These inner classes are also subclasses of their
respective outer classes. So Line2D.Double is a subclass of Line2D.

<Side remark: Point2D>
A point can be modeled using the abstract Point2D class. It contains
two concrete static inner classes Point2D.Double and Point2D.Float for
double and float coordinates, respectively. Point2D.Double and
Point2D.Float are also subclasses of Point2D. The Point class was
introduced in JDK 1.1 and now is included in Java 2D for backward
compatibility. Point is now defined as a subclass of Point2D. Point2D
contains the methods for finding the distance between two points.

<Side remark: create a shape>
To create a shape, use the constructor of a concrete shape class. For
example, to model a line from (x1, y1) to (x2, y2), you may create a
Line2D object with double data type using the following constructor:

<Side remark: create a line>
Line2D line = new Line2D.Double(x1, y1, x2, y2);

The Graphics2D class contains the draw(Shape s) method to draw the
boundary of the shape and the fill(Shape s) method to fill the interior
of the shape. To render the line on a GUI component, use

<Side remark: render a line>
g2d.draw(line);

where g2d is a Graphics2D object for the GUI component.

49.4 Rectangle2D, RoundRectangle2D, Arc2D, and Ellipse2D

<Side remark: RectangularShape>
RectangularShape is an abstract base class for Rectangle2D,
RoundRectangle2D, Arc2D, and Ellipse2D, whose geometry is defined by a

5

rectangular frame. Figure 49.3 shows the UML diagram for
RectangularShape.

java.awt.geom.RectangularShape

+getCenterX(): double
+getCenterY(): double
+getWidth(): double
+getHeight(): double
+getX(): double
+getY(): double

«interface»
java.awt.Shape

Returns the x-coordinate of the center of the framing rectangle.
Returns the y-coordinate of the center of the framing rectangle.
Returns the width of the framing rectangle.
Returns the height of the framing rectangle.
Returns the x-coordinate of the upper-left corner of the framing rectangle.
Returns the y-coordinate of the upper-left corner of the framing rectangle.

Figure 49.3

RectangularShape defines a shape with a bounding rectangle.

<Side remark: Rectangle2D>
Rectangle2D models a rectangle with horizontal and vertical sides. The
Rectangle class was introduced in JDK 1.1 and now is included in Java
2D for backward compatibility. Rectangle is now defined as a subclass
of Rectangle2D. It models a rectangle with integer coordinates, while
Rectangle2D.Double and Rectangle2D.Float model a rectangle with double
and float coordinates, respectively. You can construct a Rectangle
using

new Rectangle(x, y, w, h)

The parameters x and y represent the upper-left corner of the rectangle,
and w and h are its width and height (see Figure 49.4a).

(x, y)

w

 h

 (a) Rectangle (b) Round rectangle

Figure 49.4

(a) A rectangle is defined in four parameters. (b) A round
rectangle is defined in six parameters.

The following code creates three Rectangle2D objects with integer,
double, and float coordinates, respectively. The upper-left corner of
the rectangle is at (20, 40) with width 100 and height 200.

Rectangle2D ri = new Rectangle(20, 40, 100, 200);
Rectangle2D rd = new Rectangle.Double(20D, 40D, 100D, 200D);
Rectangle2D rf = new Rectangle.Double(20F, 40F, 100F, 200F);

<Side remark: RoundRectangle2D>

6

RoundRectangle2D models a rectangle with round corners. You can
construct a RoundRectangle using

new RoundRectangle2D.Double(x, y, w, h, aw, ah)

Parameters x, y, w, and h specify a rectangle, parameter aw is the
horizontal diameter of the arcs at the corner, and ah is the vertical
diameter of the arcs at the corner (see Figure 49.4(b)). In other
words, aw and ah are the width and the height of the oval that produces
a quarter-circle at each corner.

<Side remark: Ellipse2D>
Ellipse2D models an ellipse. You can construct an Ellipse2D using

new Ellipse2D.Double(x, y, w, h)

Parameters x, y, w and h specify the bounding rectangle for the
ellipse, as shown in Figure 49.5a.

 (a) Ellipse (b) Arc

Figure 49.5

An ellipse or oval is defined by its bounding rectangle.

<Side remark: Arc2D>
Arc2D models an elliptic arc. You can construct an Arc2D using

new Arc2D.Double(x, y, w, h, startAngle, arcAngle, type)

Parameters x, y, w and h specify the bounding rectangle for the arc;
parameter startAngle is the starting angle; arcAngle is the spanning
angle (i.e., the angle covered by the arc). Angles are measured in
degrees and follow the usual mathematical conventions (i.e., 0 degrees
is in the easterly direction, and positive angles indicate
counterclockwise rotation from the easterly direction); see Figure
49.5(b).

Parameter type is Arc2D.OPEN, Arc2D.CHORD, or Arc2D.PIE. Arc2D.OPEN
specifies that the arc is open. Arc2D.CHORD specifies that the arc is
connected by drawing a line segment from the start the arc to the end
of the arc. Arc2D.PIE specifies that the arc is connected by drawing
straight line segments from the start of the arc segment to the center
of the full ellipse and from that point to the end of the arc segment.

Listing 49.1 gives a program that demonstrates how to draw various
shapes using Graphics2D. Figure 49.6 shows a sample run of the program.

Listing 49.1 Graphics2DDemo.java

<Side remark: Line 2: import for shape classes>

7

<Side remark: Line 5: applet>
<Side remark: Line 14: Graphics2D reference>
<Side remark: Line 16: draw a line>
<Side remark: Line 17: draw a rectangle>
<Side remark: Line 18: fill a rectangle>
<Side remark: Line 19: round rectangle>
<Side remark: Line 20: draw an ellipse>
<Side remark: Line 21: draw an arc>
<Side remark: Line 28: main method omitted>

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

public class Graphics2DDemo extends JApplet {
 public Graphics2DDemo() {
 add(new ShapePanel());
 }

 static class ShapePanel extends JPanel {
 protected void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2d = (Graphics2D)g;

 g2d.draw(new Line2D.Double(10, 10, 40, 80));
 g2d.draw(new Rectangle2D.Double(50, 10, 30, 70));
 g2d.fill(new Rectangle2D.Double(90, 10, 30, 70));
 g2d.fill(new RoundRectangle2D.Double(130, 10, 30, 70, 20, 30));
 g2d.draw(new Ellipse2D.Double(170, 10, 30, 70));
 g2d.draw(
 new Arc2D.Double(220, 10, 30, 70, 0, 270, Arc2D.OPEN));
 g2d.draw(new Arc2D.Double(260, 10, 30, 70, 0, 270, Arc2D.PIE));
 g2d.draw(
 new Arc2D.Double(300, 10, 30, 70, 0, 270, Arc2D.CHORD));
 }
 }
}

Figure 49.6

You can draw various shapes using Java 2D.

The shape classes Line2D, Rectangle2D, RoundRectangle2D, Arc2D, and
Ellipse2D are in the java.awt.geom package. So, they are imported in
line 2.

<Side remark: Line2D>
A Graphics2D reference is obtained in line 14 in order to invoke the
methods in Graphics2D. The statement new Line2D.Double(10, 10, 40, 80)
(line 16) creates an instance of Line2D.Double, which is also an

8

instance of Line2D and Shape. The instance models a line from (10, 10)
to (40, 80).

<Side remark: Rectangle2D>
The statement new Rectangle2D.Double(50, 10, 30, 70) (line 17) creates
an instance of Rectangle2D.Double, which is also an instance of
Rectangle2D and Shape. The instance models a rectangle whose upper-left
corner point is (50, 10) with width 30 and height 70.

<Side remark: fill>
The fill(Shape) method (line 18) renders a filled rectangle.

<Side remark: RoundRectangle2D>
The statement new RoundRectangle2D.Double(130, 10, 30, 70, 20, 30)
(line 19) creates an instance of RoundRectangle2D.Double, which is also
an instance of RoundRectangle2D and Shape. The instance models a round-
cornered rectangle whose parameters are the same as in the
drawRoundRect(int x, int y, int w, int h, int aw, int ah) method in the
Graphics class.

<Side remark: Ellipse2D>
The statement new Ellipse2D.Double(300, 10, 30, 70) (line 20) creates
an instance of Ellipse2D.Double, which is also an instance of Ellipse2D
and Shape. The instance models an ellipse. The parameters in this
constructor are the same as the parameters in the drawOval(int x, int
y, int w, int h) method in the Graphics class.

<Side remark: Arc2D>
The statement new Arc2D.Double(170, 10, 30, 70, 0, 270, Arc2D.OPEN)
(line 21) creates an instance of Arc2D.Double, which is also an
instance of Arc2D and Shape. The instance models an open arc. The
parameters in this constructor are similar to the parameters in the
drawArc(int x, int y, int w, int h, int startAngle, int arcAngle)
method in the Graphics class, except that the last parameter specifies
whether the arc is open or closed. The value Arc2D.OPEN specifies that
the arc is open. The value Arc2D.PIE (line 23) specifies that the arc
is closed by drawing straight line segments from the start of the arc
segment to the center of the full ellipse and from that point to the
end of the arc segment. The value Arc2D.CHORD (line 25) specifies that
the arc is closed by drawing a straight line segment from the start of
the arc segment to the end of the arc segment.

49.5 Coordinate Transformations

Java 2D provides the classes for modeling geometric objects. It also
supports coordinate transformations using translation, rotation, and
scaling.

49.5.1 Translations

You can use the translate(double x, double y) method in the Graphics
class to move the subsequent rendering by the specified distance
relative to the previous position. For example, translate(5, -10) moves
subsequent rendering 5 pixels to the right and 10 pixels up from the
previous position, and translate(-5, 10) moves all shapes 5 pixels to
the left and 10 pixels down from the previous position. Figure 49.7
shows a rectangle displayed before and after applying translation.
After invoking g2d.translate(-6, 4), the rectangle is displayed 6
pixels to the left and 4 pixels down from the previous position.

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
1

3
4

7

5
6

2

g2d.draw(rectangle);
g2d.translate(-6, 4);
g2d.draw(rectangle);

Figure 49.7

(a) After applying g2d.translate(-6, 4), the subsequent rendering of
the rectangle is moved by the specified distance relative to the
previous position.

Listing 49.2 gives a program that demonstrates the effect of
translation of coordinates. Figure 49.8 shows a sample run of the
program.

Listing 49.2 TranslationDemo.java

<Side remark: Line 2: import for shape classes>
<Side remark: Line 5: applet>
<Side remark: Line 14: Graphics2D reference>
<Side remark: Line 15: a rectangle>
<Side remark: Line 17: random number>
<Side remark: Line 19: set a new color>
<Side remark: Line 21: display rectangle>
<Side remark: Line 22: translate>
<Side remark: Line 26: main method omitted>

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

public class TranslateDemo extends JApplet {
 public TranslateDemo() {
 add(new ShapePanel());
 }

class ShapePanel extends JPanel {
 protected void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2d = (Graphics2D)g;
 Rectangle2D rectangle = new Rectangle2D.Double(10, 10, 50, 60);

 java.util.Random random = new java.util.Random();
 for (int i = 0; i < 10; i++) {
 g2d.setColor(new Color(random.nextInt(256),
 random.nextInt(256), random.nextInt(256)));
 g2d.draw(rectangle);
 g2d.translate(20, 5);
 }
 }
}

10

Figure 49.8

The rectangles are displayed successively in new locations.

Line 17 creates a Random object. The Random class was introduced in
§8.6.2, “The Random Class.” Invoking random.nextInt(256) (line 19)
returns a random int value between 0 and 255. The setColor method (line
19) sets a new color for subsequent rendering. Line 21 draws a
rectangle. The translate(20, 5) method in line 22 moves the subsequent
rendering 20 pixels to the right and 5 pixels down.

49.5.2 Rotations

You can use the rotate(double theta) method in the Graphics2D class to
rotate subsequent rendering by theta degrees from the origin clockwise,
where theta is a double value in radians. By default the origin is (0,
0). You can use the translate(x, y) method to move the origin to a
specified location. For example, rotate(Math.PI / 4) rotates subsequent
rendering 45 degrees counterclockwise along the northern direction from
the origin, as shown in Figure 49.9.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
1

3
4

7

5
6

2

g2d.draw(rectangle);
g2d.rotate(Math.PI / 4);
g2d.draw(rectangle);

Figure 49.9

After performing g2d.rotate(Math.PI / 4), the rectangle is rotated in
45 degrees from the origin.

Listing 49.3 gives a program that demonstrates the effect of rotation
of coordinates. Figure 49.10 shows a sample run of the program.

Listing 49.3 RotationDemo.java

<Side remark: Line 2: import for shape classes>
<Side remark: Line 5: applet>
<Side remark: Line 14: Graphics2D reference>
<Side remark: Line 15: a rectangle>
<Side remark: Line 17: new origin>
<Side remark: Line 18: draw center point>
<Side remark: Line 19: random number>

11

<Side remark: Line 21: set a new color>
<Side remark: Line 23: display rectangle>
<Side remark: Line 24: rotate>
<Side remark: Line 28: main method omitted>

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

public class RotationDemo extends JApplet {
 public RotationDemo() {
 add(new ShapePanel());
 }

 class ShapePanel extends JPanel {
 protected void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2d = (Graphics2D)g;
 Rectangle2D rectangle = new Rectangle2D.Double(20, 20, 50, 60);

 g2d.translate(150, 120); // Move origin to the center
 g2d.fill(new Ellipse2D.Double(-5, -5, 10, 10));
 java.util.Random random = new java.util.Random();
 for (int i = 0; i < 10; i++) {
 g2d.setColor(new Color(random.nextInt(256),
 random.nextInt(256), random.nextInt(256)));
 g2d.draw(rectangle);
 g2d.rotate(Math.PI / 5);
 }
 }
 }
}

Figure 49.10

After the rotate method is invoked, the rectangles are displayed
successively in new locations.

The translate(150, 120) method moves the origin from (0, 0) to (150,
120) (line 17). The loop is repeated ten times. Each iteration sets a
new color randomly (line 21), draws the rectangle (line 23), and
rotates 36 degrees from the new origin (line 24).

49.5.3 Scaling

This rectangle is drawn first

This rectangle is drawn next

12

You can use the scale(double sx, double sy) method in the Graphics2D
class to resize subsequent rendering by the specified scaling factors.
For example, scale(2, 2) resizes the object by doubling the x- and y-
coordinates in the object, as shown in Figure 49.11.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
1

3
4

7

5
6

2
g2d.draw(rectangle);
g2d.scale(2, 2);
g2d.draw(rectangle);

Figure 49.11

After performing g2d.scale(2, 2), the x- and y-coordinates in the
original rectangle are doubled.

Listing 49.4 gives a program that demonstrates the effect of using
scaling. Figure 49.12 shows a sample run of the program.

Listing 49.4 ScalingDemo.java

<Side remark: Line 2: import for shape classes>
<Side remark: Line 5: applet>
<Side remark: Line 14: Graphics2D reference>
<Side remark: Line 15: a rectangle>
<Side remark: Line 18: display rectangle>
<Side remark: Line 19: scale>
<Side remark: Line 23: main method omitted>

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

public class ScalingDemo extends JApplet {
 public ScalingDemo() {
 add(new ShapePanel());
 }

 class ShapePanel extends JPanel {
 protected void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2d = (Graphics2D)g;
 Rectangle2D rectangle = new Rectangle2D.Double(10, 10, 10, 10);

 for (int i = 0; i < 4; i++) {
 g2d.draw(rectangle);
 g2d.scale(2, 2);
 }
 }
 }
}

13

Figure 49.12

After scaling is applied, the rectangles are displayed successively.

The program draws four rectangles. The upper-left corner of the first
rectangle is at (10, 10). After invoking scale(2, 2) (line 19) on the
Graphics2D object g2d in the first iteration of the loop, the upper-
left corner of the second rectangle is at (20, 20), since this scale
method causes the coordinates in the current object to be doubled.
After invoking scale(2, 2) (line 19) on the Graphics2D object g2d in
the second iteration of the loop, the upper-left corner of the third
rectangle is at (40, 40). After invoking scale(2, 2) (line 19) on the
Graphics2D object g2d in the third iteration of the loop, the upper-
left corner of the fourth rectangle is at (80, 80).

It is interesting to note that the thickness of line segments also
doubles each time scale(2, 2) is invoked. We will discuss the thickness
of lines in the next section.

49.6 Strokes

Java 2D allows you to specify the attributes of lines, called strokes.
You can specify the width of the line, how the line ends (called end
caps), how lines join together (called line joins), and whether the
line is dashed. These attributes are defined in a Stroke object. You
can create a Stroke object using the BasicStroke class, as shown in
Figure 49.13.

java.awt.BasicStroke

+BasicStroke()
+BasicStroke(width: float)
+BasicStroke(width: float, cap: int, join : int)
+BasicStroke(width: float, cap: int, join : int,

mi terlimit: float)
+BasicStroke(width: float, cap: int, join : int,

mi terlimit: float, dash: float[],
dash_phase: float)

Constructs a BasicStroke with default attributes.
Constructs a sol id BasicStroke with the specified width.
Constructs a sol id BasicStroke with the specified width, cap, and join.
Constructs a sol id BasicStroke with the specified width, cap, join, and

miter l imit.
Constructs a sol id BasicStroke with the specified width, cap, join,

miter l imit, dashin g p attern, and the offset to start dashing pattern.

«interface»
java.awt.Stroke

Figure 49.13

You can create a Stroke using the BasicStroke class.

The parameter width specifies the thickness of the stroke with a
default value 1.0.

14

The parameter cap is one of three values:

BasicStroke.CAP_ROUND for round cap.

BasicStroke.CAP_SQUARE for square cap.

BasicStroke.CAP_BUTT for no added decorations.

The parameter join is one of three values:

BasicStroke.JOIN_BEVEL for joining the outer corners of their
wide outlines with a straight segment.
BasicStroke.JOIN_MITER for joining path segments by extending
their outside edges until they meet.
BasicStroke.JOIN_ROUND for joining path segments by rounding off
the corner at a radius of half the line width.

The parameter miterlimit sets a limit for JOIN_MITER to prevent a very
long join when the angle between the two lines is small.

The parameter dash array defines a dash pattern by alternating between
opaque and transparent sections. The dash_phase parameter specifies the
offset to start the dashing pattern.

To set a stroke in Graphics2D, use

void setStroke(Stroke stroke)

Listing 49.5 gives a program that demonstrates the effect of using
basic strokes. Figure 49.14 shows a sample run of the program.

Listing 49.5 BasicStrokeDemo.java

<Side remark: Line 2: import for shape classes>
<Side remark: Line 5: applet>
<Side remark: Line 14: Graphics2D reference>
<Side remark: Line 16: set a stroke>
<Side remark: Line 18: draw a line>
<Side remark: Line 20: translate>
<Side remark: Line 31: draw a rectangle>
<Side remark: Line 49: main method omitted>

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

public class BasicStrokeDemo extends JApplet {
 public BasicStrokeDemo() {
 add(new ShapePanel());
 }

 class ShapePanel extends JPanel {
 protected void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2d = (Graphics2D)g;

 g2d.setStroke(new BasicStroke(15.0f, BasicStroke.CAP_ROUND,

15

 BasicStroke.JOIN_BEVEL));
 g2d.draw(new Line2D.Double(10, 10, 40, 80));

 g2d.translate(100, 0);
 g2d.setStroke(new BasicStroke(15.0f, BasicStroke.CAP_SQUARE,
 BasicStroke.JOIN_BEVEL));
 g2d.draw(new Line2D.Double(10, 10, 40, 80));

 g2d.translate(100, 0);
 g2d.setStroke(new BasicStroke(15.0f, BasicStroke.CAP_BUTT,
 BasicStroke.JOIN_BEVEL));
 g2d.draw(new Line2D.Double(10, 10, 40, 80));

 g2d.translate(100, 0);
 g2d.draw(new Rectangle2D.Double(10, 10, 30, 70));

 g2d.translate(100, 0);
 g2d.setStroke(new BasicStroke(15.0f, BasicStroke.CAP_ROUND,
 BasicStroke.JOIN_MITER));
 g2d.draw(new Rectangle2D.Double(10, 10, 30, 70));

 g2d.translate(100, 0);
 g2d.setStroke(new BasicStroke(15.0f, BasicStroke.CAP_SQUARE,
 BasicStroke.JOIN_ROUND));
 g2d.draw(new Rectangle2D.Double(10, 10, 30, 70));

 g2d.translate(100, 0);
 g2d.setStroke(new BasicStroke(4.0f, BasicStroke.CAP_SQUARE,
 BasicStroke.JOIN_ROUND, 1.0f, new float[]{8}, 0));
 g2d.draw(new Line2D.Double(10, 10, 40, 80));
 }
 }
}

Figure 49.14

You can specify the attributes for strokes.

The statement new BasicStroke(15.0f, BasicStroke.CAP_ROUND,
BasicStroke.JOIN_BEVEL) (line 16) creates an instance of BasicStroke,
which is also an instance of the Stroke interface. The
setStroke(Stroke) method sets a Stroke object for the Graphics2D
context. The program sets new Stroke objects in lines 21, 26, 34, 39,
49. Line 44 sets a new Stroke object with width 4.0f, round square cap,
round join, miter limit 1.0, dashing pattern {8}, and dash phase 0.

49.7 Paint

round cap square cap butt cap bevel join miter join round join dash line

16

You can use the setColor(Color c) method in the Graphics class to set a
color. It sets only a solid color. Graphics2D provides the
setPaint(Paint p) method to set a paint. Paint is a generalization of
color. It can represent more attributes than simple solid colors.

Paint is an interface for three concrete classes including Color, as
shown in Figure 49.15.

java.awt.Color

«interface»
java.awt.Paint

java.awt.GradientPaint

+GradientPain t(x1 : float, y1:
float, c1: Color, x2: float, y2:
float, c2: Color)

+GradientPain t(p1 : Point2D, c1:
Color, p2: Point2D, c2: Color)

+GradientPain t(x1 : float, y1:
float, c1: Color, x2: float, y2:
float, c2: Color, cycl: boolean)

+GradientPain t(p1 : Point2D, c1:
Color, p2: Point2D, c2: Color,
cycl: boolean)

Creates a GradientPaint starting from (x1, y1) with color c1 to (x2, y2)
with color c2.

Creates a GradientPaint starting from p1 with color c1 to p2 with color c2.

Creates a GradientPaint starting from (x1, y1) with color c1 to (x2, y2)
with color c2. The parameter cycl sp ecifies whether the pat tern repeats
itself.

Creates a GradientPaint starting from (x1, y1) with color c1 to (x2, y2)
with color c2. The parameter cycl sp ecifies whether the pat tern repeats
itself.

java.awt.TexturePaint

+TexturePaint(image:
BufferImage, anchor:
Rectangle2D)

Creates a TexturePaint with the specified image. The anchor rectangle
speci fies th e posit ion of the image in the user space.

Figure 49.15

A Paint object specifies colors.

GradientPaint defines a varying color, specified by two points and two
colors. As the location moves from the first point to the second, the
paint changes gradually from the first color to the second. A
GradientPaint can be cyclic or acyclic. A cyclic paint repeats the same
pattern periodically.

TexturePaint defines an image to fill a shape or characters. The
parameter image is specified as a BufferedImage. The anchor parameter
specifies a rectangle on which the image is anchored. The image is
repeated around the anchor rectangle, as shown in Figure 49.16.

Anchor
rectangle

Figure 49.16

17

A TexturePaint is specified by an image in an anchor rectangle.

Listing 49.6 gives a program that demonstrates the effect of using
GradientPaint and TexturePaint. Figure 49.17 shows a sample run of the
program.

Listing 49.6 PaintDemo.java

<Side remark: Line 17: GradientPaint>
<Side remark: Line 29: solid color>
<Side remark: Line 35: get URL>
<Side remark: Line 36: TexturePaint>
<Side remark: Line 39: set paint>
<Side remark: Line 60: main method>

import java.awt.*;
import java.awt.geom.*;
import javax.imageio.ImageIO;
import javax.swing.*;

public class PaintDemo extends JApplet {
 public PaintDemo() {
 add(new ShapePanel());
 }

 class ShapePanel extends JPanel {
 protected void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2d = (Graphics2D)g;

 g2d.setPaint(new GradientPaint(10, 10, Color.RED, 40, 40,
 Color.BLUE, true));
 g2d.fill(new Rectangle2D.Double(10, 10, 90, 70));
 g2d.setFont(new Font("Serif", Font.BOLD, 50));
 g2d.drawString("GradientPaint", 10, 120);

 g2d.translate(100, 0);
 g2d.setPaint(new GradientPaint(10, 10, Color.YELLOW, 40, 40,
 Color.BLACK));
 g2d.fill(new Rectangle2D.Double(10, 10, 90, 70));

 g2d.translate(100, 0);
 g2d.setPaint(Color.YELLOW);
 g2d.fill(new Rectangle2D.Double(10, 10, 90, 70));

 try {
 java.net.URL url =
 getClass().getClassLoader().getResource("image/ca.gif");
 java.awt.image.BufferedImage image = ImageIO.read(url);
 TexturePaint texturePaint = new TexturePaint(image,
 new Rectangle2D.Double(10, 10, 100, 70));
 g2d.translate(130, 0);
 g2d.setPaint(texturePaint);
 g2d.fill(new Ellipse2D.Double(10, 10, 100, 70));

18

 texturePaint = new TexturePaint(image,
 new Rectangle2D.Double(10, 10, 50, 70));
 g2d.translate(110, 0);
 g2d.setPaint(texturePaint);
 g2d.fill(new Ellipse2D.Double(10, 10, 100, 70));

 texturePaint = new TexturePaint(image,
 new Rectangle2D.Double(10, 10, 50, 35));
 g2d.translate(110, 0);
 g2d.setPaint(texturePaint);
 g2d.fill(new Ellipse2D.Double(10, 10, 100, 70));
 g2d.drawString("TexturePaint", -190, 120);
 }
 catch (java.io.IOException ex) {
 ex.printStackTrace();
 }
 }
 }
}

Figure 49.17

Shapes and characters are drawn with gradient paint, solid color, and
texture paint.

The statement in lines 17–18

g2d.setPaint(new GradientPaint(10, 10, Color.RED, 40, 40,
 Color.BLUE, true));

creates an instance of GradientPaint and sets the paint in g2d.

The program sets a new Paint object (lines 17, 24, 29) before drawing a
filled rectangle (lines 19, 26, 30). Note that you can use the setPaint
method to set a Color object (line 29) or use the setColor method in the
Graphics class to set a color.

As you see in Figure 49.17, the gradient colors are repeated in
the first rectangle, since the GradientPaint is cyclic (lines
17–18). The gradient colors are not repeated in the second
rectangle, since the GradientPaint is acyclic (lines 24–25).

To create a TexturePaint, you need to create a BufferedImage
from an image file. The URL of the image file is created in
lines 33–49. This subject was introduced in §18.10, “Locating
Resources Using the URL Class.” You can use the static method
read in the ImageIO class to obtain a BufferedImage from the URL
of the image (line 35).

19

The statement in lines 36–37

TexturePaint texturePaint = new TexturePaint(image,
new Rectangle2D.Double(10, 10, 100, 70));

creates a TexturePaint with the image anchored in the rectangle
whose upper-left corner is (10, 10) and width and height are 100
and 70. This TexturePaint object is set in g2d in line 39. Line
40 fills an ellipse with this TexturePaint, as shown in Figure
49.18a.

image

Anchor
rectangle

Ellipse
shape

70

100

imag
e

Anchor
rectangle

Ellipse
shape

70

50

imag

Anchor
rectangle

Ellipse
shape

70

50
 (a) (b) (c)

Figure 49.18

The anchor rectangle defines the size and position of the starting
image.

The statement in lines 42-43

texturePaint = new TexturePaint(image,
new Rectangle2D.Double(10, 10, 50, 70));

creates a TexturePaint with the image anchored in the rectangle
whose upper-left corner is (10, 10) and width and height are 50
and 70. This TexturePaint object is set in g2d in line 45. Line
46 fills an ellipse with this TexturePaint, as shown in Figure
49.18(b). As you see in the sample output in Figure 49.17, the
texture paint is repeated from the anchor rectangle.

Line 53 displays a string. The characters are filled with the
paint set in line 51.

49.8 QuadCurve2D and CubicCurve2D

Java 2D provides the QuadCurve2D and CubicCurve2D classes for modeling
quadratic curves and cubic curves. QuadCurve2D.Double and
QuadCurve2D.Float are two concrete subclasses of QuadCurve2D.
CubicCurve2D.Double and CubicCurve2D.Float are two concrete subclasses
of CubicCurve2D.

A quadratic curve is mathematically defined as a quadratic polynomial.
To create a QuadCurve2D.Double, use the following constructor:

QuadCurve2D.Double(double x1, double y1,
double ctrlx, double ctrly, double x2, double y2)

20

where (x1, y1) and (x2, y2) specify two endpoints and (ctrlx, ctrly) is
a control point. The control point is usually not on the curve instead
of defining the trend of the curve, as shown in Figure 49.19a.

(ctrlx, ctrly)

(x1, y1)
(x2, y2)

(ctrlx1, ctrly1)

(x1, y1) (x2, y2)

(ctrlx2, ctrly2)

 (a) (b)

Figure 49.19

(a) A quadratic curve is specified using three points. (b) A cubic
curve is specified using four points.

A cubic curve is mathematically defined as a cubic polynomial. To
create a CubicCurve2D.Double, use the following constructor:

CubicCurve2D.Double(double x1, double y1, double ctrlx1,
double ctrly1, double ctrlx2, double ctrly2, double x2, double y2)

where (x1, y1) and (x2, y2) specify two endpoints and (ctrlx1, ctrly1)
and (ctrlx2, ctrly2) are two control points. The control points are
usually not on the curve instead of defining the trend of the curve, as
shown in Figure 49.19(b).

Listing 49.7 gives a program that demonstrates how to draw quadratic
curves and cubic curves. Figure 49.20 shows a sample run of the
program.

Listing 49.7 CurveDemo.java

<Side remark: Line 2: import for shape classes>
<Side remark: Line 5: applet>
<Side remark: Line 14: Graphics2D reference>
<Side remark: Line 17: quadratic curve>
<Side remark: Line 22: cubic curve>
<Side remark: Line 32: main method omitted>

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

public class CurveDemo extends JApplet {
 public CurveDemo() {
 add(new CurvePanel());
 }

 static class CurvePanel extends JPanel {
 protected void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2d = (Graphics2D)g;

21

 // Draw a quadratic curve
 g2d.draw(new QuadCurve2D.Double(10, 80, 40, 20, 150, 56));
 g2d.fillOval(40 + 3, 20 + 3, 6, 6);
 g2d.drawString("Control point", 40 + 5, 20);

 // Draw a cubic curve
 g2d.draw(new CubicCurve2D.Double
 (200, 80, 240, 20, 350, 156, 450, 80));
 g2d.fillOval(240 + 3, 20 + 3, 6, 6);
 g2d.drawString("Control point 1", 240 + 3, 20);
 g2d.fillOval(350 + 3, 156 + 3, 6, 6);
 g2d.drawString("Control point 2", 350 + 3, 156 + 3);
 }
 }
}

Figure 49.20

You can draw quadratic and cubic curves using Java 2D.

<Side remark: QuadCurve2D>
A Graphics2D reference is obtained in line 14 in order to invoke the
methods in Graphics2D. The statement new QuadCurve2D.Double(10, 80, 40,
20, 150, 56) (line 17) creates an instance of QuadCurve2D.Double, which
is also an instance of QuadCurve2D and Shape. The instance models a
quadratic curves with two endpoints (10, 80), (150, 56) and a control
point (40, 20).

The fillOval (line 18) and drawString (line 19) methods are defined in
the Graphics class and so can be used in the Graphics2D class.

<Side remark: CubicCurve2D>
The statement new CubicCurve2D.Double(200, 80, 240, 20, 350, 156, 450,
80)) (lines 22–23) creates an instance of CubicCurve2D.Double, which is
also an instance of QuadCurve2D and Shape. The instance models a
quadratic curves with two endpoints (200, 80), (450, 80) and two
control points (240, 20), (450, 80).

49.9 Path2D

The Path2D class models an arbitrary geometric path. Path2D.Double and
Path2D.Float are two concrete subclasses of Path2D. Java 2D also
contains the GeneralPath class which is now superseded by Path
2D.Float.

You can construct path segments using the methods, as shown in Figure
49.21.

<PD: UML Class Diagram>

22

java.awt.geom.Path2D

+l ineTo(x: double, y: double): void
+moveTo(x: double, y: double): void
+quadTo(x1: double, y1: double, x2:

double, y2: double): vo id
+curveTo(x1: d ouble, y1: double, x2:

double, y2: double): vo id
+closePath(): void

+setWindingRule(rule: int): void
+getWindingRu le(): int

«interface»
java.awt.Shape

Draws a line from the current position to the specified p oint (x, y).
Moves to the specified point (x, y).
Draws a quadratic curve from the current point to (x2, y2) using (x1, y1)

as a quadratic parametric control point .
Draws a cub ic curve from the current point to (x3, y3) using (x1, y1) and

(x2, y2) as control points.
Draws a line to connect the current point with the point in the last

moveTo method.
Sets a new winding rule.
Gets th e winding rule.

Figure 49.21

The Path2D class contains the methods for constructing path segments.

You may create a Path2D using a constructor from Path2D.Double and
Path2D.Float. The process of the path construction can be viewed as
drawing with a pen. At any moment, the pen has a current position. You
can use the moveTo(x, y) method to move the pen to the new position at
point (x, y), use the lineTo(x, y) to add a point (x, y) to the path by
drawing a straight line from the current point to this new point, use
the quadTo(ctrlx, ctrly, x, y) method to draw a quadratic curve from
the current location to (x, y) using (ctrlx, ctrly) as the control
point, use the curveTo(ctrlx1, ctrly1, ctrlx2, ctrly2, x, y) method to
draw a cubic curve from the current location to (x, y) using (ctrlx1,
ctrly1) and (ctrlx2, ctrly2) as the control points, and use the
closePath() method to connect the current point with the point in the
last moveTo method.

Listing 49.8 gives a program that demonstrates how to draw a shape
using Path2D. Figure 49.22 shows a sample run of the program.

Listing 49.8 Path2DDemo.java

<Side remark: Line 2: import for shape classes>
<Side remark: Line 5: applet>
<Side remark: Line 14: Graphics2D reference>
<Side remark: Line 16: new position>
<Side remark: Line 17: draw a cubic curve>
<Side remark: Line 18: new position>
<Side remark: Line 19: draw a cubic curve>
<Side remark: Line 20: draw a line>
<Side remark: Line 21: close path>
<Side remark: Line 23: display path>
<Side remark: Line 26: main method omitted>

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

public class Path2DDemo extends JApplet {
 public Path2DDemo() {
 add(new ShapePanel());
 }

23

 class ShapePanel extends JPanel {
 protected void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2d = (Graphics2D)g;
 Path2D path = new Path2D.Double();
 path.moveTo(100, 100);
 path.curveTo(150, 50, 250, 150, 300, 100);
 path.moveTo(100, 100);
 path.curveTo(150, 150, 250, 50, 300, 100);
 path.lineTo(200, 20);
 path.closePath();

 g2d.draw(path);
 }
 }
}

Figure 49.22

You can draw an arbitrary shape using the Path2D class.

The statement new Path2D.Double() (line 15) creates an empty path. The
moveTo(100, 100) method (line 16) sets the current pen position at
(100, 100). Invoking path.curveTo(150, 50, 250, 150, 300, 100) (line
17) creates a cubic curve from (100, 100) to (300, 100) with control
points (150, 50) and (250, 150). Invoking path.moveTo(100, 100) (line
18) moves the pen position back to (100, 100). Invoking
path.curveTo(150, 150, 250, 50, 300, 100) (line 19) creates a cubic
curve from (100, 100) to (300, 100) with control points (150, 150) and
(250, 50). Now the current position is at (300, 100). Invoking
path.lineTo(200, 20) (line 20) creates a line from (300, 100) to (200,
20). Invoking path.closePath() (line 21) draws a line connecting the
current position (i.e., (200, 20)) with the last moveTo position (i.e.,
(100, 100)). Finally, Invoking g2d.draw(path) (line 23) draws the path.

For a simple shape, it is easy to decide which point is inside a
shape. A path may form many shapes. It is not easy to decide
which point is inside an enclosed path. Java 2D uses the winding
rules to define the interior points. There are two winding
rules: WIND_EVEN_ODD and WIND_NON_ZERO.

<Side remark: WIND_EVEN_ODD>

The WIND_EVEN_ODD rule defines a point as inside a path if a ray from
the point toward infinity in an arbitrary direction intersects the path
an odd number of times. Consider the path in Figure 49.23a. Points A and
C are outside the path, because the ray intersects the path twice. Point
B is inside the path, because the ray intersects the path once.

24

CB

A

CB

A

 (a) (b)

Figure 49.23

The WIND_EVEN_ODD and WIND_NON_ZERO rules define interior points.

<Side remark: WIND_NON_ZERO>

With the WIND_NON_ZERO rule, the direction of the path is taken into
consideration. A point is inside a path if a ray from the point toward
infinity in an arbitrary direction intersects the path an unequal number
of opposite directions. Consider the path in Figure 49.23(b). Point A is
outside the path, because the ray intersects the path twice in opposite
directions. Point B is inside the path, because the ray intersects the
path once. Point C is inside the path, because the ray intersects the
path twice in the same directions. By default, a Path2D is created using
the WIND_NON_ZERO rule. You can use the setWindingRule method to set a
new winding rule.

Listing 49.9 gives a program that demonstrates winding rules in Path2D.
Figure 49.24 shows a sample run of the program.

Listing 49.9 WindingRuleDemo.java

<Side remark: Line 2: import for shape classes>
<Side remark: Line 5: applet>
<Side remark: Line 14: Graphics2D reference>
<Side remark: Line 16: new origin>
<Side remark: Line 17: draw path>
<Side remark: Line 19: new origin>
<Side remark: Line 20: create a path>
<Side remark: Line 21: new winding rule>
<Side remark: Line 22: fill path>
<Side remark: Line 24: new origin>
<Side remark: Line 25: create a path>
<Side remark: Line 26: new winding rule>
<Side remark: Line 27: fill path>
<Side remark: Line 30: create a path>
<Side remark: Line 49: main method omitted>

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

public class WindingRuleDemo extends JApplet {
 public WindingRuleDemo() {
 add(new ShapePanel());
 }

 class ShapePanel extends JPanel {
 protected void paintComponent(Graphics g) {
 super.paintComponent(g);

25

 Graphics2D g2d = (Graphics2D)g; // Get Graphics2D

 g2d.translate(10, 10); // Translate to a new origin
 g2d.draw(createAPath()); // Create and draw a path

 g2d.translate(160, 0); // Translate to a new origin
 Path2D path2 = createAPath(); // Create a path
 path2.setWindingRule(Path2D.WIND_EVEN_ODD); // Set a new rule
 g2d.fill(path2); // Create and fill a path

 g2d.translate(160, 0); // Translate to a new origin
 Path2D path3 = createAPath(); // Create a path
 path3.setWindingRule(Path2D.WIND_NON_ZERO); // Set a new rule
 g2d.fill(path3); // Create and fill a path
 }

 private Path2D createAPath() {
 // Define the outer rectangle
 Path2D path = new Path2D.Double();
 path.moveTo(0, 0);
 path.lineTo(0, 100);
 path.lineTo(100, 100);
 path.lineTo(100, 0);
 path.lineTo(0, 0);

 // Define the inner rectangle
 path.moveTo(30, 30);
 path.lineTo(30, 70);
 path.lineTo(70, 70);
 path.lineTo(70, 30);
 path.lineTo(30, 30);

 return path;
 }
 }
}

Figure 49.24

The winding rule defines the interior points.

<Side remark: createAPath>
The createAPath() method creates a path for two rectangles. The outer
rectangle is created in lines 33–37 and the inner rectangle in lines
40–49.

The program translates the coordinate’s origin to (10, 10) in line 16,
invokes createAPath to create a path, and displays it in line 17.

26

The program translates the coordinate’s origin to (160, 0) in line 19,
creates a new path (line 20), sets the path winding rule to
WIND_EVEN_ODD (line 21), and displays it in line 22.

The program translates the coordinate’s origin to (160, 0) in line 24,
creates a new path (line 25), sets the path winding rule to
WIND_NON_ZERO (line 26), and displays it in line 27.

Note that if a path is unclosed, the fill method implicitly closes it
and draws a filled path.

49.10 Constructive Area Geometry

Shapes can be combined to create new shapes. This is known as
constructive area geometry. Java 2D provides class Area to
perform constructive area geometry, as shown in Figure 49.25.

java.awt.geom.Area

+Area()
+Area(s: Shape)
+add(area: Area): void
+subtract(area: Area): void
+intersect(area: Area): void

+exclusiveOr(area: Area): void

«interface»
java.awt.Shape

Creates an empty area.
Creates an Area for the specified shape.
Adds the shape in the speci fied area with the shape in this area.
Subtracts the shap e in the speci fied area from the shape in thi s area.
Sets the sh ape of th is area to the intersection of its current shape wi th the

shape in the specified area.
Same as invoking this.add(area) and then invoking this.subt ract (area).

Figure 49.25

The Area class contains the methods for constructing new areas.

Area implements Shape and provides the methods add, subtract,
intersect, and exclusiveOr to perform set-theoretic operations
union, difference, intersection, and symmetric difference. These
operations perform on the shapes stored in the areas. The union
of two areas consists of all points that are in either area. The
difference of two areas consists of the points that are in the
first area, but not in the second area. The intersection of two
areas consists of all points that are in both areas. The
symmetric difference consists of the points that are in exactly
one of the two areas.

Listing 49.10 gives a program that demonstrates constructive geometry
using the Area class. Figure 49.26 shows a sample run of the program.

Listing 49.10 AreaDemo.java

<Side remark: Line 2: import for shape classes>
<Side remark: Line 5: applet>
<Side remark: Line 14: Graphics2D reference>
<Side remark: Line 17: two shapes>
<Side remark: Line 19: new origin>
<Side remark: Line 23: draw shapes>
<Side remark: Line 25: add>
<Side remark: Line 30: fill area>

27

<Side remark: Line 33: subtract>
<Side remark: Line 35: fill area>
<Side remark: Line 38: intersect>
<Side remark: Line 40: fill area>
<Side remark: Line 42: exclusiveOr>
<Side remark: Line 43: fill area>
<Side remark: Line 48: main method omitted>

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

public class AreaDemo extends JApplet {
 public AreaDemo() {
 add(new ShapePanel());
 }

 class ShapePanel extends JPanel {
 protected void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2d = (Graphics2D)g; // Get Graphics2D

 // Create two shapes
 Shape shape1 = new Ellipse2D.Double(0, 0, 50, 50);
 Shape shape2 = new Ellipse2D.Double(25, 0, 50, 50);
 g2d.translate(10, 10); // Translate to a new origin
 g2d.draw(shape1); // Draw the shape
 g2d.draw(shape2); // Draw the shape

 Area area1 = new Area(shape1); // Create an area
 Area area2 = new Area(shape2);
 area1.add(area2); // Add area2 to area1
 g2d.translate(100, 0); // Translate to a new origin
 g2d.draw(area1); // Draw the outline of the shape in the area

 g2d.translate(100, 0); // Translate to a new origin
 g2d.fill(area1); // Fill the shape in the area

 area1 = new Area(shape1);
 area1.subtract(area2); // Subtract area2 from area1
 g2d.translate(100, 0); // Translate to a new origin
 g2d.fill(area1); // Fill the shape in the area

 area1 = new Area(shape1);
 area1.intersect(area2); // Intersection of area2 with area1
 g2d.translate(100, 0); // Translate to a new origin
 g2d.fill(area1); // Fill the shape in the area

 area1 = new Area(shape1);
 area1.exclusiveOr(area2); // Exclusive or of area2 with area1
 g2d.translate(100, 0); // Translate to a new origin
 g2d.fill(area1); // Fill the shape in the area
 }
 }
}

28

Figure 49.26

The Area class can be used to perform constructive geometry.

The program creates two ellipses (lines 17–18) and displays them (lines
20–21). The program creates two areas and invokes add (line 25),
subtract (line 33), intersect (line 38), and exclusiveOr (line 43) to
perform constructive area geometry.

Key Terms
constructive area geometry
cubic curves
gradient paint
quadratic curves
rotation
scaling
stroke
texture paint
translation
WIND_EVEN_ODD
WIND_NON_ZERO

Chapter Summary

1. The Java 2D API provides the java.awt.Graphics2D class, which
extends java.awt.Graphics with advanced capabilities for
rendering graphics.

2. The Java 2D API provides an object-oriented approach that
separates rendering from modeling. All shapes are defined under
the Shape interface.

3. Classes Line2D, Rectangle2D, RoundRectangle2D, Arc2D, Ellipses2D,
QuadCurve2D, CubicCurve2D, and Path2D are abstract classes. Each
contains two concrete static inner classes named Double and Float
for double and float coordinates, respectively. The inner classes
are subclasses of their respective abstract classes.

4. A point can be modeled using the abstract Point2D class. It
contains two concrete static inner classes Point2D.Double and
Point2D.Float, which are subclasses of Point2D.

5. The Graphics2D class is for rendering shapes. You can invoke its
draw(Shape) method to render the boundary of the shape and
fill(Shape) method to fill the interior of the shape.

6. You can use the translate(double x, double y) method in the
Graphics class to move the subsequent rendering by the specified
distance relative to the previous position.

7. You can use the rotate(double theta) method in the Graphics2D
class to rotate subsequent rendering by theta degrees from the
origin, where theta is a double value in radians.

8. You can use the scale(double sx, double sy) method in the
Graphics2D class to resize subsequent rendering by the specified
scaling factors.

9. Java 2D allows you to specify the attributes of lines, called
strokes.

29

10. You can specify the width of the line, how the line ends
(called end caps), how lines join together (called line joins),
and whether the line is dashed. These attributes are defined in a
Stroke object.

11. You can create a Stroke object using the BasicStroke class.
12. To set a stroke, use the setStroke(Stroke) method in the

Graphics2D class.
13. Graphics2D provides the setPaint(Paint) method to set a

paint. Paint is a generalization of color. It has more attributes
than simple solid colors.

14. GradientPaint defines a varying color, specified by two
points and two colors. As the location moves from the first point
to the second, the paint changes gradually from the first color
to the second.

15. A GradientPaint can cyclic or acyclic. A cyclic paint
repeats the same pattern periodically.

16. TexturePaint defines an image to fill a shape or
characters. A texture paint is defined by an image anchored in a
rectangle.

17. Java 2D provides the QuadCurve2D and CubicCurve2D classes
for modeling quadratic curves and cubic curves.

18. A quadratic curve is mathematically defined as a quadratic
polynomial.

19. A cubic curve is mathematically defined as a cubic
polynomial.

20. The Path2D class models an arbitrary geometric path.
Path2D.Double and Path 2D.Float are two concrete subclasses of
Path 2D.

21. The winding rule defines interior points in a path.
22. The WIND_EVEN_ODD rule defines a point as inside a path if

a ray from the point toward infinity in an arbitrary direction
intersects the path an odd number of times.

23. With the WIND_NON_ZERO rule, the direction of the path is
taken into consideration. A point is inside a path if a ray from
the point toward infinity in an arbitrary direction intersects
the path an unequal number of opposite directions.

24. Java 2D provides class Area to perform constructive area
geometry.

25. Area implements Shape and provides the methods add,
subtract, intersect, and exclusiveOr to perform set-theoretic
operations union, difference, intersection, and symmetric
difference.

Test Questions

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions
Sections 49.2–49.3
49.1 How do you obtain a reference to a Graphics2D object?

49.2 List some methods defined in the Shape interface.

49.3 How do you create a Line2D object?

49.4 Are Line2D.Double and Line2D.Float inner classes of Line2D? Are
they also subclasses of Line2D?

30

49.5 How do you render a Shape object?

49.6 What are the relationships among Point2D, Point2D.Double,
Point2D.Float, and Point? Check Java API to see what methods are
defined in Point2D.

Section 49.4
49.7 What are the relationships among Rectangle2D, Rectangle2D.Double,
Rectangle2D.Float, and Rectangle?

49.8 You can draw basic shapes such as lines, rectangles, ellipses, and
arcs using the drawing/filling methods in the Graphics class or create
a Shape object and render them using the draw(Shape) or fill(Shape).
What are the advantages of using the latter?

Section 49.5
49.9 Suppose a rectangle is created using new Rectangle2D.Double(2, 3,
4, 5). Where is it displayed after applying g2d.translate(10, 10) and
g2d.draw(rectangle)?

49.10 Suppose a rectangle is created using new Rectangle2D.Double(2, 3,
4, 5). Where is it displayed after applying g2d.rotate(Math.PI / 5) and
g2d.draw(rectangle)?

49.11 Suppose a rectangle is created using new Rectangle2D.Double(2, 3,
4, 5). Where is it displayed after applying g2d.scale(10, 10) and
g2d.draw(rectangle)?

Sections 49.6–49.7
49.12 How do you create a Stroke and set a stroke in Graphics2D?

49.13 How do you create a Paint and set a paint in Graphics2D?

49.14 What is a gradient paint? How do you create a GradientPaint?

49.15 What is a texture paint? How do you create a TexturePaint?

Sections 49.8–49.10
49.16 How do you create a QuadCurve2D? How do you create a
CubicCurve2D?

49.17 Describe the methods in Path2D?

49.18 What is the winding rule? What is WIND_EVEN_ODD? What is
WIND_NON_ZERO?

49.19 How do you create an Area from a shape? Describe the add,
subtract, intersect, and exclusiveOr methods in the Area class.

Programming Exercises
Section 49.4
49.1*
(Inside a rectangle?) Write a program that displays a rectangle with
upper-left corner point at (20, 20), width 100, and height 100.
Whenever you move the mouse, display a message indicating whether the
mouse point is inside the rectangle, as shown in Figure 49.27a–b.

31

 (a) (b)

 (c) (d) (e)

Figure 49.27

(a-b) Exercise 49.1 detects whether a point is inside a rectangle. (c-
e) Exercise 49.2 detects whether a circle contains, intersects, or is
outside a rectangle.

49.2*
(Contains, intersects, or outside?) Write a program that displays a
rectangle with upper-left corner point at (40, 40), width 40, and
height 60. Display a circle. The circle’s upper-left corner of the
bounding rectangle is at the mouse point. pressing the up/down arrow
key increases/decreases the circle radius by 5 pixels by. Display a
message at the mouse point to indicate whether the circle contains,
intersects, or is outside of the rectangle, as shown in Figure 49.27c-
e.

49.3*
(Translation) Write a program that displays a rectangle with upper-left
corner point at (40, 40), width 50, and height 40. Enter the values in
the text fields x and y and press the Translate button to translate the
rectangle to a new location, as shown in Figure 49.28a.

 (a) (b) (c)
Figure 49.28

(a) Exercise 49.3 translates coordinates. (b) Exercise 49.4 rotates
coordinates. (c) Exercise 49.5 scales coordinates.

49.4*
(Rotation) Write a program that displays an ellipse. The center of the
ellipse is at (0, 0) with width 60 and height 40. Use the translate
method to move the origin to (100, 70). Enter the value in the text

32

field Angle and press the Rotate button to rotate the ellipse to a new
location, as shown in Figure 49.28b.

49.5*
(Scale graphics) Write a program that displays an ellipse. The center
of the ellipse is at (0, 0) with width 60 and height 40. Use the
translate method to move the origin to (150, 50). Enter the scaling
factors in the text fields and press the Scale button to scale the
ellipse, as shown in Figure 49.28c.

49.6*
(Vertical strings) Write a program that displays three strings
vertically, as shown in Figure 49.29a.

 (a) (b) (c)
Figure 49.29

(a) Exercise 49.6 displays strings vertically. (b) Exercise 49.7
displays characters around the circle. (c) Exercise 49.8 displays a sine
function.

49.7*
(Characters around circle) Write a program that displays a string around
the circle, as shown in Figure 49.29b.

49.8*
(Plot the sine function) Write a program that plots the sine function,
as shown in Figure 49.29c.

49.9*
(Plot the log function) Write a program that plots the log function, as
shown in Figure 49.30a.

 (a) (b)
Figure 49.30

(a) Exercise 49.9 displays the log function. (b) Exercise 49.10 displays
the n2 function.

49.10*
(Plot the n2 function) Write a program that plots the n2 function, as
shown in Figure 49.30b.

33

49.11*
(Plot the log, n, nlogn, and n2 functions) Write a program that plots
the log, n, nlogn, and n2 functions, as shown in Figure 49.31a.

 (a) (b) (c)
Figure 49.31

(a) Exercise 49.11 displays several functions. (b) Exercise 49.12
displays the sunshine. (c) Exercise 49.13 displays a cylinder.

49.12*
(Sunshine) Write a program that displays a circle filled with a gradient
color to animate a sun and display light rays coming out from the sun
using dashed lines, as shown in Figure 49.31b.

49.13*
(Display a cylinder) Write a program that displays a cylinder, as shown
in Figure 49.31c. Use dashed strokes to draw the dashed arc.

49.14*
(Filled cylinder) Write a program that displays a filled cylinder, as
shown in Figure 49.32a.

 (a) (b) (c)
Figure 49.32

(a) Exercise 49.14 displays a filled cylinder. (b) Exercise 49.15
displays symmetric difference of two areas. (c) Exercise 49.16 displays
two eyes.

49.15*
(Area geometry) Write a program that creates two areas: a circle and a
path consisting of two cubic curves. Draw the areas and fill the
symmetric difference of the areas, as shown in Figure 49.32(b).

49.16*
(Eyes) Write a program that displays two eyes in an oval, as shown in
Figure 49.32c.

49.17**
(Geometry: strategic point of a polygon) Revise Exercise 14.33 to
enable the user to drag and move the vertices and the program
dynamically redisplay the polygon and its strategic point. Write a
program as an applet and assume the five points of the polygon are
initially located at (25, 20), (170, 25), (200, 100), (100, 110), and
(50, 80).

34

49.18*
(Scale and rotate graphics) Write an applet that enables the user to
scale and rotate the STOP sign, as shown in Figure 49.33. The user can
press the CTRL and +/- key to increase/decrease the size and press the
RIGHT/LEFT arrow key to rotate left or right.

Figure 49.33

The applet can scale and rotate the painting.

1

***This is a bonus Web chapter

CHAPTER 50

Testing Using JUnit

Objectives

To know what JUnit is and how JUnit works (§50.2).
To create and run a JUnit test class from the command window
(§50.2).
To create and run a JUnit test class from NetBeans (§50.3).
To create and run a JUnit test class from Eclipse (§50.4).

2

50.1 Introduction

At the very beginning of this book in Section 2.16, we introduced
software development process that includes requirements specification,
analysis, design, implementation, testing, deployment, and maintenance.
Testing is an important part of this process. This chapter introduces
how to test Java classes using JUnit.

50.2 JUnit Basics

<key term>JUnit
<key term>test runner
<key term>test class
JUnit is the de facto framework for testing Java programs. JUnit is a
third-party open source library packed in a jar file. The jar file
contains a tool called test runner, which is used to run test programs.
Suppose you have a class named A. To test this class, you write a test
class named ATest. This test class, called a test class, contains the
methods you write for testing class A. The test runner executes ATest
to generate a test report, as shown in Figure 50.1.

…
e.g., ATest.class
 A. class
 …

Test Class File

Test Ru nner

Test Report

Figure 50.1

JUnit test runner executes the test class to generate a test report.

You will see how JUnit works from an example. To create the example,
first you need to download JUnit from
http://sourceforge.net/projects/junit/files/. At present, the latest
version is junit-4.10.jar. Download this file to c:\book\lib and add it
to the classpath environment variable as follows:

set classpath=.;%classpath%;c:\book\lib\junit-4.10.jar

To test if this environment variable is set correctly, open a new
command window, and type the following command:

java org.junit.runner.JUnitCore

You should see the message displayed as shown in Figure 50.2.

Figure 50.2

3

The JUnit test runner displays the JUnit version.

To use JUnit, create a test class. By convention, if the class to be
tested is named A, the test class should be named ATest. A simple
template of a test class may look like this:

package mytest;

import org.junit.*;
import static org.junit.Assert.*;

public class ATest {
 @Test
 public void m1() {
 // Write a test method
 }

 @Test
 public void m2() {
 // Write another test method
 }

 @Before
 public void setUp() throws Exception {
 // Common objects used by test methods may be set up here
 }
}

To run the test from the console, use the following command:

java org.junit.runner.JUnitCore mytest.ATest

<key term>JUnitCore
When this command is executed, JUnitCore controls the execution of
ATest. It first executes the setUp() method to set up the common
objects used for the test, and then executes test methods m1 and m2 in
this order. You may define multiple test methods if desirable.

The following methods can be used to implement a test method:

assertTrue(booleanExpression)
The method reports success if the booleanExpression evaluates true.

assertEquals(Object, Object)
The method reports success if the two objects are the same using the
equals method.

assertNull(Object)
The method reports success if the object reference passed is null.

fail(String)
The method causes the test to fail and prints out the string.

Listing 50.1 is an example of a test class for testing
java.util.ArrayList.

Listing 50.1 ArrayListTest.java
<Side Remark line 7: test class>

4

<Side Remark line 15: test method>
<Side Remark line 17: assertion>
<Side Remark line 20: assertion>
<Side Remark line 24: test method>
<Side Remark line 26: assertion>
<Side Remark line 32: assertion>

package mytest;

import org.junit.*;
import static org.junit.Assert.*;
import java.util.*;

public class ArrayListTest {
 private ArrayList<String> list = new ArrayList<String>();

 @Before
 public void setUp() throws Exception {
 }

 @Test
 public void testInsertion() {
 list.add("Beijing");
 assertEquals("Beijing", list.get(0));
 list.add("Shanghai");
 list.add("Hongkong");
 assertEquals("Hongkong", list.get(list.size() - 1));
 }

 @Test
 public void testDeletion() {
 list.clear();
 assertTrue(list.isEmpty());

 list.add("A");
 list.add("B");
 list.add("C");
 list.remove("B");
 assertEquals(2, list.size());
 }
}

A test run of the program is shown in Figure 50.3. Note that you have
to first compile ArrayListTest.java. The ArrayListTest class is placed
in the mytest package. So you should place ArrayListTest.java in the
directory named mytest.

5

Figure 50.3

The test report is displayed from running ArrayListTest.

No errors are reported in this JUnit run. If you mistakenly change

assertEquals(2, list.size());

in line 32 to

assertEquals(3, list.size());

Run ArrayListTest now. You will see an error reported as shown in
Figure 50.4.

Figure 50.4

The test report reports an error.

You can define any number of test methods. In this example, two test
methods testInsertion and testDeletion are defined. JUnit executes
testInsertion and testDeletion in this order.

NOTE: The test class must be placed in a named package
such as mytest in this example. The JUnit will not work
if the test class is placed a default package.

Listing 50.2 gives a test class for testing the Loan class in Listing
10.2. For convenience, we create Loan.java in the same directory with
LoanTest.java. The Loan class is shown in Listing 50.3.

Listing 50.2 LoanTest.java
<Side Remark line 6: test class>
<Side Remark line 12: test method>
<Side Remark line 19: assertion>
<Side Remark line 22: assertion>
<Side Remark line 28: compute monthly payment>
<Side Remark line 37: compute total payment>

package mytest;

import org.junit.*;
import static org.junit.Assert.*;

public class LoanTest {

6

 @Before
 public void setUp() throws Exception {
 }

 @Test
 public void testPaymentMethods() {
 double annualInterestRate = 2.5;
 int numberOfYears = 5;
 double loanAmount = 1000;
 Loan loan = new Loan(annualInterestRate, numberOfYears,
 loanAmount);

 assertTrue(loan.getMonthlyPayment() ==
 getMonthlyPayment(annualInterestRate, numberOfYears,
 loanAmount));
 assertTrue(loan.getTotalPayment() ==
 getTotalPayment(annualInterestRate, numberOfYears,
 loanAmount));
 }

 /** Find monthly payment */
 private double getMonthlyPayment(double annualInterestRate,
 int numberOfYears, double loanAmount) {
 double monthlyInterestRate = annualInterestRate / 1200;
 double monthlyPayment = loanAmount * monthlyInterestRate / (1 -
 (1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12)));
 return monthlyPayment;
 }

 /** Find total payment */
 public double getTotalPayment(double annualInterestRate,
 int numberOfYears, double loanAmount) {
 return getMonthlyPayment(annualInterestRate, numberOfYears,
 loanAmount) * numberOfYears * 12;
 }
}

Listing 50.3 Loan.java
<Side Remark line 1: mytest package>
<Side Remark line 3: the Loan class>
<Side Remark line 56: getMonthlyPayment>
<Side Remark line 64: getTotalPayment>

package mytest;

public class Loan {
 private double annualInterestRate;
 private int numberOfYears;
 private double loanAmount;
 private java.util.Date loanDate;

 /** Default constructor */
 public Loan() {
 this(2.5, 1, 1000);
 }

7

 /** Construct a loan with specified annual interest rate,
 number of years, and loan amount
 */
 public Loan(double annualInterestRate, int numberOfYears,
 double loanAmount) {
 this.annualInterestRate = annualInterestRate;
 this.numberOfYears = numberOfYears;
 this.loanAmount = loanAmount;
 loanDate = new java.util.Date();
 }

 /** Return annualInterestRate */
 public double getAnnualInterestRate() {
 return annualInterestRate;
 }

 /** Set a new annualInterestRate */
 public void setAnnualInterestRate(double annualInterestRate) {
 this.annualInterestRate = annualInterestRate;
 }

 /** Return numberOfYears */
 public int getNumberOfYears() {
 return numberOfYears;
 }

 /** Set a new numberOfYears */
 public void setNumberOfYears(int numberOfYears) {
 this.numberOfYears = numberOfYears;
 }

 /** Return loanAmount */
 public double getLoanAmount() {
 return loanAmount;
 }

 /** Set a newloanAmount */
 public void setLoanAmount(double loanAmount) {
 this.loanAmount = loanAmount;
 }

 /** Find monthly payment */
 public double getMonthlyPayment() {
 double monthlyInterestRate = annualInterestRate / 1200;
 double monthlyPayment = loanAmount * monthlyInterestRate / (1 -
 (1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12)));
 return monthlyPayment;
 }

 /** Find total payment */
 public double getTotalPayment() {
 double totalPayment = getMonthlyPayment() * numberOfYears * 12;
 return totalPayment;
 }

8

 /** Return loan date */
 public java.util.Date getLoanDate() {
 return loanDate;
 }
}

The testPaymentMethods() in LoanTest creates an instance of Loan (line
16-17) and tests whether loan.getMonthlyPayment() returns the same
value as getMonthlyPayment(annualInterestRate, numberOfYears,
loanAmount). The latter method is defined in the LoanTest class (lines
28-34).

The testPaymentMethods() also tests whether loan.getTotalPayment()
returns the same value as getTotalPayment(annualInterestRate,
numberOfYears, loanAmount). The latter method is defined in the
LoanTest class (lines 37-41).

A sample run of the program is shown in Figure 50.5.

Figure 50.5

The JUnit test runner executes LoanTest and reports no errors.

50.3 Using JUnit from NetBeans

An IDE like NetBeans and Eclipse can greatly simplify the process for
creating and running test classes. This section introduces using JUnit
from NetBeans and the next section introduces using JUnit from Eclipse.

If you not familiar with NetBeans, see Supplement II.B. Assume you have
installed NetBeans 7.0. Create a project named chapter50 as follows:

Step 1: Choose File, New Project to display the New Project dialog box.
Step 2: Choose Java in the Categories section and Java Application in
the Projects section. Click Next to display the New Java Application
dialog box.
Step 3: Enter chapter50 as the Project Name and c:\book as Project
Location. Click Finish to create the project as shown in Figure 50.6.

9

Figure 50.6

A new project named chapter50 is created.

To demonstrate how to create a test class, we first create class to be
tested. Let the class be Loan from Listing 10.2. Here are the steps to
create the Loan class under chapter50.

Step 1: Right-click the project node chapter50 and choose New, Java
Class to display the New Java Class dialog box.
Step 2: Enter Loan as Class Name and chapter50 in the Package field and
click Finish to create the class.
Step 3: Copy the code in Listing 10.2 to the Loan class and make sure
the first line is package chapter50, as shown in Figure 50.7.

10

Figure 50.7

The Loan class is created.

Now you can create a test class to test the Loan class as follows:

Step 1: Right-click Loan.java in the project to display a context menu
and choose Tools, Create JUnit Test to display the Select JUnit version
dialog box, as shown in Figure 50.8.
Step 2: Choose JUnit 4.x. You will see the Create Tests dialog box
displayed as shown in Figure 50.9. Click OK to generate a Test class
named LoanTest as shown in Figure 50.10. Note that LoanTest.java is
placed under the Test Packages node in the project.

Figure 50.8

You should select JUnit 4.x framework to create test classes.

11

Figure 50.9

The Create Tests dialog box creates a Test class.

Figure 50.10

The LoanTest class is automatically generated.

You can now modify LoanTest by copying the code from Listing 50.2. Run
LoanTest.java. You will see the test report as shown in Figure 50.11.

12

Figure 50.11

The test report is displayed after the LoanTest class is executed.

50.4 Using JUnit from Eclipse

This section introduces using JUnit from Eclipse. If you are not
familiar with Eclipse, see Supplement II.D. Assume you have installed
Eclipse 3.7. Create a project named chapter50 as follows:

Step 1: Choose File, New Java Project to display the New Java Project
dialog box, as shown in Figure 50.12.
Step 2: Enter chapter50 in the project name field and click Finish to
create the project.

13

Figure 50.12

The New Java Project dialog creates a new project.

To demonstrate how to create a test class, we first create class to be
tested. Let the class be Loan from Listing 10.2. Here are the steps to
create the Loan class under chapter50.

Step 1: Right-click the project node chapter50 and choose New, Class to
display the New Java Class dialog box, as shown in Figure 50.13.
Step 2: Enter mytest in the Package field and click Finish to create
the class.
Step 3: Copy the code in Listing 10.2 to the Loan class and make sure
the first line is package mytest, as shown in Figure 50.14.

14

Figure 50.13

The New Java Class dialog creates a new Java class.

15

Figure 50.14

The Loan class is created.

Now you can create a test class to test the Loan class as follows:

Step 1: Right-click Loan.java in the project to display a context menu
and choose New, JUnit Test Case to display the New JUnit Test Case
dialog box, as shown in Figure 50.15.
Step 2: Click Finish. You will see a dialog prompting you to add JUnit
4 to the project build path. Click OK to add it. Now a test class named
LoanTest is created as shown in Figure 50.16.

16

Figure 50.15

The New JUnit Test Case dialog box creates a Test class.

Figure 50.16

The LoanTest class is automatically generated.

You can now modify LoanTest by copying the code from Listing 50.2. Run
LoanTest.java. You will see the test report as shown in Figure 50.17.

17

Figure 50.17

The test report is displayed after the LoanTest class is executed.

Key Terms

JUnit
JUnitCore
test class
test runner

Chapter Summary

1. JUnit is an open source framework for testing Java programs.
2. To test a Java class, you create a test class for the class to be

tested and use JUnit’s test runner to execute the test class to
generate a test report.

3. You can create and run a test class from the command window or
use a tool such as NetBeans and Eclipse.

Test Questions

Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions

50.1 What is JUnit?

50.2 What is a JUnit test runner?

18

50.3 What is a test class? How do you create a test class?

50.4 How do you use the assertTrue method?

50.5 How do you use the assertEquals method?

Programming Exercises

50.1

Write a test class to test the methods length, charAt, substring,
and indexOf in the java.lang.String class.

50.2

Write a test class to test the methods add, remove, addAll,
removeAll, size, isEmpty, and contains in the java.util.HashSet
class.

50.3

Write a test class to test the method isPrime in Listing 5.7
PrimeNumberMethod.java.

50.4

Write a test class to test the methods getBMI and getStatus in the
BMI class in Listing 10.4.

1251

APPENDIXES

Appendix A
Java Keywords

Appendix B
The ASCII Character Set

Appendix C
Operator Precedence Chart

Appendix D
Java Modifiers

Appendix E
Special Floating-Point Values

Appendix F
Number Systems

Appendix G
Bitwise Operations

This page intentionally left blank

APPENDIX A
Java Keywords
The following fifty keywords are reserved for use by the Java language:

abstract

assert

boolean

break

byte

case

catch

char

class

const

continue

default

do

double

else

enum

extends

final

finally

float

for

goto

if

implements

import

instanceof

int

interface

long

native

new

package

private

protected

public

return

short

static

strictfp*

super

switch

synchronized

this

throw

throws

transient

try

void

volatile

while

*The strictfp keyword is a modifier for a method or class that enables it to use strict floating-point calcu-
lations. Floating-point arithmetic can be executed in one of two modes: strict or nonstrict. The strict mode
guarantees that the evaluation result is the same on all Java Virtual Machine implementations. The nonstrict
mode allows intermediate results from calculations to be stored in an extended format different from the stan-
dard IEEE floating-point number format. The extended format is machine-dependent and enables code to be
executed faster. However, when you execute the code using the nonstrict mode on different JVMs, you may
not always get precisely the same results. By default, the nonstrict mode is used for floating-point calcula-
tions. To use the strict mode in a method or a class, add the strictfp keyword in the method or the class
declaration. Strict floating-point may give you slightly better precision than nonstrict floating-point, but the
distinction will only affect some applications. Strictness is not inherited; that is, the presence of strictfp on
a class or interface declaration does not cause extended classes or interfaces to be strict.

The keywords goto and const are C++ keywords reserved, but not currently used, in Java.
This enables Java compilers to identify them and to produce better error messages if they
appear in Java programs.

The literal values true, false, and null are not keywords, just like literal value 100.
However, you cannot use them as identifiers, just as you cannot use 100 as an identifier. In the
code listing, we use the keyword color for true, false, and null to be consistent with their
coloring in Java IDEs.

assert is a keyword added in JDK 1.4 and enum is a keyword added in JDK 1.5.

1253

The ASCII Character Set
Tables B.1 and B.2 show ASCII characters and their respective decimal and hexadecimal
codes. The decimal or hexadecimal code of a character is a combination of its row index and
column index. For example, in Table B.1, the letter A is at row 6 and column 5, so its decimal
equivalent is 65; in Table B.2, letter A is at row 4 and column 1, so its hexadecimal equivalent
is 41.

APPENDIX B

1254

TABLE B.1 ASCII Character Set in the Decimal Index

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 nl vt ff cr so si dle dcl dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us sp ! ” # $ % & ’

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 6 = 7 ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ¿ - ‘ a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { � } + del

1255

TABLE B.2 ASCII Character Set in the Hexadecimal Index

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 nul soh stx etx eot enq ack bel bs ht nl vt ff cr so si

1 dle dcl dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us

2 sp ! ” # $ % & ’ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; 6 = 7 ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ¿ -

6 ‘ a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { � } + del

Operator Precedence Chart
The operators are shown in decreasing order of precedence from top to bottom. Operators in
the same group have the same precedence, and their associativity is shown in the table.

APPENDIX C

1256

Operator Name Associativity

() Parentheses Left to right

() Function call Left to right

[] Array subscript Left to right

. Object member access Left to right

++ Postincrement Right to left

–– Postdecrement Right to left

++ Preincrement Right to left

–– Predecrement Right to left

+ Unary plus Right to left

– Unary minus Right to left

! Unary logical negation Right to left

(type) Unary casting Right to left

new Creating object Right to left

* Multiplication Left to right

/ Division Left to right

% Remainder Left to right

+ Addition Left to right

– Subtraction Left to right

<< Left shift Left to right

>> Right shift with sign extension Left to right

>>> Right shift with zero extension Left to right

< Less than Left to right

<= Less than or equal to Left to right

> Greater than Left to right

>= Greater than or equal to Left to right

instanceof Checking object type Left to right

Operator Name Associativity

== Equal comparison Left to right

!= Not equal Left to right

& (Unconditional AND) Left to right

^ (Exclusive OR) Left to right

| (Unconditional OR) Left to right

&& Conditional AND Left to right

|| Conditional OR Left to right

?: Ternary condition Right to left

= Assignment Right to left

+= Addition assignment Right to left

–= Subtraction assignment Right to left

*= Multiplication assignment Right to left

/= Division assignment Right to left

%= Remainder assignment Right to left

Appendix C 1257

Java Modifiers
Modifiers are used on classes and class members (constructors, methods, data, and class-level
blocks), but the final modifier can also be used on local variables in a method. A modifier
that can be applied to a class is called a class modifier. A modifier that can be applied to a
method is called a method modifier. A modifier that can be applied to a data field is called a
data modifier. A modifier that can be applied to a class-level block is called a block modifier.
The following table gives a summary of the Java modifiers.

APPENDIX D

1258

Modifier Class Constructor Method Data Block Explanation

(default)* U U U U U A class, constructor, method,
or data field is
visible in this package.

public U U U U A class, constructor, method,
or data field is
visible to all the programs
in any package.

private U U U A constructor, method, or data
field is only visible in this
class.

protected U U U A constructor, method, or data
field is visible in this package
and in subclasses of this class
in any package.

static U U U Define a class method, a
class data field, or a static
initialization block.

final U U U A final class cannot be
extended. A final method can-
not be modified in a subclass.
A final data field
is a constant.

abstract U U An abstract class must be
extended. An abstract method
must be implemented in a
concrete subclass.

native U A native method indicates
that the method is
implemented using a language
other than Java.

*Default access doesn’t have a modifier associated with it. For example: class Test {}

Appendix D 1259

Modifier Class Constructor Method Data Block Explanation

synchronized U U Only one thread at a time can
execute this method.

strictfp U U Use strict floating-point
calculations to guarantee that
the evaluation result is the
same on all JVMs.

transient U Mark a nonserializable
instance data field.

The modifiers default (no modifier), public, private, and protected are known as
visibility or accessibility modifiers because they specify how classes and class members are
accessed.

The modifiers public, private, protected, static, final, and abstract can also
be applied to inner classes.

Special Floating-Point Values
Dividing an integer by zero is invalid and throws ArithmeticException, but dividing a
floating-point value by zero does not cause an exception. Floating-point arithmetic can over-
flow to infinity if the result of the operation is too large for a double or a float, or under-
flow to zero if the result is too small for a double or a float. Java provides the special
floating-point values POSITIVE_INFINITY, NEGATIVE_INFINITY, and NaN (Not a Num-
ber) to denote these results. These values are defined as special constants in the Float class
and the Double class.

If a positive floating-point number is divided by zero, the result is POSITIVE_INFINITY.
If a negative floating-point number is divided by zero, the result is NEGATIVE_INFINITY. If
a floating-point zero is divided by zero, the result is NaN, which means that the result is unde-
fined mathematically. The string representations of these three values are Infinity,
-Infinity, and NaN. For example,

System.out.print(1.0 / 0); // Print Infinity
System.out.print(–1.0 / 0); // Print –Infinity
System.out.print(0.0 / 0); // Print NaN

These special values can also be used as operands in computations. For example, a number
divided by POSITIVE_INFINITY yields a positive zero. Table E.1 summarizes various com-
binations of the /, *, %, +, and – operators.

APPENDIX E

1260

TABLE E.1 Special Floating-Point Values

x y x/y x*y x%y x + y x - y

Finite 0.0; infinity; 0.0; NaN Finite Finite

Finite infinity; 0.0; 0.0; x infinity; infinity

0.0; 0.0; NaN 0.0; NaN 0.0; 0.0;

infinity; Finite infinity; 0.0; NaN infinity; infinity;

infinity; infinity; NaN 0.0; NaN infinity; infinity

0.0; infinity; 0.0; NaN 0.0; infinity; 0.0;

NaN Any NaN NaN NaN NaN NaN

Any NaN NaN NaN NaN NaN NaN

Note
If one of the operands is NaN, the result is NaN.

1261

APPENDIX F
Number Systems
F.1 Introduction
Computers use binary numbers internally, because computers are made naturally to store and
process 0s and 1s. The binary number system has two digits, 0 and 1. A number or character
is stored as a sequence of 0s and 1s. Each 0 or 1 is called a bit (binary digit).

In our daily life we use decimal numbers. When we write a number such as 20 in a pro-
gram, it is assumed to be a decimal number. Internally, computer software is used to convert
decimal numbers into binary numbers, and vice versa.

We write computer programs using decimal numbers. However, to deal with an operating
system, we need to reach down to the “machine level” by using binary numbers. Binary num-
bers tend to be very long and cumbersome. Often hexadecimal numbers are used to abbrevi-
ate them, with each hexadecimal digit representing four binary digits. The hexadecimal
number system has 16 digits: 0–9 and A–F. The letters A, B, C, D, E, and F correspond to the
decimal numbers 10, 11, 12, 13, 14, and 15.

The digits in the decimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. A decimal num-
ber is represented by a sequence of one or more of these digits. The value that each digit rep-
resents depends on its position, which denotes an integral power of 10. For example, the digits
7, 4, 2, and 3 in decimal number 7423 represent 7000, 400, 20, and 3, respectively, as shown
below:

The decimal number system has ten digits, and the position values are integral powers of 10.
We say that 10 is the base or radix of the decimal number system. Similarly, since the binary
number system has two digits, its base is 2, and since the hex number system has 16 digits, its
base is 16.

If 1101 is a binary number, the digits 1, 1, 0, and 1 represent and
respectively:

If 7423 is a hex number, the digits 7, 4, 2, and 3 represent and
respectively:

 163
 162

 161
 160 = 28672 + 1024 + 32 + 3 = 29731

� 7 � 4 � 2 � 3 � = 7 * 163 + 4 * 162 + 2 * 161 + 3 * 160

3 * 160,
7 * 163, 4 * 162, 2 * 161,

 23

˛ 22
 21

 20 = 8 + 4 + 0 + 1 = 13

� 1 � 1 � 0 � 1 � = 1 * 23 + 1 * 22 + 0 * 21 + 1 * 20

1 * 20,
1 * 23, 1 * 22, 0 * 21,

 103
 102

 101
 100 = 7000 + 400 + 20 + 3 = 7423

� 7 � 4 � 2 � 3 � = 7 * 103 + 4 * 102 + 2 * 101 + 3 * 100

binary numbers

decimal numbers

hexadecimal number

base

radix

1262 Appendix F

F.2 Conversions Between Binary and Decimal Numbers
Given a binary number the equivalent decimal value is

Here are some examples of converting binary numbers to decimals:

bn * 2n + bn-1 * 2n-1 + bn-2 * 2n-2 + c + b2 * 22 + b1 * 21 + b0 * 20

bnbn-1bn-2 c b2b1b0,

To convert a decimal number d to a binary number is to find the bits
and such that

These bits can be found by successively dividing d by 2 until the quotient is 0. The remainders
are and

For example, the decimal number 123 is 1111011 in binary. The conversion is done as follows:
bn.b0, b1, b2, . . . , bn-2, bn-1,

d = bn * 2n + bn-1 * 2n-1 + bn-2 * 2n-2 + . . . + b2 * 22 + b1 * 21 + b0 * 20

b0

bn, bn-1, bn-2, . . . , b2, b1,

Tip
The Windows Calculator, as shown in Figure F.1, is a useful tool for performing number
conversions. To run it, search for Calculator from the Start button and launch Calculator,
then under View select Scientific.

binary to decimal

decimal to binary

Binary Conversion Formula Decimal

10 1 * 21 + 0 * 20 2

1000 1 * 23 + 0 * 22 + 0 * 21 + 0 * 20 8

10101011

1 * 21 + 1 * 20

1 * 27 + 0 * 26 + 1 * 25 + 0 * 24 + 1 * 23 + 0 * 22 + 171

2 1

0

1

b6

0

2 3

2

1

2 7

6

b4

1

3

b5

1

2

Quotient

Remainder

15

14

b3

1

7

2

30

b2

0

15

2

60

61

b1

1

30

b0

2

122

1

61

12330

BinaryDecimal

Hex

FIGURE F.1 You can perform number conversions using the Windows Calculator.

Appendix F 1263

hex to decimal

decimal to hex

F.3 Conversions Between Hexadecimal and Decimal
Numbers
Given a hexadecimal number the equivalent decimal value is

Here are some examples of converting hexadecimal numbers to decimals:

hn * 16n + hn-1 * 16n-1 + hn-2 * 16n-2 + . . . + h2 * 162 + h1 * 161 + h0 * 160

hnhn-1hn-2 . . . h2h1h0,

hex to binary

binary to hex

Hexadecimal Conversion Formula Decimal

7F 7 * 161 + 15 * 160 127

FFFF 15 * 163 + 15 * 162 + 15 * 161 + 15 * 160 65535

431 4 * 162 + 3 * 161 + 1 * 160 1073

To convert a decimal number d to a hexadecimal number is to find the hexadecimal digits
and such that

These numbers can be found by successively dividing d by 16 until the quotient is 0. The
remainders are and

For example, the decimal number 123 is 7B in hexadecimal. The conversion is done as
follows:

hn.h0, h1, h2, . . . , hn-2, hn-1,

+ h1 * 161 + h0 * 160

d = hn * 16n + hn-1 * 16n-1 + hn-2 * 16n-2 + . . . + h2 * 162

h0hn, hn-1, hn-2, c , h2, h1,

Quotient

Remainder

16 7

0

7

h1

0

16 123

112

11

h0

7

F.4 Conversions Between Binary and Hexadecimal
Numbers
To convert a hexadecimal to a binary number, simply convert each digit in the hexadecimal
number into a four-digit binary number, using Table F.1.

For example, the hexadecimal number 7B is 1111011, where 7 is 111 in binary, and B is
1011 in binary.

To convert a binary number to a hexadecimal, convert every four binary digits from right to
left in the binary number into a hexadecimal number.

For example, the binary number 1110001101 is 38D, since 1101 is D, 1000 is 8, and 11 is
3, as shown below.

1 1 1 0 0 0 1 1 0 1

D83

1264 Appendix F

Note
Octal numbers are also useful. The octal number system has eight digits, 0 to 7. A deci-
mal number 8 is represented in the octal system as 10.

Here are some good online resources for practicing number conversions:

■ http://forums.cisco.com/CertCom/game/binary_game_page.htm

■ http://people.sinclair.edu/nickreeder/Flash/binDec.htm

■ http://people.sinclair.edu/nickreeder/Flash/binHex.htm

F.1 Convert the following decimal numbers into hexadecimal and binary numbers:

100; 4340; 2000

F.2 Convert the following binary numbers into hexadecimal and decimal numbers:

1000011001; 100000000; 100111

F.3 Convert the following hexadecimal numbers into binary and decimal numbers:

FEFA9; 93; 2000

TABLE F.1 Converting Hexadecimal to Binary

Hexadecimal Binary Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

✓Point✓Check

http://forums.cisco.com/CertCom/game/binary_game_page.htm
http://people.sinclair.edu/nickreeder/Flash/binDec.htm
http://people.sinclair.edu/nickreeder/Flash/binHex.htm

1265

APPENDIX G

TABLE G.1

Operator Name
Example

(using bytes in the example) Description

& Bitwise AND 10101110 & 10010010
yields 10000010

The AND of two corresponding
bits yields a 1 if both bits are 1.

| Bitwise
inclusive OR

10101110 | 10010010
yields 10111110

The OR of two corresponding
bits yields a 1 if either bit is 1.

^ Bitwise
exclusive OR

10101110 ^ 10010010
yields 00111100

The XOR of two corresponding
bits yields a 1 only if two bits are
different.

~ One’s
complement

~10101110 yields
01010001

The operator toggles each bit
from 0 to 1 and from 1 to 0.

<< Left shift 10101110 << 2 yields
10111000

The operator shifts bits in the
first operand left by the number
of bits specified in the second
operand, filling with 0s on the right.

>> Right shift
with sign
extension

10101110 >> 2 yields
11101011
00101110 >> 2 yields
00001011

The operator shifts bit in the first
operand right by the number of bits
specified in the second operand,
filling with the highest (sign) bit
on the left.

>>> Unsigned right
shift with zero
extension

10101110 >>> 2 yields
00101011
00101110 >>> 2 yields
00001011

The operator shifts bit in the first
operand right by the number of bits
specified in the second operand,
filling with 0s on the left.

Bitwise Operations
To write programs at the machine-level, often you need to deal with binary numbers directly
and perform operations at the bit-level. Java provides the bitwise operators and shift operators
defined in Table G.1.

The bit operators apply only to integer types (byte, short, int, and long). A character
involved in a bit operation is converted to an integer. All bitwise operators can form bitwise
assignment operators, such as =, |=, <<=, >>=, and >>>=.

This page intentionally left blank

INDEX

1267

Symbols
— (decrement operator), 54–56
- (subtraction operator), 46, 50
. (dot operator), 23, 304
. (object member access operator), 304, 427
/ (division operator), 46, 50
//, in line comment syntax, 25
/*, in block comment syntax, 25
/**.*/ (Javadoc comment syntax), 25
/= (division assignment operator), 53–54
; (semicolons), common errors, 93
\ (backslash character), as directory separator, 542
\ (escape characters), 63–64
|| (or logical operator), 102–105
+ (addition operator), 46, 50
+ (string concatenation operator), 38, 340
++ (increment operator), 54–56
+= (addition assignment operator), augmented, 53–54
= (assignment operator), 42–43, 53–54
= (equals operator), 82
-= (subtraction assignment operator), 53–54
== (comparison operator), 82, 430
== (equal to operator), 82
! (not logical operator), 102–105
!= (not equal to comparison operator), 82
$ (dollar sign character), use in source code, 40
% (remainder or modulo operator), 46, 50
%= (remainder assignment operator), 53–54
&& (and logical operator), 102–105
() (parentheses), 18, 203
* (multiplication operator), 19, 46, 50
*= (multiplication assignment operator), 53–54
^ (exclusive or logical operator), 102–105
{} (curly braces), 17–18, 85, 93
< (less than comparison operator), 82
<= (less than or equal to comparison operator), 82
> (greater than comparison operator), 82
>= (greater than or equal to comparison operator), 82

Numbers
24-point game, 824, 826–828

A
abs method, Math class, 199–200, 588
Absolute file name, 541
Abstract classes

AbstractButton class, 468–470
AbstractCollection class, 794
AbstractGraph, 1057–1058
AbstractGraph.java example, 1060–1065

AbstractMap class, 844
AbstractSet class, 830
AbstractTree class, 967–968
case study: abstract number class, 565–567
case study: Calendar and GregorianCalendar classes,

567–568
characteristics of, 564–565
Circle.java and Rectangle.java examples, 562
compared with interfaces, 581–584
Component and JComponent as, 447
FontMetrics as, 493
GeometricObject.java example, 560–562
InputStream and OutputStream classes, 712–713
interfaces compared to, 570
key terms, 590
modeling graphs and, 1056
MyAbstractList.java example, 931
overview of, 375–376, 559–560
questions and exercises, 590–598
Rational.java example, 586–589
reasons for using abstract methods, 562
summary, 590
TestCalendar.java example, 568–570
TestGeometricObject.java example, 562–563
TestRationalClass.java example, 585–586
using as interface, 928

Abstract data type (ADT), 375
Abstract methods

characteristics of, 564
GenericMatrix.java example, 785
GeometricObject class, 561–562
implementing in subclasses, 560
in interfaces, 570
in Number class, 588
overview of, 203–204
reasons for using, 562–563

abstract modifier, for denoting abstract methods, 560
Abstract number class

LargestNumbers.java, 566–567
overview of, 565–567

Abstract Windows Toolkit. see AWT (Abstract Windows Toolkit)
AbstractButton class

alignment, 470
overview of, 468–469

AbstractCollection class, 794
AbstractGraph class, 1094

AbstractGraph.java example, 1060–1065
Edge as inner class of, 1097
overview of, 1057–1058
WeightedGraph class extending, 1097–1098

AbstractMap class, 844
AbstractSet class, 830
AbstractTree class, 967–968
Access, Microsoft

JDBC drivers for accessing Oracle databases, 1227–1230
tutorials on, 1216

Accessor methods. see Getter (accessor) methods
acos method, trigonometry, 197–198
ActionEvents

GUI components firing, 640
JComboBox class, 647, 650
processing with event handlers, 604–605
Timer class firing, 625–626

ActionListener interface
animation using Timer class, 625
ControlCircle.java, 607–608
DetectSourceDemo.java, 613–614
event handlers and register listeners and, 604–605
inserting button listener, 982
overview of, 600–602

Actions (behaviors), object, 296
Activation records, invoking methods and, 182
Actual concrete types, 770
Actual parameters, defining methods and, 179
Ada, high-level languages, 11
add method

for adding components to frames, 450–451
implementing linked lists, 938
List interface, 800

addActionListener method, 600
Addition (+) operator, 46, 50
Addition (+=) assignment operator, augmented assignment

operators, 53–54
Adelson-Velsky, G. M., 1028
Adjacency lists

priority adjacency lists, 1096–1097
representing edges, 1054–1056

Adjacency matrices
representing edges, 1053–1055
weighted, 1096

Adjacent edges
overview of, 1050
storing in priority queues, 1104

Adjustment listeners, 656
ADT (abstract data type), 375
Aggregating classes, 382
Aggregating objects, 382
Aggregation relationships, objects, 382–383
AIFF audio files, 693
Algorithms, 34

analyzing Towers of Hanoi problem, 860–861
Big O notation for measuring efficiency of, 854–856
binary search, 859
bubble sort, 894–896
comparing growth functions, 861–862
comparing prime numbers, 875
determining Big O for repetition, sequence, and selection

statements, 856–859

EfficientPrimeNumbers.java example, 871–873
external sorts. see External sorts
finding closest pair of points, 875–877
finding convex hull for a set of points, 880–881
finding Fibonacci numbers, 862–864
finding greatest common denominator, 864–865
finding prime numbers, 869
GCDEuclid.java example, 866–869
GCD.java example, 865–866
gift-wrapping algorithm, 881–882
Graham’s algorithm, 882–883
graph algorithms, 1049
greedy, 988
heap sort. see Heap sorts
key terms, 883
merge sort, 896–900
overview of, 853–854
PrimeNumbers.java example, 869–871
questions and exercises, 884–892
quick sort, 900–904
recurrence relations and, 861
selection sort and insertion sort, 860
SieveOfEratosthenes.java example, 873–874
solving Eight Queens problem, 877–880
for sort method, 777
summary, 883–884

Algorithms, spanning tree
Dijkstra’s single-source shortest-path algorithm, 1111–1116
MST algorithm, 1108–1109
Prim’s minimum spanning tree algorithm, 1106–1108

Aliases, column aliases, 1223–1224
Alignment, JButton class and, 470
Ambiguous invocation, of methods, 195
American Standard Code for Information Interchange (ASCII).

see ASCII (American Standard Code for Information
Interchange)

Anagrams, 364
And (&&) logical operator, 102–105
Android phones, use of Java on, 15
Animation

AnimationDemo.java, 626–628
ClockAnimation.java, 628–629
using threads to control (flashing text case study), 1137
using Timer class for, 625–626

Anonymous arrays, 238
Anonymous class listeners

AnonymousListenerDemo.java, 610–612
ListDemo.java, 653
MoveMessageDemo.java, 619
overview of, 609–610

Anonymous objects, 305
APIs (Application Program Interfaces)

Java API for accessing relational databases. see JDBC (Java
Database Connectivity)

libraries as, 16
Applet class

developing applets, 672
as top-level container, 447

1268 Index

Applet Viewer utility, 675
<applet> tag, HTML, 673
Applets

accessing databases using Java applet, 1232–1235
applet clients in client/server networking, 1187–1190
case study: bouncing ball, 683–686
case study: clock with audio, 1139–1142
case study: national flags and anthems, 695–697
case study: tic-tac-toe game, 686–688
containers, 447, 677
developing, 672
DisplayImagePlayAudio.java, 694
DisplayImageWithURL.java, 692–693
DisplayLabel.html, 673–674
DisplayLabel.java, 672–673, 676–677
DisplayMessageApp.java, 681–683
DisplayMessage.html, 679–680
DisplayMessage.java, 680–681
enabling to run as application, 676–677
HTML <applet> tag, 673
Java, 14
key terms, 697
life-cycle methods, 677–678
locating resources using URL class, 691–692
overview of, 671–672
passing strings to, 679
playing audio files, 693–694
questions and exercises, 698–708
security restrictions, 675–676
security restrictions and, 1235
summary, 697–698
TicTacToe.java, 688–691
viewing from Web browser, 674–675
viewing with Applet Viewer utility, 675

appletviewer command, 675
Application Program Interfaces (APIs), 16
Applications

developing database applications using JDBC, 1228–1231
enabling applets to run as, 676–677

Apps, developing on Web servers, 14
Archive attribute, applets, 674
Arcs, drawing, 488–490
Arguments

defining methods and, 179
passing by values, 186–189
receiving string arguments from command line, 358–359
variable-length argument lists, 244–245

Arithmetic operators, in SQL, 1224
ArithmeticException class, 521
Arithmetic/logic units, CPU components, 3
Array initializers, 227
Array variables, 226
ArrayBlockingQueue class, 1158–1159
arraycopy method, System class, 236
ArrayIndexOutOfBoundsException, 230
ArrayList class

animation of array lists, 929
case study: custom stack class, 436–437

cloning arrays, 578
compared with LinkedList, 800–802
creating and adding numbers to array lists, 566–567
creating array lists and adding elements to, 796–799
defined under List interface, 799
DistinctNumbers.java example, 434–436
as example of generic class, 770–771
implementing array lists, 932–933
implementing bucket sorts, 911–912
implementing buckets, 1005
implementing stacks using array lists. see Stacks
MyArrayList, 929
MyArrayList compared with MyLinkedList, 950–951
MyArrayList.java example, 933–937
representing edges in graphs, 1055–1056
SetListPerformanceTest.java example, 839
storing edge objects in, 1053
for storing elements in a list, 794
storing heaps in, 905
storing list of objects in, 430–431
TestArrayAndLinkedList.java, 802–803
TestArrayList.java example, 431–434
TestMyArrayList.java example, 937–938
Vector class compared with, 813

Arrays, in general
edge arrays, 1052–1053
as fixed-size data structure, 932
implementing binary heaps using, 905
ragged arrays, 1054
sorting using Heap class, 909
storing lists in. see ArrayList class
storing vertices in, 1052

Arrays, multi-dimensional
case study: daily temperature and humidity, 278–279
case study: guessing birthdays, 279
overview of, 277–278
questions and exercises, 281–294
summary, 281

Arrays, single-dimensional
ArrayList class, 433–434
Arrays class, 252–253
case study: counting occurrences of letters, 241–244
case study: deck of cards, 234–236
case study: generic method for sorting, 776–777
case study: lotto numbers, 231–234
constructing strings from, 336
converting strings to/from, 343–344
copying, 236–237
creating, 225–226, 574–576
declaring, 225
for-each loops, 229–231
indexed variables, 226–227
initializers, 227
key terms, 253
of objects, 326–328
overview of, 223–225
passing to methods, 237–240
processing, 227–229

Index 1269

Arrays, single-dimensional (continued)
questions and exercises, 255–262
returning from methods, 240–241
searching, 245–248
serializing, 728–729
size and default values, 226
sorting, 248–252, 574–576
summary, 253–254
treating as objects in Java, 304
variable-length argument lists, 244–245

Arrays, two-dimensional
case study: finding closest pair of points, 272–273
case study: grading multiple-choice test, 270–272
case study: Sudoku, 274–277
declaring variables and creating two-dimensional arrays,

264–265
obtaining length of two-dimensional arrays, 265–266
overview of, 263–264
passing to methods to two-dimensional arrays, 269–270
processing two-dimensional arrays, 267–269
questions and exercises, 281–294
ragged arrays, 266–267
representing graph edges with, 1052–1053
representing weighted graphs, 1095–1096
summary, 281

Arrays class, 252–253
Arrows keys, on keyboards, 8
Ascent, in text fonts, 493
ASCII (American Standard Code for Information Interchange)

character data type (char) and, 63
data input and output streams, 717
decimal and hexadecimal equivalents, 1255
encoding scheme, 4
text encoding, 710
text I/O vs. binary I/O, 711

asin method, trigonometry, 197–198
asList method, 803
Assemblers, 10
Assembly language, 10
Assignment operator (=)

augmented, 53–54
overview of, 42–43

Assignment operators, 1265
Assignment statements (assignment expressions)

assigning value to variables, 36
overview of, 42–43

Associative arrays. see Maps
Associativity, of operators, 116, 1256–1257
atan method, trigonometry, 197–198
Attributes

columns in relational structures, 1213
object, 296
table, 1219

AU files, audio formats, 693
Audio clips

AudioClip objects, 693–694
case study: clock with audio, 1139–1142

Audio files
applets for playing, 693–694
case study: clock with audio, 1139–1142
case study: national flags and anthems, 695–697
DisplayImagePlayAudio.java, 694

Auto commit, SQL statements and, 1232
Autoboxing/Autounboxing, 396–397, 771–772
Autoenforcement, of integrity constraints, 1216
Average-case analysis, measuring algorithm efficiency, 854, 867
AVL trees

AVLTree.java, 1035–1039
balancing nodes on a path, 1032–1033
deleting elements, 1034
designing classes for, 1031–1032
key terms, 1044
overriding the insert method, 1032
overview of, 1027–1028
questions and exercises, 1044–1045
rebalancing, 1028–1030
rotations for balancing, 1033–1034
summary, 1044
TestAVLTree.java, 1040–1043
time complexity of, 1043

AVLTree class
overview of, 1035–1039
as subclass of BST class, 1031
testing, 1040–1043

AWT (Abstract Windows Toolkit)
Applet class, 447, 672
Color class, 460–462
Component class, see Component class
Container class. see Container class
Date class, 308–309, 567–568
Dialog class, 447
Dimension class, 448
Error class, 524, 526
event classes in, 603
EventObject class, 602–603, 605
exceptions. see Exception class
FigurePanel class, 485–488
File class, 541–543, 710
FlowLayout class. see FlowLayout class
Font class, 461–462
Frame class, 447
GeometricObject class, 560–563
Graphics class. see Graphics class
GregorianCalendar class in. see GregorianCalendar

class
GridLayout class. see GridLayout class
GuessDate class, 388–391
IllegalArgumentException class, 527
Image class, 504
ImageViewer class, 506–508
InputMismatchException class, 522–523, 547
KeyEvent class, 621
LayoutManager class, 448
MalformedURLException class, 551

1270 Index

MessagePanel class, 495–497
MouseEvent class, 617–619
Point class, 617–618
Polygon class, 490
Scanner class. see Scanner class
String class, 336
Swing vs., 446

B
Babylonian method, 217
Background color, setting, 463
Backslash character (\), as directory separator, 542
Backtracking algorithm, 877–880
Backward pointer, in doubly linked lists, 951
Balance factor, for AVL nodes, 1028
Balanced nodes

in AVL trees, 1028
AVLTree class, 1035–1036, 1038–1039

Base cases, in recursion, 744
BASIC, high-level languages, 11
Bean machine game, 258–259, 514, 633
beginIndex method, for obtaining substrings

from strings, 341
Behaviors (actions), object, 296
Behind the scene evaluation, expressions, 116
Best-case input, measuring algorithm efficiency, 854, 867
between-and operator, in SQL, 1223
BFS (breadth-first searches). see Breadth-first searches (BFS)
Big O

determining for repetition, sequence, and selection statements,
856–859

for measuring algorithm efficiency, 854–856
BigDecimal class, 397–398, 565
Binary

files, 710
machine language as binary code, 9–10
operators, 47
searches, 246–248, 748–749

Binary digits (Bits), 4
Binary heaps (binary trees), 904. see also Heap sorts
Binary I/O

BufferedInputStream and BufferedOutputStream
classes, 719–722

characters and strings in, 716
classes, 712–713
DataInputStream and DataOutputStream classes,

716–718
DetectEndOfFile.java, 719
FileInputStream and FileOutputStream classes,

713–714
FilterInputStream and FilterOutputStream classes,

716
overview of, 710
TestDataStream.java, 718–719
TestFileStream.java, 714–716
vs. text I/O, 711–712

Binary numbers
converting, 364
converting to/from decimal, 763, 1262
converting to/from hexadecimal, 1263–1264
overview of, 1261

Binary search algorithm, 889–890
analyzing, 859
recurrence relations and, 861

Binary search trees (BST)
AbstractTree.java example, 968
BST class, 967
BST.java example, 969–973
case study: data compression, 986–988
deleting elements, 975–978
DisplayBST.java example, 981
displaying/visualizing binary trees, 981
HuffmanCode.java example, 988–991
implementing using linked structure, 962–963
inserting elements, 964–965
iterators, 984–985
key terms, 991
overview of, 961–962
questions and exercises, 991–995
representation of, 963–964
searching for elements, 964
summary, 991
TestBSTDelete.java example, 978–980
TestBST.java example, 974–975
TestBSTWithIterator.java example, 985–986
tree traversal, 965–966
TreeControl.java example, 981–984
Tree.java example, 968

Binary trees, 962
binarySearch method

applying to lists, 806
Arrays class, 252–253

BindException, server sockets and, 1177
Bit operators, 1265
Bits (binary digits), 4
Bitwise operators, 1265
Block comments, in Welcome.java, 17
Block modifiers, 1258–1259
Block style, programming style, 25–26
Blocking queues, 1158–1160
Blocks, in Welcome.java, 17
BMI (Body Mass Index), 97–99, 379–382
Boolean accessor method, 320
boolean data type

java.util.Random, 309–310
overview of, 82–84

Boolean expressions
case study: determining leap year, 105–106
conditional expressions, 111–112
defined, 82
if statements and, 84–85
if-else statements, 89–91
writing, 95

Index 1271

Boolean literals, 83
Boolean operators, 1222
Boolean values

defined, 82
as format specifier, 113
inability to cast, 104
logical operators and, 101–102
redundancy in testing, 94

Boolean variables
assigning, 95
overview of, 83
redundancy in testing, 94

BorderLayout class
overview of, 456
properties of, 457
ShowBorderLayout.java example, 456–457

Borders
JComponent class, 463
setting, 463–464
sharing, 466

Bottom-up implementation, 205–207
Bounded generic types

erasing, 782–783
GenericMatrix.java example, 784–789
MaxUsingGenericType.java example, 778–779
overview of, 775–776

Bounded wildcards, 780
Boxing, converting wrapper object to primitive value, 396
Braces. see Curly braces ({})
Breadth-first searches (BFS)

AbstractGraph class, 1063
applications of, 1080
finding BFS trees, 1050
implementing, 1077–1078
overview of, 1077
TestBFS.java, 1078–1079
traversing graphs, 1069

Breadth-first traversal, tree traversal, 966
break statements

controlling loops, 159–162
using with switch statements, 109

Breakpoints, setting for debugging, 120
Brute-force algorithm, 864–865
BST (binary search trees). see Binary search trees (BST)
BST class

AbstractTree.java example, 968
AVLTree class as subclass of, 1031
BST.java example, 969–973
DisplayBST.java example, 981
overview of, 967
TestBSTDelete.java example, 978–980
TestBST.java example, 974–975
time complexity of, 980
Tree.java example, 968

Bubble sorts, 258
bubble sort algorithms, 895
BubbleSort.java example, 895–896

overview of, 894–895
time complexity of, 896

Buckets
bucket sorts, 911–913
separate chaining and, 1005, 1024

BufferedInputStream and BufferedOutputStream classes,
719–722

Buffers, creating, 1156, 1159
Bugs (logic errors), 27–28, 119–120
Bus, function of, 2–3
ButtonListener class, 617, 982
Buttons

adding to BorderLayout, 457
creating, 311, 451
grouping, 641
icons used with, 469
image icons displayed as, 466
JButton class. see JButton class
JRadioButton class. see JRadioButton class
text positions, 470–471
types of, 468

byte type, numeric types
hash codes for primitive types, 999
overview of, 45

Bytecode
translating Java source file into, 20–21
verifier, 22

Bytes
defined, 4
measuring storage capacity in, 5

C
C, high-level languages, 11
C++, high-level languages, 11
Cable modems, 8
Calendar class, 567–568
Call stacks

displaying in debugging, 120
invoking methods and, 182

CallableStatement, for executing SQL stored procedures,
1238–1241

Calling
methods, 180–182
objects, 305

Candidate keys, 1215
canRead method, File class, 542–543
canWrite method, File class, 542–543
capacity method, StringBuilder class,

355–356
Case sensitivity

identifiers and, 40
in Welcome.java, 18

Casting. see Type casting
Casting objects

CastingDemo.java example, 426–429
overview of, 425–426

1272 Index

Catching exceptions. see also try-catch blocks
catch block omitted when finally clause is used, 535
CircleWithException.java example, 532
InputMismatchExceptionDemo.java example, 522
overview of, 527–529
QuotientWithException.java example, 520–521

CDs (compact discs), as storage device, 6
Cells

in Sudoku grid, 274
in tic-tac-toe case study, 687–691

Celsius, converting to/from Fahrenheit, 50–51, 213
Chained exceptions, 537–538
char data type. see Characters (char data type)
Character class, 350–351
Characters (char data type)

applying numeric operators to, 201–202
in binary I/O, 716–717
case study: counting monetary units, 65–68
case study: ignoring nonalphanumeric characters when

checking palindromes, 356–358
casting to/from numeric types, 63–65
Character class, 350–351
comparing, 82
constructing strings from arrays of, 336
converting to strings, 344
CountEachLetter.java example, 351–353
decimal and hexadecimal equivalents of ASCII

character set, 1255
escape characters, 63–64
finding, 342–343
generic method for sorting array of Comparable

objects, 776
hash codes for primitive types, 999
overview of, 62
RandomCharacter.java, 202
retrieving in strings, 339–340
TestRandomCharacter.java, 202–203
Unicode and ASCII and, 62–63

charAt (index) method
retrieving characters in strings, 339–340
StringBuilder class, 355–356

charValue method, Character class, 350
Check boxes

creating, 311
events, 640–643
JCheckBox class, 471–472
types of buttons, 468

Checked exceptions, 525
checkIndex method, 936
Checkpoint Questions, recurrence relations and, 861
Child, searching for elements in BST, 964–965
Choice lists. see Combo boxes
Circle class, 296–297
Circular, doubly linked lists, 951
Circular, singly linked lists, 951
Clarity, class design guidelines, 392
Class abstraction, 375

Class diagrams, UML, 297
Class encapsulation, 375–376
Class loaders, 22
Class modifiers, Java modifiers, 1258–1259
Class variables, 312
ClassCastException, 426
Classes

abstract. see Abstract classes
abstraction and encapsulation in, 375–376
benefits of generics, 770
case study: designing class for matrix using generic types,

784–789
case study: designing class for stacks, 386–388
case study: designing Course class, 384–386
in CircleWithPrivateDataFields.java example,

320–321
in CircleWithStaticMembers.java example, 313–314
clients of, 299
commenting, 25
in ComputeExpression.java, 19
data field encapsulation for maintaining, 319–320
defining custom exception classes, 538–541
defining for objects, 296–298
defining generic, 772–774
design guidelines, 391–393
designing for reuse, 499
for displaying GUI components, 310–312
event classes, 603
event listeners. see Listener classes
identifiers, 40
inner (nested) classes. see Inner (nested) classes
from Java Library, 308
JDBC, 1228
names/naming conventions, 17, 44
preventing extension of, 439–440
for primitive data types, 350
raw types and backward compatibility, 778
static variables, constants, and methods, 312–313
in TestCircleWithPrivateDataFields.java example,

321–322
in TestCircleWithStaticMembers.java example, 314–317
thread-safe, 1147
in UML diagram, 298
variable scope and, 371–372
visibility modifiers, 317–319
in Welcome.java, 17
in WelcomeWithThreeMessages.java, 18

Classes, binary I/O
BufferedInputStream and BufferedOutputStream

classes, 719–722
DataInputStream and DataOutputStream classes, 716–718
DetectEndOfFile.java, 719
FileInputStream and FileOutputStream classes, 713–714
FilterInputStream and FilterOutputStream classes, 716
overview of, 712–713
TestDataStream.java, 718–719
TestFileStream.java, 714–716

Index 1273

Class’s contract, 375
Clients

applet clients, 1187–1190
client sockets, 1177–1178
client.java, 1181–1183
client/server example, 1179
multiple clients connected to single server, 1184–1187
StudentClient.java, 1192–1194
TicTacToeClient.java, 1202–1207

Client/server computing
applet clients, 1187–1190
case study: distributed tic-tac-toe games, 1195–1197
client sockets, 1177–1178
client.java, 1181–1183
client/server example, 1179
data transmission through sockets, 1178
InetAddress class, 1183–1184
multiple clients connected to single server, 1184–1187
overview of, 1176
sending and receiving objects, 1190–1195
server sockets, 1176–1177
server.java, 1180
TicTacToeClient.java, 1202–1207
TicTacToeConstants.java, 1197–1198
TicTacToeServer.java, 1198–1202

Clock speed, CPUs, 3
clone method

Java Collections Framework and, 797
shallow and deep copies, 579–580

Cloneable interface
House.java example, 578–581
Java Collections Framework and, 797
overview, 577–578

Closest pair problem, two-dimensional array applied to,
272–273

Closest-pair animation, 889
COBOL, high-level languages, 11
Code

arrays for simplifying, 229
comments and, 109
incremental development, 137
programming. see Programs/programming
reuse. see Reusable code
sharing. see Sharing code
in software development process, 60–61

Codebase attribute, applets, 674
Coding trees, 986–987. see also Huffman coding trees
Coherent purpose, class design guidelines, 391
Collection interface

methods of, 796
overview of, 794–795
TestCollection.java example, 796–798

Collections
Collection interface, 794–796
iterators for traversing collections, 798
singleton and unmodifiable, 848–849
static methods for, 805–809

synchronized collections, 1163–1164
TestCollection.java example, 796–798

Collections class
singleton and unmodifiable collections, 848–849
static methods, 806
synchronization wrapper methods, 1164

Collections Framework hierarchy
ArrayList and LinkedList classes, 800–803
case study: applet displaying bouncing balls, 809–813
case study: stacks used to evaluate expressions, 817–822
Collection interface, 794–796
Comparator interface, 803–805
Dequeue interface, 815–816
designing complex data structures, 1056
iterators for traversing collections, 798
key terms, 822
List interface, 799
Map interface, 998
methods of List interface, 799–800
overview of, 793–794
PriorityQueue class, 816–817
questions and exercises, 823–828
Queue interface, 815
queues and priority queues, 814
static methods for lists and collections, 805–809
summary, 822
synchronized collections for lists, sets, and maps, 1163–1164
TestCollection.java example, 796–798
TestIterator.java example, 798–799
Vector and Stack classes, 813–814

Collisions, in hashing
double hashing, 1003–1005
handling using open addressing, 1001
handling using separate chaining, 1005
linear probing, 1001–1002
overview of, 999
quadratic probing, 1002–1003

Color
Component class and, 499
setting background and foreground color, 463

Color class
helper classes, 446, 448
in Java GUI API, 460–462

Columns (attributes)
column aliases, 1223–1224
relational structures, 1213

Combo boxes
ComboBoxDemo.java, 648–649
creating, 310–312
overview of, 647–648

Command-line arguments, 358–361
Comments

code maintainability and, 109
programming style and, 25
in Welcome.java, 17

Common denominator, finding greatest common denominator.
see Gcd (greatest common denominator)

1274 Index

Communication devices, computers and, 8–9
Compact discs (CDs), as storage device, 6
Comparable interface

ComparableRectangle.java example, 575–576
Comparator interface vs., 805
as example of generic interface, 770–771
generic method for sorting array of Comparable objects, 776
overview of, 573–574
PriorityQueue class and, 816
Rational class implementing, 585
SortComparableObjects.java example, 574–575
SortRectangles.java example, 576–577
TreeMap class and, 845

Comparator interface
Comparable vs., 805
GeometricObjectComparator.java, 804
methods of, 803–804
PriorityQueue class and, 816
TestComparator.java, 804–805
TestTreeSetWithComparator.java example, 836–838
TreeMap class and, 845

compare method, 804–805
compareTo method

Character class, 350–351
Cloneable interface and, 577
Comparable interface defining, 573–574
ComparableRectangle.java example, 575–576
comparing strings, 338
generic method for sorting array of Comparable objects, 777
implementing in Rational class, 588
wrapper classes and, 394

compareToIgnoreCase method, strings, 338–339
Comparing strings, 337–339
Comparison operators, 82, 430, 1222
Compatibility, raw types and backward compatibility, 778–779
Compile errors (Syntax errors)

common errors, 18
debugging, 119–120
programming errors, 26–27

Compile time
error detection at, 770–771
restrictions on generic types, 783
Xlint:unchecked error, 778

Compilers
ambiguous invocation and, 195
reporting syntax errors, 26
translating Java source file into bytecode file, 20–21
translating source program into machine code, 10–11

Complete graphs, 1050
Completeness, class design guidelines, 392
Complex numbers, Math class, 594
Component class

as abstract class, 447
color and font methods, 499
common features of Component, Container, and

JComponent, 462
subclasses of, 446, 451

Components
adding to BorderLayout to, 456
adding to frames, 450–451
combo boxes, 647–648
ComboBoxDemo.java, 648–649
common features of, 462
comparing Swing and AWT components, 446
component classes, 446–447
DescriptionPanel.java, 645–646
events, 640
GUIEventDemo.java, 640–643
Histogram.java, 662–664
JComponent class. see JComponent class
JFrame displaying, 449
JTextComponent class, 474–475
ListDemo.java, 652–654
lists, 649–652
multiple windows, 660–661
MultipleWindowsDemo.java, 661–662
naming conventions, 468
overview of, 639–640
questions and exercises, 664–670
scroll bars, 654–655
ScrollBarDemo.java, 655–657
SliderDemo.java, 658–660
sliders, 657–658
summary, 664
text areas, 644–645
TextAreaDemo.java, 646–647

Composition, in designing stacks and queues, 953
Composition relationships

between ArrayList and MyStack, 436–437
objects and, 382–383

Compound expressions
case study: stacks used to evaluate, 817–819
EvaluateExpression.java example,

819–822
Compression

data compression using Huffman coding, 986–988
of hash codes, 1000–1001
HuffmanCode.java example, 988–991

Compute expression, 19
Computers

communication devices, 8–9
CPUs, 3–4
input/output devices, 7–8
memory, 4–5
OSs (operating systems), 12–13
overview of, 2–3
programming languages, 9–12
storage devices, 5–7

concat method, 340
Concatenate strings, 36, 68, 340
Concurrency, impact of running multiple

threads, 1133
Conditional AND operator, 104
Conditional expressions, 111–112

Index 1275

Conditions
on locks for thread cooperation, 1150–1152
thread synchronization using, 1148–1149
ThreadCooperation.java, 1152–1155

Confirmation dialogs
controlling loops, 164–165
making selections, 117–119

Connect four game, 288
Connected circles problem

ConnectedCircles.java, 1075–1077
overview of, 1074–1075

Connected graphs, 1050
Consistency, class design guidelines, 391
Consoles

defined, 16
formatting output, 112–115
input, 16
output, 16
reading input, 37–40

Constant time, comparing growth functions, 861–862
Constants

accessing in interfaces, 572
class, 312–313
declaring, 313
in FigurePanel.java, 486
identifiers, 40
key constants, 622
named constants, 43
naming conventions, 44
TicTacToeConstants.java, 1197–1198
wrapper classes and, 394

Constructor chaining, 415–417
Constructors

in abstract classes, 562
for AbstractGraph class, 1060–1061
for AVLTree class, 1035
for BMI class, 381
calling subclass constructors, 414–415
for Character class, 350
creating objects with, 303
creating Random objects, 310
for DataInputStream and DataOutputStream

classes, 717
for Date class, 309
generic classes and, 774
for GuessDate class, 390–391
in ImageViewer.java example, 507
interfaces vs. abstract classes, 581
invoking with this reference, 374–375
for Loan class, 377–379
object methods and, 296–297
private, 319
in SimpleCircle example, 299–300
for String class, 336
for StringBuilder class, 353
in TV.java example, 300
UML diagram of, 298

for UnweightedGraph class, 1065–1066
for WeightedGraph class, 1098–1099
wrapper classes and, 393

Container class
common features in Component, Container, and

JComponent classes, 462
JPanel as subclass of, 459–460
overview of, 447–448

Containers
common features in Component, Container, and

JComponent classes, 462
Container class, 447–448
creating data structures, 794
JPanel as subclass of Container class, 459–460
maps as, 842
overview of, 446
removing elements from, 840
storing objects in, 795
types supported by Java Collections Framework, 794

contains method, 841
Content pane, in JFrame class, 450–451
Contention, thread priorities and, 1136
Content-pane delegation, 451
continue statements, for controlling loops, 159–162
Contract, object class as, 296
Control units, CPUs, 3
Control variables, in for loops, 147–148
Conversion methods, for wrapper classes, 394
Converting strings

to/from arrays, 343–344
to/from numeric values, 344
overview of, 341

Convex hull
finding for set of points, 880–881
gift-wrapping algorithm applied to, 881–882
Graham’s algorithm applied to, 882–883

Coordinates
drawing polygons, 490–491
Java coordinate system, 481
in MessagePanel class, 499

Copying
arrays, 236–237
files, 722–723

Core, of CPU, 4
cos method, trigonometry, 197–198
Cosine function, 511
Counter-controlled loops, 135
Coupon collector’s problem, 260
Course class, 384–386
CPUs (central processing units), 3–4

round-robin scheduling, 1136
time sharing by threads, 1130

create table statement, 1219
Critical regions, avoiding thread race

conditions, 1147
Cubic time, comparing growth functions,

861–862

1276 Index

Curly braces ({})
in block syntax, 17–18
dangers of omitting, 85
forgetting to use, 93

currentTimeMillis method, 51–52
Cursor, mouse, 8
Cursor class, 463
Cycle, connected graphs, 1050

D
.dat files (binary), 712
Data, arrays for referencing, 224
Data compression

Huffman coding for, 986–988
HuffmanCode.java example, 988–991

Data definition language (DDL), 1230
Data fields

accessing object data, 304–305
encapsulating, 319–320, 391–392
in interfaces, 572
object state represented by, 296–297
protected in abstract classes, 931
referencing, 305, 373–374
in SimpleCircle example, 299–300
in TV.java example, 301
UML diagram of, 298

Data modifiers, 1258–1259
Data streams. see DataInputStream/DataOutputStream

classes
Data structures. see also Collections Framework hierarchy

array lists. see ArrayList class
choosing, 794
collections. see Collections
first-in, first-out, 814
linked lists. see LinkedList class
lists. see Lists
priority queues. see Priority queues
queues. see Queues
stacks. see Stacks

Data structures, implementing
array lists, 932–933
GenericQueue.java example, 953–954
implementing MyLinkedList class, 941–947
linked lists, 938–940
lists, 928–929
MyAbstractList.java example, 931
MyArrayList compared with MyLinkedList, 950–951
MyArrayList.java example, 933–937
MyLinkedList.java example, 940–941, 947–950
MyList.java example, 929–930
MyPriorityQueue.java example, 956
overview of, 927–928
priority queues, 955
questions and exercises, 957–959
stacks and queues, 952–953
summary, 957

TestMyArrayList.java example, 937–938
TestMyLinkedList.java example, 941
TestPriorityQueue.java example, 956–957
TestStackQueue.java example, 954–955
variations on linked lists, 951–952

Data transmission, through sockets, 1178
Data types

ADT (abstract data type), 375
boolean, 82–84, 309–310
char. see Characters (char data type)
double. see double (double precision), numeric types
float. see Floating-point numbers (float data type)
fundamental. see Primitive types
generic. see Generics
int. see Integers (int data type)
long. see long, numeric types
numeric, 44–46, 56–58
reference types. see Reference types
specifying, 35
strings, 68–69
types of, 41
using abstract class as, 564

Database management system (DBMS)
overview of, 1212
SQL as. see SQL (Structured Query Language)

Database metadata
DatabaseMetaData interface, 1241–1243
obtaining database tables, 1242–1243
overview of, 1241
ResultSetMetaData interface, 1243
TestDatabaseMetaData.java, 1241–1242
TestResultSetMetaData.java, 1243–1244

Databases
accessing using Java applet, 1232–1235
creating in MySQL, 1218–1219
database system, 1212
populating, 1219
relational. see Relational DBMS

DataInputStream/DataOutputStream classes
DetectEndOfFile.java, 719
external sorts and, 918
overview of, 716–718
TestDataStream.java, 718–719

Date class
case study: Calendar and GregorianCalendar classes,

567–568
java.util, 308–309

DBMS (database management system)
overview of, 1212
SQL as. see SQL (Structured Query Language)

DDL (data definition language), 1230
De Morgan’s law, 104
Deadlocks, avoiding, 1162
Debugging

benefits of stepwise refinement, 210
code modularization and, 189
selections, 119–120

Index 1277

Decimal numbers
BigDecimal class, 397–398
converting to hexadecimals, 191–193, 348–350, 763
converting to/from binary, 364, 763, 1262
converting to/from hexadecimal, 1263
division of, 51
equivalents of ASCII character set, 1255
overview of, 1261

Declaring constants, 43, 313
Declaring exceptions

CircleWithException.java example, 531
ReadData.java example, 546
TestCircleWithCustomException.java

example, 539
throws keyword for, 526

Declaring methods
generic methods, 775
static methods, 313

Declaring variables
array variables, 225
overview of, 41
specifying data types and, 35–36
two-dimensional array variables, 264–265

Decrement (—–) operator, 54–56
Deep copies, 579–580
Default field values, for data fields, 305–306
Degree of vertex, 1050
Delete key, on keyboards, 8
delete method, AVLTree class, 1043
Delete statements, SQL, 1220–1221
Delimiters, token reading methods and, 546–547
Denominator. see Gcd (greatest common denominator)
Denominators, in rational numbers, 584
Deployment, in software development process, 59
Depth-first searches (DFS)

AbstractGraph class, 1063
applications, 1072–1073
case study: connected circles problem, 1074–1075
finding DFS trees, 1050
implementing, 1071–1072
traversing graphs, 1069–1070

Depth-first traversal, tree traversal, 965
Dequeue interface, LinkedList class, 815–816
dequeue method, 953–954
Descent, in text fonts, 493
DescriptionPanel class, 645–647
Descriptive names

benefits of, 40
for variables, 35

Deserialization, of objects, 727
Design guidelines, classes, 391–393
destroy method, applet life-cycle, 677–678
Determining Big O

for repetition statements, 856–859
for selection statements, 856–859
for sequence statements, 856–859

DFS (depth-first searches). see Depth-first searches (DFS)

Dialog boxes
confirmation dialogs, 117–119, 164–165
Dialog class, 447
displaying file dialogs, 549–550
input dialogs, 70, 72
JDialog class, 447–448
message dialogs, 22–23

Dialog class, 447
Dial-up modems, 8
Dictionaries. see Maps
Digital subscriber lines (DSLs), 8
Digital versatile disc (DVDs), 6
Digits, matching, 107
Dijkstra’s single-source shortest-path algorithm, 1111–1116
Dimension class, 448
Direct recursion, 741
Directed graphs, 1049
Directories

case study: determining directory size, 749
DirectorySize.java, 749–750
File class and, 542
file paths, 541

disjoint method, 808
Disks, as storage device, 6
Display message

in dialog box, 22–24
in Welcome.java, 17
in WelcomeWithThreeMessages.java, 18

distinct keyword, for eliminating duplicate tuples, 1224–1225
Divide-and-conquer algorithm, 875
Divide-and-conquer strategy. see Stepwise refinement
Division (/=) assignment operator, 53–54
Division operator (/), 46, 50
DNS (Domain Name Servers), 1176
Documentation, programming and, 24
Domain constraints, integrity constraints in relational model,

1214–1215
Domain Name Servers (DNS), 1176
Domain names

overview of, 1176
using to create socket, 1177

Dot operator (.), 23, 304
Dot pitch, measuring sharpness of displays, 8
double (double precision), numeric types

converting characters and numeric values to strings, 344
converting strings to numbers, 70
declaring variables and, 41
generic method for sorting array of Comparable objects, 776
hash codes for primitive types, 999
java.util.Random, 309–310
overview of numeric types, 45
precision of, 154–155

Double hashing, collision handling, 1003–1005
Doubly linked lists, 951
do-while loops

deciding when to use, 150–151
overview of, 144–146

1278 Index

Downcasting objects, 425
drawArc method, 488–490
drawImage method, 504–505
drawLine method, 483
drawOval method, 484, 488
drawPolygon method, 491
drawPolyline method, 491
drawRect method, 483–484
drawString method, 483
Drivers, JDBC, 1227–1229
Drives, 6
drop table statement, 1220
Drop-down lists. see Combo boxes
DSLs (digital subscriber lines), 8
DVDs (Digital versatile disc), 6
Dynamic binding, inheritance and, 422–425
Dynamic programming

computing Fibonacci numbers, 864
Dijkstra’s algorithm, 1116

E
Eclipse

built in debugging, 119
creating/editing Java source code, 19
stopping programs with Terminate button, 450

Edge arrays
representing edges, 1052–1053
weighted edges using, 1095–1096

Edge class, 1053
Edges

AbstractGraph class, 1062
adjacency lists, 1054–1056
adjacency matrices, 1053–1054
adjacent and incident, 1050
defining as objects, 1053
Graph.java example, 1060
on graphs, 1049
Prim’s algorithm and, 1106
representing edge arrays, 1052–1053
TestGraph.java example, 1058–1059
TestMinimumSpanningTree.java, 1109
TestWeightedGraph.java, 1103–1104
weighted adjacency matrices, 1096
weighted edges using edge array, 1095–1096
weighted graphs, 1094
WeightedGraph class, 1099–1100

Edge-weighted graphs
overview of, 1094
WeightedGraph class, 1099–1100

Eight Queens puzzle
algorithms for, 890–891
EightQueens.java, 878–880
parallel, 1173–1174
recursion, 765–766
single-dimensional arrays, 259, 262
solving, 877–878

Element type, specifying for arrays, 225
Emirp, 218
Encapsulation

in CircleWithPrivateDataFields.java example,
320–321

class design guidelines, 391
of classes, 375–376
of data fields, 319–320
in GuessDate class, 391
information hiding with, 203
of Rational class, 589
strings and, 339

Encoding schemes
defined, 4
mapping characters to binary equivalents, 61

End of file exception (EOFException), 719
endIndex method, for obtaining substrings from strings, 341
End-of-line style, block styles, 25–26
enqueue method, 953–954
entrySet method, Map interface, 843
Equal (=) operator, for assignment, 82
Equal to (==) operator, for comparison, 82
equalArea method, for comparing areas of geometric objects,

563
equals method

Arrays class, 253
Character class, 350–351
Comparator interface, 804
comparing strings, 337
Object class, 429–430

equalsIgnoreCase method, comparing strings, 338–339
Erasure and restrictions, on generics, 782–784
Error class, 524, 526
Errors, programming. see Programming errors
Escape characters (\), 63–64
Euclid’s algorithm

finding greatest common denominator, 866
GCDEuclid.java example, 866–869

Euler, 1048–1049
Event delegation, 603
Event dispatch thread, GUI event handling, 1138–1139
Event handlers/event handling

anonymous class listeners, 611
DetectSourceDemo.java, 613–614
ListDemo.java, 653
overview of, 601–602, 604

Event listener object, 603
Event listeners, 603–604. see also Listener classes
Event source object, 602–603
Event-driven programming

alternatives for defining listener classes, 612
animation using Timer class, 625–626
AnimationDemo.java, 626–628
anonymous class listeners, 609–610
AnonymousListenerDemo.java, 610–612
case study: loan calculator, 615
ClockAnimation.java, 628–629

Index 1279

Event-driven programming (continued)
ControlCircle.java, 607–608
ControlCircleWithMouseAndKey.java, 623–625
ControlCircleWithoutEventHandling.java, 606–607
defined, 602
DetectSourceDemo.java, 612–613
event handlers, 604
event listeners, 603–604
events and event sources, 602–603
FrameAsListenerDemo.java, 613–614
HandleEvent.java, 601–602
inner classes, 608–609
key events, 621–622
key terms, 629
KeyEventDemo.java, 622–623
listener interface adapters, 620–621
LoanCalculator.java, 615–617
mouse events, 617–618
MoveMessageDemo.java, 618–620
overview of, 600–601
questions and exercises, 630–638
register listeners, 604–605
summary, 629–630

Event-listener interface, 603
EventObject class, java.util, 602–603, 605
Events

ControlCircleWithMouseAndKey.java, 623–625
event sources and, 602–603
GUI component, 640
GUIEventDemo.java, 640–643
JList class, 651
key events, 621–622
KeyEventDemo.java, 622–623
mouse events, 617–618
MoveMessageDemo.java, 618–620
Timer class firing ActionEvents, 625–626

Ever-waiting threads, 1154
Exception class

exceptions in, 524
extending, 538
in java.lang, 539
subclasses of, 524–525

Exception handling. see also Programming errors
BindException, 1177
catching exceptions, 527–529, 531
chained exceptions, 537–538
checked and unchecked, 525
CircleWithException.java example, 531–532
ClassCastException, 426
declaring exceptions (throws), 526, 531
defined, 518
defining custom exception classes, 538–541
EOFException, 719
in Exception class, 524
exception classes cannot be generic, 784
FileNotFoundException, 713
finally clause in, 534–535

getting information about exceptions, 529–530
in House.java example, 579
IllegalMonitorStateException, 1154
InputMismatchExceptionDemo.java example, 522–523
InterruptedException, 1135
IOException, 713–714
key terms, 552
NotSerializableException, 727
overview of, 39, 517–518
questions and exercises, 554–558
Quotient.java example, 518
QuotientWithException.java example, 520–522
QuotientWithIf.java example, 519
QuotientWithMethod.java example, 519–520
rethrowing exceptions, 536–537
summary, 553–554
TestCircleWithException.java example, 532–534
TestException.java example, 530
throwing exceptions, 526–527, 531
types of exceptions, 523–525
UnknownHostException, 1178
unsupported operations of Collection interface, 796
when to use exceptions, 535–536

Exception propagation, 527
Exclusive or (^) logical operator, 102–105
Execution stacks. see Call stacks
Executor interface, 1143–1144
Executors

AccountWithoutSync.java, 1145–1147
thread pools and, 1143–1144

exists method, for checking file instances, 542–543
Explicit casting, 56–57, 425
Exponent method, Math class, 198–199
Exponent operations, 48
Exponential algorithms, 860–862
Expressions

assignment statements and, 42
behind the scene evaluation, 116
Boolean. see Boolean expressions
case study: stacks used to evaluate, 817–819
EvaluateExpression.java example, 819–822
evaluating, 50–51

extends keyword, interface inheritance and, 582
External sorts

complexity of, 920
CreateFile.java example, 913–915
implementation phases, 915–919
overview of, 913

F
Factorials

case study: computing factorials, 738–739
ComputeFactorial.java, 739–741
ComputeFactorialTailRecusion.java, 759
tail recursion and, 758–759

Fahrenheit, converting Celsius to/from, 50–51, 213

1280 Index

Fail-fast, iterators, 1164–1165
Fairness policy, locks and, 1148
Fall-through behavior, switch statements, 109
Feet, converting to/from meters, 213–214
fib method, 742–744
Fibonacci, Leonardo, 742
Fibonacci numbers

algorithm for finding, 862–863
case study: computing, 741–742
ComputeFibonacci.java, 742–744
computing recursively, 761
ImprovedFibonacci.java example, 863–864
recurrence relations and, 861

FigurePanel class
FigurePanel.java, 486–488
overview of, 485
TestFigurePanel.java, 485–486

File class, 541–543, 710
File I/O. see I/O (input/output)
File pointers, random-access files and, 730
FileInputStream/FileOutputStream classes

overview of, 713–714
TestFileStream.java, 714–716

Files
case study: copying files, 722–723
case study: replacing text in, 548–549
displaying file dialogs, 549–550
File class, 541–543, 710
input/output, 544
JFileChooserclass, 550
key terms, 552
questions and exercises, 554–558
reading data from, 545–547
reading data from Web, 551–552
summary, 553–554
TestFileClass.java, 543–544
writing data to, 544–545

fill method, 808
FilterInputStream/FilterOutputStream

classes, 716
final keyword, for declaring constants, 43
final modifier, for preventing classes from being extended,

439–440
finally clause, in exception handling, 534–535
First-in, first out data structures, 955
float data type. see Floating-point numbers (float

data type)
Floating-point literals, 49
Floating-point numbers (float data type)

approximation of, 47
converting characters and numeric values to strings, 344
converting to integers, 56
hash codes for primitive types, 999
java.util.Random, 309–310
minimizing numeric errors related to loops, 154–155
numeric types for, 45
overview of numeric types, 45

special values, 1260
specifying data types, 35
specifying precision, 114

Flowcharts
do-while loops, 145
if statements, 84–85
if-else statements, 90
for loops, 147
switch statements, 108
while loops, 135

FlowLayout class
overview of, 452
properties of, 457
ShowFlowLayout.java example, 452–454

Folding, hash codes and, 999
Font class

helper classes, 446, 448
in Java GUI API, 461–462

FontMetrics class
centering a string using, 493–494
helper classes, 446, 448
TestCenterMessage.java example, 494–495

Fonts
Component class, 499
creating, 463
GUIEventDemo.java, 642
setting for message panel, 495

for loops
deciding when to use, 151
nesting, 152, 267
overview of, 146–149
processing arrays with, 227
variable scope and, 196

for-each (enhanced) loops
implicit use of iterator by, 803
overview of, 229–231
for traversing collections, 799

Foreground color, 463–464
Foreign key constraints, integrity constraints in relational model,

1214–1216
Fork/Join Framework

merge sorts compared with, 899
for parallel programming, 1165–1166
ParallelMax.java, 1168–1170

ForkJoinTask class, 1166
Forks, 1165
Formal generic type, 770
Formal parameters. see Parameters
format method, strings, 344–347
Format specifiers, 113–115
FORTRAN, high-level languages, 11
Forward pointer, in doubly linked lists, 951
Fractals

case study, 754–755
H-tree fractals, 766
Koch snowflake fractal, 764
SierpinskiTriangle.java, 755–757

Index 1281

Frames (windows). see also JFrame class
adding components to, 450–451
creating, 310–312, 449, 457, 641, 676, 1138–1139
DisplayLabel.java, 677
Frame class, 447
JFrame class. see JFrame class
ListDemo.java, 653
MultipleWindowsDemo.java, 661–662
MyFrame.java example, 449–450
ScrollBarDemo.java, 656
SliderDemo.java, 659

Free cells, in Sudoku grid, 274
frequency method, collections and, 808
from clause, select statements, 1221
Function keys, on keyboards, 7
Functions, 179. see also Methods
Fundamental types (Primitive types). see Primitive types

G
Galton box, 258–259
Garbage collection, JVM and, 236
GBs (gigabytes), of storage, 5
Gcd (greatest common denominator)

algorithm for finding, 864–865
case study: finding greatest common denominator,

155–157
computing recursively, 760
gcd method, 189–190
gcd method, 588
GCDEuclid.java example, 866–869
GCD.java example, 865–866
Rational class and, 585

Gene sequences, 367
Generic instantiation, 770
Generics

case study: designing class for matrix using generic types,
784–789

case study: generic method for sorting array, 776–777
defining generic classes and interfaces, 772–773
erasing generic types, 782–783
GenericStack class, 773–774
key terms, 789
methods, 774–776
motivation for using, 770–772
overview of, 769–770
questions and exercises, 790–791
raw types and backward compatibility and, 778–779
restrictions on generic types, 783–784
summary, 789–790
wildcards for specifying range of generic types, 779–782

Genome, 367
GeometricObject class

Circle.java and Rectangle.java, 562
overview of, 560
TestGeometricObject.java, 562–563

getAbsolutePath method, File class, 542–543

getArea method, SimpleCircle example, 299
getArray method, 269–270
getBMI method, BMI class, 381
getCharacterFrequency method, 990
getChars method, converting strings into arrays, 343
getDateCreated method, Date class, 370
getFontMetrics method, Graphics class, 493–494
getHeight method, FontMetrics class, 495
getIndex method, ArrayList class, 433
getMinimumSpanningTree method, WeightedGraph class,

1108, 1110–1111
getPerimeter method, SimpleCircle example, 299
getRadius method, CircleWithPrivateDataFields.java

example, 321
getRandomLowerCaseLetter method, 241, 243
getSize method, finding directory size, 750
getSource method, events, 602
getStackTrace method, for getting information about

exceptions, 529
getStatus method, BMI class, 381
Getter (accessor) methods

ArrayList class and, 434
encapsulation of data fields and, 320–322
implementing linked lists, 938

getTime method, Date class, 309
getWidth method, FontMetrics class, 495
GIF (Graphics Interchange Format), 465
Gift-wrapping algorithm, 881–882
Gigabytes (GBs), of storage, 5
Gigahertz (GHz), clock speed, 4
GMT (Greenwich Mean Time), 51
Gosling, James, 13
Graham’s algorithm, 882–883
Graph interface, 1056–1057
Graph theory, 1048
Graphical user interface (GUI). see GUI (graphical user

interface)
Graphics

case study: FigurePanel class, 485–488
case study: ImageViewer class, 506–507
case study: MessagePanel class, 495–497
case study: StillClock class, 500
centering a string using FontMetrics class, 493–495
DisplayClock.java example, 500–502
DisplayImage.java example, 505
displaying images, 504–505
drawing arcs, 488–490
drawing polygons and polylines, 490–493
drawing strings, lines, rectangles, and ovals, 483–484
ImageViewer.java example, 507–508
Message.Panel.java example, 497–500
overview of, 479–480
questions and exercises, 509–516
SixFlags.java example, 506–507
StillClock.java example, 502–504
summary, 508–509
TestPaintComponent.java example, 481–483

1282 Index

Graphics class
GetFontMetrics method, 493
helper classes, 446, 448
overview of, 480–481

Graphics Interchange Format (GIF), 465
Graphs

AbstractGraph.java example, 1060–1065
breadth-first searches (BFS), 1077–1080
case study: connected circles problem, 1074–1075
case study: nine tails problem, 1080–1085
ConnectedCircles.java, 1075–1077
depth-first searches (DFS), 1070–1074
Displayable.java example, 1066
DisplayUSMap.java example, 1067–1068
Graph.java example, 1060
GraphView.java example, 1066–1067
key terms, 1085
modeling, 1056–1058
overview of, 1047–1049
questions and exercises, 1086–1091
representing edges, 1052–1056
representing vertices, 1051–1052
summary, 1086
terminology regarding, 1049–1051
TestGraph.java example, 1058–1059
traversing, 1069
UnweightedGraph.java example, 1065–1066
visualization of, 1066

Greater than (>) comparison operator, 82
Greater than or equal to (>=) comparison operator, 82
Greatest common denominator. see Gcd (greatest common

denominator)
Greedy algorithms

Dijkstra’s algorithm, 1116
overview of, 988

Greenwich Mean Time (GMT), 51
GregorianCalendar class

Cloneable interface and, 577–578
in java.util package, 331
overview of, 567–568
TestCalendar.java, 568–569

GridLayout class
overview of, 454–455
properties of, 457
ShowGridLayout.java example, 455–456

Grids
GridLayout manager, 454–456
representing using two-dimensional array, 274

Growth rates
algorithm for comparing, 861–862
comparing algorithms based on, 854

GuessDate class, 388–391
GUI (graphical user interface)

alignment, 470
BorderLayout class, 456–457
classes for GUI components, 310–312
Color class, 460–462

common features of Swing GUI components, 462–465
Component class, 447
components. see Components
Container class, 447–448
converting GUI applications into applets, 672
event handling using event dispatch thread, 1138–1139
FlowLayout class, 452–454
Font class, 461–462
frames, 449–451
GridLayout class, 454–456
GUI objects created from classes, 296
helper classes, 448
icons, pressed icons, and rollover icons, 469
image icons, 465–467
Java GUI API, 446–447
JButton class, 467–469
JCheckBox class, 471–472
JLabel class, 473–474
JRadioButton class, 472–473
JTextField class, 474–475
key terms, 475
layout managers, 451
overview of, 445–446
panels used as subcontainers, 458–460
properties of layout managers, 457–458
questions and exercises, 476–478
summary, 475–476
Swing vs. AWT, 446
text positions, 470–471

H
Hamiltonian path/cycle, 1073
Hand-traces, for debugging, 119–120
Hangman game, 367, 512, 556, 636, 824–825
Hard disks, as storage device, 6
Hardware, 2
Has-a relationships

in aggregation models, 382–383
composition and, 437

Hash codes
compressing, 1000–1001
vs. hash functions, 999
for primitive types, 999
for strings, 999–1000

Hash functions
vs. hash codes, 999
as index to hash table, 998

Hash tables, 998. see also Maps
measuring fullness using load factor, 1005
parameters, 1013

hashCode method, 830, 999
Hashing

collision handling using open addressing, 1001
collision handling using separate chaining, 1005
compressing hash codes, 1000–1001
double hashing open addressing, 1003–1005

Index 1283

Hashing (continued)
function, 998
hash codes for primitive types, 999
hash codes for strings, 999–1000
hash functions vs. hash codes, 999
key terms, 1023
linear probing open addressing, 1001–1002
load factor and rehashing, 1005–1007
map implementation with, 1007–1008
MyHashMap.java example of map implementation,

1009–1014
MyHashSet.java example of set implementation, 1017–1022
MyMap.java example of map implementation, 1008–1009
MySet.java example of set implementation, 1017
overview of, 997–998
quadratic probing open addressing, 1002–1003
questions and exercises, 1024–1025
set implementation with, 1016–1017
summary, 1023–1024
TestMyHashMap.java example of map implementation,

1015–1016
TestMyHashSet.java example of set implementation,

1022–1023
what it is, 998–999

HashMap class
concrete implementation of Map class, 842–844
implementation of Map class, 998
load factor thresholds, 1006
overview of, 845
TestMap.java example, 845–847
types of maps, 842–843

HashSet class
case study: counting keywords, 841
implementation of Set class, 1014
overview of, 830–831
TestHashSet.java example, 831–832
TestMethodsInCollection.java example, 832–833
types of sets, 830

Hashtable, 845
Heap, dynamic memory allocation and, 239
Heap class

Heap.java example, 908–909
operations for manipulating heaps in, 908
sorting arrays with, 909

Heap sorts
adding nodes to heaps, 905–906
algorithm for, 904–905
arrays using heaps, 909
complexity of, 910–911
Heap class, 908
Heap.java example, 908–909
HeapSort.java example, 910
removing root from heap, 906–907
storing heaps, 905

Heaps
adding nodes to, 905–906
arrays using, 909

binary heaps (binary trees), 904
implementing priority queues with, 955–956
removing root from, 906–907
storing, 905

Height, in text fonts, 493
Helper classes, 448
Helper methods, recursive

overview of, 746
RecursivePalindrome.java, 746–747

Hertz (Hz), clock speed in, 3
Hex integer literals, 49
Hexadecimal numbers

converting to/from binary, 364, 763, 1263–1264
converting to/from decimal, 191–193, 348–350, 763, 1263
equivalents of ASCII character set, 1255
overview of, 1261

Hexagons, drawing, 491–492
Hidden data fields, referencing, 373–374
High-level languages, 10–12
Hilbert curve, 766
Horizontal scroll bars, 655
Horizontal sliders, 657, 659
Horizontal text positioning, 470
Hosts

IdentifyHostNameIP.java, 1184
local hosts and, 1177
UnknownHostException, 1178

HTML (Hypertext Markup Language)
<applet> tag, 673
defining applet parameters, 679
DisplayLabel.html, 673–674
DisplayMessage.html, 679–680
scripting language for document layout, 14
viewing applets from Web browser, 674

H-trees
fractals, 766
recursive approach to, 738

Huffman coding trees
data compression using, 986–988
HuffmanCode.java example, 988–991

Hypertext Markup Language. see HTML (Hypertext Markup
Language)

Hz (Hertz), clock speed in, 3

I
Icons. see Image icons
Identifiers, 40
IDEs (integrated development environments)

for creating/editing Java source code, 19–20
overview of, 16

IEEE (Institute of Electrical and Electronics Engineers), floating
point standard (IEEE 754), 45

if statements
common errors, 93–95
in computing body mass index, 97–99
in computing taxes, 99–101

1284 Index

conditional operator used with, 112
nesting, 91
overview of, 84–85
SimpleIfDemo.java example, 85–86

if-else statements
conditional expressions and, 112
dangling else ambiguity, 94–95
multi-way, 91–93
overview of, 89–91
recursion and, 744

IllegalArgumentException class, 527
IllegalMonitorStateException, 1154
Image class, 504
Image icons

ComboBoxDemo.java, 649
creating and placing, 691–692
default icons, pressed icons, and rollover icons, 469
displaying images, 504
overview of ImageIcon class, 465–466
TestImageIcon.java example, 466–467

Images
case study: ImageViewer class, 506–507
DisplayImage.java example, 505
displaying, 504–505
ImageViewer.java example, 507–508
SixFlags.java example, 506–507

ImageViewer class
ImageViewer.java example, 507–508
overview of, 506–507

Immutable
BigInteger and BigDecimal classes, 397–398
class, 370
objects, 370–371
Rational class, 589
String object, 336–337
wrapper classes, 394

Implementation (coding), in software development process, 59–61
Implementation methods, 207–210
Implicit casting, 64, 425
Importing

importing package into program, 23–24
JFrame package, 449
types of import statements, 24

Increment (++) operator, 54–56
increment method, in Increment.java example, 186–187
Incremental development

benefits of stepwise refinement, 210
coding incrementally, 137
testing and, 61

Indentation, programming style, 25
Indexed variables, 226–227
Indexes

accessing elements in arrays, 224, 226
finding characters/substrings in a string, 342–343
List interface and, 800
MyList.java, 929–930
string index range, 340

indexOf method, 342–343
List interface, 800
MyArrayList.java example, 934, 936

Indirect recursion, 741
InetAddress class, 1183–1184
Infinite loops, 136
Infinite recursion, 741
Information

getting information about exceptions, 529–530
hiding (encapsulation), 203

Inheritance
ArrayList object, 430–431
calling subclass constructors, 414–415
calling superclass methods, 417
case study: custom stack class, 436–437
casting objects and, 425–426
CastingDemo.java example, 426–429
CircleFromGeometricObject.java example, 410–412
constructor chaining and, 415–417
in designing stacks and queues, 953
DistinctNumbers.java example, 434–436
dynamic binding and, 422–425
equals method of Object class, 429–430
generic classes, 774
interface inheritance, 570–571, 582
is-a relationships and, 437
key terms, 440
Object class and, 420–421
overriding methods and, 418–420
overview of, 407–408
preventing classes from being extended or overridden,

439–440
protected data and methods, 437–440
questions and exercises, 442–444
RectangleFromGeometricObject.java example, 412–413
SimpleGeometricObject.java example, 409–410
summary, 440–441
superclasses and subclasses and, 408–409
TestArrayList.java example, 431–434
TestCircleRectangle.java example, 413–414
using super keyword, 414

init method, applet life-cycle methods, 677–678
Initializing variables

arrays, 227–228
declaring variables and, 41
LottoNumbers.java, 232
multidimensional arrays, 265
two-dimensional arrays, 267

Inner (nested) classes
AbstractGraph class, 1063
AnimationDemo.java, 627
anonymous, 609–610
AnonymousListenerDemo.java, 610–612
creating new, 1161–1162
for defining listener classes, 608–609
KeyEventDemo.java, 622
MoveMessageDemo.java, 619

Index 1285

Inner (nested) classes (continued)
ShortestPathTree class as inner class of WeightedGraph

class, 1114–1115
TicTacToe.java, 689

Inorder traversal
time complexity of, 980
tree traversal, 965

Input. see also I/O (input/output)
reading from console, 37–40
redirecting using while loops, 143–144
runtime errors, 27
streams. see InputStream classes

Input, process, output (IPO), 39–40
Input dialog boxes

getting input via, 70–72
ShowInputDialog method, 70, 72

InputMismatchException class, 522–523, 547
Input/output devices, computers and, 7–8
InputStream classes

BufferedInputStream, 719–722
case study: copying files, 723–724
data transmission through sockets, 1178–1179
DataInputStream, 716–718
deserialization and, 727
DetectEndOfFile.java, 719
FileInputStream, 713–714
FilterInputStream, 716
ObjectInputStream, 724–725, 1190
overview of, 712–713
TestDataStream.java, 718–719
TestFileStream.java, 714–716
TestObjectInputStream.java, 726

Insert key, on keyboards, 8
insert method

AVLTree class, 1043
overriding, 1032

Insert statements, SQL, 1220–1221
Insertion order, LinkedHashMap class, 845
Insertion sort algorithms

analyzing, 860
recurrence relations and, 861

Insertion sorts, arrays, 250–252
Instance methods

accessing object data and methods, 305
in CircleWithStaticMembers.java, 314
class design guidelines, 392–393
invoking, 377, 380
when to use instance methods vs. static, 313–314

Instance variables
accessing object data and methods, 305
class design guidelines, 392–393
static variables compared with, 312–313
in TestCircleWithStaticMembers.java, 314
when to use instance variables vs. static, 316

Instances. see also Objects
checking file instantiation, 542
checking object instantiation, 296, 426
generic instantiation, 770

Institute of Electrical and Electronics Engineers (IEEE), floating
point standard (IEEE 754), 45

int data type. see Integers (int data type)
Integer literals, 48–49
Integers (int data type)

ArrayList for, 435
BigInteger class, 397–398
bit operators and, 1265
case study: designing class for matrix using generic types,

784–785
casting to/from char types, 63
converting characters and numeric values to strings, 344
converting strings to numbers, 70
declaring variables and, 41
division of, 46, 51, 518–522
finding larger between two, 179
floating-point numbers converted to, 56
generic method for sorting array of Comparable objects, 776
greatest common denominator of, 864
hash codes for primitive types, 999
IntegerMatrix.java example, 787
java.util.Random, 309–310
numeric types for, 44–45
sorting, 911
sorting int values, 917
specifying data types, 35
TestIntegerMatrix.java example, 788

Integrated development environments (IDEs), 16, 19–20
for creating/editing Java source code, 19–20
overview of, 16

Integrity, in relational data model, 1212–1213
Integrity constraints

domain constraints, 1215
enforcing, 1216
overview of, 1214–1215
primary and foreign key constraints, 1215–1216

Intelligent guesses, 137
Interface adapters, listener classes, 620–621
Interfaces

abstract classes compared with, 581–584
benefits of, 576
benefits of generics, 770
case study: Rational class, 584–585
Cloneable interface, 577–578
Comparable interface, 573–574
ComparableRectangle.java example, 575–576
DBMS as, 1212
for defining common class behaviors, 560
defining generic, 772–773
House.java example, 578–581
key terms, 590
overview of, 570
questions and exercises, 590–598
raw types and backward compartibility, 778
SortComparableObjects.java example, 574–575
SortRectangles.java example, 576–577
summary, 590
TestEdible.java example, 570–573

1286 Index

Interned strings, 336–337
Internet, 1176
Internet Protocol (IP) addresses. see IP (Internet Protocol)

addresses
Internet Service Providers (ISPs), 1176
Interpreters, translating source program into machine code,

10–11
Interrelational constraints, 1215–1216
InterruptedException, Thread class, 1135
Intrarelational constraints, 1215–1216
InvokeAndWait method, event dispatch thread and, 1138
InvokeLater method, event dispatch thread and, 1138
Invoking methods, 180–182, 305, 775
I/O (input/output)

binary I/O classes, 712–713
BufferedInputStream and BufferedOutputStream

classes, 719–722
case study: copying files, 722–723
case study: replacing text, 548–549
Copy.java, 723–724
data transmission streams through sockets, 1178–1179
DataInputStream and DataOutputStream classes,

716–718
DetectEndOfFile.java, 719
displaying file dialogs, 549–550
FileInputStream and FileOutputStream classes,

713–714
FilterInputStream and FilterOutputStream classes,

716
handling text I/O in Java, 710–711
key terms, 732
object I/O, 724–725
overview of, 544, 709–710
questions and exercises, 733–736
random-access files, 729–731
reading data from file using Scanner class, 545–547
reading data from Web, 551–552
serializable interface, 727–728
serializing arrays, 728–729
summary, 733
TestDataStream.java, 718–719
TestFileStream.java, 714–716
TestObjectInputStream.java, 726
TestObjectOutputStream.java, 725–726
TestRandomAccessFile.java, 731–732
text I/O vs. binary I/O, 711–712
types of I/O devices, 7–8
writing data to file using PrintWriter class, 544–545

IOException, 713–714
IP (Internet Protocol) addresses

client sockets and, 1177
InetAddress class, 1183–1184
overview of, 1176

IPO (input, process, output), 39–40
is null operator, in SQL, 1223
Is-a relationships

design guide for when to use interfaces vs. classes, 582
inheritance and, 437

isAbsolute method, File class, 542–543
isDigit method, Character class, 351, 356–357
isDirectory method, File class, 542–543
isFile method, File class, 542–543
isHidden method, File class, 542–543
Is-kind-of relationships, 582
isLetter method, Character class, 351, 356–357
isLowerCase method, Character class, 351
isPalindrome method

RecursivePalindrome.java, 746–747
as tail-recursive method, 758

isPrime method, prime numbers, 191
ISPs (Internet Service Providers), 1176
isUpperCase method, Character class, 351
isValid method, applying to grid, 276
ItemEvents

GUI components firing, 640
JComboBox class, 647, 650

Iterable interface, 798
Iteration/iterators

advantages and variations of, 985–986
binary search trees and, 984–985
fail-fast, 1164–1165
Iterable interface, 984
Iterator object, 798
lists and, 802–803
loops and, 134
MyArrayList.java example, 935
recursion compared with, 757–758
TestIterator.java example, 798–799
TestMyArrayList.java example, 937
traversing collections, 798

J
JApplet class

case study: clock with audio, 1139–1142
container classes, 446, 448
developing applets, 672
JFrame class compared with, 676–677
top-level containers, 447

Java Collections Framework. see Collections Framework hierarchy
java command, for executing Java program, 21
Java Database Connectivity. see JDBC (Java Database

Connectivity)
Java database programming

accessing databases using Java applet, 1232–1235
CallableStatement for executing SQL stored procedures,

1238–1241
column aliases, 1223–1224
creating databases, 1218–1219
creating tables, 1219–1220
creating user account in MySQL, 1217–1218
database metadata, 1241–1242
developing database applications using JDBC, 1228–1231
insert, update, and delete statements, 1220–1221
integrity constraints, 1214–1216
JDBC (Java Database Connectivity), 1227–1228

Index 1287

Java database programming (continued)
key terms, 1244
metadata retrieval, 1241
obtaining tables, 1242–1243
operators, 1222–1224
overview of, 1211–1212
PreparedStatement for creating parameterized SQL

statements, 1235–1238
queries, 1221–1222
questions and exercises, 1245–1249
relational DBMS, 1212–1213
relational structures, 1213–1214
result set metadata, 1243–1244
SimpleJDBC.java, 1231–1232
SQL (Structured Query Language), 1216
summary, 1245
table joins, 1226–1227
tuples, 1224–1226

Java Development Toolkit (JDK)
jdb debugger in, 119
overview of, 16

Java EE (Java Enterprise Edition), 16
Java GUI API, 446–447
Java language specification, 16
Java Library, 308
Java ME (Java Micro Edition), 16
Java programming

creating, compiling, and executing programs, 19–22
displaying text in message dialog box, 22–24
high-level languages, 11
introduction to, 13–15
simple examples, 16–19

Java SE (Java Standard Edition), 16
Java Virtual Machine. see JVM (Java Virtual Machine)
java.awt classes. see AWT (Abstract Windows Toolkit)
javac command, for compiling Java program, 21
Javadoc comments (/**.*/), 25
java.io

File class, 541–543
PrintWriter class, 544–545
RandomAccessFile class, 730

java.lang
Class class, 692
Comparable interface, 573
Exception class, 539
Number class, 565
packages, 61
Throwable class, 523–525, 529–530

java.net
MalformedURLException class, 551
URL class, 551, 691–692

java.util
Arrays class, 252–253
Calandar class, 567–568
creating stacks, 821
Date class, 308–309, 567
EventObject class, 602–603, 605

GregorianCalendar class, 331, 567–568
Java Collections Framework and, 794
Random class, 309–310
Scanner class, 38, 545–547

javax.swing. see Swing
JButton class

alignment, 470
creating buttons, 310–312, 451
creating push button, 467–469
default icons, pressed icons, and rollover icons, 469
image icons displayed as buttons, 466
inheriting from Container class, 460
text positions, 470–471

JCheckBox class
creating check boxes, 311
events, 640–643
overview of, 471–472
types of buttons, 468

JComboBox class
ComboBoxDemo.java, 648–649
creating combo boxes, 310–312
GUI components, 647–648

JComponent class
as abstract class, 447
common features in Component, Container, and

JComponent classes, 462–463
overview of, 446–447
paintComponent method, 480
subclassing, 483

jdb debugger, 119
JDBC (Java Database Connectivity)

developing database applications, 1228–1231
overview of, 1227–1228
SimpleJDBC.java, 1231–1232

JDialog class, 447, 448
JDK (Java Development Toolkit)

Fork/Join Framework in JDK 7, 1165–1166
jdb debugger in, 119
overview of, 16

JFileChooserclass, 550
JFrame class. see also Frames (windows)

adding components to frames, 450–451
as container class, 446, 447–448
creating frames, 310–312, 449, 641, 676, 1138–1139
JApplet class compared with, 676
ShowFlowLayout class extending, 452–454

JLabel class
adding labels to frames, 452
adding labels to grids, 455
creating and placing image icons on, 691
creating labels, 311
image icons displayed as labels, 466
overview of, 473–474

JList class
creating lists, 310–312
ListDemo.java, 652–654
overview of lists, 650–652

1288 Index

join method, Thread class, 1136
Joins

Fork/Join Framework and, 1165
tables, 1226–1227

Joint Photographic Experts Group (JPEG), 465
JOptionPane class

as predefined Java class, 22
showConfirmDialog method, 117–119
showInputDialog method, 70, 72

JPanel class
Ball subclass, 683–684
Cell subclass, 687–688
as container class, 446, 448
DescriptionPanel extending, 645–646
FigurePanel class, 485
GraphView class extending, 1066–1067
ImageViewer class, 506–507
paintComponent method, 480
panels used as subcontainers, 458–459
StillClock class, 500
subclassing, 482
TestPanels.java example, 459–460

JPEG (Joint Photographic Experts Group), 465
JRadioButton class

creating radio buttons, 310–312
events, 640
overview of, 472–473
types of buttons, 468

JScrollBar class
BallControl.java, 685
controlling bouncing speed in bouncing ball

case study, 683
overview of, 654–655
ScrollBarDemo.java, 655–657

JScrollPane class
DescriptionPanel.java, 646
overview of, 644
scrolling lists, 644

JSlider class
overview of, 657–658
SliderDemo.java, 658–660

JTextArea class
overview of, 644–645
TextAreaDemo.java, 646–647

JTextComponent class, 474–475
JTextField class

adding text fields to frames, 452
adding text fields to grids, 455
creating text fields, 311
events, 640
overview of, 474–475

JVM (Java Virtual Machine)
defined, 21
detecting runtime errors, 518
garbage collection, 236
heap as storage area in, 239
interned string and, 337

K
KBs (kilobytes), 5
Key constants, 622
Keyboards, 7
KeyEvents

ControlCircleWithMouseAndKey.java, 625
KeyEventDemo.java, 622–623
overview of, 621–622

KeyListener interface, 621
Keys

hashing functions, 998
integrity constraints, 1214–1216
maps and, 1023

keySet method, Map interface, 843
Key/value pairs, in maps, 842–843
Keywords (reserved words)

break and continue, 159–162
case study: counting, 841–842
distinct, 1224–1225
extends, 582
final, 43
list of Java keywords, 1253
super, 414
synchronized, 1147
syntax of, 426
throw, 526–527
throws, 526
transient, 727
in Welcome.java, 17

Kilobytes (KBs), 5
Knight’s Tour, 765, 1090
Koch snowflake fractal, 764
Kruskal’s algorithm, 1123

L
Labeling vertices, 1052
Labels

adding to frames, 452
adding to grids, 455
creating, 311
DescriptionPanel.java, 645–646
image icons displayed as, 466
JLabel class. see JLabel class
placing, 641

Landis, E. M., 1028
Languages

in relational data model, 1212–1213
SQL as database language, 1216

LANs (local area networks), 8–9, 645–646
lastIndexOf method

List interface, 800
MyArrayList.java example, 934, 936
MyList.java, 929
strings, 342–343

lastModified method, File class, 542–543
Latin square, 293–294

Index 1289

Layout managers
BorderLayout, 456–457
FlowLayout, 452–454
GridLayout, 454–456
LayoutManager class, 448
overview of, 451
properties of, 457–458

Leading, in text fonts, 493
Left subtree, of binary trees, 962
Left-heavy, balancing AVL nodes, 1028
Length, strings, 339–340, 355–356
length method, File class, 542–543
Less than (<) comparison operator, 82
Less than or equal to (<=) comparison operator, 82
Letters, counting, 352–353
Libraries, APIs as, 16
Life-cycle methods, applets, 677–678
like operator, in SQL, 1223
Line comments, in Welcome.java, 17
Line numbers, in Welcome.java, 17
Linear probing, collision handling, 1001–1002
Linear search algorithm, 889

comparing growth functions, 861–862
recurrence relations and, 861

Linear searches, arrays, 245–246
Lines, drawing, 483–484, 487
Linked data structures

binary search trees, 962–963
blocking queues, 1158–1159
hash maps. see LinkedHashMap class
hash sets. see LinkedHashSet class
lists. see LinkedList class

LinkedBlockingQueue class, 1158–1159
LinkedHashMap class

concrete implementation of Map class, 842–844
implementation of Map class, 998
overview of, 845
TestMap.java example, 845–847
types of maps, 842–843

LinkedHashSet class
implementation of Set class, 1014
ordering elements in hash sets, 832
overview of, 834
SetListPerformanceTest.java example, 839
types of sets, 830

LinkedList class
animation of linked lists, 929
compared with ArrayList, 800–802
defined under List interface, 799
Dequeue interface, 815–816
implementing buckets, 1005
implementing linked lists, 938–940
implementing MyLinkedList class, 941–947
implementing queues using linked lists. see Queues
MyArrayList compared with MyLinkedList, 950–951
MyLinkedList, 929
MyLinkedList.java example, 940–941, 947–950

representing edges in graphs using linked lists, 1055
SetListPerformanceTest.java example, 839
TestArrayAndLinkedList.java, 802–803
TestMyLinkedList.java example, 941
variations on linked lists, 951–952

Linux OS, 12
List interface

common features of lists defined in, 928–929
methods of, 799–800
overview of, 799
Vector class implementing, 813

Listener classes
ActionListener interface, 600–602
adjustment listeners, 656
alternatives for defining, 612
AnimationDemo.java, 627
anonymous listeners for defining, 609–610
AnonymousListenerDemo.java, 610–612
BallControl.java, 686
ButtonListener class, 617
case study: national flags and anthems, 696
ClockAnimation.java, 628
ComboBoxDemo.java, 650
ControlCircle.java, 607–608
ControlCircleWithoutEventHandling.java, 606–607
DetectSourceDemo.java, 612–613
event listeners, 603–604
FrameAsListenerDemo.java, 613–614
HandleEvent.java, 601–602
inner classes for defining, 608–609
interface adapters, 620–621, 651–652
register listeners, 604–605
SliderDemo.java, 659
TicTacToe.java, 690

Listener interface adapters
KeyEvents, 621
ListSelectionListener interface, 651–652
MouseEvents, 620–621

ListIterator interface, 800
Lists

adjacency lists for representing edges, 1054
array lists. see ArrayList class
as collection type, 794
comparing performance with sets, 838–840
creating, 310–312
finding maximum number in, 1168–1169
implementing, 928–929
linked lists. see LinkedList class
List interface, 799
ListDemo.java, 652–654
methods of List interface, 799–800
MyAbstractList.java example, 931
MyList.java example, 929–930
overview of JList class, 650–652
singleton and unmodifiable, 848–849
static methods for, 805–809
synchronized collections for, 1163–1164

1290 Index

ListSelectionListener interface, 651–652
Literal values, not using as identifiers, 1253
Literals

Boolean literals, 83
character literals, 61
constructing strings from string literal, 336
defined, 48
floating-point literals, 49
integer literals, 48–49

LiveLab grading system, 15
LL imbalance, AVL nodes, 1028–1029
LL rotation

AVLTree class, 1035–1036
balancing nodes on a path, 1032
implementing, 1033–1034
options for balancing AVL nodes, 1028–1029

Load factor
hash sets and, 830
rehashing and, 1005–1007

Loans
interest rates in loan computation example, 71–72
Loan calculator case study, in event-driven programming,

615–617
Loan.java object, 377–379

Local area networks (LANs), 8–9, 645–646
Local hosts, IP addresses and, 1177
Local variables, 196
Lock interface, 1148
Locker puzzle, 260
Locks

AccountWithSyncUsingLock.java, 1149–1150
case study: producer/consumer thread cooperation,

1157–1158
deadlocks and, 1162
enforcing cooperation among threads, 1150–1152
semaphores compared with, 1162
thread synchronization using, 1148–1149
ThreadCooperation.java, 1152–1155

Logarithmic algorithm, 859, 861–862
Logic errors (bugs), 27–28, 119–120
Logical operators (Boolean operators)

overview of, 101–102
TestBooleanOperators.java example, 103–105
truth tables, 102–103

long, numeric types
converting characters and numeric values to

strings, 344
hash codes for primitive types, 999
integer literals and, 49
java.util.Random, 309–310
overview of numeric types, 45

Loop body, 134
Loop-continuation-condition

do-while loop, 144–145
loop design and, 139
in multiple subtraction quiz, 140
overview of, 134–135

Loops
break and continue keywords as controls in, 159–162
case study: displaying prime numbers, 162–164
case study: finding greatest common denominator, 155–157
case study: guessing numbers, 137–139
case study: Monte Carlo simulation, 158–159
case study: multiple subtraction quiz, 139–141
case study: predicting future tuition, 157
controlling with confirmation dialog, 164–165
creating arrays, 237
deciding which to use, 150–151
design strategies, 139
do-while loop, 144–146
examples of determining Big O, 856–858
graph edges, 1050
input and output redirections, 143–144
iteration compared with recursion, 757–758
key terms, 165
for loop, 146–149
minimizing numeric errors related to, 154–155
nesting, 152–153
overview of, 133–134
questions and exercises, 166–175
sentinel-controlled, 141–143
summary, 166
while loop, 133–137

Lottery game, 824
Lower-bound wildcards, 780
Low-level languages, 10
LR imbalance, AVL nodes, 1029–1030
LR rotation

AVLTree class, 1036
balancing nodes on a path, 1032
options for balancing AVL nodes, 1029–1030

M
Mac OS, 12
Machine language

bytecode compared with, 21
overview of, 9–10
translating source program into, 10–11

Machine stacks. see Call stacks
Main class

defined, 297
in TestSimpleCircle.java example, 298

main method
in ComputeExpression.java, 19
invoking, 181
main class vs., 297
receiving string arguments from command line, 358–359
in SimpleCircle.java example, 300–301
in TestSimpleCircle.java example, 298
in TestTV.java example, 300–301
thread for, 1130
in Welcome.java, 17
in WelcomeWithThreeMessages.java, 18

Index 1291

Main windows, 660
Maintenance, in software development process, 59
MalformedURLException class, 552
Mandelbrot fractal, 595–597
Map interface

methods, 843
overview of, 843

Maps
case study: counting occurrence of words using tree map,

847–848
containers supported by Java Collections Framework, 794
hash maps. see HashMap class
key terms, 849
linked hash maps. see LinkedHashMap class
overview of, 829–830, 842–845
questions and exercises, 850–851
singleton and unmodifiable, 848–849
summary, 849–850
synchronized collections for, 1163–1164
TestMap.java example, 845–846
tree maps. see TreeMap class

Maps, implementing with hashing
MyHashMap.java example, 1009–1014
MyMap.java example, 1008–1009
overview of, 1007–1008
TestMyHashMap.java, 1015–1016

Marker interfaces, 577
Markov matrix, 290
Match braces, in Welcome.java, 17
matches method, strings, 342
Math class

BigInteger and BigDecimal classes, 397–398
complex numbers, 594–595
exponent methods, 198–199
invoking object methods, 305
methods generally, 197
pow(a, b) method, 48
random method, 96–97, 106–108, 200–203
rounding methods, 199
service methods, 199–200
trigonometric methods, 197–198

Matrices
adjacency matrices for representing edges, 1053–1054
case study: designing class for matrix using generic types,

784–785
GenericMatrix.java example, 785–787
GridLayout manager for, 454
IntegerMatrix.java example, 787
RationalMatrix.java example, 787–788
TestIntegerMatrix.java example, 788
TestRationalMatrix.java example, 788–789
two-dimensional arrays for storing, 264–265

max method
defining and invoking, 180–182
finding maximum element in lists, 808
finding maximum number in lists, 1168–1169
GeometricObjectComparator.java example, 805

MaxUsingGenericType.java example, 778–779
overloading, 194–195
overview of, 199–200
ParallelMax.java, 1168–1170

maxRow variable, for finding largest sum, 268
Mbps (million bits per second), 8
MBs (megabytes), of storage, 5
Megabytes (MBs), of storage, 5
Megahertz (MHz), clock speed, 3
Memory, computers, 4–5
Merge sorts

CreateFile.java example of external sort, 914
heap sort compared with, 910
merge sort algorithms, 897
MergeSort.java example, 897–899
overview of, 896
ParallelMergeSort.java, 1166–1168
quick sorts compared with, 904
recurrence relations and, 861
time complexity of, 899–900

mergeSort method, 898–899
Mersenne prime, 218
Message dialog boxes, 22–23
MessagePanel class

DisplayClock.java, 500–502
MessagePanel.java, 497–500
overview of, 495
StillClock.java, 502–503
TestMessagePanel.java, 495–496

Meta objects, 692
Metadata retrieval, from databases

database metadata, 1241–1242
obtaining tables, 1242–1243
overview of, 1241
result set metadata, 1243–1244

Meters, converting to/from feet, 213–214
Method header, 179
Method modifiers, 179, 1258–1259
Method signature, 179
Methods

abstraction and, 203–204
accessing object methods, 304–305
calling, 180–182
case study: converting decimals to hexadecimals, 191–193
case study: generating random numbers, 201–203
case study: generic method for sorting array, 776–777
class, 312–313
Collection interface, 796
commenting, 25
Comparator interface, 804
defining, 178–180
deprecated methods of Thread class, 1135
generic, 774–776
identifiers, 40
implementation details, 207–210
invoking, 180–182, 305, 775
key terms, 210

1292 Index

modularizing code, 189–191
naming conventions, 44
object actions defined by, 296–297
overloading, 193–196
overriding, 1032
overview of, 177–178
passing arrays to, 237–240
passing objects to, 322–326
passing parameters by values, 186–189
passing to two-dimensional arrays, 269–270
questions and exercises, 211–222
recursive methods, 738
returning arrays from, 240–241
rounding, 199
static. see Static methods
stepwise refinement, 203–204, 210
summary, 211
synchronization wrapper methods, 1164
thread coordination, 1154–1155
top-down and/or bottom-up implementation, 205–207
top-down design, 204–205
tracing or stepping over as debugging technique, 119
trigonometric, 197–198
variable scope and, 196–197
void method example, 183–185

MHz (Megahertz), clock speed, 3
Microsoft Access. see Access
Microsoft Windows, 12
MIDI files, 693
Million bits per second (Mbps), 8
min method

finding minimum element in lists, 808
Math class, 199–200

Minimum spanning trees (MSTs)
MST algorithm, 1108–1109
overview of, 1105–1106
Prim’s minimum spanning tree algorithm, 1106–1108
TestMinimumSpanningTree.java, 1109–1111
weighted graphs and, 1094
WeightedGraph class, 1100–1101

Mnemonics
in assembly language, 10
for check boxes and radio buttons, 641–643

Modeling, graphs and, 1056–1058
Modems (modulator/demodulator), 8
Modifier keys, on keyboards, 8
Modifiers

list of, 1258–1259
method modifier, 179

Modularizing code
GreatestCommonDivisorMethod.java, 189–190
overview of, 189
PrimeNumberMethod.java, 190–191

Monitors (displays), 8
Monitors/monitoring, threads and, 1154
Monte Carlo simulation, 158–159
Motherboard, 3

Mouse
Cursor class, 463
as I/O device, 8

MouseEvents
ControlCircleWithMouseAndKey.java, 625
event-driven programming, 617–618
listener interface adapters, 620–621
MoveMessageDemo.java, 618–620

MouseListener interface, 618, 627
MouseMotionListener interface, 619–620
MST algorithm, 1108–1109
MST class, 1108–1109
MSTs. see Minimum spanning trees (MSTs)
Multi-dimensional arrays. see Arrays, multi-dimensional
Multimedia. see Applets
Multiple choice test, 270–272
Multiplication (*=) assignment operator, 53–54
Multiplication operator (*), 19, 46, 50
Multiplication table, 152
Multiplicities, in object composition, 382
Multiprocessing, 13
Multiprogramming, 13
Multithreading, 13

blocking queues, 1158–1160
case study: clock with audio, 1139–1142
case study: flashing text, 1137–1138
case study: producer/consumer, 1155–1158
cooperation among threads, 1150–1155
creating tasks and threads, 1130–1131
deadlocks and, 1162
event dispatch thread, 1138–1139
key terms, 1170
MultiThreadServer.java, 1185–1187
overview of, 1129–1130
questions and exercises, 1171–1174
semaphores, 1160–1162
servers serving multiple clients, 1185
summary, 1170
synchronization using locks, 1148–1150
synchronized collections, 1163–1164
synchronized keyword, 1147
synchronizing statements, 1147–1148
TaskThreadDemo.java, 1131–1134
Thread class, 1134–1136
thread concepts, 1130
thread pools, 1142–1144
thread states, 1163
thread synchronization, 1144–1147

Multi-way if-else statements
in computing taxes, 99–101
overview of, 91–93

Mutator methods. see Setter (mutator) methods
MySQL

creating databases, 1218–1219
creating tables, 1219–1220
creating user account in, 1217–1218
JDBC drivers for accessing Oracle databases, 1227–1230

Index 1293

MySQL (continued)
stopping/starting, 1218
tutorials on, 1216

N
Named constants. see Constants
Naming conventions

class design guidelines, 391
components, 468
interfaces, 582
programming and, 44
SQL tables, 1219
wrapper classes, 393

Naming rules, identifiers, 40
NavigableMap interface, 845
N-by-n matrix, 215
Negative angles, drawing arcs, 490
Neighbors

depth-first searches (DFS), 1070
vertices, 1050, 1054–1055

Nested classes. see Inner (nested) classes
Nested if statements

in computing body mass index, 97–99
in computing taxes, 99–101
overview of, 91

Nested loops, 152–153, 267, 856–857
NetBeans

built in debugging, 119
for creating/editing Java source code, 19
stopping programs with Terminate button, 450

Network interface cards (NICs), 8
Networking

applet clients, 1187–1190
case study: distributed tic-tac-toe games, 1195–1197
client sockets, 1177–1178
client.java, 1181–1183
client/server computing, 1176
client/server example, 1179
data transmission through sockets, 1178
InetAddress class, 1183–1184
multiple clients connected to single server, 1184–1187
overview of, 1175–1176
questions and exercises, 1208–1210
sending and receiving objects, 1190–1195
server sockets, 1176–1177
server.java, 1180
summary, 1207–1208
TicTacToeClient.java, 1202–1207
TicTacToeConstants.java, 1197–1198
TicTacToeServer.java, 1198–1202

new operator
creating arrays, 225
creating objects, 303

next method, whitespace characters and, 69
nextLine method, whitespace characters and, 69
Next-line style, block styles, 25

NICs (network interface cards), 8
Nine tails problem

graphic approach to, 1080–1085
reducing to shortest path problem, 1119–1122

No-arg constructors
class design guidelines, 391
Loan class, 377
wrapper classes not having, 394

Nodes, AVL trees
balancing on a path, 1032–1033
creating, 1035
creating and storing in AVLTreeNode, 1031–1032
deleting elements, 1034
rotation, 1035–1036

Nodes, binary trees
connecting two nodes, 984
deleting leaf node, 976–977
overview of, 962
representing binary search trees, 963

Nodes, linked lists
creating, 942
deleting, 945–947
overview of, 938–940
storing elements in, 943

Nonleaves, finding, 992
Not (!) logical operator, 102–105
Not equal to (!=) comparison operator, 82
NotSerializableException, 727
null values, objects, 305–306
NullPointerException, as runtime error, 306
Number class

case study: abstract number class, 564
as root class for numeric wrapper classes, 585

Numbers/numeric types
abstract number class, 565–567
binary. see Binary numbers
case study: converting hexadecimals to decimals, 348–350
case study: displaying prime numbers, 162–164
case study: generating random numbers, 201–203
case study: guessing numbers, 137–139
casting to/from char types, 63
conversion between numeric types, 56–58, 364
converting to/from strings, 70, 344
decimal. see Decimal numbers
double. see double
floating-point. see Floating-point numbers (float data type)
generating random numbers, 96–97
GreatestCommonDivisorMethod.java, 189–190
hexadecimal. see Hexadecimal numbers
integers. see Integers (int data type)
LargestNumbers.java, 566–567
overview of, 44–46
PrimeNumberMethod.java, 190–191
processing large numbers, 397–398
types of number systems, 1261

Numerators, in rational numbers, 584
Numeric keypads, on keyboards, 8

1294 Index

Numeric literals, 48–49
Numeric operators

applied to characters, 64
overview of, 46–47

O
Object class, 420–421, 429–430
Object I/O. see

ObjectInputStream/ObjectOutputStream classes
Object member access operator (.), 304, 427
Object reference variables, 304
ObjectInputStream/ObjectOutputStream classes

overview of, 724–725
serializable interface, 727–728
Serializing arrays, 728–729
TestObjectInputStream.java, 726
TestObjectOutputStream.java, 725–726

Object-oriented programming (OOP), 296, 304, 379–382
Objects

accessing data and methods of, 304–305
accessing via reference variables, 304
array of, 326–327
ArrayList class, 430–431
arrays as, 239
AudioClip class, 693–694
automatic conversion between primitive types and wrapper

class types, 396–397
BigInteger and BigDecimal classes, 397–398
cannot be created from abstract classes, 564
case study: designing class for stacks, 386–388
case study: designing Course class, 384–386
case study: designing GuessDate class, 388–391
casting, 425–426
CircleWithPrivateDataFields.java example, 320–321
CircleWithStaticMembers.java example, 313–314
class abstraction and encapsulation, 375–376
class design guidelines, 391–393
classes for displaying GUI components, 310–312
classes from Java Library, 308
comparing primitive variables with reference variables,

306–308
composing, 382–383
constructors, 303
creating, 298–299
data field encapsulation for maintaining classes, 319–320
Date class, 308–309
defining classes for, 296–298
edges defined as, 1096
equals method of Object class, 429–430
event listener object, 603
event objects, 602
immutable, 370–371
inheritance. see inheritance
key terms, 328–329, 399
Loan.java, 377–379
meta objects, 692

null values, 305–306
Object class, 420–421
object-oriented thinking, 379–382
overview of, 295–296, 369–370
passing to methods, 322–326
polymorphism, 421–422
processing primitive data type values as, 393–396
questions and exercises, 330–334, 399–406
Random class, 309–310
reference data fields and, 305
representing edges, 1053
runnable objects, 1130
sending and receiving over network, 1190–1195
SimpleCircle.java example, 300–301
static variables, constants, and methods and, 312–313
summary, 329, 399
TestCircleWithPrivateDataFields.java example,

321–322
TestCircleWithStaticMembers.java example,

314–317
TestLoanClass.java, 376–377
TestSimpleCircle.java example, 298–300
TestTV.java example, 302–303
this reference and, 373–375
TotalArea.java example, 327–328
TV.java example, 301–302
variable scope and, 371–372
vertices as object of any type, 1051
visibility modifiers, 317–319

Octal integer literals, 49
Off-by-one errors

arrays and, 230
in loops, 136

OOP (object-oriented programming), 296, 304, 379–382
Open addressing, hashing

collision handling using, 1001
double hashing, 1003–1005
linear probing, 1001–1002
quadratic probing, 1002–1003

Operands
defined, 46
incompatible, 104

Operators
assignment operator (=), 42–43
augmented assignment operators, 53–54
bit operators, 1265
comparison operators, 82
increment and decrement operators, 54–56
numeric operators, 46–47
precedence and associativity, 115–117
precedence and associativity chart, 1256–1257
precedence rules, 50–51
processing, 817–818
SQL arithmetic operators, 1224
SQL comparison or Boolean operators, 1222
SQL like, between-and, and is null operators, 1223
unary and binary, 47

Index 1295

Option panes
predefined Java classes, 22
showConfirmDialog method, 117–119
showInputDialog method, 70, 72

Or (||) logical operator, 102–105
Oracle

JDBC drivers for accessing Oracle databases, 1227–1230
tutorials on, 1216

order by clause, displaying sorted tuples, 1225–1226
OSs (operating systems)

overview of, 12
tasks of, 12–13

Output. see also I/O (input/output)
displaying file dialogs, 549–550
redirection, 143–144
streams, 710–711

OutputStream classes
BufferedOutputStream, 719–722
case study: copying files, 723–724
data transmission through sockets, 1178–1179
DataOutputStream, 716–718
DetectEndOfFile.java, 719
FileOutputStream, 713–714
FilterOutputStream, 716
ObjectOutputStream, 724–725, 1190
overview of, 712–713
serialization and, 727
TestDataStream.java, 718–719
TestFileStream.java, 715–716
TestObjectOutputStream.java, 725–726

Ovals, drawing, 483–484, 487
Overflows

Rational class, 589
variables, 45

Overloading methods, 193–196
Overriding methods, 418–420, 1032

P
(pi), estimating, 158–159, 215

Package-private (package-access) visibility modifiers, 317
Packages

importing, 23–24
importing JFrame package, 449
organizing classes in, 318
organizing programs in, 22
predefined classes grouped into, 23

Packet-based communication, Java supporting, 1176
Page Down key, on keyboards, 8
Page Up key, on keyboards, 8
paintComponent method

DisplayImage.java example, 505
drawing arcs and, 488–489
DrawPolygon.java example, 492–493
JComponent class, 480, 482
MessagePanel.java, 494
StillClock.java, 503

TestCenterMessage.java example, 494
Pair of points, algorithm for finding closest, 875–877
Palindromes

case study: checking if string is a palindrome, 347–348
case study: ignoring nonalphanumeric characters when

checking palindromes, 356–358
palindrome integers, 212
palindromic primes, 218
RecursivePalindrome.java, 746–747
RecursivePalindromeUsingSubstring.java,

745–746
Panels

adding, 489
adding for DisplayImage.java example, 505
check boxes and radio buttons for, 641
creating, 311–312, 482
DescriptionPanel class, 645–647
FigurePanel class. see FigurePanel class
JPanel class. see JPanel class
MessagePanel class. see MessagePanel class
as subcontainers, 458–460

Parallel edges, 1050
Parallel programming. see also Multithreading

overview of, 1165–1166
ParallelMax.java, 1168–1170
ParallelMergeSort.java, 1166–1168

<param> tag, applets, 679
Parameters

actual parameters, 179
defining methods and, 178–179
generic classes, 774
generic methods, 776
generic parameters not allowed in static context,

783–784
as local variable, 196
order association, 186
passing by values, 186–189
variable-length argument lists, 244–245

Parentheses (())
defining and invoking methods and, 203
in Welcome.java, 18

Parsing methods, 395
Pascal, high-level languages, 11
Pass-by-sharing

arrays to methods, 238
objects to methods, 323–324

Pass-by-value
arrays to methods, 238
Increment.java example, 186–187
objects to methods, 322–323
overview of, 186
TestPassByValue.java example, 187–189

Passwords, checking if string is valid password, 362
Pentagonal numbers, 212
Perfect hash function, 998
Perfectly balanced trees, 1028
Pivot element, 900

p

1296 Index

Index 1297

Pixels (picture elements)
coordinates measure in, 481
defined, 450
measuring resolution in, 8

PNG (Portable Network Graphics), 465
Point class, 617–618
Points, 880–881

algorithm for finding closest pair of, 875–877
finding convex hull for a set of points, 880–881

Polygons
drawing, 490–492
DrawPolygon.java, 492–493

Polylines, drawing, 491
Polymorphism

CastingDemo.java example, 426–429
overview of, 421
PolymorphismDemo.java example, 421–422

Polynomial hash codes, 1000
Portable Network Graphics (PNG), 465
Postfix decrement operator, 54–55
Postfix increment operator, 54–55
Postorder traversal

time complexity of, 980
tree traversal, 965

pow method, Math class, 48
Precedence, operator, 115–117, 1256–1257
Prefix decrement operator, 54–55
Prefix increment operator, 54–55
Prefix notation, 826
Preorder traversal

time complexity of, 980
tree traversal, 965

PreparedStatement, for creating parameterized
SQL statements, 1235–1238

Pressed icons, 469
Primary key constraints, integrity constraints in relational model,

1214–1216
Prime numbers

algorithm for finding, 869
case study: displaying prime numbers, 162–164
comparing prime number algorithms, 875
EfficientPrimeNumbers.java example, 871–873
PrimeNumberMethod.java, 190–191
PrimeNumbers.java example, 869–871
SieveOfEratosthenes.java example, 873–874
types of, 218

Primitive types (fundamental types)
automatic conversion between primitive types and wrapper

class types, 396–397, 771
casting, 427
classes for, 350
comparing parameters of primitive type with parameters of

reference types, 324
comparing primitive variables with reference variables, 306–308
converting wrapper object to/from (boxing/unboxing), 396
creating arrays of, 326
hash codes for, 999

processing primitive data type values as objects, 393–396
specifying data types, 35

Prim’s minimum spanning tree algorithm
Dijkstra’s algorithm compared to, 1112
overview of, 1106–1108

print method, PrintWriter class, 38, 544–545, 776–777
printf method, PrintWriter class, 544
Printing arrays, 267
println method, PrintWriter class, 38, 544
printStackTrace method, 529
PrintWriter class

case study: replacing text, 548–549
writing data to file using, 544–545
for writing text data, 710

Priority queues
implementing, 955
MyPriorityQueue.java example, 956
overview of, 814
PriorityQueue class, 816–817
for storing weighted edges, 1095
TestPriorityQueue.java example, 956–957
traversing, 1104
WeightedGraph class, 1098

PriorityBlockingQueue class, 1158–1159
PriorityQueue class, 816–817
private

encapsulation of data fields and, 319–320
visibility modifier, 318–319, 437–440

Problems
breaking into subproblems, 164
creating programs to address, 34
solving with recursion, 744–745

Procedural paradigm, compared with object-oriented paradigm,
381–382

Procedures, 179. see also Methods
Processing arrays, 227–229
Programming errors. see also Exception handling

ClassCastException, 426
common class design errors, 393
debugging, 119–120
logic errors, 27–28
minimizing numeric errors related to loops, 154–155
runtime errors, 27
selections, 93–95
syntax errors, 18, 26–27
using generic classes for detecting, 770–771

Programming languages
assembly language, 10
high-level languages, 10–12
Java. see Java programming
machine language, 9–10
overview of, 2

Programming style
block styles, 25–26
comments and, 25
indentation and spacing, 25
overview of, 24–25

Index 1297

1298 Index

Programs/programming
assignment statements and expressions, 42–43
augmented assignment operators, 53–54
case study: counting monetary units, 65–68
case study: displaying current time, 51–53
character data type, 62–65
coding incrementally, 137
databases. see Java database programming
evaluating expressions and operator precedence rules, 50–51
exponent operations, 48
identifiers, 40
increment and decrement operators, 54–56
input dialogs, 70–72
introduction to, 34
with Java language. see Java programming
key terms, 72–73
modularizing code, 189–191
named constants, 43
naming conventions, 44
numeric literals, 48–49
numeric operators, 46–47
numeric type conversions, 56–58
numeric types, 44–46
overview of, 2
questions and exercises, 74–80
reading input from console, 37–40
recursive methods in, 738
software development process, 58–62
string data type, 68–69
summary, 73–74
variables, 40–42
writing a simple program, 34–37

Properties
layout manager, 457–458
object, 296

protected
data and methods, 437–440
visibility modifier, 318, 437–440

Protected data fields, in abstract classes, 931
Pseudocode, 34
Public classes, 299
public method, 321
public visibility modifier, 317–319, 437–440
Python, high-level languages, 11

Q
Quadratic algorithm, 856, 861–862
Quadratic probing, collision handling, 1002–1003
Queries, SQL, 1221–1222
Query methods, Map interface, 843
Query operations, Collection interface, 796
Queue interface, 815, 1159
Queues

blocking queues. see Blocking queues
breadth-first search algorithm, 1077
bucket sorts and, 912–913

as collection type, 794
Dequeue interface, 815–816
GenericQueue.java example, 953–954
implementing, 952–953
overview of, 814
priority queues. see Priority queues
Queue interface, 815, 1159
TestStackQueue.java example, 954–955
unbounded, 1158
WeightedGraph class, 1099–1100

Quick sorts
merge sorts compared with, 904
overview of, 900
quick sort algorithm, 900–901
QuickSort.java example, 901–904

Quincunx, 258–259
Quotients

Quotient.java example, 518
QuotientWithException.java example,

520–522
QuotientWithIf.java example, 519
QuotientWithMethod.java example, 519–520

R
Race conditions, in multithreaded programs, 1147
Radio buttons

creating, 310–312
events, 640
GUIEventDemo.java, 640–643
JRadioButton class. see JRadioButton class
overview of, 472–473
for panels, 641
types of buttons, 468

Radix sorts, 911–913
Ragged arrays, 266–267, 1054
RAM (random-access memory), 5–6
Random class, java.util, 309–310
random method

case study: generating random numbers, 201–203
case study: lottery, 106–108
Math class, 96–97, 200–201

Random numbers
case study: generating random numbers, 201–203
case study: lottery, 106–108
case study: Monte Carlo simulation, 158–159
generating, 96–97

Random-access files
overview of, 729–731
TestRandomAccessFile.java, 731–732

Random-access memory (RAM), 5–6
Rational class

case study: designing class for matrix using generic types,
784–785

overview of, 584–585
Rational.java example, 586–589
RationalMatrix.java example, 787–788

Index 1299

TestRationalClass.java example, 585–586
TestRationalMatrix.java example, 788–789

Rational numbers, representing and processing, 584–586
Raw types, backward compatiblity and, 778–779
readASolution method, applying to Sudoku grid, 276
Read-only streams, 729. see also InputStream class
Read-only views, Collections class, 848
Rebalancing AVL trees, 1028–1030
Records

insert, update, and delete, 1220–1221
relational structures, 1213

Rectangles, drawing, 483–484, 487
Recurrence relations, in analysis of algorithm complexity, 861
Recursion

binary searches, 748–749
case study: computing factorials, 738–739
case study: computing Fibonacci numbers, 741–742
case study: determining directory size, 749
case study: fractals, 754–755
case study: Towers of Hanoi, 750–752
ComputeFactorial.java, 739–741
ComputeFactorialTailRecursion.java, 759
ComputeFibonacci.java, 742–744
depth-first searches (DFS), 1070–1071
DirectorySize.java, 749–750
displaying/visualizing binary trees, 981
Fork/Join Framework and, 1165
helper methods, 746
iteration compared with, 757–758
key terms, 759
overview of, 737–738
problem solving by thinking recursively, 744–745
questions and exercises, 760–767
RecursivePalindrome.java, 746–747
RecursivePalindromeUsingSubstring.java,

745–746
RecursiveSelectionSort.java, 747–748
selection sorts, 747
SierpinskiTriangle.java, 755–757
summary, 759
tail recursion, 758
TowersOfHanoi.java, 752–754

Recursive methods, 738
Red-black trees, 998, 1014
Reduction, characteristics of recursion, 744
Reference types

classes as, 304
comparing parameters of primitive type with parameters of

reference types, 324
comparing primitive variables with, 306–308
generic types as, 771
reference data fields, 305
string data type as, 68

Reference variables
accessing objects with, 304
array of objects as array of, 326
comparing primitive variables with, 306–308

regionMatches method, strings, 338–339
Register listeners

ControlCircle.java, 607–608
ControlCircleWithMouseAndKey.java, 624
DetectSourceDemo.java, 613–614
GUIEventDemo.java, 641–643
KeyEventDemo.java, 623
LoanCalculator.java, 616
overview of, 604–605

Regular expressions, matching strings with, 342
Rehashing

load factor and, 1005–1007
time complexity of hashing methods and, 1014

Relational DBMS
foreign keys in, 1215
integrity constraints, 1214–1216
overview of, 1212–1213
relational structures, 1213–1214

Relational model, 1213
Relational structures, 1213–1214
Relations, 1213
Relative file names, 541–542
Remainder (%) or modulo operator, 46, 50
Remainder (%=) assignment operator, 53–54
remove method, linked lists, 938
repaint method

applying to message panel, 497–498
StillClock.java, 502–503

Repetition
determining Big O for repetition statements, 856–859
loops. see Loops

replace method, strings, 341
replaceAll method, strings, 342
replaceFirst method, strings, 341
Requirements specification, in software development process,

58–59
Reserved words. see Keywords (reserved words)
Resolution, pixels and, 450
Resource files, locating for applets using URL class,

691–692
Resource ordering, to avoid deadlocks, 1162
Resources, role of OSs in allocating, 12
Responsibilities, separation as class design principle, 391
Result set metadata, 1243–1244
ResultSetMetaData interface

overview of, 1243
TestResultSetMetaData.java, 1243–1244

return statements, 181
Return value type

constructors not having, 303
in defining methods, 179

Reusable code
benefits of stepwise refinement, 210
code modularization and, 189
designing classes for, 499
method enabling, 182
methods for, 178

1300 Index

reverse method
applying to lists, 806
returning arrays from methods, 240–241

RGB color model, 460
Right subtree, of binary trees, 962
Right-heavy, balancing AVL nodes, 1028
RL imbalance, AVL nodes, 1029–1030
RL rotation

AVLTree class, 1036, 1037
balancing nodes on a path, 1032
options for balancing AVL nodes, 1029–1030

RMF files, 693
Rollover icons, 469
Root, of binary trees, 962–963
Rotation

AVLTree class, 1035–1037
balancing nodes on a path, 1032–1033
implementing, 1033–1034
methods for performing, 1039
options for balancing AVL nodes, 1028–1030

Rounding methods, Math class, 199
Round-robin scheduling, of CPU time, 1136
Rows. see Tuples (rows)
RR imbalance, AVL nodes, 1028–1029
RR rotation

AVLTree class, 1036, 1037
balancing nodes on a path, 1032
options for balancing AVL nodes, 1028–1029

run method, for running threads, 1131, 1133
Runnable interface

tasks as instances of, 1130–1131
Thread class, 1134

Runtime errors
debugging, 119–120
declaring, 525–526
exception handling and, 39, 518
NullPointerException as, 306
programming errors, 27

Runtime stacks. see Call stacks

S
Sandbox security model, 675
Scanner class

obtaining input with, 72
for reading console input, 37–39
reading data from file using, 545–547
for reading text data, 710

Scanners
case study: replacing text, 548–549
creating, 522

Scheduling operations, 13
Scientific notation, of integer literals, 49
Scope, of variables, 42, 196–197
Screen resolution, 8
Script, for creating MySQL database,

1218–1219

Scroll bars
BallControl.java, 685
controlling bouncing speed in bouncing ball case

study, 683
overview of, 654–655
ScrollBarDemo.java, 655–657

Scroll panes
DescriptionPanel.java, 646
overview of, 644
scrolling lists, 651

search method, AVLTree class, 1043
Searches

arrays, 245
binary search trees. see Binary search trees
binary searches, 246–248, 748–749
linear searches, 245–246
recursive approach to searching for words, 738
search keys, 998, 1023

Secondary clustering, quadratic probing issue, 1003
Security restrictions, applets, 675–676, 1235
Segments, merging, 916–917
select statements

column aliases and, 1223–1224
queries with, 1221–1222

Selection sort algorithm
analyzing, 860
recurrence relations and, 861

Selection sorts
arrays, 245, 249–250
RecursiveSelectionSort.java, 747–748
using recursion, 747

Selection statements, 82, 84, 856–859
Selections

Addition.Quiz.java example, 83–84
boolean data type, 82–84
case study: computing Body Mass Index, 97–99
case study: computing taxes, 99–101
case study: determining leap year, 105–106
case study: guessing birthdays, 86–89
case study: lottery, 106–108
common errors, 93–95
conditional expressions, 111–112
confirmation dialogs, 117–119
debugging, 119–120
formatting console output, 112–115
generating random numbers, 96–97
if statements, 84–86
if-else statements, 89–91
key terms, 120
logical operators, 101–105
nested if statements and multi-way if-else statements,

91–93
operator precedence and associativity, 115–117
overview of, 81–82
questions and exercises, 121–131
summary and exercises, 120–121
switch statements, 108–111

Index 1301

Semaphores, controlling thread access to shared resources,
1160–1162

Semicolons (;), common errors, 93
Sentinel-controlled loops, 141–143, 164–165
Separate chaining

handling collision in hashing, 1005
implementing map using hashing, 1007–1008

Sequence statements, determining Big O for, 856–859
Sequential files, input/output streams, 729
Serialization

of arrays, 728–729
of objects, 727
Student.java example, 1191

Servers
client/server example, 1179
CountServer.java, 1188–1189
multiple clients connected to single server, 1184–1187
server sockets, 1176–1177
server.java, 1180
StudentServer.java, 1194–1195
TicTacToeServer.java, 1198–1202

ServerSocket class, 1176
set method, List interface, 800
Set operations, Collection interface, 796
setBackground method, Component class, 499
setFont method, Component class, 499
setForeground method, Component class, 499
setLayout method, Component class, 451
setLength method, StringBuilder class, 355–356
setPriority method, Thread class, 1136
setRadius method

CircleWithPrivateDataFields.java example, 321
SimpleCircle example, 299

Sets
case study: counting keywords, 841–842
as collection type, 794
comparing list performance with, 838–840
HashSet class, 830–831
key terms, 849
LinkedHashSet class, 834
overview of, 829–830
questions and exercises, 850–851
singleton and unmodifiable, 848–849
summary, 849–850
synchronized collections for, 1163–1164
TestHashSet.java example, 831–832
TestMethodsInCollection.java example,

832–833
TestTreeSet.java example, 835–836
TestTreeSetWithComparator.java example,

836–838
TreeSet class, 834–835

Sets, implementing with hashing
MyHashSet.java example, 1017–1022
MySet.java example, 1017
overview of, 1016–1017
TestMyHashSet.java example, 1022–1023

Setter (mutator) methods
ArrayList class and, 434
encapsulation of data fields and, 320–322
implementing linked lists, 938

Seven Bridges of Königsberg problem, 1048–1049
Shallow copies, clone method and, 579–580
Sharing code, 182
short, numeric types

hash codes for primitive types, 999
overview of, 45

Short-circuited OR operator, 104
Shortest path tree, 1114
Shortest paths

case study: weighted nine tails problem, 1119–1122
Dijkstra’s algorithm, 1111–1116
finding with graph, 1050
nine tails problem, 1080–1085
overview of, 1111
TestShortestPath.java, 1116–1119
WeightedGraph class and, 1101

ShortestPathTree class, 1114–1116
showConfirmDialog method, JOptionPane class, 117–119
showInputDialog method, JOptionPane class, 70, 72
showMessageDialog method, 22–23
Shuffling arrays, 228–229, 268
Sierpinski triangle

case study, 754–755
computing recursively, 762, 766–767
SierpinskiTriangle.java, 755–757

Sieve of Eratosthenes, 873–874
Signed applets, 676
Simple graphs, 1050
sin method, trigonometry, 197–198
Sine function, 511
Single precision numbers. see Floating-point numbers (float

data type)
Single-dimensional arrays. see Arrays, single-dimensional
Single-source shortest path algorithm, Dijkstra’s, 1111–1116
Singly linked lists. see LinkedList class
Sinking sorts, 258, 894–896
sleep method, Thread class, 1135
Sliders

overview of, 657–658
SliderDemo.java, 658–660

Sockets
client sockets, 1177–1178
data transmission through, 1178
overview of, 1176
server sockets, 1176–1177
in Server.java example, 1180

Software
development process, 58–62
programs as, 2

sort method
Arrays class, 252
ComparableRectangle.java example, 575–576
lists and, 805–806

1302 Index

sort method (continued)
SortRectangles.java example, 576–577
using recursion, 747–748

SortedMap interface, 844, 845
Sorting

adding nodes to heaps, 905–906
arrays using heaps, 909
bubble sort algorithm, 894–896
bucket sorts and radix sorts, 911–913
complexity of external sorts, 920
complexity of heap sorts, 910–911
CreateFile.java example of external sort, 913–915
external sorts, 913
Heap class and, 908
heap sort algorithm, 904–905
Heap.java example, 908–909
HeapSort.java example, 910
implementation phases of external sorts, 915–919
key terms, 920
merge sort algorithm, 896–900
overview of, 893–894
questions and exercises, 921–925
quick sort algorithm, 900–904
removing root from heap, 906–907
storing heaps, 905
summary, 920–921

Sorting arrays
bubble sorts, 258
case study: generic method for, 776–777
insertion sorts, 250–252
overview of, 248
selection sorts, 245, 249–250

Source objects, event sources and, 602–603
Source program or source code, 10, 40
Spacing, programming style and, 25
Spanning trees

graphs, 1050
minimum spanning trees, 1105–1106
MST algorithm, 1108–1109
Prim’s minimum spanning tree algorithm, 1106–1108
TestMinimumSpanningTree.java, 1109–1111
traversing graphs and, 1069

Special characters, 18
Specific import, 24
Splash screens, 467
split method, strings, 341, 342
SQL (Structured Query Language)

CallableStatement for executing SQL stored procedures,
1238–1241

column aliases, 1223–1224
creating databases, 1218–1219
creating tables, 1219–1220
creating user account in MySQL, 1217–1218
for defining and accessing databases, 1212
insert, update, and delete statements, 1220–1221
JDBC and, 1228–1232
operators, 1222–1224

overview of, 1216
PreparedStatement for creating parameterized SQL

statements, 1235–1238
queries, 1221–1222
table joins, 1226–1227
tuples, 1224–1226

Stack class, 814
StackOfIntegers class, 386–387
StackOverflowError, recursion causing, 757
Stacks

case study: custom stack class, 436–437
case study: designing class for stacks, 386–388
case study: evaluating expressions, 817–819
EvaluateExpression.java example,

819–822
GenericStack class, 773–774
implementing, 952–953
Stack class, 814
TestStackQueue.java example, 954–955

start method, applet life-cycle methods, 677–678
start method, for starting threads, 1131, 1133
Starvation, thread priorities and, 1136
State

of objects, 296
of threads, 1163

Statements
break statements, 109
continue statements, 159–162
executing one at a time, 119
executing repeatedly (loops), 134
in high-level languages, 10
if. see if statements
if-else. see if-else statements
return statements, 181
switch statements, 108–111
synchronizing, 1147–1148
terminators, 17

Statements, SQL
auto commit and, 1232
CallableStatement for executing SQL stored procedures,

1238–1241
create table statement, 1219
drop table statement, 1220
insert, update, and delete, 1220–1221
PreparedStatement for creating parameterized SQL

statements, 1235–1238
select statements, 1221–1224

Static data, in GuessDate class, 388, 390
Static methods

in CircleWithStaticMembers.java, 313–314
class design guidelines, 392–393
declaring, 313
defined, 312
event dispatch thread and, 1138
in GuessDate class, 388–391
invoking, 23
for lists and collections, 805–809

Index 1303

when to use instance methods vs. static, 313–314
wrapper classes and, 395

Static variables
in CircleWithStaticMembers.java, 313–314
class, 312–313
class design guidelines, 392–393
declaring, 313
instance variables compared with, 312
in TestCircleWithStaticMembers.java, 314
when to use instance variables vs. static, 316

Stepwise refinement
benefits of, 210
implementation details, 207–210
method abstraction, 203–204
top-down and/or bottom-up implementation, 205–207
top-down design, 204–205

stop method, applet life-cycle methods, 677–678
Storage devices

CDs and DVDs, 6
disks, 6
overview of, 5
USB flash drives, 7

Storage units, for measuring memory, 4–5
Stored procedures, executing SQL stored procedures, 1238–1241
Stream-based communication, Java supporting, 1176
String class, 336
String concatenation operator (+), 36, 340
String literals, 336
String variables, 336
StringBuffer class, 336, 353, 357
StringBuilder class

case study: ignoring nonalphanumeric characters when
checking palindromes, 356–358

modifying strings in, 353–355
overview of, 336, 353
toString, capacity, length, setLength, and charAt

methods, 355–356
Strings

in binary I/O, 716–717
case study: checking if string is a palindrome, 347–348
case study: converting hexadecimals to decimals, 348–350
case study: ignoring nonalphanumeric characters when

checking palindromes, 356–358
Character class, 350–351
command-line arguments, 358–361
comparing, 337–339
concatenating, 36, 68
constructing, 336
converting, replacing, and splitting, 341
converting to double, 71–72
converting to/from arrays, 343–344
converting to/from numbers, 70, 344
CountEachLetter.java example, 351–353
finding characters or substrings in, 342–343
formatting, 344–347
generic method for sorting array of Comparable

objects, 776

hash codes for, 999–1000
immutable and interned, 336–337
key terms, 361
matching, replacing, and splitting by patterns, 342
obtaining length, getting individual characters, and combining,

339–340
overview of, 335–336
passing to applets, 679
questions and exercises, 362–368
string data type, 68–69
StringBuilder and StringBuffer classes, 353–356
substrings, 37, 340–341
summary, 361–362
in Welcome.java, 17

Strings (graphics)
centering using FontMetrics class, 493–495
drawing, 483–484

Structure, in relational data model, 1212–1213
Structured Query Language. see SQL (Structured Query

Language)
Subclasses

abstract methods and, 560
abstracting, 564
constructors, 414–415
creating graphics canvas, 482–483
of Exception class, 524–525
inheritance and, 408–409
of RuntimeException class, 525

Subcontainers, panels as, 458–460
Subdirectories, 749
Subgraphs, 1050
Subinterfaces, 582
substring method, 340, 746
Substrings, 340–343
Subtraction (-) operator, 46, 50
Subtraction (-=) assignment operator, 53–54
Subtrees

of binary trees, 962
searching for elements in BST, 964

Subwindows, 660
Sudoku puzzle, 274–277, 890–892, 1173–1174
sum method, 269–270
super keyword, 414
Superclass methods, 417
Superclasses

of abstract class can be concrete, 564
classes extending, 581
common features in Component, Container, and

JComponent classes, 462
Container class as, 460
inheritance and, 408–409
subclasses related to, 560

Superkey attribute, primary key constraints and, 1215
Supplementary characters, Unicode, 62
swap method

swapping elements in an array, 239–240
in TestPassByValue.java example, 187–189

1304 Index

Swing
AbstractButton class, 468–469
applets. see JApplet class
AWT vs., 446
buttons. see JButton class
check boxes. see JCheckBox class
combo boxes. see JComboBox class
common features of Swing GUI components, 462–465
components. see JComponent class
constants, 572–573
creating user interfaces with, 468
dialogs. see JDialog class
event classes in, 603
file choosers (JFileChooserclass), 550, 551–552
frames. see JFrame class
labels. see JLabel class
lists. see JList class
option panes (JOptionPane class), 72
radio buttons. see JRadioButton class
scroll bars. see JScrollBar class
scroll panes, 644, 646
sliders (JSlider class), 657–660
text areas. see JTextArea class
text classes, 644
text components (JTextComponent class), 474–475
text fields. see JTextField class

switch statements
ChineseZodiac.java example, 110–111
overview of, 108–110

Synchronization wrapper methods, Collections class, 1164
Synchronized blocks, 1148, 1170
Synchronized collections, 1163–1164
synchronized keyword, 1147
Syntax errors (compile errors)

common errors, 18
debugging, 119–120
programming errors, 26–27

Syntax rules, in Welcome.java, 18
System activities, role of OSs, 12
System analysis, in software development process, 58–59
System design, in software development process, 58, 60
System errors, 524
System resources, allocating, 12
System.in, 37
System.out, 37, 112–115

T
Tables

creating, 1219–1220
dropping, 1220
insert, update, and delete records, 1220–1221
integrity constraints, 1214–1216
joins, 1226–1227
obtaining, 1242–1243
queries, 1221–1222
relational structures, 1213–1214

Tables, storing, 264
Tags, HTML, 673–674
Tail recursion

ComputeFactorialTailRecusion.java, 759
overview of, 758

tan method, trigonometry, 197–198
TaskClass, 1131
Tasks

creating, 1130–1131
running multiple. see Multithreading
TaskThreadDemo.java, 1131–1134
threads providing mechanism for running, 1130

TBs (terabytes), of storage, 5
TCP (Transmission Control Protocol), 1176
Teamwork, facilitated by stepwise refinement, 210
Terabytes (TBs), of storage, 5
Testing

benefits of stepwise refinement, 210
in software development process, 59, 61–62

Text
case study: replacing text, 548–549
displaying in message dialog box, 22–24
files, 710
font attributes, 493
positioning with JButton class, 470–471
.txt files (text), 712

Text areas
DescriptionPanel.java, 645–646
overview of, 644–645
TextAreaDemo.java, 646–647

Text fields
adding to frames, 452
adding to grid, 455
creating, 311
events, 640
JTextField class, 474–475
panel for, 641

Text I/O
vs. binary I/O, 711–712
handling in Java, 710–711
overview of, 710

TextPad, for creating/editing Java source code, 19
this reference

invoking constructors with, 374–375
overview of, 373–375
referencing hidden data fields with, 373–374

Thread class
creating tasks and, 1131
deprecated methods, 1135
methods of, 1135–1136
overview of, 1134–1136

Thread pools, 1142–1144
Thread synchronization

AccountWithoutSync.java,
1145–1147

overview of, 1144–1145
synchronization using locks, 1148–1150

Index 1305

synchronized keyword, 1147
synchronizing statements, 1147–1148

Threads
blocking queues, 1158–1160
case study: producer/consumer thread cooperation, 1155–1158
controlling animation with (flashing text case study),

1137–1138
creating, 1130–1131
deadlocks and, 1162
event dispatch thread, 1138–1139
locks enforcing cooperation among threads, 1150–1152
overview of, 1130
semaphores, 1160–1162
states, 1163
TaskThreadDemo.java, 1131–1134
Thread class, 1134–1136
ThreadCooperation.java, 1152–1155

Thread-safe classes, 1147, 1164
Three-dimensional arrays. see Arrays, multi-dimensional
throw keyword

chained exceptions, 538
throw ex for rethrowing exceptions, 537
for throwing exceptions, 527

Throwable class
generic classes not extending, 784
getting information about exceptions, 529–530
java.lang, 523–525

Throwing exceptions
CircleWithException.java example, 531
QuotientWithException.java example, 521
rethrowing, 536–537
TestCircleWithCustomException.java example, 539
throw keyword for, 526–527

throws keyword
for declaring exceptions, 527
IOException, 712–713

Tic-tac-toe game, 283, 1195–1197
Time sharing, threads sharing CPU time, 1130
Timers

animation using Timer class, 625–626
AnimationDemo.java, 626–628
Ball.java, 684–685
case study: clock with audio, 1140
ClockAnimation.java, 628–629
compared with threads for controlling animation, 1137–1138

toCharArray method, converting strings into arrays, 343
Toggle buttons, 468
Token reading methods, Scanner class, 546–547
toLowerCase method, Character class, 341
toLowerCase method, Character class, 351
Tool tips, for components, 462
Top-down design, 204–205
Top-down implementation, 205–207
Top-level containers, 447–448
toString method

ArrayList class, 433
Arrays class, 253

Date class, 309
MyArrayList.java example, 935
Object class, 429
StringBuilder class, 355–356

total variable, for storing sums, 268
toUpperCase method, Character class, 341, 351
Towers of Hanoi problem

analyzing algorithm for, 860–861
case study, 750–752
computing recursively, 762
nonrecursive computation, 828
recurrence relations and, 861
TowersOfHanoi.java, 752–754

Tracing a program, 36
transient keyword, serialization and, 727
Transistors, CPUs, 3
Transmission Control Protocol (TCP), 1176
Traveling salesperson problem (TSP), 1123
Traversing binary search trees, 965–966
Traversing graphs

breadth-first searches (BFS), 1077–1080
case study: connected circles problem, 1074–1077
depth-first searches (DFS), 1070–1074
overview of, 1069
TestWeightedGraph.java, 1104

Tree class
as inner class of AbstractGraph class, 1063
MST class extending, 1108–1109
ShortestPathTree class extending, 1114–1116
traversing graphs and, 1069

Tree interface, BST class, 967–968
Tree traversal, 965–966
TreeMap class

case study: counting occurrence of words, 847–848
concrete implementation of Map class, 842–844
implementation of Map class, 998
overview of, 845
TestMap.java example, 845–847
types of maps, 842–843

Trees
AVL trees. see AVL trees
binary search. see Binary search trees
connected graphs, 1050
creating BFS trees, 1078
Huffman coding. see Huffman coding trees
overview of, 962
red-black trees, 998, 1014
spanning trees. see Spanning trees
traversing, 965–966

TreeSet class
implementation of Set class, 1014
overview of, 834–835
TestTreeSet.java example, 835–836
TestTreeSetWithComparator.java example, 836–838
types of sets, 830

Trigonometric methods, Math class, 197–198
trim method, strings, 341

1306 Index

trimToSize method, 936
True/false (Boolean) values, 82
Truth tables, 102–103
try-catch blocks

catching exceptions, 525, 527–529
chained exceptions, 537–538
CircleWithException.java example, 532–533
exception classes cannot be generic, 784
InputMismatchExceptionDemo.java example, 522
QuotientWithException.java example, 520
rethrowing exceptions, 536–537
when to use exceptions, 535–536

Tuples (rows)
displaying distinct, 1224–1225
displaying sorted, 1225–1226
primary key constraints and, 1215
relational structures, 1213

Twin primes, 218
Two-dimensional arrays. see Arrays, two-dimensional
.txt files (text), 712
Type casting

between char and numeric types, 63
generic types and, 772
loss of precision, 67
for numeric type conversion, 56–57

Type erasure, erasing generic types, 782–783

U
UDP (User Datagram Protocol), 1176
UI (user interface)

BallControl.java, 685
for binary tree, 982
ComboBoxDemo.java, 649
creating, 641
graphical. see GUI (graphical user interface)
ListDemo.java, 653
MultipleWindowsDemo.java, 661
ScrollBarDemo.java, 656
SliderDemo.java, 659
TextAreaDemo.java, 647

UML (Unified Modeling Language)
aggregation shown in, 382
class diagrams with, 297
diagram for Loan class, 376
diagram of StackOfIntegers, 386
diagram of static variables and methods, 312–313

Unary operators, 47
Unbounded queues, 1158
Unbounded wildcards, 780
Unboxing, 396
Unchecked exceptions, 525
Underflow, floating point numbers, 45
Undirected graphs, 1049
Unicode

character data type (char) and, 62–65
comparing characters, 82

data input and output streams, 717
generating random numbers and, 201
text encoding, 710
text I/O vs. binary I/O, 711

Unified Modeling Language. see UML (Unified Modeling
Language)

Uniform Resource Locators. see URLs (Uniform Resource
Locators)

Unique addresses, for each byte of memory, 5
Universal serial bus (USB) flash drives, 7
UNIX epoch, 51
UnknownHostException, local hosts and, 1178
Unweighted graphs

defined, 1049
modeling graphs and, 1056, 1058
UnweightedGraph.java example, 1065–1066

Upcasting objects, 425
Update methods, Map interface, 843
Update statements, SQL, 1220–1221
URL class

DisplayImagePlayAudio.java, 694
DisplayImageWithURL.java, 692–693
java.net, 551
locating resources using, 691–692

URLs (Uniform Resource Locators)
for connecting JDBC to other databases, 1229
ReadFileFromURL.java example, 551–552
reading data from Web, 551

USB (universal serial bus) flash drives, 7
User accounts, MySQL, 1217–1218
User Datagram Protocol (UDP), 1176
User interface. see UI (user interface)
UTF-8, 717. see also Unicode

V
valueOf methods

converting strings into arrays, 344
wrapper classes and, 395

Value-returning methods
return statements required by, 181
TestReturnGradeMethod.java, 183–185
void method and, 179

Values
hashing functions, 998
maps and, 1023

values method, Map interface, 843
Variable-length argument lists, 244–245
Variables

Boolean variables. see Boolean variables
comparing primitive variables with reference variables,

306–308
control variables in for loops, 147–148
declaring, 35–36, 41
declaring array variables, 225
declaring for two-dimensional arrays,

264–265

Index 1307

displaying/modifying, 120
hidden, 372
identifiers, 40
indexed array variables, 226–227
naming conventions, 44
overflow, 45
overview of, 40–41
reference variables, 304
scope of, 42, 196–197, 371–372
static variables, 312–313

Vector class
methods, 813–814
overview of, 813
Stack class extending, 814

Vertex-weighted graphs, 1095
Vertical alignment, AbstractButton class, 470
Vertical scroll bars, 656
Vertical sliders, 657, 659
Vertical text position, 470–471
Vertices

AbstractGraph class, 1061–1062
adjacent and incident, 1050
depth-first searches (DFS), 1070
Graph.java example, 1060
on graphs, 1049
Prim’s algorithm and, 1106
representing on graphs, 1051–1052
shortest paths. see Shortest paths
TestBFS.java, 1078
TestGraph.java example, 1058
TestMinimumSpanningTree.java, 1109
TestWeightedGraph.java, 1103
vertex-weighted graphs, 1095
weighted adjacency matrices, 1096
WeightedGraph class, 1100–1101

Virtual machines (VMs), 21. see also JVM (Java Virtual
Machine)

Visibility (accessibility) modifiers
classes and, 317–319
protected, public, and private, 437–440

Visual Basic, high-level languages, 11
Visualizing (displaying) binary trees

DisplayBST.java example, 981
overview of, 981
TreeControl.java example, 981–984

Visualizing (displaying) graphs
Displayable.java example, 1066
DisplayUSMap.java example, 1067–1068
GraphView.java example, 1066–1067
overview of, 1066

VLSI (very large-scale integration), 738
VMs (virtual machines), 21. see also JVM (Java Virtual

Machine)
void method

defined, 179
defining and invoking, 183
TestVoidMethod.java, 183

W
WAV file, 693
Web, reading file data from, 551–552
Web browsers

controlling applet execution and life-cycle, 677
viewing applets, 674–675

Web servers, developing apps on, 628
Weighted graphs

case study: weighted nine tails problem, 1119–1122
defined, 1049
Dijkstra’s single-source shortest-path algorithm, 1111–1116
key terms, 1122
minimum spanning trees, 1105–1106
modeling graphs and, 1056
MST algorithm, 1108–1109
overview of, 1093–1094
Prim’s minimum spanning tree algorithm, 1106–1108
priority adjacency lists, 1096–1097
questions and exercises, 1123–1127
representing, 1095
shortest paths, 1111
summary, 1123
TestMinimumSpanningTree.java, 1109–1111
TestShortestPath.java, 1116–1119
TestWeightedGraph.java, 1103–1105
weighted adjacency matrices, 1096
weighted edges using edge array, 1095–1096
WeightedGraph class, 1097–1098
WeightedGraph.java, 1098–1103

WeightedEdge class, 1096
WeightedGraph class

getMinimumSpanningTree method, 1108, 1110–1111
overview of, 1097–1098
ShortestPathTree class as inner class of, 1114–1115
TestWeightedGraph.java, 1103–1105
WeightedGraph.java, 1098–1103

Well-balanced trees
AVL trees, 1028
binary search trees, 998

where clause, select statements, 1221
while loops

case study: guessing numbers, 137–139
case study: multiple subtraction quiz, 139–141
case study: predicting future tuition, 157
deciding when to use, 150–151
design strategies, 139
do-while loop. see do-while loop
input and output redirections, 143–144
overview of, 134–136
RepeatAdditionQuiz.java example, 136–137
sentinel-controlled, 141–143
servers serving multiple clients, 1185
syntax of, 134

Whitespace
characters, 69
as delimiter in token reading methods, 546–547

1308 Index

Wildcard import, 24
Wildcards, for specifying range of generic types, 779–782
Windows. see Frames (windows)
Windows, multiple

Histogram.java, 662–664
MultipleWindowsDemo.java, 661–662
overview of, 660–661

Windows class, 447
Windows OSs, 12
Wireless networking, 8
Worst-case input

heap sorts and, 910
measuring algorithm efficiency, 854, 867

Wrapper classes
automatic conversion between primitive types and wrapper

class types, 396–397, 771
File class as, 541
numeric, 585
primitive types and, 350, 393–396

Wrapping lines of text or words, 644, 646
Write-only streams, 729. see also OutputStream class

X
Xlint:unchecked error, compile time errors, 778
XListener/XEvent listener interface, 603–604

This page intentionally left blank

Console Input

Scanner input = new Scanner(System.in);
int intValue = input.nextInt();
long longValue = input.nextLong();
double doubleValue = input.nextDouble();
float floatValue = input.nextFloat();
String string = input.next();

Console Output

System.out.println(anyValue);

Primitive Data Types

byte 8 bits
short 16 bits
int 32 bits
long 64 bits
float 32 bits
double 64 bits
char 16 bits
boolean true/false

Relational Operators

< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
!= not equal

Logical Operators

&& short circuit AND
|| short circuit OR
! NOT
^ exclusive OR

Arithmetic Operators

+ addition
- subtraction
* multiplication
/ division
% remainder
++var preincrement
--var predecrement
var++ postincrement
var-- postdecrement

switch Statements

switch (intExpression) {
 case value1:
 statements;

break;
 ...

case valuen:
 statements;

break;
 default:
 statements;
}

Companion Web site: www.pearsonhighered.com/liang

Assignment Operators

= assignment
+= addition assignment
-= subtraction assignment
*= multiplication assignment
/= division assignment
%= remainder assignment

if Statements

if (condition) {
 statements;
}

if (condition) {
 statements;
}
else {
 statements;
}

if (condition1) {
 statements;
}
else if (condition2) {
 statements;
}
else {
 statements;
}

loop Statements

while (condition) {
 statements;
}

do {
 statements;
} while (condition);

for (init; condition;
 adjustment) {
 statements;
}

Java Quick Reference

GUI Input Dialog

String string = JOptionPane.showInputDialog(
 "Enter input");
int intValue = Integer.parseInt(string);
double doubleValue =
 Double.parseDouble(string);

Message Dialog

JOptionPane.showMessageDialog(null,
"Enter input");

www.pearsonhighered.com/liang

	Cover
	Title Page
	Copyright Page
	PREFACE
	Acknowledgments
	CONTENTS
	Chapter 1 Introduction to Computers, Programs, and Java
	1.1 Introduction
	1.2 What Is a Computer?
	1.3 Programming Languages
	1.4 Operating Systems
	1.5 Java, the World Wide Web, and Beyond
	1.6 The Java Language Specification, API, JDK, and IDE
	1.7 A Simple Java Program
	1.8 Creating, Compiling, and Executing a Java Program
	1.9 Displaying Text in a Message Dialog Box
	1.10 Programming Style and Documentation
	1.11 Programming Errors

	Chapter 2 Elementary Programming
	2.1 Introduction
	2.2 Writing a Simple Program
	2.3 Reading Input from the Console
	2.4 Identifiers
	2.5 Variables
	2.6 Assignment Statements and Assignment Expressions
	2.7 Named Constants
	2.8 Naming Conventions
	2.9 Numeric Data Types and Operations
	2.10 Numeric Literals
	2.11 Evaluating Expressions and Operator Precedence
	2.12 Case Study: Displaying the Current Time
	2.13 Augmented Assignment Operators
	2.14 Increment and Decrement Operators
	2.15 Numeric Type Conversions
	2.16 Software Development Process
	2.17 Character Data Type and Operations
	2.18 The String Type
	2.19 Getting Input from Input Dialogs

	Chapter 3 Selections
	3.1 Introduction
	3.2 boolean Data Type
	3.3 if Statements
	3.4 Case Study: Guessing Birthdays
	3.5 Two-Way if-else Statements
	3.6 Nested if and Multi-Way if-else Statements
	3.7 Common Errors in Selection Statements
	3.8 Generating Random Numbers
	3.9 Case Study: Computing Body Mass Index
	3.10 Case Study: Computing Taxes
	3.11 Logical Operators
	3.12 Case Study: Determining Leap Year
	3.13 Case Study: Lottery
	3.14 switch Statements
	3.15 Conditional Expressions
	3.16 Formatting Console Output
	3.17 Operator Precedence and Associativity
	3.18 Confirmation Dialogs
	3.19 Debugging

	Chapter 4 Loops
	4.1 Introduction
	4.2 The while Loop
	4.3 The do-while Loop
	4.4 The for Loop
	4.5 Which Loop to Use?
	4.6 Nested Loops
	4.7 Minimizing Numeric Errors
	4.8 Case Studies
	4.9 Keywords breakand continue
	4.10 Case Study: Displaying Prime Numbers
	4.11 Controlling a Loop with a Confirmation Dialog

	Chapter 5 Methods
	5.1 Introduction
	5.2 Defining a Method
	5.3 Calling a Method
	5.4 void Method Example
	5.5 Passing Parameters by Values
	5.6 Modularizing Code
	5.7 Case Study: Converting Decimals to Hexadecimals
	5.8 Overloading Methods
	5.9 The Scope of Variables
	5.10 The Math Class
	5.11 Case Study: Generating Random Characters
	5.12 Method Abstraction and Stepwise Refinement

	Chapter 6 Single-Dimensional Arrays
	6.1 Introduction
	6.2 Array Basics
	6.3 Case Study: Lotto Numbers
	6.4 Case Study: Deck of Cards
	6.5 Copying Arrays
	6.6 Passing Arrays to Methods
	6.7 Returning an Array from a Method
	6.8 Case Study: Counting the Occurrences of Each Letter
	6.9 Variable-Length Argument Lists
	6.10 Searching Arrays
	6.11 Sorting Arrays
	6.12 The Arrays Class

	Chapter 7 Multidimensional Arrays
	7.1 Introduction
	7.2 Two-Dimensional Array Basics
	7.3 Processing Two-Dimensional Arrays
	7.4 Passing Two-Dimensional Arrays to Methods
	7.5 Case Study: Grading a Multiple-Choice Test
	7.6 Case Study: Finding the Closest Pair
	7.7 Case Study: Sudoku
	7.8 Multidimensional Arrays

	Chapter 8 Objects and Classes
	8.1 Introduction
	8.2 Defining Classes for Objects
	8.3 Example: Defining Classes and Creating Objects
	8.4 Constructing Objects Using Constructors
	8.5 Accessing Objects via Reference Variables
	8.6 Using Classes from the Java Library
	8.7 Static Variables, Constants, and Methods
	8.8 Visibility Modifiers
	8.9 Data Field Encapsulation
	8.10 Passing Objects to Methods
	8.11 Array of Objects

	Chapter 9 Strings
	9.1 Introduction
	9.2 The String Class
	9.3 Case Study: Checking Palindromes
	9.4 Case Study: Converting Hexadecimals to Decimals
	9.5 The Character Class
	9.6 The StringBuilder and StringBuffer
	9.7 Command-Line Arguments

	Chapter 10 Thinking in Objects
	10.1 Introduction
	10.2 Immutable Objects and Classes
	10.3 The Scope of Variables
	10.4 The this Reference
	10.5 Class Abstraction and Encapsulation
	10.6 Object-Oriented Thinking
	10.7 Object Composition
	10.8 Case Study: Designing the Course Class
	10.9 Case Study: Designing a Class for Stacks
	10.10 Case Study: Designing the GuessDate Class
	10.11 Class Design Guidelines
	10.12 Processing Primitive Data Type Values as Objects
	10.13 Automatic Conversion between Primitive Types and Wrapper Class Types
	10.14 The BigInteger and BigDecimal

	Chapter 11 Inheritance and Polymorphism
	11.1 Introduction
	11.2 Superclasses and Subclasses
	11.3 Using the super Keyword
	11.4 Overriding Methods
	11.5 Overriding vs. Overloading
	11.6 The Object Class and Its toString()
	11.7 Polymorphism
	11.8 Dynamic Binding
	11.9 Casting Objects and the instanceof Operator
	11.10 The Object’s equals method
	11.11 The ArrayList Class
	11.12 Case Study: A Custom Stack Class
	11.13 The protected Data and Methods
	11.14 Preventing Extending and Overriding

	Chapter 12 GUI Basics
	12.1 Introduction
	12.2 Swing vs. AWT
	12.3 The Java GUI API
	12.4 Frames
	12.5 Layout Managers
	12.6 Using Panels as Subcontainers
	12.7 The Color Class
	12.8 The Font Class
	12.9 Common Features of Swing GUI Components
	12.10 Image Icons
	12.11 JButton
	12.12 JCheckBox
	12.13 JRadioButton
	12.14 Labels
	12.15 Text Fields

	Chapter 13 Graphics
	13.1 Introduction
	13.2 The Graphics Class
	13.3 Drawing Strings, Lines, Rectangles, and Ovals
	13.4 Case Study: The FigurePanel Class
	13.5 Drawing Arcs
	13.6 Drawing Polygons and Polylines
	13.7 Centering a String Using the FontMetrics Class
	13.8 Case Study: The MessagePanel Class
	13.9 Case Study: The StillClock Class
	13.10 Displaying Images
	13.11 Case Study: The ImageViewer Class

	Chapter 14 Exception Handling and Text I/O
	14.1 Introduction
	14.2 Exception-Handling Overview
	14.3 Exception Types
	14.4 More on Exception Handling
	14.5 The finally Clause
	14.6 When to Use Exceptions
	14.7 Rethrowing Exceptions
	14.8 Chained Exceptions
	14.9 Defining Custom Exception Classes
	14.10 The File Class
	14.11 File Input and Output
	14.12 File Dialogs
	14.13 Reading Data from the Web

	Chapter 15 Abstract Classes and Interfaces
	15.1 Introduction
	15.2 Abstract Classes
	15.3 Case Study: the Abstract Number Class
	15.4 Case Study: Calendar and GregorianCalendar
	15.5 Interfaces
	15.6 The Comparable Interface
	15.7 The Cloneable Interface
	15.8 Interfaces vs. Abstract Classes
	15.9 Case Study: The Rational Class

	Chapter 16 Event-Driven Programming
	16.1 Introduction
	16.2 Events and Event Sources
	16.3 Listeners, Registrations, and Handling Events
	16.4 Inner Classes
	16.5 Anonymous Class Listeners
	16.6 Alternative Ways of Defining Listener Classes
	16.7 Case Study: Loan Calculator
	16.8 Mouse Events
	16.9 Listener Interface Adapters
	16.10 Key Events
	16.11 Animation Using the Timer Class

	Chapter 17 GUI Components
	17.1 Introduction
	17.2 Events for JCheckBox, JRadioButton and JTextField
	17.3 Text Areas
	17.4 Combo Boxes
	17.5 Lists
	17.6 Scroll Bars
	17.7 Sliders
	17.8 Creating Multiple Windows

	Chapter 18 Applets and Multimedia
	18.1 Introduction
	18.2 Developing Applets
	18.3 The HTML File and the <applet>Tag
	18.4 Applet Security Restrictions
	18.5 Enabling Applets to Run as Applications
	18.6 Applet Life-Cycle Methods
	18.7 Passing Strings to Applets
	18.8 Case Study: Bouncing Ball
	18.9 Case Study: Developing a Tic-Tac-Toe Game
	18.10 Locating Resources Using the URL Class
	18.11 Playing Audio in Any Java Program
	18.12 Case Study: National Flags and Anthems

	Chapter 19 Binary I/O
	19.1 Introduction
	19.2 How Is Text I/O Handled in Java?
	19.3 Text I/O vs. Binary I/O
	19.4 Binary I/O Classes
	19.5 Case Study: Copying Files
	19.6 Object I/O
	19.7 Random-Access Files

	Chapter 20 Recursion
	20.1 Introduction
	20.2 Case Study: Computing Factorials
	20.3 Case Study: Computing Fibonacci Numbers
	20.4 Problem Solving Using Recursion
	20.5 Recursive Helper Methods
	20.6 Case Study: Finding the Directory Size
	20.7 Case Study: Towers of Hanoi
	20.8 Case Study: Fractals
	20.9 Recursion vs. Iteration
	20.10 Tail Recursion

	Chapter 21 Generics
	21.1 Introduction
	21.2 Motivations and Benefits
	21.3 Defining Generic Classes and Interfaces
	21.4 Generic Methods
	21.5 Case Study: Sorting an Array of Objects
	21.6 Raw Types and Backward Compatibility
	21.7 Wildcard Generic Types
	21.8 Erasure and Restrictions on Generics
	21.9 Case Study: Generic Matrix Class

	Chapter 22 Lists, Stacks, Queues, and Priority Queues
	22.1 Introduction
	22.2 Collections
	22.3 Iterators
	22.4 Lists
	22.5 The Comparator Interface
	22.6 Static Methods for Lists and Collections
	22.7 Case Study: Bouncing Balls
	22.8 The Vector and Stack Classes
	22.9 Queues and Priority Queues
	22.10 Case Study: Evaluating Expressions

	Chapter 23 Sets and Maps
	23.1 Introduction
	23.2 Sets
	23.3 Comparing the Performance of Sets and Lists
	23.4 Case Study: Counting Keywords
	23.5 Maps
	23.6 Case Study: Occurrences of Words
	23.7 Singleton and Unmodifiable Collections and Maps

	Chapter 24 Developing Efficient Algorithms
	24.1 Introduction
	24.2 Measuring Algorithm Efficiency Using Big O Notation
	24.3 Examples: Determining Big O
	24.4 Analyzing Algorithm Time Complexity
	24.5 Finding Fibonacci Numbers Using Dynamic Programming
	24.6 Finding Greatest Common Divisors Using Euclid’s Algorithm
	24.7 Efficient Algorithms for Finding Prime Numbers
	24.8 Finding the Closest Pair of Points Using Divide-and-Conquer
	24.9 Solving the Eight Queens Problem Using Backtracking
	24.10 Computational Geometry: Finding a Convex Hull

	Chapter 25 Sorting
	25.1 Introduction
	25.2 Bubble Sort
	25.3 Merge Sort
	25.4 Quick Sort
	25.5 Heap Sort
	25.6 Bucket Sort and Radix Sort
	25.7 External Sort

	Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues
	26.1 Introduction
	26.2 Common Features for Lists
	26.3 Array Lists
	26.4 Linked Lists
	26.5 Stacks and Queues
	26.6 Priority Queues

	Chapter 27 Binary Search Trees
	27.1 Introduction
	27.2 Binary Search Trees
	27.3 Deleting Elements from a BST
	27.4 Tree Visualization
	27.5 Iterators
	27.6 Case Study: Data Compression

	Chapter 28 Hashing
	28.1 Introduction
	28.2 What Is Hashing?
	28.3 Hash Functions and Hash Codes
	28.4 Handling Collisions Using Open Addressing
	28.5 Handling Collisions Using Separate Chaining
	28.6 Load Factor and Rehashing
	28.7 Implementing a Map Using Hashing
	28.8 Implementing Set Using Hashing

	Chapter 29 AVL Trees
	29.1 Introduction
	29.2 Rebalancing Trees
	29.3 Designing Classes for AVL Trees
	29.4 Overriding the insert Method
	29.5 Implementing Rotations
	29.6 Implementing the delete Method
	29.7 The AVLTree Class
	29.8 Testing the AVLTree Class
	29.9 AVL Tree Time Complexity Analysis

	Chapter 30 Graphs and Applications
	30.1 Introduction
	30.2 Basic Graph Terminologies
	30.3 Representing Graphs
	30.4 Modeling Graphs
	30.5 Graph Visualization
	30.6 Graph Traversals
	30.7 Depth-First Search (DFS)
	30.8 Case Study: The Connected Circles Problem
	30.9 Breadth-First Search (BFS)
	30.10 Case Study: The Nine Tails Problem

	Chapter 31 Weighted Graphs and Applications
	31.1 Introduction
	31.2 Representing Weighted Graphs
	31.3 The WeightedGraph Class
	31.4 Minimum Spanning Trees
	31.5 Finding Shortest Paths
	31.6 Case Study: The Weighted Nine Tails Problem

	Chapter 32 Multithreading and Parallel Programming
	32.1 Introduction
	32.2 Thread Concepts
	32.3 Creating Tasks and Threads
	32.4 The Thread Class
	32.5 Case Study: Flashing Text
	32.6 GUI Event Dispatch Thread
	32.7 Case Study: Clock with Audio
	32.8 Thread Pools
	32.9 Thread Synchronization
	32.10 Synchronization Using Locks
	32.11 Cooperation among Threads
	32.12 Case Study: Producer/Consumer
	32.13 Blocking Queues
	32.14 Semaphores
	32.15 Avoiding Deadlocks
	32.16 Thread States
	32.17 Synchronized Collections
	32.18 Parallel Programming

	Chapter 33 Networking
	33.1 Introduction
	33.2 Client/Server Computing
	33.3 The InetAddress Class
	33.4 Serving Multiple Clients
	33.5 Applet Clients
	33.6 Sending and Receiving Objects
	33.7 Case Study: Distributed Tic-Tac-Toe Games

	Chapter 34 Java Database Programming
	34.1 Introduction
	34.2 Relational Database Systems
	34.3 SQL
	34.4 JDBC
	34.5 PreparedStatement
	34.6 CallableStatement
	34.7 Retrieving Metadata

	Chapter 35 Internationalization
	Chapter 36 JavaBeans
	Chapter 37 Containers, Layout Managers, and Borders
	Chapter 38 Menus, Toolbars, and Dialogs
	Chapter 39 MVC and Swing Models
	Chapter 40 JTable and JTree
	Chapter 41 Advanced Database Programming
	Chapter 42 Servlets
	Chapter 43 JavaServer Pages
	Chapter 44 JavaServer Faces
	Chapter 45 Web Services
	Chapter 46 Remote Method Invocation
	Chapter 47 2-4 Trees and B-Trees
	Chapter 48 Red-Black Trees
	Chapter 49 Java 2D
	Chapter 50 Testing Using JUnit
	APPENDIXES
	Appendix A: Java Keywords
	Appendix B: The ASCII Character Set
	Appendix C: Operator Precedence Chart
	Appendix D: Java Modifiers
	Appendix E: Special Floating-Point Values
	Appendix F: Number Systems
	Appendix G: Bitwise Operations

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

